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We propose a general and robust platform, the moiré valleytronics, to realize high-density arrays of 1D
topological helical channels in real materials at room temperature. We demonstrate the idea using a long-
period 1D moiré pattern of graphene on hBN by first-principles calculation. Through calculating the Berry
curvature and topological charge of the electronic structure associated with various local graphene/hBN
stackings in the moiré pattern, it is revealed that the helical channel arrays originate intrinsically from the
periodic modulation of the local topological orders by the moiré pattern. For a freestanding wavelike moiré
pattern, two groups of helical channel arrays are spatially separated out of plane, validating the structural
robustness of the moiré topology. The generality and experimental feasibility of moiré valleytronics are
demonstrated by investigating a broad range of moiré systems.
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Two-dimensional (2D) van der Waals (vdW) hetero-
structures have attracted great attention in the past few
years [1]. By stacking different 2D materials to weakly
bond via the vdW force, the resulting artificial bilayers and/
or multilayers create novel material platforms for funda-
mental as well as technological exploration. A nearly
ubiquitous feature of the vdW heterostructures is the moiré
patterns caused by lattice mismatch or the relative rotation
of the two stacking lattices [1–4]. Moiré patterns can create
a periodic lateral modulation on the electronic property in
the heterostructure leading to interesting new physics.
These include the appearance of secondary Dirac cones
[5] and the self-similar Hofstadter butterfly states [6] in a
grapheneðGrÞ=hBN bilayer, the nanoscale patterned optical
properties and spin-orbit coupled exciton superlattices [7]
and moiré-defined superstructures of quantum spin Hall
insulators [8] in transition metal dichalcogenides, and
helical networks under an interlayer bias [9], and the newly
found correlated insulator behavior [10] and superconduc-
tivity [11] in a twisted graphene bilayer. Since a moiré
superlattice can be experimentally created, they provide
extraordinary opportunities for generating novel electronic
properties that are hard to obtain otherwise.
In hexagonal 2D crystals, the valley degree of freedom,

referring to the degenerate Bloch band extrema at K and K0
corners of the hexagonal Brillouin zone, is of particular
interest [12–15]. In graphene, the nontrivial topological
properties of the Dirac cones at the two valleys have led to
intriguing phenomena, such as the bulk topological valley
current when a gap arises through inversion symmetry
breaking [16–18]. In the gapped graphene system, the bulk
topological properties of the valley also give rise to in-gap

valley helical channels at topological line defects [19–22],
analogous to the quantum spin Hall edge states, and were
experimentally demonstrated in bilayer graphene [23,24].
Such valley helical modes are protected from backscattering
by the large momentum space separation and can be
exploited as conducting channels for quantum electronics.
However, the present realizations rely on either the random
local stacking faults [23] or a dual-split-gate structure that is
extremely challenging to fabricate [24]. Moreover, these
schemes typically host a single pair of helical channels,
limiting the applicability because high-density valley chan-
nels and currents are required in circuit integration.
In this work, we propose a general and robust platform,

the moiré valleytronics, to realize high-density arrays of 1D
topological helical channels at room temperature and in
realistic easily fabricatable materials. Specifically, a 1D
grapheneðGrÞ=hBN moiré pattern and several other moiré
systems are shown to establish themoiré valleytronics. For the
1D grapheneðGrÞ=hBN moiré pattern, we show by first-
principles calculations that a long-period moiré pattern real-
izes dense arrays of helical channels inside the noncryogenic
bulk gap opened by local inversion symmetry breaking due to
the hBN. These helical channels arise from the periodical
modulation in the topological order of local electronic
structure, due to the variation of atomic stacking in the moiré
pattern. The generality and structural robustness of moiré
valleytronics are demonstrated by investigating a broad range
of moiré systems and freestanding Gr=hBN moiré structures.
Figure 1(a) shows the orientation of the graphene and the

hBN lattices; the latter has a lattice constant mismatch of
1.8% larger than that of the graphene. We will focus on the
1D moiré pattern (1DMP) formed by stacking graphene on
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hBN along the armchair direction [see Fig. 1(a)]. To do so,
hBN is compressed along the zigzag direction (x direction)
to match the graphene, while its armchair direction (y) is
left to freely and vertically stack on graphene, resulting in a
periodic 1DMP shown in Fig. 1(b). Along the armchair
direction, the atomic registry of the two lattices varies
gradually and continuously, giving rise to the periodic
appearance of three high-symmetry local stacking configu-
rations: the carbon atoms on top of boron or nitrogen atoms
(B-N), the carbon atoms on top of boron or hollow sites
(B-h), and carbon on nitrogen and hollow sites (N-h); see
Fig. 1(b). Each moiré period has a real space width of
238.56 Å, containing 56 graphene primitive cells stacked
on 55 hBN primitive cells, and Fig. 1(b) shows two such
moiré periods. The moiré pattern extends periodically and
infinitely in the 2D x-y plane but shall be referred to as
1DMP due to its quasistripe shape along the y direction.
Finally, the distance between graphene and hBN is 3.22 Å,
which corresponds to the equilibrium distance of the
most stable local stacking configuration (B-h) [25].
Experimentally, we note that a similar 1DMP system has
been demonstrated by using strained bilayer graphene [26]
(details can be seen in Supplemental Material [27]).
The electronic band structure of the 1DMP is plotted

in Fig. 2(a), showing characteristic Dirac cones at the K
and K0 valleys. Since the two valleys are far apart in the
Brillouin zone, they can serve as a new degree of freedom
when describing the low-energy electronic states [12,22].
Most prominently, besides the noncryogenic bulk band gap
(261.6 meV) opening due to local spatial symmetry break-
ing, there are two linear metallic bands near the Fermi level
(red and blue lines) at each Dirac point which turn out to be

helical channels (see below), one with positive and the
other with negative group velocity. The spatial distribution
of the wave function jψyj2 is shown in Fig. 2(b). By
tracking the peaks of jψyj2 near the K valley (and similarly
at the K0 valley), one can find that the two linear band states
are periodically located on the 1DMP: One (red) is between
the B-N and B-h stackings, while the other (blue) between
N-h and B-N stackings. In the rest of the Letter, the peak
regions of jψyj2 shall be named topological moiré edges.
The property of the K0 valley is easily envisioned, since
wave functions at K and K0 are connected by time-reversal
symmetry. Figure 2(c) sketches that the helical channels
can generate a pure topological valley current. At each

(a)

(b)

FIG. 1. (a) The graphene and hBN lattices, strained along the
zigzag direction to match while left free along the armchair
direction (insets) to form the 1D moiré pattern. a and b are the
lattice constants of primitive graphene, with the value of 2.4595
and 4.26 Å, respectively. (b) The 1D moiré pattern periodic along
the armchair direction formed by three different high-symmetry
local stacking configurations indicated as N-h, B-h, and B-N
stacking.

(a)

(b)

(d)

(c)

FIG. 2. (a) Band structure of the 1DMP. The linear bands near
the Fermi level (energy zero)—red and blue lines—are the two
valley helical channels, and the gray lines are bulk bands. The
valley points K and K0 are at kx ¼ 1=3 and 2=3, respectively.
(b) Wave functions jψyj2 along the armchair (y) direction of the
two helical channels with the same color scheme; vertical dashed
lines indicate central positions of the three high-symmetry local
stacking configurations. The left (right) panels are for k1 ¼
0.3329 (k2 ¼ 0.3338), located at the left (right) of the K valley.
(c) Illustration of valley helical channels and valley current.
Upper: Solid (empty) circles denote carriers with positive
(negative) group velocity, i.e., right movers (left movers). Solid
(dashed) lines are helical channels with valley index K or K0,
respectively. Lower: The red (blue) color is for the channels
located at edge 1 (2); purple and green arrows indicate valley
currents. (d) Topological valley currents flow at the moiré edges.
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topological moiré edge, carriers with different valley
indexes (K or K0) have opposite group velocities (moving
directions), leading to a pure topological valley current.
Namely, at different edges the valley current propagates
oppositely. Figure 2(d) illustrates two groups of topological
valley current flowing oppositely at the moiré edges.
Analogous to the spin-dependent helical states in a quan-
tum spin Hall system [8,37], the valley current is quantized
and topologically robust against small chemical potential
variations. Interestingly and importantly, in contrast with
most previous schemes where only a single topological
edge can be found or created at the boundary of the crystals,
the periodic 1DMP can, in principle, support dense arrays
of such topological moiré edges, with an integrated density
of two per moiré period (238.56 Å). Thus, multiple helical
channels can be implemented periodically and simulta-
neously, which is greatly beneficial for applications in
quantum electronics and high-density integrated circuits.
To establish the topological nature and origin of

the helical channels of 1DMP in Fig. 2(a), we analyze
the topological properties of the electronic structures in the
1DMP. In a long-period moiré pattern with the period much
larger than the lattice constant in graphene, the electronic
structures in a local region, with the length scale small
compared to the moiré period but large compared to the
lattice constant, can be approximated by that of the lattice-
matched Gr=hBN of the corresponding atomic registry. The
topological nature of the latter can be quantified by the
Berry curvature ΩðkÞ using the Kubo formula [38–40]:

Ωn;xyðkÞ ¼ −2Im
X

m≠n

hψnkjvxjψmkihψmkjvyjψnki
½ϵmk − ϵnk�2

; ð1Þ

where m and n are the band indices, ϵk is the eigenvalue of
the eigenstate jψki, and vx and vy are the components of
velocity operators. As shown in Fig. 3(b), for every lattice-
matched configuration, the Berry curvature ΩðkÞ of the
conduction band is strongly concentrated at the valley point
with the equal amplitude but opposite sign for K and K0.
Comparing the three panels, one can find two types of Ω
polarity: Ω of the K valley is negative for the B-N stacking
(middle panel) but positive for the other two. Because of the
interlayer interactions from the hBN layer, the graphene
sublattice obtains a finite staggered on-site potential Δ.
Various local stackings give rise to different signs of Δ,
which further lead to different Ω polarities. More details
can be found in Supplemental Material [27]. Furthermore,
the topological charge Ñ3—a physical indicator which is
often used to classify topological phases—can be obtained
from the flux of the 2D Berry curvature:

Ñ3 ¼
1

2π

Z
ΩxyðkÞdkxdky: ð2Þ

In the Gr=hBN bilayer, the total Ñ3 of the band is
zero, since ΩðkÞ ¼ −Ωð−kÞ protected by time-reversal

symmetry. Nevertheless, one can define a valley topologi-
cal charge for each valley [12,22]. Figure 3(c) plots the
valley topological phase diagram, showing how the topo-
logical charge Ñ3 of the K valley varies with the atomic
registry. Clearly, there are two topological phase transitions
when the atomic registry varies by one period.
The helical channels and topological valley current

anticipated in Fig. 2(d) are the direct manifestation of the
topological phase transitions by the variation of the atomic
registry. The topological moiré edges in Fig. 2(d) are
fully consistent with the phase transition points shown in
Fig. 3(c). This picture is corroborated by the bulk-edge
correspondence analysis in Supplemental Material [27]. For
1DMP, the moiré period (238.56 Å) is much greater than the
lattice constant (4.26 Å); therefore the local atomic con-
figuration varies so slowly that it has a negligible difference
from lattice-matched structures. Previous studies have
shown that the local electronic property can be described
quitewell by using the lattice-matched stackings inGr=hBN
[41]. From this point of view, one can track the local
topological properties of the moiré superlattice according
to the topological phase diagram of the lattice-matched
stackings in Fig. 3(c). Along the direction of the moiré
superlattice (y in our case), two local topological phases
appear alternately and periodically, giving rise to two groups
of “boundaries”where topological phase transitions happen,
which further lead to the arrays of valley-dependent helical
channels (or the topological moiré edges) in Fig. 2.

(a)

(b)

(c)

FIG. 3. Topology analysis of the lattice-matched Gr=hBN
bilayer. (a) Three high-symmetry stacking configurations in
the moiré structure, where α and β are two subsites of the
graphene lattice. (b) Corresponding k-resolved Berry curvature
ΩðkÞ of the linear conducting band. (c) Valley-dependent
topological phase diagram parametrized by r0, which is the
lattice displacement between Gr and hBN layers, and Ñ3 is the
calculated topological charge of the K valley.
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The key for realizing moiré valleytronics and dense
arrays of 1D helical channels is a moiré structure (1DMP)
that has different local stacking configurations with differ-
ent topological orders. That is, different local topological
phases coexist in one long-period moiré superlattice
simultaneously. This situation is widely available in a
broad range of 2D materials besides the Gr=hBN. In
Supplemental Material [27], we demonstrate that two
different real material systems possess moiré valleytronics:
the strained bilayer-graphene moiré pattern and the sili-
cence/hBN moiré pattern, where multiple moiré edges
supporting dense arrays of helical channels exist between
different local stackings. As mentioned above, 1DMP has
been experimentally realized in strained bilayer graphene
[26]; therefore 1DMP of Gr=hBN should be experimentally
very realistic. To obtain a small uniaxial strain, using a
polyethylene terephthalate substrate is experimentally
effective [42].
In the following, we turn to another situation which

could happen experimentally: the freestanding Gr=hBN
moiré superlattice. By freestanding, the bilayer can
fluctuate into the third dimension (z), thus changing
the local stacking distribution. We determine the atomic
structure of freestanding bilayers using the force-field
method as implemented in the large-scale atomic/molecu-
lar massively parallel simulator (LAMMPS) [43]. In the
relaxation, the vdW interaction between the two layers is
well described by the optimized Morse potential (see
Supplemental Material [27]). As shown in Fig. 4(a), the
freestanding bilayer is 3D wavelike with a large out-of-
plane corrugation (>13 Å). This corrugation originates
from an energetic competition between maximizing the

favorable stacking configuration (B-h) and minimizing
the elastic energy of the lattice. By out-of-plane defor-
mation, the area of B-h stacking is enlarged and pushed
to the bottom of the corrugated structure, while the N-h
and B-N stackings are reduced and pushed to the top
location [41,44]. Experimentally, this 3D wavelike moiré
structure is realized on the suspended bilayer [44].
Figure 4(b) shows that in the 3D wavelike bilayer the
valley-dependent helical channels still appear in the band
structure, and the wave functions of the helical channels
[right panel in Fig. 4(b)] show that the two groups of
helical channel arrays are vertically separated. As a
consequence, the two groups of counterpropagating topo-
logical valley currents can flow at different heights in the
corrugated bilayer as shown in Fig. 4(c), leading to an
extra dimension to manipulate and detect the helical
states. Most of all, this result shows the robustness of
the topological moiré edges against a huge structural
corrugation, making possible the practical applications of
the proposed moiré valleytronics in fluctuated 2D systems
(such as Refs. [26,44]) besides the flat ones.
In summary, we report a general and robust scheme,

the moiré valleytronics, to realize dense arrays of 1D
topological helical channels. For the 1DMP of a zigzag-
oriented Gr=hBN bilayer, first-principles calculation
shows that the two groups of helical states are located
at two groups of topological moiré edges, one located
between the B-N and B-h stackings while the other is
between the N-h and B-N stackings. A topological phase
diagram based on the calculations of Berry curvature and
topological charge reveals the intrinsic dependence between
the topological order and the atomic stacking configuration.
Moreover, the generality and experimental feasibility have
been discussed and proved by investigating broad moiré
systems. Finally, we predict that, in the freestanding wave-
like moiré structure, two groups of moiré edge arrays
carrying counterpropagating helical channels are spatially
separated in the out-of-plane direction, which proves the
structural robustness of moiré valleytronics. This study
paves a new way for modulating valley electronic states
and realizing multiple topological helical channels using
moiré patterns which are relatively easily accessible exper-
imentally. The results suggest that valleytronics based on
moiré patterns, i.e., “moiré valleytronics,” to be a rich
research direction in material science.
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FIG. 4. (a) Relaxed freestanding Gr=hBN bilayer with out-of-
plane (z-direction) corrugation of about 13 Å. (b) Left: Band
structure; right: spatial distribution of modular squared wave
functions of the two helical channels, where the plotted isosurface
(pink and light blue areas) is 4 × 10−9 a:u: (c) Topological valley
current in the freestanding moiré structure.
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