Molecular signatures of transgenerational response to ocean acidification in a reef fish

Celia Schunter, Megan J. Welch, Taewoo Ryu, Huoming Zhang, Michael L. Berumen,
Göran E. Nilsson, Philip L. Munday* and Timothy Ravasi*

5

6 The impact of ocean acidification on marine ecosystems will depend on species capacity to adapt^{1,2}. Recent studies show that the behaviour of reef fishes is impaired at projected 7 CO₂ levels^{3,4}; however, individual variation exists that might promote adaptation. Here 8 we show a clear signature of parental sensitivity to high CO₂ in the brain molecular 9 10 phenotype of juvenile spiny damselfish, Acanthochromis polyacanthus, primarily driven 11 by circadian rhythm genes. Offspring of CO₂ tolerant and CO₂ sensitive parents were 12 reared at near-future CO₂ (754 µatm) or present-day control levels (414 µatm). By 13 integrating 33 brain transcriptomes and proteomes with a *de novo* assembled genome we 14 investigate the molecular responses of the fish brain to increased CO₂ and the expression 15 of parental tolerance to high CO_2 in the offspring molecular phenotype. Exposure to high 16 CO₂ resulted in differential regulation of 173 and 62 genes and 109 and 68 proteins in the 17 tolerant and sensitive groups respectively. Importantly, the majority of differences 18 between offspring of tolerant and sensitive parents occurred in high CO₂ conditions. This 19 transgenerational molecular signature suggests that individual variation in CO₂ sensitivity 20 could facilitate adaptation of fish populations to ocean acidification.

Subject terms: Climate Change, Ocean Acidification, Genomics, Transcriptomics, andAdaptation.

24

25 The uptake of additional carbon dioxide from the atmosphere is changing ocean chemistry, with potentially far-reaching impacts on marine life⁵. Recent studies show that 26 27 the behaviour of marine fishes and some invertebrates can be impaired by projected nearfuture CO₂ levels, with implication for key ecological processes such as navigation, 28 habitat selection, recruitment, competition and predator-prey interactions^{6,7}. Impaired 29 behaviour at high CO₂ levels have been found in a variety fish taxa, including sharks⁸, 30 stickleback⁹ and salmon¹⁰. Fish use chemical cues from injured conspecifics (chemical 31 32 alarm cues (CAC)) to detect the threat of predation and respond by moving away from CAC and decreasing activity¹¹. However, in high CO₂ conditions juvenile fish exhibit a 33 34 decreased avoidance of CAC and do not learn to associate an increased risk of predation with the presence of CAC^{12-14} . The failure to react to predation threat can have 35 36 immediate consequences for individual survival and may affect population replenishment^{4,13,14}. Furthermore, there appears to be limited capacity for within- or 37 between-generation acclimation of impaired behavioural responses to high $CO_2^{3,12}$. 38 Consequently, species will need to adapt to avoid adverse effects of ocean acidification 39 40 on behaviours that are critical to individual performance and population success.

41

42 The adaptive potential of a population depends on the presence of genetic variation upon 43 which selection can act^1 . Previous studies have observed variable levels of behavioural 44 impairment among individuals exposed to near future CO₂ levels^{4,13,15}. However, if this 45 variation could be transmitted between generations is unknown. One previous study has 46 shown that the average response of juvenile fish to CAC in high CO₂ does not change with parental exposure to high CO_2^{12} , but no studies have yet explored the relationship 47 48 between individual variation in response to high CO₂ between parents and their offspring. 49 We used a transgenerational rearing experiment to investigate the potential heritability of 50 variation in behavioural sensitivity to ocean acidification in the spiny damselfish, 51 Acanthochromis polyacanthus. The underlying cause of behavioural changes in reef fish 52 exposed to high CO₂ appears to be an effect of ionic change from acid-base regulation on 53 the function of the GABA_A receptor, the major inhibitory neurotransmitter receptor in the vertebrate brain^{14,16,17}. Therefore, we focused on transgenerational molecular signatures 54 55 of CO_2 tolerance and sensitivity in the fish brain. We first tested the behavioural 56 sensitivity of adult fish to elevated CO₂, (a projected near-future level of 754 µatm). Fish 57 that retained an innate avoidance of CAC in high CO₂ water were considered 'tolerant' to 58 high CO₂ whereas fish that became attracted by CAC in high CO₂ were termed 59 'sensitive'. Adult males and females of similar tolerance or sensitivity to high CO₂ were 60 paired for breeding, with half of the pairs breeding in control conditions and half of the 61 pairs breeding in high CO_2 conditions. Offspring of these parental pairs were then reared 62 in the same CO₂ conditions as their parents. Full brain transcriptomes were sequenced 63 and proteomes were obtained for a total of 33 offspring from the four parental-sensitivity 64 x CO₂ rearing conditions: (1) nine offspring from tolerant parents reared in control 65 conditions, (2) six offspring from tolerant parents reared in high CO_2 conditions, (3) nine 66 offspring from sensitive parents reared in control conditions and, (4) nine offspring from sensitive parents in high CO₂ conditions (Fig. 1). The *de novo* genome of A. polyacanthus 67

was sequenced and assembled to facilitate the assembly and annotation of thetranscriptome and proteome datasets (Supplementary methods).

70

71 The expression of brain mRNA and proteins differed markedly between offspring reared 72 in elevated CO₂ compared with control conditions and between offspring of tolerant and 73 sensitive parents (Fig. 2a). We identified 173 and 62 mRNA transcripts (Fig. 2b) and 109 74 and 68 proteins (Fig. 2c) showing differential expression between control and CO₂ 75 conditions for offspring of tolerant and sensitive parents, respectively. Only seven 76 transcripts and eighteen proteins were commonly differentially expressed in response to 77 high CO₂ in both parental groups (Fig. 2b,c), revealing a distinct parental influence in 78 responses to CO₂ exposure. Importantly, the majority of differences between these two 79 groups of offspring occurred in fish reared at high CO₂, with 152 transcripts and 99 80 proteins differentially expressed, compared with 14 transcripts and 46 proteins in control 81 conditions (Fig. 2; Supplementary Fig. 1).

82

83 The general response to high CO₂, irrespective of parental sensitivity, involved genes and 84 proteins associated with the brain's glucose, serine and glycine metabolism. Pck1, 85 cytosolic phosphoenolpyruvate, is the main control gene for gluconeogenesis and the 86 most up-regulated gene of the seven found differentially expressed between high CO₂ and 87 control conditions regardless of parental phenotype (Supplementary Table 1). Thirty three 88 per cent of these differentially expressed genes matched to differentially expressed 89 proteins directly, but multiple glycolytic proteins involved in similar pathways such as 90 fructose-bisphosphate aldolase or glyceraldehyde-3-phosphate dehydrogenase, also

91 showed increased expression at the high CO₂ level (Supplementary Table 2). Several 92 other fish species exhibit increased blood glucose levels when exposed to stress and environmental perturbations such as pH changes¹⁸. Furthermore, up-regulation in pck193 94 has also been shown to promote a glucose side-branch metabolism: the serine and glycerol-3-phosphate pathways¹⁹. *Phgdh*, phosphoglycerate dehydrogenase, catalyses the 95 96 early step of the L-serine synthesis from 3-P-glycerate and is up-regulated at the 97 transcript and protein level here. Shmt2 (serine hydroxymethyltransferase 2) then 98 converts serine into glycine. Serine and glycine are involved in a wide range of processes 99 such as the biosynthesis of lipids and proteins and are necessary for cell proliferation. 100 Up-regulation of these metabolic pathways in the brain has also been seen in zebra fish after the exposure to chemicals²⁰. All high-CO₂ individuals, regardless of parental 101 102 phenotype, exhibited an increased expression of genes related to serine biosynthesis 103 (Supplementary Table 3), revealing a common cost in the stress response to high CO₂ 104 exposure.

105

106 The molecular phenotype of offspring from CO₂ sensitive parents was substantially 107 different to that of offspring from CO_2 tolerant parents (Fig. 2). At the protein level, 108 offspring of sensitive parents exhibited a nine-fold overexpression of histone 1 (H1), 109 possibly compacting the chromatin and regulating gene expression by inaccessibility to transcription factors²¹. On the transcript level, gene ontology analysis showed that genes 110 111 involved in transfer ribonucleic acid (tRNA) aminoacylation were uniquely enriched in 112 the sensitive-parents group (Supplementary Table 3). These included several tRNA 113 synthetases, such as *aars*, *dars* and *kars*. tRNA synthetases are necessary for the

114 translation from mRNA into proteins as they bind the proper amino acid to tRNA. Until 115 recently tRNA synthetases were thought to be housekeepers, but new evidence links differential expression and mutation in these synthetase genes to human diseases²², stress 116 response and rapid adaptation to environmental stressors in yeast and E.coli²³. tRNA 117 synthetases are also responsible for adaptive translation²³ and although rarely studied in 118 fish seem to be involved in temperature acclimation²⁴. Thus, the elevated expression of 119 120 tRNA synthetases in offspring of sensitive parents may be triggered by an unsuccessful 121 attempt to acclimate. It is possible that this may even become maladaptive in offspring of 122 sensitive parents.

123

124 Not only were tRNA synthetases more highly expressed in the transcriptomes of 125 offspring from CO₂ sensitive parents, but there were also differences between the 126 sensitive and tolerant offspring group in the genomic sequence of two tRNA related 127 genes. We measured the fixation index (F_{ST}) of all single nucleotide polymorphisms 128 (SNPs) found across the transcriptomes of all tolerant-parent offspring against all 129 sensitive-parent offspring to evaluate a potential difference due to a fixed genetic 130 variation. Four outliers were found with different genotypes for offspring of tolerant and 131 sensitive parents within the sequenced coding regions (Supplementary Fig. 2). One SNP 132 was found in the *corola* gene involved in immune deficiency and another just upstream 133 of the *igdcc3* (immunoglobin superfamily) coding region. For both SNPs the sensitive-134 parents offspring revealed homozygosity (both copies of the same allele), possibly 135 indicating less adaptive potential for these genes. The other two outlier SNPs were 136 located in *trnt1* and *iars*, tRNA synthetase related genes of which *iars* was also

differentially expressed for sensitive-parent offspring at high CO₂. This is consistent with
a role of tRNA synthetase in the cellular response to environmental stressors²³. In this
study we focused on coding regions of the genome, but additional important genetic
variants might be located in upstream regulatory regions of the differentially expressed
genes.

142

143 The main inhibitory neurotransmitter receptor in vertebrate brains, the gamma-144 aminobutyric acid receptor A (GABA_A), is an ion-channel with conductance for Cl⁻ and 145 HCO_3^{-} , and its function has been shown to be affected by the exposure to near future CO_2^{-} levels^{16,17}. Fish with impaired behaviour regain normal behaviour after treatment with 146 147 gabazine, a GABA_A receptor antagonist, and the underlying mechanism is thought to be related to pH regulatory processes altering the neuronal gradients for Cl⁻ and HCO₃^{-9,14,17}. 148 149 The GABA receptor genes were highly expressed in the transcriptomes of all our tested 150 fish, but at the same level across treatments. However, on the protein level we found aldehyde dehydrogenase 9 member A1 (AL9A1), a protein involved in the 151 152 dehydrogenation of gamma-aminobutyraldehyde to GABA, to be 1.7 fold overexpressed 153 at high CO₂ in offspring of tolerant parents. Altered GABA receptor function with high 154 CO_2 exposure could be expected to affect the expression of transporter genes and proteins 155 such as the solute carrier family (slc). However, only one non-GABA related 156 neurotransmitter transporter gene (*slc6a15*) and the glycine neurotransmitter transporter 157 protein (SC6A5) were differentially expressed, but again were up-regulated in offspring 158 of CO₂ tolerant parents in high CO₂ conditions (Supplementary Table 4). This up-

regulation might help fish deal with the interference of high CO₂ with the function of the

160 GABA_A receptor and at least partly explain individual variation in CO₂ tolerance.

161

162 Fish have acid-base and osmo-regulatory mechanisms allowing them to avoid tissue 163 acidosis when exposed to high CO₂, which is one of the predicted physiological costs of acidified oceans²⁵. The importance of this is demonstrated by the overexpression of the 164 165 arginine vasotocin protein in our fish at high CO₂ level, which is a key component in the coordination of osmotic challenges²⁶. Most fish closely regulate their acid-base relevant 166 ions (primarily Cl^{-} , HCO_{3}^{-} and H^{+}) in response to environmental fluctuations of CO_{2}^{16} . 167 168 Many processes involving osmoregulation are under circadian regulation, such as acidbase regulation when exposed to different levels of pH^{27,28}. In this study we find the 169 170 molecular signature of CO₂ tolerance to be defined by the differential regulation of nearly 171 all components of the circadian rhythm system (Fig. 3). Differential expression of most 172 circadian genes and several proteins are found in offspring of tolerant parents in high CO₂, in comparison to offspring of the same parents at control CO₂ and offspring of CO₂ 173 174 sensitive parents at high CO₂ levels. Circadian rhythm and rhythmic process are also 175 enriched biological functions (Supplementary Table 3). The main circadian rhythm 176 activator genes such as bmal1 (also known as ARNTL in mammals) or clock were down-177 regulated, whereas circadian rhythm repressors such as *per1*, *nr1d1* or the Paraspeckle 178 component protein 1 were up-regulated in offspring of tolerant parents in high CO_2 179 condition. Altered levels of circadian rhythm genes evoke a phase shift in the circadian clock²⁹ and such phase shifts can provide an adaptive advantage when faced with 180 environmental change³⁰. Opposing this down-regulation in circadian rhythm for offspring 181

182 of tolerant parents, we find *asmt* (acetylserotonin O-methyltransferase), the enzyme that 183 catalyses the final reaction in the synthesis of melatonin, a key regulator of the circadian 184 rhythm, up-regulated in offspring of sensitive parents. Ion-regulatory adjustments in fish are managed by melatonin, concurrent with the circadian rythm³¹. It is possible, therefore, 185 186 that offspring of sensitive parents display more pronounced ion-regulatory adjustments in 187 response to elevated CO₂, which in turn leads to more profoundly altered Cl⁻ and HCO₃⁻ 188 gradients that interfere with the GABA_A receptor function. We hypothesise that offspring 189 of tolerant parents inherit the 'flexibility' in ion-regulatory control and therefore the 190 ability to phase shift the circadian clock and avoid a maladaptive reaction to elevated 191 levels of CO₂. This transgenerational signal suggests adaptive potential of impaired 192 behaviours from high CO₂ due to existing natural variation.

194	Refe	rences
195	1.	Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117-
196		25 (2014).
197	2.	Pespeni, M. H. <i>et al.</i> Evolutionary change during experimental ocean acidification.
198		Proc. Natl. Acad. Sci. U. S. A. 110, 6937–42 (2013).
199	3.	Munday, P. L., Cheal, A. J., Dixson, D. L., Rummer, J. L. & Fabricius, K. E.
200		Behavioural impairment in reef fishes caused by ocean acidification at CO ₂ seeps.
201		Nat. Clim. Chang. 4, 487–492 (2014).
202	4.	Munday, P. L. et al. Replenishment of fish populations is threatened by ocean
203		acidification. Proc. Natl. Acad. Sci. U. S. A. 107, 12930-4 (2010).
204	5.	Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the
205		other CO ₂ problem. Ann. Rev. Mar. Sci. 1, 169–92 (2009).
206	6.	Nagelkerken, I. & Munday, P. L. Animal behaviour shapes the ecological effects
207		of ocean acidification and warming: moving from individual to community-level
208		responses. Glob. Chang. Biol. 22, 974–89 (2016).
209	7.	Clements, J. & Hunt, H. Marine animal behaviour in a high CO ₂ ocean. Mar. Ecol.
210		<i>Prog. Ser.</i> 536, 259–279 (2015).
211	8.	Dixson, D. L., Jennings, A. R., Atema, J. & Munday, P. L. Odor tracking in sharks
212		is reduced under future ocean acidification conditions. Glob. Chang. Biol. 21,
213		1454–62 (2015).
214	9.	Lai, F., Jutfelt, F. & Nilsson, G. E. Altered neurotransmitter function in CO ₂ -
215		exposed stickleback (Gasterosteus aculeatus): a temperate model species for ocean
216		acidification research. Conserv. Physiol. 3, cov018–cov018 (2015).
217	10.	Ou, M. et al. Responses of pink salmon to CO ₂ -induced aquatic acidification. Nat.
218		<i>Clim. Chang.</i> 5 , 950–955 (2015).
219	11.	Holmes, T. H. & McCormick, M. I. Smell, learn and live: the role of chemical
220		alarm cues in predator learning during early life history in a marine fish. <i>Behav.</i>
221	10	<i>Processes</i> 83 , 299–305 (2010).
222	12.	Welch, M. J., Watson, SA., Welsh, J. Q., McCormick, M. I. & Munday, P. L.
223		Effects of elevated CO_2 on fish behaviour undiminished by transgenerational
224	10	acclimation. Nat. Clim. Chang. 4, 1086–1089 (2014).
225	13.	Ferrari, M. C. O. <i>et al.</i> Intrageneric variation in antipredator responses of coral reef
226		fishes affected by ocean acidification: implications for climate change projections
227	14	on marine communities. <i>Glob. Chang. Biol.</i> 17 , 2980–2986 (2011).
228	14.	Chivers, D. P. <i>et al.</i> Impaired learning of predators and lower prey survival under
229		elevated CO ₂ : a consequence of neurotransmitter interference. <i>Glob. Chang. Biol.</i> 20 , 515, 22 (2014)
230 221	15	20, 515–22 (2014). Munday, P. L. <i>et al.</i> Selective mortality associated with variation in CO ₂ tolerance
231 232	15.	in a marine fish. Ocean Acidif. $1, 1-5$ (2012).
232	16.	Heuer, R. M. & Grosell, M. Physiological impacts of elevated carbon dioxide and
233	10.	ocean acidification on fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307,
234		R1061–84 (2014).
235	17.	Nilsson, G. E. <i>et al.</i> Near-future carbon dioxide levels alter fish behaviour by
230	1/.	interfering with neurotransmitter function. <i>Nat. Clim. Chang.</i> 2 , 201–204 (2012).
237	18.	Polakof, S., Panserat, S., Soengas, J. L. & Moon, T. W. Glucose metabolism in
230	10.	fish: a review. J. Comp. Physiol. B. 182 , 1015–45 (2012).
207		101. u = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0

240	19.	Li, Y. et al. Upregulation of cytosolic phosphoenolpyruvate carboxykinase is a
241		critical metabolic event in melanoma cells that repopulate tumors. Cancer Res. 75,
242		1191–6 (2015).
243	20.	Villeneuve, L. et al. Altered gene expression in the brain and ovaries of zebrafish
244		(Danio rerio) exposed to the aromatase inhibitor fadrozole: microarray analysis
245		and hypothesis generation. Environ. Toxicol. Chem. 28, 1767-82 (2009).
246	21.	Harshman, S. W., Young, N. L., Parthun, M. R. & Freitas, M. A. H1 histones:
247		current perspectives and challenges. Nucleic Acids Res. 41, 9593-609 (2013).
248	22.	Kim, S., You, S. & Hwang, D. Aminoacyl-tRNA synthetases and tumorigenesis:
249		more than housekeeping. Nat. Rev. Cancer 11, 708–18 (2011).
250	23.	Pan, T. Adaptive Translation as a Mechanism of Stress Response and Adaptation.
251		Annu. Rev. Genet. 47, 121–137 (2013).
252	24.	Haschemeyer, A. E. V. Multiple aminoacyl-tRNA synthetases (translases) in
253		temperature acclimation of eurythermal fish. J. Exp. Mar. Bio. Ecol. 87, 191–198
254		(1985).
255	25.	Ishimatsu, A., Hayashi, M. & Kikkawa, T. Fishes in high-CO ₂ , acidified oceans.
256		Mar. Ecol. Prog. Ser. 373 , 295–302 (2008).
257	26.	Balment, R. J., Lu, W., Weybourne, E. & Warne, J. M. Arginine vasotocin a key
258		hormone in fish physiology and behaviour: a review with insights from
259		mammalian models. Gen. Comp. Endocrinol. 147, 9-16 (2006).
260	27.	Dmitriev, A. V. & Mangel, S. C. A circadian clock regulates the pH of the fish
261		retina. J. Physiol. 522, 77–82 (2000).
262	28.	Peterson, M. S. & Gilmore, R. G. Hematocrit, osmolality, and ion concentration in
263		fishes: consideration of circadian patterns in the experimental design. J. Exp. Mar.
264		<i>Bio. Ecol.</i> 121, 73–78 (1988).
265	29.	Dunlap, J. C. Molecular Bases for Circadian Clocks. Cell 96, 271–290 (1999).
266	30.	Zhang, E. E. & Kay, S. A. Clocks not winding down: unravelling circadian
267		networks. Nat. Rev. Mol. Cell Biol. 11, 764–76 (2010).
268	31.	López-Patiño, M. A., Rodríguez-Illamola, A., Gesto, M., Soengas, J. L. & Míguez,
269		J. M. Changes in plasma melatonin levels and pineal organ melatonin synthesis
270		following acclimation of rainbow trout (Oncorhynchus mykiss) to different water
271		salinities. J. Exp. Biol. 214, 928-36 (2011).
272		
273		

274 Acknowledgments

275 This study was supported by the Australian Research Council (ARC) and the ARC

- 276 Centre of Excellence for Coral Reef Studies (P.L.M), the Office of Competitive Research
- 277 Funds OCRF-2014-CRG3-62140408 from the King Abdullah University of Science and
- 278 Technology (T.R., M.L.B., P.L.M, T.Ryu, C.S.), and the University of Oslo (G.E.N.).
- 279 This project was completed under James Cook University (JCU) ethics permit A1828.
- 280 We thank the Marine and Aquaculture Research Facilities Unit (JCU), Integrative
- Systems Biology Laboratory (KAUST), and Biosciences Core Laboratory (KAUST) forsupport and assistance.
- 283

284 Affiliations

KAUST Environmental Epigenetic Program (KEEP), Division of Biological and
Environmental Sciences & Engineering and Division of Applied Mathematics
and Computer Sciences, King Abdullah University of Science and Technology, Thuwal,

- 288 Kingdom of Saudi Arabia
- 289 Celia Schunter, Taewoo Ryu and Timothy Ravasi
- 290
- APEC Climate Center, Busan 48058, South Korea
- 292 Taewoo Ryu
- 293
- 294 ARC Centre of Excellence for Coral Reef Studies and College of Marine and
- 295 Environmental Sciences, James Cook University, Townsville, Queensland, Australia
- 296 Megan Welch
- 297

298	ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville,
299	Queensland, Australia
300	Philip L. Munday
301	
302	Proteomics and FACS facility, King Abdullah University of Science and Technology,
303	Thuwal, Kingdom of Saudi Arabia
304	Huoming Zhang
305	
306	Section for Physiology and Cell Biology, Department of Biosciences, University of
307	Oslo, Oslo NO-0316, Norway
308	Göran E. Nilsson
309	
310	Red Sea Research Center, Division of Biological and Environmental Sciences &
311	Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of
312	Saudi Arabia
313	Michael L. Berumen
314	
315	Author contributions: M.W. and P.L.M designed and managed the fish rearing

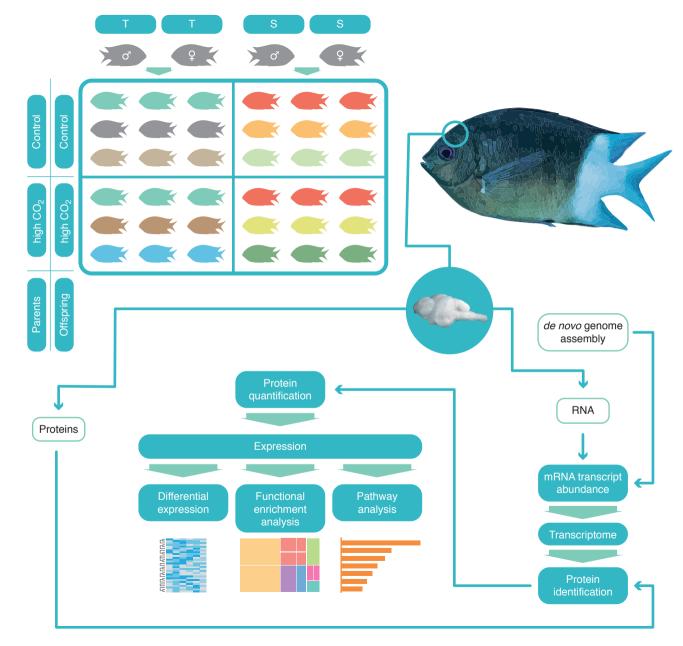
Author contributions: M.W. and P.L.M designed and managed the fish rearing experiments. M.W. performed the adult fish behavioural phenotyping. C.S. prepared the samples for RNA sequencing and together with H.Z. protein samples for mass spectrometry. T.Ryu performed the genome assembly and gene annotation and wrote the corresponding part. C.S. analysed transcriptome expression data, performed quantitative real-time PCR expression validation and variant analysis. C.S. analysed mass

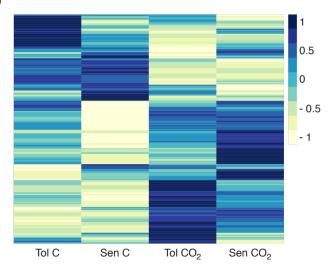
321	spectrometry data and integrated the datasets. G.E.N. assisted in interpreting the
322	expression data. C.S., P.L.M., T.Ravasi and G.E.N. wrote the paper and all authors read
323	and approved the final manuscript.
324	
325	Additional information:
326	RNA-seq transcriptome sequences have been deposited in GenBank under BioProject ID
327	PRJNA311159. Correspondence and requests for materials should be addressed to
328	T.Ravasi or P.L.M.
329	
330	Competing financial interests
331	The authors declare no competing financial interests.
332	

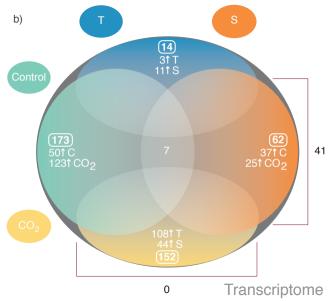
Figure legends:

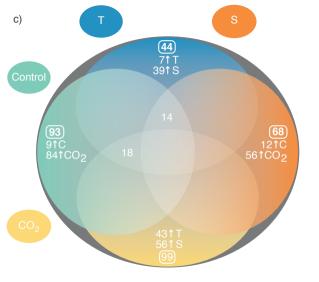
335

336 Figure 1: Sampling design of juvenile fish for molecular analysis of brain 337 transcriptomes and proteomes. Offspring were sampled from breeding pairs of spiny 338 damselfish characterised as tolerant or sensitive to the behavioural effects of elevated 339 CO₂ (top left corner). T are 'tolerant' parents, whose behaviour is not impeded and S are 340 'sensitive' parents, whose behaviour changed when exposed to high CO₂. Three offspring 341 (biological replicates) from different parental pairs each were sampled from four 342 parental-sensitivity x CO₂ rearing conditions. Colour of the fish indicates different family 343 lines. Fish brains were dissected and processed for transcript and protein differential 344 expression analysis by using a *de novo* assembled genome as the reference.

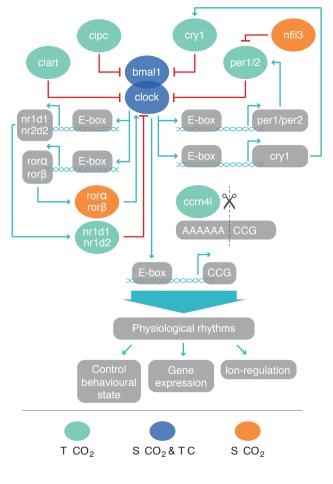

345


346 Figure 2: Differential expression of transcripts and proteins for the four different 347 comparisons of parental-sensitivity x CO₂ rearing conditions. a) Heatmap of all 348 differentially expressed transcripts with hierarchical gene clustering. Expression level is 349 indicated by the z-score. Tol= tolerant parents, Sen= sensitive parents, C= control 350 condition, CO_2 = high CO_2 condition. **b**) Venn diagram of differentially expressed 351 transcripts and c) differentially expressed proteins. Brackets in b) represent the overall 352 factorial comparisons e.g. 41 transcripts are differentially expressed for control versus 353 CO₂ regardless of parental phenotype. Rectangles show the total amount of differential 354 expression. Upward arrows represent the number of transcripts/proteins that are up-355 regulated in the respective condition.


356


Figure 3: Differential regulation of circadian rhythm genes for offspring of tolerant parents at high CO₂ condition. All pathway genes are differentially expressed and upregulation is represented by different colours and refers to different offspring/treatment groups. T stands for tolerant parent, S for sensitive, CO₂ for high CO₂ condition and C for control condition. Pathways of activation (green arrows) and repression (red lines) of different genes²⁹. Importantly, repressors are up-regulated for offspring of tolerant parents reared in high CO₂ conditions, whereas activators are found down-regulated for

- this group. The scissors represent the posttranscriptional activity of *ccrn4l* by degrading
- the poly-A tails.



Proteome

