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Abstract. Hydro-granular flow is a widespread problem characterized by the
complicate fluid-particle interactions. The aim of this study is to investigate
the crucial role of initial packing density in the immersed granular column
collapse using the coupled lattice Boltzmann method and discrete element
method. A dense case and a loose case are compared in terms of the collapsing
dynamics, runout distance and induced excess pore fluid pressure. It is found
that the dense case shows a dilative behavior associated with slow collapse and
short runout distance with the excess pore fluid pressure being negative. While
the loose case shows a contractive behavior associated with fast collapse and
long runout distance with the excess pore fluid pressure being positive. These
observations reveal that the macroscopic behaviors of particles collapsing in
fluid heavily depends on the microscopic rheology, which is controlled by the
dilation and contraction of the granular assembly.

Keywords. LBM-DEM, fluid-particle interaction, granular column collapse,
dilation, contraction, packing density.

1. Introduction

Granular flows which are saturated by or immersed in fluids are ubiquitous phe-
nomena in nature and industries, and play crucial roles in sediment transport,
shaping the landscape, risk assessment and industrial optimization. In the study
of debris flow via large-scale flume tests [1], it has been found that the dynamics
of such hydro-granular flows heavily depends on the initial packing density. Wet
sandy soil prepared in a loose state collapses rapidly on a slope. The whole assem-
bly contracts during the failure process, resulting into partially liquefied materials.
Whereas the same soil packed in a dense state only slowly creeps and dilates before
a catastrophic failure.



2 Gengchao, L. Jing, C. Y. Kwok and Y. D. Sobral

A geometrically simplified immersed granular column collapse case has been
widely applied to investigate the dynamics of granular materials in fluids both ex-
perimentally and numerically [2, 3, 4]. Rondon et al. experimentally revealed the
important role of initial packing density on the dynamics of an immersed granular
column collapse by measuring the induced excess pore fluid pressure at the base
[2]. This laboratory study produced similar results with the debris flow flume tests
[1]. The dilative and contractive regimes could also be qualitatively captured by
two-dimensional (2D) numerical models, such as the distributed Lagrange multi-
plier/fictitious domain method [3] and the smoothed particle hydrodynamics [4].

Numerical simulations are able to offer richful information which could be
hardly measured in experiments, for instance, the fluid velocity and pressure fields.
However, 2D models often lead to unrealistic physical insights and limited conclu-
sions due to the restricted kinematics. Particularly, in the case of dense granular
flow with interstitial fluid, a 2D configuration will suppress the generation of turbu-
lence and result into unreliable pore pressures due to the zero permeability caused
by the discontinuous pore space, both of which can affect the granular column
collapse dramatically.

The goal of this study is to investigate the effects of dilation and contraction
on immersed granular column collapse via a fully-resolved three-dimensional (3D)
numerical model. The lattice Boltzmann method (LBM) is applied to simulate
fluids [5], while particles are simulated by the discrete element method (DEM)
[6]. The fluid-particle interactions are achieved by an immersed moving boundary
(IMB) technique [7].

2. Methodology

In LBM, the evolution equation with a BGK approximation (named after Bhat-
nagar, P. L., Gross E. P., and Krook M. [8]), can be written as:

fi(x+eibp,t +6¢) — fi(x,1) = —% [fi (x,t) = f{* (x,1)]. (2.1)

where the density distribution function f; is related to the number of molecules
at time ¢ positioned at x moving with velocity ¢; along the ith direction at each
lattice node. The time step and the relaxation time are denoted as d; and T,
respectively. The equilibrium distribution function f;? is adopted as a Maxwellian
one [9]. In this study, 3D LBM simulations with 19 discrete velocities (denoted as
D3Q19 lattice structure [9]), which offers a good balance between accuracy and
efficiency, are carried out. Based on the conservation of mass and momentum, the
macroscopic fluid density p and velocity u can be easily reconstructed from the
velocity moments of the density distribution functions:

18
pr=_fi (2:2)
i=0
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18
psu = Z“ifi- (2.3)
i=0

The pressure p is related to the fluid density by the equation of state [10]:

p=cips (2.4)

The speed of sound is ¢s and equal to 1/\/3 in lattice units for the D3Q19
lattice arrangement [10].

While the fluid is simulated using LBM, DEM is adopted to take care of
the solid particles [6]. The particle-particle collisions are governed by a simplified
Hertz-Mindlin contact model [11], with the normal and tangential contact forces
calculated as follows:

F, = k.0, + c,Au,, (2.5)
te

Ft = min kt / Autdt + CtAllt 7,UJF‘n , (26)
te,o0

where k, and ¢, are the stiffness and damping coefficient in the normal direction.
The relative normal velocity is denoted as Awu,. k: and ¢; are the stiffness and
damping coefficient in the tangential direction, the relative tangential velocity is
denoted as Auy, and p is the smaller of the friction coefficients of the two particles
in contact. The integral represents the elastic deformation of the particle surface
since contact from time ¢, to t.. the magnitude of the tangential force is limited
by the Coulomb friction pF;,, at which the two contacting particles start to slide
against each other.

By considering the gravity (G), contact forces and torques (F. = F,, +F; and
T.) and hydrodynamic forces and torques (Fy and Ty), the linear and angular
velocities of particles can be calculated according to the Newton’s second law:

ma=F.+F; + G, (2.7)

lw =T, + Ty, (2.8)
where m and I are the mass and moment of inertia of particles, respectively. The
acceleration is a and the angular velocity is w. By taking the time integral of
Eq. (2.7) and Eq. (2.8), the position and orientation of particles can be updated.

The coupling between LBM and DEM is achieved by the IMB method, ini-
tially proposed by Noble and Torczynski [7]. The basic principle of the IMB method
is to introduce a new collision operator, right-hand side of Eq. (2.1), which depends
on the solid ratio € for a specific lattice cell. The value of ¢ is estimated by a cell
decomposition method, and ranges between 0 (fluid cell) and 1 (solid cell). In this
way, Eq. (2.1) can be rewritten as:
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L= B[ (o t) — £ (%, 1)) + BOS, (29)

T

fi(x+cid, t +0,) — fi (x,t) =
where B is a weighting function of the solid ratio € and the relaxation time 7 [7]:

e(r—1/2)
(1—¢e)+(r—1/2)
and €27 is the collision operator for solid cells. To ensure the no-slip boundary

condition between fluid and solid, a non-equilibrium bounce-back form is adopted
[12]:

B(e,7) =

(2.10)

st = f—i(x7 t) - iqz(pf’ llf) + fieq(pf? us) - fi(X7 t)v (211)
where uy and u, are the macroscopic fluid and solid velocities at the position of
the lattice node x. The subscript —i denotes the opposite direction of i.

The hydrodynamic force F; can be calculated by summing the momentum
transfer along all directions at lattice cells covered by the solid particle with total
number of n, which gives:

n 18
Fr=> B;Y Qe (2.12)
j=1 i=0

The hydrodynamic torque Ty is the cross product of the force and the cor-
responding lever arm, which can be written as:

n 18
Tf = Z BJ(X] — XS) X ZQsz s (213)
j=1 =0

where x, is the center of mass of the solid particle. And x; is the coordinates of
the j-th lattice cell.

To synchronize the fluid and particle simulations, 100 sub-cycles of DEM
calculation are conducted for every step of LBM calculation. During the sub-
cycling process, the hydrodynamic force F; and torque T acting on the particles
remain unchanged.

3. Results and discussion

3.1. Numerical model

The coupled LBM-DEM method introduced in Section 2 was applied to simulate
the collapse of a granular column in fluid, as shown in Fig. 1. A granular column
was first prepared using the gravitational deposition method, which was stopped
from collapsing by a vertically positioned gate. A dense and a loose packings were
achieved by setting the particle friction coefficient to be 0.0 and 1.0, which were
later adjusted to 0.4 before releasing the granular column. The tank with dimension
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FIGURE 1. Sketch of a granular column immersed in a fluid. The
granular particles are released by removing the gate (unit: mm).

TABLE 1. Modeling parameters used in the LBM-DEM simula-
tion of immersed granular column collapse.

Parameters Values
Particle = Diameter, d, 0.8 mm
Density, p, 2500 kg/m?
Young’s modulus, £ 1E9 Pa
Poisson’s ratio, v 0.24
Coefficient of restitution, e 0.65
Fluid Density, py 1000 kg/m?
Dynamic viscosity, jr 0.01 Pa-s
Granular Initial length, L; 25 mm
column  Initial height, H; 20 mm

Initial packing density, ¢;  0.621 (dense case)
0.565 (Loose case)

80x30%x8 mm in x-, y-, and z-direction was then filled with fluid. Table 1 lists the
key modeling parameters.

The granular particles were released by removing the gate, then collapsing
onto the horizontal plane. Both the fluid and particle phases were constrained by
solid walls in the z and y directions. While in the z direction, periodic boundaries
were defined. It was found that simulations with longer periodic length produced
very similar results. A resolution with 20 number of lattice cells per one particle
diameter was adopted to solve the fluid-particle interactions. The whole simulation
lasted for 1.904 s at which all particles almost stopped.
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FI1GURE 2. Snapshots of particles during the granular column col-
lapse in fluid: dense case (left) and loose case (right). The parti-
cles are painted according to displacements in the xy-plane: black
(0gy < dp); red (dp < dzy < Bdp); green (5d, < gy < 10d)); blue
(10d, < 64y < 20d,); pink (05, > 20d)).

3.2. Numerical results

Figure 2 shows the time sequence of collapsing particles, which are painted ac-
cording to their displacements in the zy-plane (5, ). At a short time after the gate
removal as t = 0.08 s, a large portion of particles at the top-right corner in the
loose case have already started to move downwards and rightwards. At the same
time in the dense case, only several particles at the top-right corner show a sign
of movement and the whole granular column remains in a rectangular shape. As
time goes on, the particles in the loose case continue to slide down rapidly (loose:
t = 0.224 to 1.904 s), and at the same time spread in the horizontal direction.
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FIGURE 3. Comparison between the dense and loose cases in
terms of the time evolution of runout distance and excess pore
fluid pressure.

While in the dense case, the collapsing of granular column starts with a vertical
fall of particles at the top-right corner (dense: ¢ = 0.224 to 0.384 s). A cloud of
particles at the front is formed by the induced eddies and pressurized fluid at the
base (dense: t = 0.624 s), showing richful interactions between the fluid and the
particles. At last, the particles in the dense case also spread horizontally (dense:
t = 0.624 to 1.904 s) with continuous fall of particles at the upper slope.

The current initial aspect ratio of the granular column is small and equal to
0.8. For the loose case, nearly all particles move during the collapse, except a small
portion at the left-bottom corner. The final deposition is in a triangular shape.
However, for the dense case, a large number of particles close to the left-bottom
corner move less than one d, of distance in the xy-plane. The final deposition is
in a trapezoidal shape.

The runout distance, normalized by the initial column length L;, is plotted
against the time in Fig. 3(a). It can be seen that the loose case collapses much
faster than the dense case, which agrees with the observations in Fig. 2. The final
normalized runout distance in the loose case is about 1.45, which is longer than
that in the dense case with a value of 1.19.

Figure 3(b) shows the variation of the induced excess pore fluid pressure at
a point (4, 3.8, 4) mm, which keeps as a fluid node during the collapse for both
the dense and loose cases. The immediate collapse of particles in the loose case is
caused by the induced positive excess pore fluid pressure due to the contraction
of the granular column, which can push the particles away. The induced negative
excess pore fluid pressure at the early state (¢ < 0.4 s) is caused by the quick
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separation of particles at the top-right corner. While in the dense case, the gener-
ated negative excess pore fluid pressure due to the granular column dilation tends
to hold the particles and retard the collapse. The effects of contraction and dila-
tion remains during the whole collapsing process based on the fact that there are
non-zero excess pore fluid pressures even when the particles have already stopped.

4. Concluding remarks

In this work, we have presented an efficient coupled LBM-DEM framework, which
is successfully applied to solve the hydrodynamic interactions between the particles
and the fluid during the granular column collapse at the pore-scale. By comparing
a dense case and a loose case, it reveals two different regimes depending on the
initial packing density. When the granular column has a large packing density, it
collapses slowly and produces a small runout distance with the final deposition be-
ing trapezoidal. In contrast, when the initial packing density is small, the granular
column collapses in a much faster rate, and gives a longer runout distance with
the final deposition being triangular. The crucial role of initial packing density
on the collapse of granular column in fluid can be explained by the pore pressure
feedback mechanism proposed in the context of debris flows. Dilation occurs in
the dense case, resulting into negative excess pore fluid pressure which can stabi-
lize the whole granular column due to the increased effective stress. Meanwhile,
contraction takes place in the loose case, resulting into positive excess pore fluid
pressure which can produce partially fluidized particles.

In future works, we plan to further investigate the effects of microscopic
parameters that might provide insights to the mechanism of granular flows in
viscous fluids and help to develop a more reliable macroscopic continuum model.
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