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Abstract 4 

Illegal dumping, referring to the intentional and criminal abandonment of waste in 5 

unauthorized areas, has long plagued governments and environmental agencies worldwide. 6 

Despite the tremendous resources spent to combat it, the surreptitious nature of illegal 7 

dumping indicates the extreme difficulty in its identification. In 2006, the Construction Waste 8 

Disposal Charging Scheme (CWDCS) was implemented, regulating that all construction waste 9 

must be disposed of at government waste facilities if not otherwise properly reused or recycled. 10 

While the CWDCS has significantly improved construction waste management in Hong Kong, 11 

it has also triggered illegal dumping problems. Inspired by the success of big data in combating 12 

urban crime, this paper aims to identify illegal dumping cases by mining a publicly available 13 

data set containing more than 9 million waste disposal records from 2011 to 2017. Using 14 

behavioral indicators and up-to-date big data analytics, possible drivers for illegal dumping 15 

(e.g., long queuing times) were identified. The analytical results also produced a list of 546 16 

waste hauling trucks suspected of involvement in illegal dumping. This paper contributes to 17 

the understanding of illegal dumping behavior and joins the global research community in 18 

exploring the value of big data, particularly for combating urban crime. It also presents a three-19 

step big data-enabled urban crime identification methodology comprising ‘Behavior 20 

characterization’, ‘Big data analytical model development’, and ‘Model training, calibration, 21 

and evaluation’. 22 
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1. Introduction 25 

Illegal dumping, sometimes called fly-tipping, refers to the intentional and illegal 26 

abandonment of waste in unauthorized public or private areas, usually to avoid tipping fees 27 

and save on transport time and cost, or simply for the sake of convenience (Webb et al., 2006). 28 

It is generally treated as a criminal offence across jurisdictions. The UK Department for 29 

Environment, Food & Rural Affairs (Defra), for example, deals with illegal disposal of waste 30 

under Section 33 of the Environmental Protection Act 1990. Defra (2017) reported that local 31 

authorities in England dealt with 936 thousand fly-tipping incidents in 2015/16, a 4.0% 32 

increase over 2014/15. In the U.S., dumping waste in unauthorized areas is illegal under the 33 

federally enforceable Protection of the Environment Operations Act 1997 (USEPA, 1998). 34 

Illegal dumping has become a global issue and is frequently reported in Australia (Meldrum-35 

Hanna et al., 2017), Italy (Massari and Monzini, 2004), Spain (Sáez et al., 2014), Israel (Seror 36 

et al., 2014), Mainland China (Jin et al., 2017), and Hong Kong (Audit Commission, 2016), 37 

and is a particular problem in countries with rapid gross domestic product (GDP) growth 38 

(Nunes et al., 2009).  39 

 40 

Illegal dumping is not only a nuisance in its own right but can also lead to many other problems 41 

(Esa et al., 2017). It is a human health concern and can damage the environment in a variety 42 

of ways (Romeo et al., 2003). Fly-tipped waste causes habitat destruction, wildlife deaths 43 

(Webb et al., 2006), and is a major source of soil and underground water pollution (Shenkar 44 

et al., 2011). It also causes aesthetic damage to the natural landscape. When illegal waste 45 

dumping is discovered, local governments often dispatch an abatement crew to clean it up as 46 

quickly as possible because the contained oil, solvents, fuel, rusted metal, and batteries can 47 
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cause severe environmental damage. Such clean-up comes at great expense. According to 48 

Defra (2017), local authorities in England spent around £49.8 million cleaning up fly-tipped 49 

waste in 2015/16 alone. Romeo et al. (2003) report that the City of San Antonio in the U.S. 50 

spends hundreds of millions of dollars annually mitigating the environmental consequences of 51 

illegal waste dumping. In Hong Kong, Lin (2016) reported that around one hectare of wetland 52 

and mangrove forest had been affected by illegal dumping committed by two individuals, with 53 

a repair cost estimated by the Environment Protection Department (EPD) at HK$6 million.  54 

 55 

Governments and environmental agencies have committed extensive resources to combat 56 

illegal dumping (Gálvez-Martos et al., 2018). For example, to overcome patchy data collection 57 

in order to better understand the scale of the problem, the UK government launched 58 

Flycapture® in 2004 (later replaced by WasteDataFlow®), requiring all local authorities and 59 

the Environment Agency to submit monthly returns on the number, size, waste types and 60 

location types of fly-tips (Webb et al., 2006). Israel has explored vehicle impoundment policy 61 

and evaluated its effect on illegal dumping of construction waste (Seror et al., 2014). In Hong 62 

Kong, a fly-tipping spotting system (similar to Flycapture®) has been implemented to 63 

encourage public reporting of illegal dumping activities. Researchers have also explored 64 

various policy and technological recommendations for addressing illegal dumping problems. 65 

Examples include enhancing prosecution and enforcement (Yuan et al., 2011), increasing 66 

surveillance and ambush (Navarro et al., 2016), adopting new construction method (Li et al., 67 

2014), and using Global Positioning System and satellite images to catch illegal dumping 68 

activities (Persechino et al., 2010). However, the effectiveness of these approaches is 69 

questionable. Illegal dumping activities are committed stealthily and are thus difficult to catch 70 

(Scherer, 1995).   71 

 72 
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Big data is increasingly advocated as a powerful instrument for detection and deterrence of 73 

contemporary urban issues such as crime, corruption, and fraud. Reports published by the 74 

World Economic Forum (WEF) (2015), Transparency International (2017), Ernst & Young 75 

(2014), and Unisys (2012) advocate for the power of big data and analytics in reducing 76 

corruption and fraud. Since urban crimes are generally conducted in a stealthy way, evidence 77 

of them may be deeply buried in a dataset if captured at all. The problem of identifying such 78 

activities is extremely difficult to crack. However, offenders may have left unintentional clues 79 

or exhibited hidden patterns, identifable when the dataset is sufficiently large and with the use 80 

of proper analytics. Williams et al. (2017) reviewed studies making use of ‘naturally occurring’ 81 

socially relevant data (e.g., on Twitter or Facebook) to complement and augment conventional 82 

curated data to address the classic problem of crime pattern estimation. By combing through 83 

datasets on government bidding processes, contracting firms’ financial disclosures, the 84 

beneficial ownership of contracting firms, public officials’ tax and family records, and 85 

complaints to authorities about bribery by competing contractors, Fazekas et al. (2013) tried 86 

to uncover patterns of fraud and bribery in public procurement. There have been several stories 87 

on the success of big data, based on which an exploration of how big data analytics can be 88 

employed to identify illegal dumping as a contemporary urban issue promises to be intriguing 89 

as well as meaningful. 90 

 91 

The primary aim of this research is to develop a big data-driven methodological approach that 92 

can be used to identify suspected cases of illegal dumping. It is contextualized in Hong Kong, 93 

which has long been suffering from the problems caused by illegal dumping, and focuses on 94 

construction waste, which constitutes a prodigious proportion of total municipal solid waste. 95 

The rest of this paper is structured as follows. Subsequent to this introductory section is a 96 

literature review covering big data and analytics for urban crime identification. The big data 97 
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of illegal dumping in Hong Kong is introduced in the Section 3. The research methods are 98 

described in Section 4. These methods are devised to achieve three specific research objectives: 99 

(1) To develop a set of indicators for suspected dumping activities using mixed methods 100 

research; (2) To develop an analytical model by applying these indicators and big data 101 

analytics; and (3) To train, calibrate, and evaluate the analytical model by trying out different 102 

data analytics. Section 5 reports the data analyses and findings and Section 6 is an in-depth 103 

discussion including both methodological contributions and policy implications of this 104 

research. Conclusions are drawn in the final section.  105 

 106 

2. Big data analytics to tackle contemporary urban issues 107 

According to Padhy (2013), big data can be characterized as a collection of datasets so large 108 

and complex that it is difficult to process using traditional data management tools. Mayer-109 

Schönberger and Cukier (2011) describe big data techniques as ‘things one can do at a large 110 

scale that cannot be done at a smaller one, to create a new form of value’. Many researchers 111 

accepted Gartner’s three defining characteriztics of big data, namely, volume, variety and 112 

velocity, or the ‘three Vs’ (McAfee et al., 2012). Volume is the quantity of data in the form of 113 

records, transactions, tables or files; velocity can be expressed in batches, near time, real time 114 

and streams; and variety can be structured, unstructured, semi-structured or a combination 115 

thereof (Chen et al., 2014). Big data analytics can uncover hidden patterns, unknown 116 

correlations, and other useful information to guide business predictions and decision-making 117 

(Shen et al., 2016); in effect, value is advocated as the fourth ‘V’. By analyzing big data, ‘latent 118 

knowledge’ (Agrawal et al., 2006) or ‘actionable information’ (WEF, 2012) can be identified. 119 

 120 

Big data success stories abound in a wide range of areas, including science, business, public 121 

governance, innovation, competition, and productivity (Sagiroglu and Sinanc, 2013). It is also 122 
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increasingly being advocated as an effective means of tackling contemporary urban issues 123 

such as terrorism, crime, corruption, fraud, and financial non-compliance. Access to big data 124 

is a prerequisite for combating urban crime. As Vona (2017) suggests, ‘even the world’s best 125 

auditor using the world’s best audit program cannot detect fraud unless their sample includes 126 

a fraudulent transaction’. Baesens et al. (2015) estimate that fewer than 0.5% of credit card 127 

transactions are typically fraudulent. The problem of identifying fraudulent activities is thus 128 

commonly referred to as a needle-in-a-haystack problem. However, when the dataset is 129 

sufficiently large, clues unintentionally left or hidden patterns exhibited by offenders become 130 

identifable.  131 

 132 

Another prerequisite for combating urban crime is proper data analytics. Pramanik et al. (2017) 133 

reviewed five big data techniques that can be used to extract hidden network structures among 134 

criminals: link analysis, intelligent agents, text mining, neural networks, and machine learning. 135 

Clearly, neither urban crime problems nor analytical methods are new. It is the expontential 136 

growth of data in the digital era that provides both new opportunities and challenges. Fazekas 137 

et al. (2013) and Fazekas and Tóth (2014) describe a methodology for identifying corruption 138 

in public procurement. They first collected a massive amount of data relating to public 139 

procurement. In parallel, they identified a series of indicators that could predict suspected 140 

corruption cases (e.g., ‘exceptionally short bidding periods’ or ‘bids repeatedly won by the 141 

same company’) and incorporated them into a corruption risk index model. Finally, using 142 

inferential statistical analysis, they identified corrupt behavior based on deviations from 143 

ordinary patterns.  144 

 145 

A review of previous studies seems to suggest that there is no one-size-fits-all big data-enabled 146 

solution to urban criminal issues. A good starting point, however, is to characterize the 147 
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criminal activities in question, e.g., illegal dumping, and then identify anomalous behavior and 148 

‘red flags’. In a big data-driven methodology comprising ‘Behavior characterization’, ‘Big 149 

data analytical model development’ and ‘Model calibration’, these three steps in combination 150 

can indicate, at the very least, highly suspected activities. In the context of public procurement, 151 

for example, Fazekas and Tóth (2014) characterized the behavior by proposing more than 30 152 

indicators of high corruption risk. Based on the characteristics and the indicators, the next step 153 

is to develop the big data analytical model. Data analytical methods ranging from ‘simple’ 154 

regression analysis to complex techniques such as support vector machines, artificial neural 155 

networks, association rules, case-based reasoning, and K-means clustering are widely applied 156 

in urban crime detection (Fawcett and Provost, 1997). Finally, the big data analytical model 157 

needs to be trained, calibrated, and evaluated using known cases, e.g., crime convictions, 158 

before it can be applied to the big data set to identify other suspected cases and for further 159 

follow-up actions. 160 

 161 

3. The big data of illegal dumping in Hong Kong 162 

In Hong Kong, the adverse environmental impacts of construction waste resulting from 163 

creation of its impressive built environment are a grave concern. As in other states and 164 

territories, construction waste in Hong Kong is classified into inert and non-inert components. 165 

EPD (2017) statistics show that the total solid waste deposited in Hong Kong landfills in 2015 166 

amounted to 15,102 tons per day (tpd), of which 4,200 tpd, or 27.8%, was from construction 167 

activities. Thus, construction generates around one-quarter of the total solid waste finding its 168 

way into landfills. Owing to its significant adverse impacts, construction waste is heavily 169 

regulated in Hong Kong, and a series of statutory and non-statutory policies, including 170 

regulations, codes, and schemes have been introduced over the past few decades (Lu and Tam, 171 

2013). In particular, the Construction Waste Disposal Charging Scheme (CWDCS), which 172 
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mandates that all construction waste, if not otherwise reused or recycled, must be disposed of 173 

at government waste facilities (e.g., landfills, offsite sorting facilities [OSFs] or public fill 174 

banks) was implemented in 2006. According to this scheme, the main contractor is charged 175 

HK$200 for every ton of non-inert waste it dumps in landfills; HK$175 per ton for mixed inert 176 

and non-inert waste accepted by OSFs; and HK$71 per ton for inert waste accepted by public 177 

fills (raised from HK$125, HK$100, and HK$27 respectively in April 2017). As a policy 178 

system, the CWDCS together with its enforcement measures has been praised for its efficiency 179 

in construction waste minimization (Lu et al., 2015).  180 

 181 

At the same time, the CWDCS has incentivized illegal dumping. Illegal disposal of one load 182 

of construction waste immediately saves contractors between HK$405 to HK$3,750 in tipping 183 

fees, depending on the volume and type of waste. This does not include savings in transport 184 

costs (normally HK$800-1,500 per trip) and waiting time at government facilities. In response 185 

to a Legislative Council (LegCo) query, the Environment, Transport and Works Bureau (2006) 186 

reported that 508 complaints of construction waste illegal dumping were received between 20 187 

January 2006 (the CWDCS implementation date) and 31 May 2006, a significant rise from the 188 

101 received in the same period in 2005. After that, fly-tipping reports have continuously 189 

become epidemic. Hong Kong’s Audit Commission (2016) recently found that public reports 190 

of illegally dumped construction materials increased a phenomenal 328% in 2015, rising from 191 

1,517 to 6,499. In that year, 6,300 tons of illegally dumped construction materials were cleared 192 

by government departments. Without quick abatement, such waste can cause severe 193 

environmental damage. For example, environmentalists have warned that wetland fauna and 194 

mangroves are particularly vulnerable to illegal dumping (Lau, 2016).  195 

 196 

The structure of the big data is illustrated in Fig. 1, which comprises: 197 
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 the EPD Facility database containing all government construction waste management 198 

(CWM) facilities, including landfills, OSFs and public fills (See Fig. 1_1) 199 

 the EPD Project database containing all projects that have dumped waste in the above 200 

facilities. A total of 27,536 construction projects, along with information on site 201 

address, client, project type and other details, are recorded (see Fig. 1_2). 202 

 the EPD Waste Disposal database (see Fig. 1_3), which records every truckload of 203 

construction waste received at CWM facilities. A total of 9,338,243 disposal records 204 

were generated from all construction projects carried out during the eight-year period 205 

from 2011 to 2017, with around 3,500 records being added every day. The unique 206 

account number links projects and waste disposal records.  207 

 the EPD Vehicle database containing 9,863 vehicles involved in construction waste 208 

transport (see Fig. 1_4), which can be linked to data from the Transport Department. 209 

According to the three Vs (i.e., volume, velocity, and variety), this CWM dataset qualifies as 210 

big data. By mining it, it is anticipated that cases of illegal dumping can be identified. It can 211 

also facilitate understanding of the magnitude of the problem in order to develop 212 

countermeasures.  213 
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 214 

Fig. 1 The big data structure and example records 215 

 216 

4. Methods 217 

Following the three steps of behavior characterization, big data analytical model development, 218 

and model calibration, this research develops a big data-driven methodology for illegal 219 

dumping identification. Firstly, a set of red-flag indicators for predicting illegal dumping 220 

activities are developed. Next, an analytical model is developed by applying the indicators and 221 

searching for proper data analytics. Finally, the model is trained, calibrated, and evaluated 222 

before application to the big data set to generate high-confidence identification of illegal 223 

dumping cases. 224 

 225 

4.1 Developing a set of red-flag indicators 226 

To develop red-flag indicators, illegal dumping behavior is characterized by adopting a mixed 227 

method approach. Since 2013, the research team has conducted a series of research projects 228 

with construction clients (both public and private), main contractors, government departments 229 

(e.g., the EPD and Construction Industry Council), LegCo members, waste haulers, unions, 230 
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environmentalists, and other informants to try to understand the motivations for illegal 231 

dumping and offenders’ behavior.  232 

 233 

Waste haulers are the focal point as they are direct illegal dumping offenders. Their vehicles 234 

must be registered with the EPD (i.e., in the EPD Vehicle database) before they can provide 235 

construction waste hauling services. Haulers charge a flat per-trip rate regardless of what they 236 

are transporting. While it would seem that they have no incentive to commit illegal dumping, 237 

which benefits only their clients via tipping-fee savings, waste haulers may be more likely to 238 

do so if they are associated with a main contractor rather than operating as freelancers. 239 

Distance from construction site to landfill site also matters. A longer distance means higher 240 

transport costs which could induce illegal dumping. A list of indicators for predicting illegal 241 

dumping activities is presented in Table 1. It must be pointed out that this list is very tentative: 242 

it is unknown whether some of the indicators are useful and whether there is available data for 243 

them. In addition, it is not an exhaustive list. There may be other indicators that have not been 244 

identified, including those that could be discovered by big data analytics.  245 

 246 

Table 1. List of indicators for predicting illegal dumping activities 247 

 248 

ID Name Unit Source and calculation 

I1 Time spent in a facility Minute Difference between ‘departure time’ and ‘entering time’ 

I2 Dumping weight Ton Difference between ‘departure weight’ and ‘entering 

weight’ 

I3 Rest/absent days between 

two working periods 

Day The number of absent days from last dumping record 

I4 The number of clients 

served per day  

1 The counts of project accounts/clients associated with the 

same hauler per day 

I5 Loading ratio % Dumping weight/maximum capacity 

I6 Dumping depth m Excessive depth of waste defined in the “waste disposal” 

database 

I7 Dumping weight by 

facility type 

Ton Dumping weight according to type of facility (e.g., 

landfill, OSF, public fill) 

I8 Percentage of dumping 

weight by facility type 

% Percentage of dumping weight according to type of 

facility  

I9 Dumping count by facility 
type 

1 Dumping transaction counts by different types of facility 
per day 
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4.2 Developing an analytical model  249 

The second step is to develop the core algorithms, which are encapsulated and figuratively 250 

referred to as the Illegal Dumping Filter (IDF) in this study (see Fig. 2). In developing the IDF, 251 

a well-structured data table containing all indicators and their computed values from the big 252 

data is created. However, it is unclear how the indicators will interact with one another (e.g., 253 

linearly or as a network). It would constitute too much arbitrariness if weights were attached 254 

to them by the researchers or even the informants, so this is conducted using data analytics: a 255 

general term referring to the process of automatically or semi-automatically examining 256 

datasets to discover the information (e.g., hidden patterns or anomalies) they contain (Witten 257 

et al., 2011). Data analysts have long used tools such as rule-based reasoning, pattern 258 

recognition, anomaly detection, social networks, and nodal analysis to detect financial non-259 

compliance. Since there is no prior knowledge on which analytical methods will be most 260 

suitable for illegal dumping identification, one needs to try different models and examine their 261 

results. Here, a satisfactory result will be the IDF being able to identify offending waste haulers 262 

(i.e., by their plate numbers).  263 
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 264 

Fig. 2 An illustration of the Illegal Dumping Filter (IDF) in this study 265 

 266 

4.3 Training, evaluating, and calibrating the big data analytical model 267 

The third step is to train, evaluate, and calibrate the model before it can be applied to the big 268 

data set to identify illegal dumping cases. The sample, mainly comprising cases of illegal 269 

dumping convictions, will be used as the experimental/target group while a comparable sample 270 

will be used as the control group. It is critical that effectiveness of models is gaugeable. In 271 

math language, the effectiveness of the models can be gauged by precision rate, recall rate, 272 

and F1-measure, which is the weighted average of Precision and Recall and is considered more 273 

accurate than if they are used individually. The research team needs to adjust the variable 274 

settings in the given software platform until a satisfactory result is reached. 275 

 276 

5. Data analyses and findings 277 

The IDF was first trained on a sampled data with a binary value, i.e., True and False, for the 278 

target label ‘committed illegal dumping or not’. A target group included six trucks engaged in 279 



14 

 

illegal dumping based on local news and video clips recorded by environmental activists. The 280 

control group was six non-offending trucks of a similar model and loading capacity. The two 281 

groups accounted for 36,678 dumping records between January 2011 and December 2017; 282 

very big data that might help identify hidden illegal dumping patterns or anomalies. The data 283 

of the two groups was selected into an independent table in MySQL (Version 5.7). Table 2 284 

shows an excerpt of the training sample of yearly statistics of waste dumping behaviors based 285 

on Table 1. The first column in Table 2 indicates the target group (‘True’) or the control group 286 

(‘False’). For the indicators I1, I2, I3, I4, I5, and I6, seven statistics, i.e., the minimum, 5% 287 

percentile, average, maximum, 95% percentile, sum, and standard deviation, were calculated 288 

using MySQL functions, e.g., avg() and max(), for each indicator. For the indicators I7, I8, and 289 

I9, four-yearly statistics by facility types, i.e., the transaction counts for land fill, public fill, 290 

sorting, and islands, were computed. The final training sample of the IDF, as shown in Table 291 

2, was a ‘monster’ data table consisting of 55 columns and 57 rows, with personal or privacy 292 

data anonymized in comma separated vector (CSV) format.  293 

 294 

Table 2. An excerpt of the training sample of yearly statistics of waste dumping behaviors 295 

Label The 54 yearly statistics of behavioral indicators 

Illegal 

(1)* 

I1 (7) I2 (7) I3 (7) I4 (7) I5 (7) I6 (7) I7 (4) I8 (4) I9 (4) 

𝐼1
min 𝐼1

5% 𝐼1
avg

 𝐼1
95% 𝐼1

max 𝐼1
Ʃ 𝐼1

𝜎 … … … … … 𝐼7
PF 𝐼7

LF 𝐼7
SF 𝐼7

OI … … 

True 4 4 7.42 13 28 3,250 3.08 … … … … … 5,319.63 26.62 0 0 … … 

True 3 5 7.85 13 51 2,111 3.94 … … … … … 3,369.65 0 0 0 … … 

True 4 5 8.84 15 60 6,328 4.75 … … … … … 11,429.38 0 0 0 … … 

True 2 4 12.40 37 57 5,494 9.91 … … … … … 7,291.96 0 0 0 … … 

True 3 4 7.48 17 45 6,489 4.98 … … … … … 13,795.46 128.95 0 0 … … 

False 2 4 13.04 32 82 5,348 9.78 … … … … … 6,527.19 0 0 0 … … 

False 2 4 14.29 31 107 20,875 9.32 … … … … … 22,844.93 9.92 0 0 … … 

False 2 3 10.09 24 54 12,062 7.29 … … … … … 18,697.39 56.4 31.28 0 … … 

*: The number of data columns is shown in parentheses 

 296 

The next step was to identify the behavioral drivers of illegal dumping by trying linear models. 297 

A straightforward and easy-to-understand metric of the driving factors is Pearson’s linear 298 
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correlation coefficient. The correlations between the 54 indicators and the label in Table 2 299 

were first tested, using IBM SPSS (version 24.0). Table 3 lists the eleven indicators showing 300 

statistical significance at the level 0.01 (two-tailed). The eleven indicators are statistics of three 301 

types of indicators, i.e., the duration in facility (I1), the number of daily clients served (I4), and 302 

waste depth (I6). In other words, the three indicators were more related with the drivers of 303 

illegal dumping. Three statistics of I4, i.e., 𝐼4
avg

, 𝐼4
95% , and 𝐼4

σ  had moderate negative 304 

correlations, while all the rest had weak negative correlations. To sum up, a truck with illegal 305 

dumping behaviors usually had fewer daily clients, less time spent at the government facilities, 306 

and less waste depth in the government’s waste records. 307 

 308 

Table 3. List of indicators correlated with illegal dumping (significant at the level 0.01) 309 

 𝐼1
avg

 𝐼1
95% 𝐼1

max 𝐼1
𝜎 𝐼4

avg
 𝐼4

95% 𝐼4
max 𝐼4

Ʃ 𝐼4
𝜎 𝐼6

95% 𝐼6
𝜎 

Pearson’s Correlation -0.464 -0.417 -0.355 -0.417 -0.633 -0.550 -0.359 -0.407 -0.581 -0.346 -0.350 

Significance (2-tailed)  0.000 0.001 0.007 0.001 0.000 0.000 0.006 0.002 0.000 0.008 0.008 

 310 

 311 

The training data was further processed using Weka (version 3.9), which is an open source 312 

data mining software program (Frank et al., 2009). Data mining methods can discover 313 

nonlinear models of correlations, which approximates the illegal dumping behaviors better 314 

than the linear correlations in Table 3. Fig. 3 (a) shows a rule about illegal dumping concluded 315 

by JRip, which is a Java version of the Repeated Incremental Pruning to Produce Error 316 

Reduction (RIPPER) method (Cohen, 1995). The rule in Fig. 3 (a) says a yearly record in 317 

Table 2 involves illegal dumping actions if and only if all three of the following conditions are 318 

met:  319 

1. The average number of daily clients (𝐼4
avg

) is no more than 1.28, 320 

2. The average duration in facilities (𝐼1
avg

) is no more than 12.75 minutes, and 321 

3. The maximum duration in facilities (𝐼1
max) is no more than 165 minutes. 322 
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Fig. 3 (b) shows a decision tree concluded by another well-known data mining method, J48, a 323 

Java version of the C4.5 (see Quinlan, 1993). Decision trees reflect human decision-making 324 

and are easy to interpret (James et al., 2013). A decision process starts from the left-most 325 

square ‘root’ node, then follows the spitting paths (‘burst’ nodes) by matching conditions until 326 

a final decision on ‘leaf’ nodes is reached (Quinlan, 1986; Dey, 2002). In the decision tree, a 327 

yearly record involves illegal dumping actions if and only if all four of the following 328 

conditions are met: 329 

1. The average number of daily clients (𝐼4
avg

) is no more than 1.28 (the same as the first 330 

condition in Fig. 3 (a), 331 

2. The standard deviation of the duration in facilities (𝐼1
σ) is no more than 10.11 minutes, 332 

3. The average duration in facilities (𝐼1
avg

) is no more than 13.19 minutes, and 333 

4. The overall number of yearly clients (𝐼4
Ʃ) is no more than 15, or the maximum number 334 

of daily clients (𝐼4
max) is more than 2. 335 

 336 

𝐼𝑙𝑙𝑒𝑔𝑎𝑙 = {True 𝑖𝑓 𝐼4
avg

≤ 1.28 and 𝐼1
avg

≤ 12.75 and 𝐼1
max ≤ 165 

False 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(a) The rule concluded by JRip 

 

(b) The decision tree developed by using J48 

Fig. 3 A rule and a decision tree discovered for IDF using Weka 337 

 338 
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There were similar behavior analytical results in the linear Pearson’s correlations model 339 

analyses and in the nonlinear models (i.e., the rules and the decision tree). Firstly, illegal 340 

dumping records had few regular clients, e.g., 𝐼4
avg

 ≤ 1.28, in all the results. This could be 341 

attributed to the fact that small businesses, normally registered as a one-man/truck company, 342 

are more prone to commit illegal dumping. They have weaker ties with clients (e.g., a main 343 

contractor) and so do not show loyalty or responsibility. The convicted illegal dumping cases 344 

in Hong Kong echo this analysis. Another indicator is average time spent in waste facilities, 345 

e.g., 𝐼1
avg

≤ 12.75 or 13.19 minutes. Since the trucks were in the same model, no matter from 346 

the target (‘illegal’) or control (‘normal’) groups, their time spent should not differ 347 

significantly. However, Table 3 shows a significant difference. One possible reason is that 348 

trucks in the target group deliberately avoid a long wait time in rush hours or on busy days. 349 

Fig. 4 shows a curve of the average waiting time of all the records and of the target group, 350 

with both curves increasing slightly over time. In Hong Kong, these waste haulers are often 351 

freelance businesses charging by trip. Within the fast-paced construction industry, small 352 

waste-hauling businesses are more likely to risk illegal dumping to save time and maximize 353 

profits.  354 

 355 

Fig. 4 Slow increments of the average time spent in waste facilities 356 

 357 
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In summary, two major behavioral drivers were identified: (a) small freelance business and (b) 358 

long queuing time. As shown in Fig. 5, long queuing time has long been a problem in Hong 359 

Kong due to the outdated service capacity of the government’s waste facilities. For example, 360 

there are only three landfill sites in Hong Kong, and each has only one entrance and one exit 361 

gate. With more gates, unnecessary queuing time could be considerably reduced and at least 362 

one driving factor of illegal dumping alleviated.  363 

 364 

 365 

Fig. 5 Queuing at a waste facility in Hong Kong [Source: CEDD] 366 

 367 

The IDF can also classify suspected illegal dumping records by applying the concluded 368 

reasoning models, e.g., the rule and the decision tree in Fig. 3. First, the models for IDF were 369 

selected using 10-folf cross-validation experiments, which are well-established for model 370 

selection (Fushiki, 2011). Over 30 classification methods of four types were tested, including: 371 

(1) tree, (2) rule, (3) function, and (4) meta-model. Table 4 lists the best method selected for 372 

each type and the performance metrics including precision, recall, and F1-measure. The best 373 

method for tree models was J48 with 0.843 precision, 0.842 recall, and 0.842 F1-measure; JRip 374 

was the selected method for rule models, yet with a slight lower-level performance. Both 375 

decision trees and rules can be interpreted by humans, as shown in Fig. 3. The selected method 376 
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for the function model was Radial Basis Function (RBF) classifier (Frank, 2014), which 377 

returned a high-level performance of 0.862 precision, 0.860 recall, and 0.860 F1-measure. 378 

Random Committee (Lira et al., 2007), a meta-model method that employs random trees as a 379 

low-level method for evolutionary tuning, returned the same performance as J48. The results 380 

of the latter two methods were not interpretable directly. Visibility of the classification models, 381 

as shown in Fig. 3, is important for domain experts to understand and verify the IDF model. 382 

Therefore, J48 can be used as the method for training the IDF model and classifying all the 383 

yearly truck records beside the target and control groups. 384 

 385 

Table 4. The IDF model selection with 10-fold cross-validation  386 

IDF’s reasoning model The results of 10-fold cross-validation experiments (higher is better) 

Human readable? Type of method The best method for the type Precision Recall F1-measure 

Yes Tree J48 0.843 0.842 0.842 

Rule JRip 0.811 0.807 0.807 

No Function RBF classifier 0.862 0.860 0.860 

Meta-model Random committee  0.843 0.842 0.842 

 387 

The IDF model was applied using the selected J48 method to filter the suspected illegal 388 

dumping actions from the database, with a view to understanding the overall magnitude of the 389 

illegal dumping problem. The target dataset was a CSV format table comprising 10,924 rows 390 

of yearly statistics of 3,189 waste trucks, calculated from the about 10 million records (1.4GB 391 

file size) introduced in Section 3 using MySQL statistical functions. The prediction results of 392 

the IDF indicated that 546 trucks, about 17%, had suspected illegal dumping actions, as shown 393 

in Appendix B. Table 5 shows an excerpt of the suspected trucks, with a check mark indicating 394 

possible illegal dumping actions in a year.  395 

 396 

Table 5. An excerpt of the most suspected trucks with detected illegal dumping actions 397 

Truck plate No. 

Suspected illegal dumping actions predicted by IDF using J48 

2011 2012 2013 2014 2015 2016 2017 
Suspicion 

score (%) 
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A***2      N.A. N.A. 100 

B*** N.A. N.A. N.A.      100 

B***3 N.A.       100 

B***30 N.A. N.A. N.A.     100 

B***0     N.A. N.A.   100 

B***62      N.A. N.A. 100 

B*** N.A. N.A. N.A.     100 

B***1        100 

B***96      N.A. N.A. 100 

N.A. indicates no available data 398 

 399 

6. Discussion 400 

6.1 The trilogy of big data analytics for illegal dumping identification 401 

Too often, the media play up big data’s power to tackle crime, corruption, and fraud, adding 402 

little to knowledge on how to actually apply big data to solve these contemporary urban issues. 403 

Based on previous studies, this paper formalises the methodology of using big data analytics 404 

for urban crime identification as a ‘trilogy’ of ‘Identifying indicators/monitors of anomalies’, 405 

‘Developing a big data analytical model’, and ‘Model training, calibration, and evaluation’. 406 

This paper enriches the trilogy through a vivid case study.  407 

 408 

The first step in using big data analytics to identify urban crimes is to characterize crimimal 409 

behavior and develop a set of indicators to guage the behavior. These indicators are heavily 410 

dependent on specific criminal scenarios. In this study, an understanding of illegal dumpers’ 411 

economic motivations and particular behavior patterns was first developed. Some red-flag 412 

indicators stemmed from our own knowledge, literature review, and desktop studies, while 413 

others were contributed by experienced individuals including LegCo councillors, reporters, 414 

criminologists, and environmental activists. 415 

 416 
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With the indicators of anomalies, the next step is to develop big data analytical models. For 417 

indicators to be used for modelling, they must be readily measurable using the big data; if not, 418 

they must be dropped from the indicator set. It is expected that a single identified anomaly 419 

may not imply a crime, but an accumulation of anomalies from multiple indicators increases 420 

the confidence with which a suspected crime can be identified. With the increase of the red-421 

flag indicators, certainly, the required data should be bigger. It is often the case that there is 422 

no prior knowledge on the ‘weights’ of the indicators (i.e., linear relationship), or how the 423 

indicators interact with each other (i.e., non-linear relationship) in determining a suspected 424 

crime. One needs proper big data analytical tools. In addition to the decision tree adopted in 425 

this study, many other analytics such as case-based reasoning, artificial neural network, 426 

decision-tree, graphical/statistical outlier detection, and clustering, have been raised by 427 

researchers (e.g., Baesens, 2015; Vona, 2017).  428 

 429 

The third step is model training, calibration, and evaluation to determine the optimal big data 430 

analytical model for urban crime identification. This is apparently a data-driven process. The 431 

true cases (e.g., the convicted illegal dumping cases in this study) are fed into the models to 432 

determine the weights of the indicators, or the way they interact. Model calibration is 433 

conducted during this process. More fraudulent or legitimate cases are fed into the calibrated 434 

model to validate it before it can be accepted to detect crimes in the future. There are some 435 

cases wherein anomalous behaviors are changing quickly, and the models should be adaptive 436 

enough to these changes (Fawcett and Provost, 1997).  437 

 438 

6.2 Prospects and challenges of big data analytics for identifying illegal dumping 439 

The predictions, as shown in Table 5, can only be used for filtering possible offenders. Similar 440 

to big data analytics in other urban crime identification cases (e.g., corruption in public 441 
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procurement, or credit card fraud), they cannot be used for prosecution. Direct evidence must 442 

be obtained from other means. That does not mean the post-mortem analyses using big data 443 

are useless. Rather, they can be used as important information for follow-up interventions to 444 

combat illegal dumping, such as opening more gates at waste disposal facilities. Government 445 

departments have debated using GPS to track all waste hauling trucks but such a measure 446 

would be prohibitively expensive. However, the measure could be piloted in highly suspected 447 

vehicles as a means of deterrence.  448 

 449 

Readers might have noticed that rather than needing a long list of indicators, just two can 450 

satisfactorily detect suspected illegal dumping in this study. It just so happens that these two 451 

indicators could be computed and utilized with the available big data. However, data may not 452 

be so readily accessible in other urban crime identification scenarios. Data analysts are 453 

therefore discussing possible strategies to use technical means (e.g., sensor networks, 454 

surveillance) to proactively collect big data.  455 

 456 

The capture and use of big data have both benefits and risks. Ever since its advent, there have 457 

been ethical concerns over misuse of its power. Although the conceptual, regulatory, and 458 

institutional resources of research ethics have developed greatly over the past few decades and 459 

are familiar to researchers, there remain many unaddressed issues with respect to the big data 460 

phenomenon (Boyd and Crawford, 2012). Existing norms governing data and research ethics 461 

have difficulty accommodating the special features of big data. The ethics of its use are 462 

intimately tied to questions of ownership, access and intention, all of which are often disputed. 463 

Social media sites such as Facebook claim to own their big data and have exclusive access to 464 

it, even though it is actually contributed by users.  465 

 466 
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Informed consent, premised on the liberal tenets of individual autonomy, freedom of choice 467 

and rationality, is a cornerstone of personal data regulation and ethics (Cheung, 2016). 468 

However, researchers cannot possibly obtain consent from every waste hauler passively 469 

leaving data as a part of their operations. Traditional de-identification approaches (e.g., 470 

anonymization, pseudonymization, encryption, or data sharding) to protect privacy and 471 

confidentiality and allow analysis to proceed are problematic in big data, as even anonymized 472 

data can be re-identified and attributed to specific individuals (Ohm, 2009). De-identification 473 

is not always helpful as companies can be re-identified from records in other databases. 474 

Researchers thus need to start thinking more clearly about accountability of big data analytics, 475 

identifying methods, predictions and inferences that can be considered ethical and those that 476 

are not.  477 

 478 

7. Conclusions 479 

Illegal dumping of construction waste has long plagued cities around the world, and its 480 

surreptitious nature has presented a major challenge to the identification of suspected cases. 481 

Utilizing more than nine million waste disposal records over the past eight years in Hong Kong 482 

and a decision tree as the major analytical tool, this research identified 546 waste hauling 483 

trucks suspected of involvement in illegal dumping. Through big data analytics, previously 484 

unknown characteristics of illegal dumpers were identified: for example, they are freelance, 485 

and less patient in queuing at government waste disposal facilities. These characteristics exist 486 

alongside known motivations such as saving time and cost, or simply convenience. Although 487 

the analytical results cannot be used as evidence to prosecute suspected offenders, they offer 488 

important decision-support information for follow-up interventions to combat illegal dumping.  489 

 490 
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This research also makes significant methodological contributions, particularly to the field of 491 

big data analytics for urban crime identification by formalizing the methodology as a trilogy. 492 

Specifically, this paper demonstrates that indicators of anomalies can be identified using prior 493 

knowledge, traditional research methods (e.g., interviews, observation), and big data analytics. 494 

The best method for tree models was J48 with 0.843 precision, 0.842 recall, and 0.842 F1-495 

measure; a high-level performance returned. Even with big data analytics there is no one-size-496 

fits-all solution to urban crime identification. This paper, however, enriches the field by 497 

providing a vivid case study which can serve as a useful reference for other big data-enabled 498 

urban crime identification scenarios such as corruption in public procurement and fraud 499 

detection. 500 

 501 

Big data analytics has serious potential ethical ramifications and should be treated with caution. 502 

Its power is to discover hidden patterns, unknown correlations and other useful information. 503 

At the same time, it could lead to privacy infringement and other issues that still have no 504 

readily available theoretical explanation or practical solution.  505 

 506 
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