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Weyl magnons in breathing pyrochlore
antiferromagnets
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Frustrated quantum magnets not only provide exotic ground states and unusual magnetic

structures, but also support unconventional excitations in many cases. Using a physically

relevant spin model for a breathing pyrochlore lattice, we discuss the presence of topological

linear band crossings of magnons in antiferromagnets. These are the analogues of Weyl

fermions in electronic systems, which we dub Weyl magnons. The bulk Weyl magnon implies

the presence of chiral magnon surface states forming arcs at finite energy. We argue that

such antiferromagnets present a unique example, in which Weyl points can be manipulated

in situ in the laboratory by applied fields. We discuss their appearance specifically in the

breathing pyrochlore lattice, and give some general discussion of conditions to find

Weyl magnons, and how they may be probed experimentally. Our work may inspire a

re-examination of the magnetic excitations in many magnetically ordered systems.
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I
t is commonly thought that the spin ordering pattern of a
magnetic insulator uniquely specifies the state of the system1,
and indeed the ground state of such materials is usually

well-described by a simple product state of little fundamental
interest. However, in view of recent developments in the study of
topological properties of periodic media2,3, it is possible that
even such a product-like ground state can support topologically
non-trivial excited state band structure. Topological properties of
bands have been studied previously for electrons in solids
governed by Schrödinger’s equations2,3, for photons in dielectric
superlattices governed by Maxwell’s equations4,5, for phonons
governed by Newton’s equations4, and even for fractionalized
spinon excitation in spin liquids6,7. Here we apply these ideas to
magnons governed by the equations for spin waves in an ordered
antiferromagnet. We consider a concrete magnetic system,
namely, the Cr-based breathing pyrochlore, and explicitly
demonstrate that it supports Weyl magnon excitations with a
linear band touching in the spin-wave spectrum of the magnetic
ordered phase. The Weyl magnon is analogous to a Weyl
fermion8–11 in electronic systems, but has bosonic rather than
fermionic statistics, similar to Weyl points in photonic systems5.
In contrast to the other three categories of systems, the band
structure of magnons in antiferromagnets is highly tunable in situ
by application of readily available magnetic fields, which is a
consequence of the spontaneous symmetry breaking of the
antiferromagnet ground state and the relatively low-energy scale
for magnetic interactions in most solids. Thus one can envision
moving, creating and annihilating Weyl points in the laboratory
in a single experiment.

To explore Weyl magnons, we focus on a concrete and physical
model system, the breathing pyrochlore antiferromagnet. This is a
generalization of the common pyrochlore structure, which
consists of a network of corner sharing tetrahedra, with magnetic
ions at the corners. In the breathing pyrochlore, alternate
tetrahedra are uniformly expanded and contracted in size12–16.
As a result, the structure lacks an inversion center, and in
general up-pointing and down-pointing tetrahedral units are
inequivalent. We consider below a spin model for the breathing
pyrochlore, which generalizes and includes the uniform limit, and
displays Weyl points even in the uniform case. We obtain the full
phase diagram of this spin model and the magnetic excitations
in different phases. The experimental consequences of Weyl
magnons and the general conditions for their occurrence in spin
systems are predicted and discussed.

Results
Spin model. We consider Cr3þ ions in the breathing pyrochlore
lattice. There are several compounds with this structure,
including LiGaCr4O8 and LiInCr4O8, which have been recently
studied13,14. In this 3d3 electron configuration the orbital angular
momentum is fully quenched and the local moment is
well-described by the isotropic Heisenberg exchange and a total
spin S¼ 3/2 according to Hund’s rules. The minimal spin model
is given as

H ¼ J
X
ijh i2u

Si � Sjþ J 0
X
ijh i2d

Si � SjþD
X

i

Si � ẑið Þ2; ð1Þ

Since spin-orbit coupling is weak, the interaction between the
local moments is primarily where we have supplemented the
Heisenberg model with a local spin anisotropy17, which is
generically allowed by the D3d point group symmetry at the Cr
site. The anisotropic direction ẑi is the local [111] direction that
points into the center of each tetrahedron and is specified for each
sublattice (Methods). Here J and J0 are the exchange couplings
between the nearest-neighbour spins on the up-pointing and

down-pointing tetrahedra (Fig. 1), respectively. The large and
negative Curie–Weiss temperatures of the Cr-based breathing
pyrochlores indicate the strong atomic force microscopy
interactions, hence we take J40, J040. Because the up-pointing
and down-pointing tetrahedra have different sizes, one thus
expects JaJ0. In this work, however, we will study this model in a
general parameter setting. The atomic force microscopy exchange
interactions favour zero total spin on each up-pointing
(down-pointing) tetrahedron, that is,

P
i2u Si¼0 ð

P
i2d Si¼0Þ.

As for the regular pyrochlore lattice18, the classical ground state
of the exchange part of the Hamiltonian is extensively degenerate.

Ground states and quantum order by disorder. We first
consider easy-axis spin anisotropy with Do0. This favours the
spin to be aligned with its local [111] axis. It turns out that this
condition can be satisfied while simultaneously optimizing the
exchange interaction. This gives a unique classical ground state
(up to a 2-fold degeneracy from the time-reversal operation) that
has an all-in all-out magnetic order. The magnetic excitation of
this ordered state is fully gapped and the energy gap (D) is simply
set by the easy-axis spin anisotropy with D¼ 3|D| (Methods).

With the easy-plane anisotropy, D40, the spin prefers to
orient in the xy plane of the local coordinate system at each
sublattice. This requirement can also be satisfied while simulta-
neously optimizing the exchange. Moreover, there exists an
accidental U(1) degeneracy of the classical ground state that we
parametrize as

Scl
i � Sm̂i ¼ S cos y x̂iþ sin y ŷi

� �
; ð2Þ

where x̂i (ŷi) is the unit vector along the local x (y) axis in the
local coordinate system at site i (Methods), the unit vector m̂i
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Figure 1 | The breathing pyrochlore and the phase diagram.

(a) The breathing pyrochlore. The letter u(d) refers to the up-pointing

(down-pointing) tetrahedra and J(J0) indicates the nearest-neighbour

exchange couplings on the up-pointing (down-pointing) tetrahedra. (b) The

phase diagram. Regions I and II have the same magnetic order and belong

to the same phase, but the magnetic excitations of the two regions are

topologically distinct. Region III has a different magnetic order. The details

of the phase diagram are discussed in the main text.
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points in the local xy plane, and the angular variable y captures
the U(1) degeneracy. This is the same form of degeneracy found
for the S¼ 1/2 pyrochlore Er2Ti2O7 in ref. 19, where it was noted
that the degeneracy is accidental, that is, not protected by any
symmetry, and hence will be lifted by quantum fluctuations. The
same holds for the breathing pyrochlore, as we show now using
linear spin-wave theory. We introduce the Holstein–Primakoff
bosons to express the spin operators as Si � m̂i¼S� awi ai,

Si � ẑi¼ 2Sð Þ1=2ðaiþ awi Þ=2, and Si � m̂i�ẑið Þ¼ 2Sð Þ1=2ðai�awi Þ= 2ið Þ.
Keeping terms in the spin Hamiltonian H up to the quadratic
order in the Holstein–Primakoff bosons, one can readily write
down the spin-wave Hamiltonian as

Hsw ¼
P

k

P
m;n

Amn kð Þayk;mak;nþBmn kð Þa� k;mak;n

h

þ B�mn � kð Þayk;may� k;n

i
þEcl;

ð3Þ

where Ecl is the classical ground state energy, and Amn, Bmn satisfy
Amn kð Þ¼A�nm kð Þ, Bmn kð Þ¼Bnm � kð Þ and depend on the angular
variable y. Although the classical energy Ecl is independent of y
due to the U(1) degeneracy, the quantum zero point energy DE of
the spin-wave modes depends on y, and is given by
DE¼

P
k

P
m

1
2 om kð Þ�Amm kð Þ
� �

, where om(k) is the excitation
energy of the m-th spin-wave mode at momentum k and is
determined for every classical spin ground state. The minimum of
DE occurs at y¼p/6þ np/3 (np/3) with n 2 Z in regions I and II
(region III). The discrete minima and the corresponding
magnetic orders are equivalent under space group symmetry
operations. The U(1) degeneracy of the classical ground states is
thus broken by quantum fluctuations. This is the well-known
phenomenon known as quantum order by disorder19–22. The
resulting optimal state is a non-collinear one in which each spin
points along its local [112] ([1�10]) lattice direction in regions I
and II (region III), see Fig. 2.

To obtain the phase diagram in Fig. 1, we have implemented
the semiclassical approach and included the quantum fluctuation
within linear spin-wave theory. This treatment may under-
estimate the quantum fluctuation in the parameter regimes when
JcJ0, D or J0cJ, D. In the latter regimes, one may first consider
the tetrahedron with the strongest coupling and treat other
couplings as perturbations. The ground state in these regimes is
likely to be non-magnetic and will be addressed in the future
work. For the purpose of the current work, we will focus on the
ordered ground states in Figs 1 and 2.

Magnon Weyl nodes and surface states. Regions I and II have
the same magnetically ordered structure with the same order
parameter and belong to the same phase. Although the ground
states are characterized by the same order parameter, the
magnetic excitations of the two regions are topologically distinct.
The magnetic excitation in region I has Weyl band touchings,
while the region II does not. To further clarify this, we choose
y¼p/2 and thus fix the magnetic order to orient along the ŷ
directions of the local coordinate systems. Using linear spin-wave
theory, we obtain the magnetic excitation spectrum with respect
to this magnetic state for regions I and II. In Fig. 3a, we depict a
representative excitation spectrum along the high-symmetry lines
in the Brillouin zone for region I.

Two qualitative features are clear in the magnon spectrum of
Fig. 3a. First, we observe a gapless mode at the G point. This
pseudo-Goldstone mode is an artifact of the linear spin-wave
approximation, and a small gap is expected to be generated by
anharmonic effects19. Secondly, the spectrum in Fig. 3a has a
linear band touching at a point along the line between G and X. In
fact, as we show in Fig. 3b, there are in total four such linear band
touchings. The bands separate linearly in all directions away from
these touchings, which are thus Weyl nodes in the magnon
spectrum. Just like Weyl nodes of non-degenerate electron
bands8, the magnon Weyl points are sources and sinks of Berry
curvature and are characterized by a discrete chirality taking
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Figure 2 | Quantum zero point energy and the magnetic order. We have chosen the representative parameters in regions I and III with D¼0.2J,

J0 ¼0.6J in (a) and D¼0.05J, J0 ¼0.6J in (c), respectively. (b) The magnetic order in regions I and II with y¼ p/2 and the spins pointing along the local ŷ.

(d) The magnetic order in region III with y¼0 and the spins pointing along the local x̂.
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values ±1. Unlike in an electronic Weyl semimetal, where one
can tune the Fermi energy to the Weyl nodes by varying the
electron density, the magnon Weyl nodes must necessarily appear
at finite energies because of the bosonic nature of magnons.

Due to the bulk-edge correspondence, we expect magnon
arc states bound to any surface which possesses non-trivial
projections of the bulk Weyl points. This is indeed observed in
Fig. 4. The chiral magnon arcs appear at non-zero energy and
connect the bulk magnon Weyl nodes with opposite chiralities, as
expected.

Once the magnon Weyl nodes emerge in the magnon
spectrum, they are topologically robust and exist over a finite
regime in the parameter space. We find that the magnon Weyl
nodes exist in region I. As the couplings are varied so that the
boundary with region II is approached, the magnon Weyl nodes
move together and annihilate in pairs when the boundary is
reached. In region II, there is no such (Weyl) band crossing,
qualitatively distinguishing region II from region I.

Manipulating Weyl nodes by external magnetic fields. When
we apply an external magnetic field to the system, the spin only
couples to the field via a Zeeman coupling. This is quite different
from the case of electronic systems, in which a magnetic field also
has an orbital effect, which leads to cyclotron motion of electrons
and a transformation from ordinary bands into Landau ones.
In the latter case, the meaning of quasi-momentum is irrevocably
changed by an applied field, and one cannot follow the Weyl
point evolution with field. By contrast, since magnons are neutral,
there is no orbital effect, and quasi-momentum and the Weyl
points themselves remain well-defined even for strong fields.
Therefore, a magnetic field can be used to manipulate the Weyl
nodes. To demonstrate this explicitly, we focus on one specific
classical order in region I and apply a magnetic field along the
global z direction. The magnetic field perturbs the classical

ground state and indirectly changes the spin-wave Hamiltonian.
As we show in Fig. 5, the Weyl nodes are shifted gradually and
finally annihilated when the magnetic field is increased.

Discussion
We have explicitly shown the presence of Weyl nodes in a simple
and physically relevant model for the breathing pyrochlore lattice
antiferromagnet. Weyl points may also be present in other
pyrochlores for which the exchange is more complicated. The
spin-wave spectra of the highly anisotropic spin-1/2 pyrochlores
Yb2Ti2O7 and Er2Ti2O7 have been extensively studied19,23.
Re-examined here in the light of topology, we see that they are
present already in the spin-wave spectra of Yb2Ti2O7 and
Er2Ti2O7 in the external magnetic fields. Thus we think that
Weyl points can be present in many magnetic materials of current
interest.

Beyond these specific examples, we may ask what are the
conditions necessary to find Weyl points in the magnon
spectrum? In electronic systems, these points are symmetry
prevented, meaning that if both inversion P and time-reversal
symmetry T are present, Weyl points cannot occur. This is
because in that case, a two-fold Kramers’ degeneracy of bands
occurs, and any crossing must involve two and not four bands.
For magnons, there is never a Kramer’s degeneracy. This is
because magnons are integer spin excitations (even when the spin
is not a good quantum number they are superpositions of integer
spin excitations), which do not obey Kramer’s theorem because
T 2¼ þ 1 in this case. Moreover, in general the magnetic order
which underlies magnons already breaks time-reversal symmetry.
This suggests that Weyl points may be generically allowed.
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However, there are some conditions under which Weyl points
are prohibited. In particular, many magnetically ordered systems
possess not time-reversal but a complex conjugation symmetry C.
This is the case for any Heisenberg Hamiltonian with a collinear
ordered ground state, but it can occur more generally. If, in
addition, the system possesses inversion symmetry P, then Weyl
points are prohibited. This can be understood from the Berry
curvature24,25, Om kð Þ¼iEmnl @nk @lkjh i, defined in terms of the
exact magnon eigenstates |ki of a given magnon band. The Berry
curvature is an effective magnetic field in momentum space, and a
Weyl point is defined as a delta-function source (divergence) of
this curvature. If P is valid, one has Om(k)¼Om(� k), while C
implies Om(k)¼ �Om(� k). Hence the combination requires
Om(k)¼ 0, prohibiting any Berry curvature at all, and also
obviously Weyl points.

This shows that in the simplest magnetically ordered systems,
Weyl points are not allowed. There may be other conditions
prohibiting Weyl points, or constraining them. A trivial condition
is that one needs at least two magnon bands to form Weyl points,
which prohibits them in some simple ferromagnets. In the case
studied in this paper a two-fold rotation axis locks the Weyl
points along the G–X axes. A full treatment of the necessary and
sufficient conditions for Weyl points may be part of a topological
spin-wave theory26,27, to be developed in the future.

Now we turn to experimental implications. The most natural
probe of the bulk magnon Weyl nodes as well as the surface
magnon arc states is inelastic neutron scattering. Because of the
surface dependence of the magnon arc states, one could study the
system with different slab geometries and surface orientations.
For example, for the [11�1] surfaces, one would observe two
disconnected arcs on both up and down surfaces (Fig. 4). In
contrast, one would observe two loops across the surface Brillouin
zone for the [110] surfaces because two pairs of Weyl nodes with
different chiralities are projected onto the same points (Methods).

The Weyl magnon can be potentially detected optically. Close
to the Weyl nodes, a vertical transition can occur with arbitrarily
small energy. Because the lower state is empty at zero temperature
in equilibrium, it may be beneficial to use a pump-probe
approach to measure the optical absorption. Then one may be
able to observe optical absorption at low frequency28, when the

lower magnon bands have enough population. In addition to the
spectroscopic property, the presence of the Weyl magnon
spectrum may lead to a thermal Hall effect, just like the Weyl
fermion that gives rise to the anomalous Hall current in electronic
systems29,30. Furthermore, one could use magnetic field to
control thermal Hall signal31–33 despite the absence of the
Lorentz coupling of the spin to the external magnetic field. Again
due to population effects, the thermal Hall signal from Weyl
magnons will be suppressed at low temperature, but could be
enhanced by optical pumping.

Although the existing experiments suggest that both
LiGaCr4O8 and LiInCr4O8 develop the antiferromagnetic
long-range orders at low temperature13,14, the precise structures
of the magnetic order in these two systems are not yet clear at this
stage. Therefore, it is certainly of interest to confirm the magnetic
order and detect possible Weyl magnon excitations in these
systems and other three dimensional Mott insulators with
long-range magnetic orders.

To summarize, we have studied a realistic spin model on
the Cr-based breathing pyrochlore lattice. We show that
the combination of the single-ion spin anisotropy and the
superexchange interaction leads to novel magnetically ordered
ground states. Remarkably, the magnetic excitations in a large
parameter regime develops magnon Weyl nodes in the magnon
spectrum. We expect that Weyl magnons may exist broadly in
many ordered magnets. We propose a number of experiments
that can test the presence of the Weyl magnons.

a

d e f

b c

Figure 5 | The evolution of Weyl nodes under the magnetic field. Applying a magnetic field along the global z direction, B¼Bẑ, Weyl nodes are shifted

but still in kz¼0 plane. They are annihilated at G when magnetic field is strong enough. Red and blue indicate the opposite chirality. (a,f): B¼0, 0.1J,

0.5J, 0.9J, 1.0J, 1.1J. We have set D¼0.2J, J0 ¼0.6J and y¼p/2.

Table 1 | The local axis for the four sublattices of the
breathing pyrochlore lattice.

l x̂l ŷl ẑl

1 1ffiffi
2
p �110½ � 1ffiffi

6
p �1�12½ � 1ffiffi

3
p 111½ �

2 1ffiffi
2
p �1�10½ � 1ffiffi

6
p �11�2
� �

1ffiffi
3
p 1�1�1½ �

3 1ffiffi
2
p 110½ � 1ffiffi

6
p 1�1�2
� �

1ffiffi
3
p �11�1½ �

4 1ffiffi
2
p 1�10½ � 1ffiffi

6
p 112½ � 1ffiffi

3
p �1�11½ �

The letter m refers to the sublattice, and x̂m ; ŷm ; ẑm
� �

defines the local coordinate system at the
m-th sublattice.
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Methods
Local coordinate system. The local coordinate system is defined for each
sublattice and is given in Table 1.

Spin-wave spectrum for the all-in all-out state. For the easy-axis anisotropy
with Do0, we have all-in all-out magnetic order, and the spin-wave Hsw in
equation (3) is specified by the entries,

Amm kð Þ ¼ S � 2Dþ J þ J 0ð Þ; ð4Þ

Amn kð Þ ¼ � 1
3

SJmn; ð5Þ

Bmm kð Þ ¼ 0; ð6Þ

Bmn kð Þ ¼ 1
3

SJmneifmn ; ð7Þ

where Jmn¼J þ J 0e� ik� bn � bmð Þ m 6¼ nð Þ, b1¼ [000], b2¼ 1/2[011], b3¼ 1/2[101],
b4¼ 1/2[110] and fmn¼fnm m 6¼ nð Þ, with

f12 ¼ f34 ¼ �
p
3
;f13 ¼ f24 ¼

p
3
;f14 ¼ f23 ¼ p: ð8Þ

The magnetic excitation of this ordered state is fully gapped and the energy gap
(D) is simply set by the easy-axis spin anisotropy with D¼ 3|D| (Fig. 6).

In-plane ordered states. For the in-plane magnetic orders, the entries of Hsw in
equation (3) are given by

Amm kð Þ ¼ S Dþ J þ J 0ð Þ; ð9Þ

Amn kð Þ ¼ � 1
3

SJmn 1þ cos 2yþfmn

� 	� 	
; ð10Þ

Bmm kð Þ ¼ 1
2

SD; ð11Þ

Bmn kð Þ ¼ 1
6 SJmn cos 2yþfmn

� 	h

� i2
ffiffiffi
2
p

cos y�fmn

� 	i
;

ð12Þ

where Jmn and fmn are the same as the ones that are defined for the all-in all-out
state. In Fig. 7, we plot the spin-wave spectrum for regions II and III. For region III,
there exists a band crossing between a dispersive band and two (degenerate) flat
bands from G to X. This band crossing may turn into Weyl band touchings if one
includes extra spin interactions that make the flat bands non-degenerate and
dispersive.

Finally in Fig. 8, we depict the surface arcs for the [110] surfaces in region II.
For this surface, each pair of nodes are projected to the same position, and the
surface arcs form two loops across the surface Brillouin zone and connect the
Weyl nodes.

Data availability. The data that support the findings of this study are available
from the corresponding author (G.C.) upon request.
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