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ABSTRACT 11 

 12 

This study intended to identify the potential factors contributing to the occurrence of 13 

pedestrian crashes at signalized intersections in a densely populated city, based on a 14 

comprehensive dataset of 898 pedestrian crashes at 262 signalized intersections 15 

during 2010-2012 in Hong Kong. The detailed geometric design, traffic 16 

characteristics, signal control, built environment, along with the vehicle and 17 

pedestrian volumes were elaborately collected. A Bayesian measurement errors model 18 

was introduced as an alternative method to explicitly account for the uncertainties in 19 

volume data. To highlight the role played by exposure, models with and without 20 

pedestrian volume were estimated and compared. The results indicated that the 21 

omission of pedestrian volume in pedestrian crash frequency models would lead to 22 

reduced goodness-of-fit, biased parameter estimates, and incorrect inferences. Our 23 

empirical analysis demonstrated the existence of moderate uncertainties in pedestrian 24 

and vehicle volumes. Six variables were found to have a significant association with 25 

the number of pedestrian crashes at signalized intersections. The number of crossing 26 

pedestrians, the number of passing vehicles, the presence of curb parking, and the 27 

presence of ground-floor shops were positively related with pedestrian crash 28 

frequency, whereas the presence of playgrounds near intersections had a negative 29 

effect on pedestrian crash occurrences. Specifically, the presence of exclusive 30 

pedestrian signals for all crosswalks was found to significantly reduce the risk of 31 

pedestrian crashes by 43%. The present study is expected to shed more light on a 32 

deeper understanding of the environmental determinants of pedestrian crashes. 33 

 34 
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1.  INTRODUCTION 1 

 2 

Pedestrian safety continues to be a considerable public health concern worldwide 3 

(Naci et al., 2009; Zegeer and Bushell, 2012; Stoker et al., 2015). Although pedestrian 4 

casualties due to traffic crashes in Hong Kong have dropped by 19.3% over the past 5 

decade, approximately 3,500 pedestrians are still injured each year (HKTD, 2017). 6 

Pedestrians also accounted for more than half of the road traffic fatalities, a proportion 7 

much higher than that in other high-income areas. To improve the safety of these 8 

vulnerable road users, effective interventions are urgently required to be formulated 9 

and implemented. 10 

With the rapid progress of urbanization, a growing number of intersections in 11 

cities are controlled by traffic signals. The inadequate accommodation of pedestrians’ 12 

needs makes them difficult to cross streets and increases the number of pedestrian 13 

injuries (Xu et al., 2016). In 2016, about 1,200 pedestrian injuries occurred at 14 

intersections in Hong Kong, among which 50% were under signal control (HKTD, 15 

2017). A better understanding of factors contributing to pedestrian crashes at 16 

signalized intersections is therefore imperative if walking is advocated as a safe and 17 

attractive travel mode. Such information can also facilitate safety planners and policy 18 

makers in the design of appropriate infrastructures to improve pedestrian mobility and 19 

safety. 20 

In the past two decades, researchers have attempted to develop different 21 

predictive models to explore the effects of different types of factors on pedestrian 22 

crash counts. Existing studies have focused primarily on the area-wide level (LaScala 23 

et al., 2000; Graham and Glaister, 2003; Noland and Quddus, 2004; Morency and 24 

Cloutier, 2006; Wedagama et al., 2006; Loukaitou-Sideris et al., 2007; Dissanayake et 25 

al., 2009; Sebert Kuhlmann et al., 2009; Wier et al., 2009; Chakravarthy et al., 2010; 26 

Cottrill and Thakuriah, 2010; Ha and Thill, 2011; Delmelle et al., 2012; Rifaat et al., 27 

2012; Ukkusuri et al., 2011, 2012; Siddiqui et al., 2012; Dumbaugh and Zhang, 2013; 28 

Graham and McCoy, 2013; Noland et al., 2013; Wang and Kockelman, 2013; 29 

Jermprapai and Srinivasan, 2014; Steinbach et al., 2014; DiMaggio, 2015; Lee et al., 30 

2015a, 2015b; Yao et al., 2015; Yu, 2015; Cai et al., 2016, 2017; Chen and Zhou, 2016; 31 

Wang et al., 2016; Guo et al., 2017; Osama and Sayed, 2017; Tasic et al., 2017; Xie et 32 

al., 2017; Ding et al., 2018; Goel et al., 2018). Relatively little research effort has 33 

been devoted to investigating the relationship between the number of motor vehicle–34 

pedestrian crashes and potential risk factors at intersections (See: Table A1 in 35 

Appendix; Leden, 2002; Lyon and Persaud, 2002; Lee and Abdel-Aty, 2005; Geyer et 36 

al., 2006; Schneider et al., 2010; Torbic et al., 2010; Miranda-Moreno et al., 2011; 37 

Pulugurtha and Sambhara, 2011; Elvik et al., 2013, 2016; Strauss et al., 2014; 38 

Quistberg et al., 2015a, 2015b; Kröyer, 2016; Mooney et al., 2016; Lee et al., 2017; 39 

Thomas et al., 2017; Wang et al., 2017), particularly at signalized intersections in a 40 

densely populated city (Leden, 2002; Lyon and Persaud, 2002; Torbic et al., 2010; 41 

Pulugurtha and Sambhara, 2011; Miranda-Moreno et al., 2011; Strauss et al., 2014).  42 

Not surprisingly, with the increase in vehicle and pedestrian volumes, the 43 

absolute number of pedestrian crashes also increases. A nonlinear relationship has 44 
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consistently been reported, indicating that as the number of pedestrians increases, the 1 

crash risk for each individual pedestrian decreases (Leden, 2002; Lyon and Persaud, 2 

2002; Geyer et al., 2006; Schneider et al., 2010; Torbic et al., 2010; Miranda-Moreno 3 

et al., 2011; Elvik et al., 2013; Strauss et al., 2014; Elvik, 2016; Kröyer, 2016; 4 

Mooney et al., 2016). This is referred to as “safety in numbers” effects (Jacobsen, 5 

2003; Elvik and Bjørnskau, 2017; Xu et al., 2017b). Although pedestrian volume is 6 

crucial in determining pedestrian crash occurrences, few transportation agencies 7 

regularly collect these data on a large scale due to limited resources. The number of 8 

pedestrians is thus mostly estimated based on a short period of field observations 9 

(Leden, 2002; Lyon and Persaud, 2002; Schneider et al., 2010; Torbic et al., 2010; 10 

Miranda-Moreno et al., 2011; Pulugurtha and Sambhara, 2011; Elvik et al., 2013, 11 

2016; Strauss et al., 2014; Quistberg et al., 2015b; Kröyer, 2016; Mooney et al., 2016), 12 

predicted by pedestrian activity models such as Space Syntax (Geyer et al., 2006) and 13 

“Ballpark” method (Thomas et al., 2017), or surrogated as surrounding land use and 14 

demographic characteristics (Quistberg et al., 2015a; Lee et al., 2017; Wang et al., 15 

2017). It is noteworthy that either absence or improper representation of pedestrian 16 

exposure probably leads to inconsistent results (Steinbach et al., 2014). The 17 

measurement errors induced in this process may also bias the parameter estimates 18 

(Kröyer, 2016). 19 

In addition to the vehicle and pedestrian volumes, geometric design, such as the 20 

number of approaches (Miranda-Moreno et al., 2011; Pulugurtha and Sambhara, 2011; 21 

Quistberg et al., 2015a; Lee et al., 2017; Thomas et al., 2017), the number of lanes 22 

(Thomas et al., 2017), the number of right-turn-only lanes (Schneider et al., 2010), the 23 

maximum number of lanes crossed by pedestrians (Torbic et al., 2010), lane width 24 

(Quistberg et al., 2015a), average slope of terrain (Thomas et al., 2017), the presence 25 

of raised medians (Schneider et al., 2010), the presence of one-way streets (Quistberg 26 

et al., 2015a), the presence of sidewalks (Quistberg et al., 2015b), the presence of 27 

pedestrian barriers (Quistberg et al., 2015b), the presence of marked crosswalks 28 

(Mooney et al., 2016), and the presence of on-street parking (Quistberg et al., 2015b; 29 

Thomas et al., 2017) were found to be closely related to the frequency of pedestrian 30 

crashes at intersections. The presence of specific facilities close to intersections, i.e., 31 

bus stops (Torbic et al., 2010; Miranda-Moreno et al., 2011; Mooney et al., 2016; 32 

Thomas et al., 2017), transit stops (Pulugurtha and Sambhara, 2011), schools 33 

(Miranda-Moreno et al., 2011), street vendors (Quistberg et al., 2015b), alcohol sales 34 

establishments (Torbic et al., 2010), and billboards (Mooney et al., 2016), was 35 

reported to significantly increase pedestrian crashes. Intersections located in 36 

neighborhoods with commercial land use (Geyer et al., 2006; Schneider et al., 2010; 37 

Torbic et al., 2010; Miranda-Moreno et al., 2011; Thomas et al., 2017), lower income 38 

levels (Torbic et al., 2010; Thomas et al., 2017), denser population (Quistberg et al., 39 

2015a; Lee et al., 2017; Wang et al., 2017), higher employment rates (Quistberg et al., 40 

2015a), and a higher proportion of residents under 18 years old (Schneider et al., 2010) 41 

were also associated with more pedestrian crashes. However, relative to the geometric 42 

and built environment factors, there is potential for further insights regarding the 43 

effects of signal timing, although they are usually designed according to the 44 
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intersection geometry and traffic volume. 1 

Relationships between the aforementioned explanatory variables and pedestrian 2 

crash counts can be established using crash prediction models. Traditional Poisson 3 

and negative binomial models have a strong assumption that their observations should 4 

be mutually independent. This fundamental hypothesis is almost always violated 5 

(Mannering and Bhat, 2014). More advanced models, such as the conditional 6 

autoregressive (Xu et al., 2014; Guo et al., 2017; Goel et al., 2018; Cai et al., 2018a), 7 

random parameters (Anastasopoulos and Mannering, 2009; Hou et al., 2018), 8 

geographically weighted regression (Xu and Huang, 2015; Gomes et al., 2017; Cai et 9 

al., 2018b), spatially varying coefficients (Xu et al., 2017a), and spatiotemporal 10 

mixture models (Cheng et al., 2018) have therefore been introduced to achieve more 11 

accurate and reliable estimations. In particular, El-Basyouny and Sayed (2010) 12 

proposed an approach to address the measurement errors in traffic volume when 13 

modeling freeway crash counts. Their results suggested that the adjustment of 14 

measurement errors in traffic volume could significantly improve model performance 15 

and result in unbiased inferences. 16 

Based on a comprehensive dataset of 898 pedestrian crashes at 262 signalized 17 

intersections over a 3-year period in Hong Kong, this study intends to quantify the 18 

effects of various factors, including the geometric design, traffic characteristics, signal 19 

controls, and built environment characteristics, on the frequency of motor vehicle–20 

pedestrian crashes at signalized intersections in a densely populated city. A novel 21 

Bayesian measurement errors model is elaborately developed to accommodate the 22 

uncertainties in vehicle and pedestrian volumes. To illustrate the role played by 23 

exposure, the estimated coefficients of models with and without pedestrian volume 24 

are presented and compared. The present study is expected to shed more light on a 25 

deeper understanding of the environmental determinants of pedestrian crashes. 26 

 27 

2.  DATA 28 

 29 

We sampled the intersections based on a comprehensive set of traffic impact 30 

assessment reports for the years 2011 and 2012. As the traffic impact assessment was 31 

conducted for planning and design purposes and did not investigate the crash records 32 

in advance, we assumed no systemic biases in this sampling process. A total of 262 33 

signalized intersections (77 on Hong Kong island, 130 in Kowloon and 55 in New 34 

Territories) with adequate traffic and geometric information were available for 35 

analysis, which accounted for 15.8% of all signalized intersections in Hong Kong. 36 

We obtained the crash data from the Traffic Road Accident Database System, 37 

which is maintained by the Hong Kong Transport Department and the Hong Kong 38 

Police Force. These data were collected by the police officers at the crash scenes. 39 

Only crashes resulting in injuries were recorded in the database. In Hong Kong, 40 

crashes occurring within 70m of the centerline of an intersection were defined by the 41 

police as the intersection crashes. In total, 898 motor vehicle–pedestrian crashes were 42 

reported at the selected intersections from 2010 to 2012. 43 

The vehicle volume was estimated based on the peak-hour vehicle flows 44 
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obtained from the Base District Traffic (BDT) models and the 24-hour vehicle traffic 1 

profiles at the counting stations reported in the Annual Traffic Census (ATC). The 2 

BDT models were developed by the Hong Kong Transport Department for traffic 3 

impact assessments and provided peak-hour traffic flow data. The good coverage of 4 

ATC counting stations allowed each intersection to be spatially mapped to the nearest 5 

ATC counting station. The proportion of peak-hour traffic extracted from the ATC 6 

served as a scaling factor, together with the corresponding peak-hour traffic volumes 7 

obtained from BDT models, we computed the average daily traffic for an intersection 8 

as: 9 

 10 

BDT

ATC

Peak-hour traffic
Average daily traffic =

Proportion of peak-hour traffic
                       (1) 11 

 12 

The pedestrian volume was estimated based on the Travel Characteristics Survey 13 

2011 database and was further adjusted according to the onsite survey data. By 14 

extracting all walking trips and mapping them to the districts and time slots, the 15 

24-hour pedestrian flow profiles for the 26 board districts were constructed. We then 16 

conducted 18-hour onsite surveys (from 06:00 to 24:00 on weekdays) at one core 17 

intersection for each district. The 18-hour pedestrian flow profiles observed at 26 core 18 

intersections were compared with the 24-hour pedestrian flow profiles of the 19 

corresponding districts. A set of hourly adjustment factors was thus computed for each 20 

board district. To obtain the pedestrian flow profiles for the studied intersections, we 21 

conducted 1-hour field surveys at all 262 selected intersections. The average daily 22 

crossing pedestrians could be computed by dividing the pedestrian volume at the 23 

sampled hour by the corresponding hourly adjustment factor: 24 

 25 

Sampled-hour pedestrians
Average daily crossing pedestrians =

Proportion of sampled-hour pedestrians
           (2) 26 

 27 

The intersections’ geometric and built environment characteristics were derived 28 

from the Google Street View (Mooney et al., 2016). Most imagery for the 29 

intersections of interest was captured by Google during February 2011 and December 30 

2011. We determined the presence of playgrounds and schools by whether these 31 

facilities were present in any approach of the studied intersections, whereas other 32 

characteristics were measured within 70m of the intersection. The data for the signal 33 

phasing scheme were manually measured onsite. 34 

Table 1 lists the characteristics of the 262 selected signalized intersections. 35 

 36 

Table 1. Characteristics of the 262 signalized intersections under investigation 37 

Continuous variables Range Mean S.D. 

Dependent variable    

 Number of pedestrian crashes in 2010 Min: 0; Max: 7 1.23 1.49 

 Number of pedestrian crashes in 2011 Min: 0; Max: 8 1.11 1.39 

 Number of pedestrian crashes in 2012 Min: 0; Max: 8 1.09 1.49 

Exposure 
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 Annual average daily traffic in 2010 (103) Min: 4.09; Max: 246.90 32.11 22.83 

 Annual average daily traffic in 2011 (103) Min: 4.31; Max: 340.52 31.96 26.45 

 Annual average daily traffic in 2012 (103) Min: 3.99; Max: 442.91 32.75 31.43 

 Annual average daily crossing pedestrians in 2010 (103) Min: 0.28; Max: 393.20 39.63 49.60 

 Annual average daily crossing pedestrians in 2011 (103) Min: 0.27; Max: 316.99 38.37 46.11 

 Annual average daily crossing pedestrians in 2012 (103) Min: 0.31; Max: 310.28 39.00 47.69 

Geometric characteristics 

  Number of traffic lanes Min: 5; Max: 28 13.61 5.32 

  Average lane width (meters) Min: 2.47; Max: 5.68 3.45 0.44 

  Maximum number of lanes crossed by pedestrians  

  per crossing maneuver 
Min: 2; Max: 11 4.49 1.76 

Traffic characteristics    

  Ratio of minor-road AADT to major-road AADT Min: 0.01 Max: 0.99 0.44 0.26 

  Number of pedestrian-vehicle conflict points Min: 2; Max: 46 4.49 1.76 

Signal phasing scheme 

  Cycle time (seconds) Min: 48; Max: 216 106.03 22.95 

Categorical variables Attributes Count Proportion 

Geometric characteristics    

  Number of legs 3 

4 

 5 

107 

143 

12 

40.84% 

  54.58% 

4.58% 

  Number of legs with crosswalks 1 

2 

3 

 4 

21 

89 

90 

62 

8.02% 

33.97% 

34.35% 

23.66% 

  Maximum number of lanes on major legs 2 

3 

4 

5 

6 

7 to 9 

21 

51 

63 

47 

47 

33 

8.02% 

19.47% 

24.05% 

17.94% 

17.94% 

12.58% 

  Maximum number of lanes on minor legs 1 

2 

3 

4 

5 

6 to 7 

13 

85 

67 

43 

27 

27 

4.96% 

32.44% 

25.57% 

16.41% 

10.31% 

10.31% 

  Presence of left-turn only lanes on major legs Yes 99 37.79% 

 No 163 62.21% 

  Presence of right-turn only lanes on major legs Yes 119 45.42% 

 No 143 54.58% 

  Presence of left-turn only lanes on minor legs Yes 154 58.78% 

 No 107 41.22% 

  Presence of right-turn only lanes on minor legs Yes 149 56.87% 

 No 113 43.13% 

  Presence of one-way streets Yes 

No 

157 

105 

59.92% 

40.08% 

  Presence of raised medians For all legs 

For some legs 

45 

119 

17.18% 

45.42% 



7 

None 98 37.40% 

  Presence of curb extension Yes 

No 

100 

162 

38.17% 

61.83% 

  Presence of curb parking Yes 

No 

95 

167 

36.26% 

63.74% 

  Presence of marked crosswalks All crosswalks marked* 

Some crosswalks marked 

None 

197 

63 

2 

75.19% 

24.05% 

0.76% 

  Presence of pedestrian barriers For all sidewalks 

For some sidewalks 

None 

158 

103 

1 

60.31% 

39.31% 

0.38% 

  Presence of pedestrian refuge islands Yes 

No 

216 

46 

82.44% 

17.56% 

  Presence of overpass or underpass Yes 

No 

40 

222 

15.27% 

84.73% 

Signal phasing scheme    

  Number of signal stages 2 

3 

4 

5 to 7 

62 

117 

72 

11 

23.66% 

44.66% 

27.48% 

4.20% 

  Presence of right-turn pocket Yes 

No 

24 

238 

9.16% 

90.84% 

  Presence of exclusive pedestrian signals For all crosswalks 

For some crosswalks 

None 

216 

44 

2 

82.44% 

16.79% 

0.77% 

Built environment characteristics    

  Presence of trees on roadsides Yes 

No 

207 

55 

79.01% 

20.99% 

  Presence of bus stops Harbor-shaped 

Non-harbor-shaped 

None 

38 

75 

149 

14.50% 

28.63% 

56.87% 

  Presence of tram tails Yes 

No 

25 

237 

9.54% 

90.46% 

  Presence of tram stops Yes 

No 

16 

246 

6.11% 

93.89% 

  Presence of metro entrances Yes 

No 

25 

237 

9.54% 

90.46% 

  Presence of metro guiding signs Yes 

No 

114 

148 

43.51% 

56.49% 

  Presence of ground-floor shops Yes 

No 

158 

104 

60.31% 

39.69% 

  Presence of parks or playgrounds Yes 

No 

126 

136 

48.09% 

51.91% 

  Presence of schools Yes 

No 

165 

97 

62.98% 

37.02% 

 AADT refers to the annual average daily traffic. 1 

 2 

  3 
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3.  METHODOLOGY 1 

 2 

We modeled the frequency of pedestrian crashes at each intersection consistent with 3 

previous studies (Leden, 2002; Lyon and Persaud, 2002; Geyer et al., 2006; Schneider 4 

et al., 2010; Miranda-Moreno et al., 2011; Elvik et al., 2013, 2016; Kröyer, 2016; 5 

Mooney et al., 2016). Let iY  denote the reported number of pedestrian crashes at the 6 

 th 1,2, ,262 i i   signalized intersection during the years 2010 to 2012. The use of 7 

aggregate crash data over 3 years avoids the confounding effects and 8 

regression-to-the-mean phenomenon (Cheng and Washington, 2005). iE  is the 9 

exposure function, and iX  refers to the vector of explanatory variables related to 10 

site-specific attributes. Given the random, non-negative, and integral nature of crash 11 

counts, we have: 12 

 13 

~ Possion( )

ln( ) log( )



   
i i

i i i

Y

E u'
iX β

                                                    (3) 14 

 15 

where i  is the parameter of the Poisson model. 1 2( , ,.., )  kβ  represents the vector 16 

of regression coefficients to be estimated. iu  accounts for the overdispersion due to 17 

unobserved factors and is specified as an exchangeable normal prior distribution: 18 

 19 

2~ N(0, )i uu                 20 

(4) 21 

Given the potential non-linear relationship between pedestrian crashes and traffic 22 

volumes, the exposure function suggested by Elvik and Bjørnskau (2017) is adopted 23 

here: 24 

 25 

1 2  i i iE V P                 26 

(5)  27 

 28 

where iV  and iP  respectively denote the average daily vehicles and crossing 29 

pedestrians during the 3-year period, which can be calculated as: 30 

 31 

3

1

3

1

1
AADT

3

1
AADP

3













i it
t

i it
t

V

P

              32 

(6) 33 

 34 

in which AADTit  and AADPit  are the estimated annual average daily traffic and 35 

crossing pedestrians for the thi  intersection in the  th 1,2,3t t  year. 36 

Eq. (6) ignores the fact that the volume data are usually measured with errors. If 37 

these measurement errors are not well addressed, biased parameters will be produced 38 
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and incorrect inference can be drawn (El-Basyouny and Sayed, 2010). To this end, a 1 

measurement errors model is introduced here, in which iV  and iP  are treated as the 2 

latent variables and are approximated by a log-normal distribution (Davis, 2000; 3 

Davis and Yang, 2001; El-Basyouny and Sayed, 2010): 4 

 5 

2

2

ln( ) ~ N( , )

ln( ) ~ N( , )

 

 
i V V

i P P

V

P
                6 

(7) 7 

 8 

where V  and P  refer to the expected values of ln( )iV  and ln( )iP . 2V  and 2 P  9 

control the variations across intersections. 10 

The observed AADTit  and AADPit  are linked with iV  and iP  via: 11 

 12 

2

2

ln(AADT ) ~ N(ln( ) , )

ln(AADP ) ~ N(ln( ) , )





 

 




V V

P P

it i t

it i t

V

P
                                              (8) 13 

 14 

where 
Vt

 and  
Pt
  are the time effects. This specification recognizes that traffic 15 

volumes are likely to change steadily over time. For data observed within a few years, 16 


Vt

 and  
Pt
  can be adequately modeled as the fixed linear trend with coefficients 17 

V  and  P  (El-Basyouny and Sayed, 2010): 18 

 19 

( 1)

( 1)

 

 

 

 
V

P

t V

t P

t

t
                20 

(9)  21 

 22 

Accordingly, Eq. (8) can be rearranged as: 23 

 24 

AADT

AADP

t iv V

t ip p

it i

it i

V e e

Pe e

 

 




              25 

(10) 26 

 27 

in which 
Vi

   and 
Pi

  denote the measurement errors with variances of 2
 V

 and 28 
2
 P

. 29 

The relative magnitude of the measurement errors can then be calculated by the 30 

reliability ratio: 31 

 32 

V 2 2

P 2 2

RR

RR











 



 







V

V

P

P

V

p

                                                    (11) 33 

 34 
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A full Bayesian inference using the Markov Chain Monte Carlo algorithm was 1 

implemented to construct the model. Obtaining the Bayesian posterior estimates 2 

requires the specification of prior distributions. Due to the absence of sufficient prior 3 

knowledge, a non-informative prior, i.e., N(0,1000) , was specified for 1 , 2 , k , 4 

V ,  P , V , and  P . In accordance with Gelman (2006), the variance parameters, 5 

i.e.,  u ,  V ,  P ,  V
, and  P

  were assigned as a uniform (0,10) .  6 

 7 

The deviance information criterion (DIC) was used here to measure model 8 

performance: 9 

 10 

DIC ( ) 2   D DD p D p                                             (12) 11 

 12 

where ( )D   is the deviance evaluated at  , the posterior means of the parameter of 13 

interest, Dp   is the effective number of parameters in the model, and D   is the 14 

posterior mean of the  deviance statistic ( )D .  The lower the DIC, the better the 15 

model fit. Generally, differences in the DIC of more than 10 definitely rule out the 16 

models with higher DIC. Differences between 5 and 10 are considered substantial, 17 

whereas a difference of less than 5 indicates that the models are not statistically 18 

different (Spiegelhalter et al., 2002). 19 

To evaluate the overall explanatory power of pedestrian volume, the proportion of 20 

reduction in variance (PRV), also known as the explained variance (Raudenbush and 21 

Bryk, 2002; Wang et al., 2017) was used: 22 

 23 

0 1

0

2 2

2
PRV

 



 u u

u

                                                     (13) 24 

 25 

where 
1

2u   and 
0

2u  are the variance of the error term in the models with and without 26 

pedestrian volume, respectively. The PRV is bounded by 0 and 1, with a higher value 27 

indicating a stronger explanatory power. 28 

 29 

4. RESULTS AND DISCUSSION 30 

 31 

The freeware software WinBUGS was used to calibrate the models (Spiegelhalter et 32 

al., 2005). Three parallel chains with diverse starting points were tracked. The first 33 

5,000 iterations were discarded as burn-ins, and then 5,000 iterations were performed 34 

for each chain, resulting in a sample of distribution of 15,000 for each parameter. The 35 

model’s convergence was monitored by the Brooks-Gelman-Rubin statistic (Brook 36 

and Gelman, 1998), visual examination of the Markov Chain Monte Carlo chains, and 37 

the ratios of Monte Carlo errors relative to the respective standard deviations of the 38 

estimates. As a rule of thumb, these ratios should be less than 0.05. 39 

The model specifications were developed based on the following principles. A 40 

correlation test was first conducted to ensure the non-inclusion of highly correlated 41 

variables. The correlation analysis indicated a high correlation between the number of 42 

legs and the number of legs with crosswalks, with the Spearman’s correlation 43 
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parameter (Washington et al., 2011) estimated at 0.68. Similarly, the total number of 1 

traffic lanes, maximum number of lanes on major legs, maximum number of lanes on 2 

minor legs, maximum number of lanes crossed by pedestrians per crossing maneuver, 3 

and the number of pedestrian-vehicle conflict points were highly correlated, 4 

indicating that these five variables should not been added into the model 5 

simultaneously. Other variables showed weak collinearity as their Spearman’s 6 

correlation parameters were all less than 0.40. In the initial model, we included all of 7 

the uncorrelated variables. The DIC was then used to compare alternative models with 8 

different covariate subsets. The one producing a lower DIC value was considered 9 

superior. 10 

For the purpose of comparison, in addition to the measurement errors model, we 11 

developed the Poisson lognormal model. To highlight the role of pedestrian exposure, 12 

models with and without pedestrian volume were estimated. As such, four models 13 

were eventually calibrated. The performance of these models is compared below, 14 

followed by the presentation and interpretation of the parameter estimates. 15 

 16 

4.1 Model performance comparison 17 

 18 

Table 2 shows the results of goodness-of-fit measures for the calibrated models. The 19 

model with pedestrian volume outperformed its counterpart without it according to 20 

the DIC statistic. This result suggests that explicitly accounting for pedestrian volume 21 

will be conducive to a substantial improvement in goodness-of-fit. Specifically, as 22 

measured by the PRV, roughly 16% of variations could be explained by pedestrian 23 

volume, further implying the dominant explanatory powers of pedestrian volume in 24 

predicting pedestrian crash counts. It is also interesting that although the measurement 25 

errors model had comparable performance with the Poisson lognormal model in terms 26 

of the DIC, the reliability ratio for vehicle and pedestrian volumes in the measurement 27 

errors model was significant at the 95% confidence level with estimates of 0.07 and 28 

0.13, respectively, confirming the existence of a moderate magnitude of uncertainties 29 

in volume data, particularly in the pedestrian volume. To some extent, this finding is 30 

expected as the scale factors for our vehicle volume were derived directly from the 31 

counting stations, whereas the number of crossing pedestrians was estimated based on 32 

a limited-hour manual onsite observation. 33 

 34 

Table 2. Goodness-of-fit measures for the Poisson lognormal and measurement errors models 35 

with and without pedestrian volume 36 

Model type D  Dp   DIC VRR  PRR  PRV 

PL without pedestrian volume  948.36 119.53 1067.89    

PL with pedestrian volume 952.23 110.74 1062.97   16.13% 

ME without pedestrian volume 946.28 119.64 1065.92 0.07 **   

ME with pedestrian volume 950.41 111.07 1061.48 0.07 ** 0.13 ** 16.13% 
** indicates significance at the 95% confidence level.  37 
PL and ME are the abbreviations of Poisson lognormal and measurement errors models, respectively. 38 

 39 
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4.2 Parameter estimates 1 

 2 

Table 3 summarizes the parameter estimates in the Poisson lognormal and 3 

measurement errors models with and without pedestrian volume. A 5% level of 4 

significance was used as the threshold to determine whether the parameters differed 5 

from 0. Variables that were insignificant in all four models were excluded. To 6 

determine the impacts of these independent variables, Table 4 presents the 7 

corresponding elasticities.  8 
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Table 3. Results of the measurement errors and Poisson lognormal models for pedestrian crash frequency 1 

Variables 

PL without pedestrian volume PL with pedestrian volume ME without pedestrian volume   ME with pedestrian volume 

Mean (SD)  95% CI  Mean (SD)  95% CI   Mean (SD)  95% CI  Mean (SD) 95% CI 

Intercept −3.10 (0.86) ** (−4.80, −1.41) −3.98 (0.83) ** (−5.56, −2.31)  −3.24 (0.89) ** (−5.03, −1.46) −4.01 (0.90) ** (−5.70, −2.20) 
Ln( )V  0.35 (0.08) ** (0.19, 0.51)  0.27 (0.08) ** (0.11, 0.41)   0.37 (0.09) ** (0.20, 0.54)  0.27 (0.09) ** (0.09, 0.43) 
Ln( )P     0.21 (0.05) ** (0.11, 0.31)    0.23 (0.05) ** (0.13, 0.33) 

Presence of exclusive pedestrian  

  signals for all crosswalks 
−0.28 (0.13) ** (−0.54, −0.03) −0.36 (0.13) ** (−0.60, −0.11)  −0.28 (0.13) ** (−0.54, −0.03) −0.36 (0.13) ** (−0.60, −0.11) 

Presence of curb parking 0.25 (0.11) ** (0.03, 0.47)  0.22 (0.11) ** (0.01, 0.43)   0.25 (0.11) ** (0.03, 0.47)  0.22 (0.11) ** (0.01, 0.43) 

Presence of bus stops         

  Harbor-shaped 0.06 (0.16)  (−0.26, 0.37) −0.01 (0.16) (−0.32, 0.30)   0.06 (0.16)  (−0.26, 0.37) −0.01 (0.16) (−0.32, 0.30) 

  Non-harbor-shaped 0.24 (0.12) ** (0.01, 0.47)  0.17 (0.11) (−0.05, 0.39)   0.24 (0.12) ** (0.01, 0.47)  0.17 (0.11) (−0.05, 0.39) 

Presence of metro guiding signs 0.24 (0.11) ** (0.03, 0.45)  0.11 (0.11) (−0.10, 0.32)   0.24 (0.10) ** (0.04, 0.45)  0.11 (0.11) (−0.10, 0.32) 

Presence of ground-floor shops 0.80 (0.13) ** (0.55, 1.05)  0.54 (0.14) ** (0.27, 0.81)   0.80 (0.13) ** (0.55, 1.05)  0.54 (0.14) ** (0.27, 0.81) 

Presence of parks or 

playgrounds 

−0.24 (0.11) ** (−0.46, −0.02) −0.23 (0.11) ** (−0.44, −0.03)  −0.24 (0.11) ** (−0.46, −0.02) −0.24 (0.11) ** (−0.44, −0.03) 

2
u  0.31 (0.06) ** (0.21, 0.44)  0.26 (0.05) ** (0.17, 0.38)   0.31 (0.06) ** (0.21, 0.44)  0.26 (0.06) ** (0.17, 0.39) 
2V        1.64 (0.15) ** (1.38, 1.95)  1.64 (0.15) ** (1.38, 1.96) 
2 P         0.42 (0.04) ** (0.36, 0.50) 
2
 V

      0.008 (0.001) 

** 

(0.007, 0.009) 0.008 (0.001) ** (0.007, 0.009) 

2
 P

       0.008 (0.001) ** (0.007, 0.009) 

PL and ME are the abbreviations of Poisson lognormal and measurement errors models, respectively. 2 
SD refers to the standard deviation. 3 
CI denotes the confidence level. 4 
** indicates the significance at the 95% CI. 5 
The time effect was insignificantly different from zero at the 5% significance level. The measurement error model was therefore re-estimated with 0

V Pt t   .  6 
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Table 4. Elasticities of covariates in the measurement errors and Poisson lognormal models with and without pedestrian volume 1 

Variables 

PL without  

pedestrian volume 
 

 

PL with  

pedestrian volume 
 

 

ME without 

pedestrian volume 
 

 

ME with 

pedestrian volume 

Elasticity 95% CI  Elasticity 95% CI Elasticity 95% CI Elasticity 95% CI 
V   0.35 ** (0.19, 0.51)   0.27 ** (0.11, 0.41)   0.37 ** (0.20, 0.54)   0.27 ** (0.09, 0.43) 
P      0.21 ** (0.11, 0.31)     0.23 ** (0.13, 0.33) 

Presence of exclusive pedestrian  

  signals for all crosswalks 
 −0.33 ** (−0.72, −0.03)  −0.43 ** (−0.83, −0.11)  −0.33 ** (−0.71, −0.03)  −0.43 ** (−0.83, −0.12) 

Presence of curb parking  0.22 ** (0.03, 0.38)   0.20 ** (0.01, 0.35)   0.22 ** (0.03, 0.37)   0.20 ** (0.01, 0.35) 

Presence of bus stops         

  Harbor-shaped  0.06  (−0.30, 0.31)  −0.01 (−0.38, 0.26)   0.06  (−0.30, 0.31)  −0.01 (−0.38, 0.26) 

  Non-harbor-shaped  0.21 ** (0.01, 0.37)   0.16 (−0.05, 0.33)   0.21 ** (0.01, 0.37)   0.16 (−0.05, 0.33) 

Presence of metro guiding signs  0.22 ** (0.03, 0.36)   0.10 (−0.10, 0.27)   0.21 ** (0.01, 0.37)   0.10 (−0.11, 0.27) 

Presence of ground-floor shops  0.55 ** (0.42, 0.65)   0.42 ** (0.24, 0.55)   0.55 ** (0.42, 0.65)   0.41 ** (0.24, 0.55) 

Presence of parks or 

playgrounds 

 −0.27 **  (−0.58, −0.02)  −0.26 ** (−0.56, −0.03)  −0.27 ** (−0.58, −0.02)  −0.27 ** (−0.56, −0.03) 

PL and ME are the abbreviations of Poisson lognormal and measurement errors models, respectively. 2 
CI denotes the confidence level. 3 
** indicates the significance at the 95% CI. 4 

Elasticities for average daily passing vehicles and crossing pedestrians (i.e., log-linear variables) were equal to their estimated coefficients, i.e., 1  and  2  (Washington et al., 2011). 5 

Elasticities for indicate variables were computed as 



exp( ) 1

exp( )



k

k

  (Washington et al., 2011).  6 
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Several general observations deserve mentioning. First, the significant variables 1 

were not entirely identical between the models with and without pedestrian volume. 2 

For example, the presence of non-harbor-shaped bus stops was statistically significant 3 

in the base models without pedestrian volume but became totally insignificant in the 4 

fully specified models. The same conclusion held true for the variable of the presence 5 

of metro signs. Second, relative to the base models, the effects of several risk factors, 6 

i.e., vehicle volume, the presence of exclusive pedestrian signals, the presence of curb 7 

parking, and the presence of ground-level shops, changed substantially in the fully 8 

specified models. Specifically, the elasticity of vehicle volume in the measurement 9 

errors model decreased sharply from 0.37 to 0.27 once pedestrian volume was added, 10 

resulting in an overestimation by about 37%. Similar results could also be observed 11 

for the effect of the presence of curb parking and the presence of ground-floor shops, 12 

as their elasticities were roughly overestimated by 10% and 34%, respectively. 13 

Regarding the variable of the presence of exclusive pedestrian signals, its elasticity 14 

was underestimated by approximately 23%. These findings raise an alarm on previous 15 

studies (Quistberg et al., 2015a; Lee et al., 2017; Wang et al., 2017) that the omission 16 

of exposure in pedestrian crash frequency models would lead to biased estimates and 17 

inadequate inferences. 18 

More interestingly, a comparison between the Poisson lognormal and 19 

measurement errors models indicated that overall these two models produced very 20 

similar parameter estimates. Only the coefficient of pedestrian volume increased 21 

slightly from 0.21 to 0.23 when measurement errors were taken into account. This 22 

result implies that our data are fairly robust to model configuration. El-Basyouny and 23 

Sayed (2010) reported a similar conclusion that in the presence of weak measurement 24 

errors, the measurement errors model was comparable with the traditional ones. 25 

Given that the measurement errors model with pedestrian volume performed best 26 

with the lowest DIC value, we chose it to interpret our results in the subsequent 27 

section. 28 

As Tables 3 and 4 shows, six variables had a significant association with the 29 

frequency of pedestrian crashes: average daily passing vehicles, average daily 30 

crossing pedestrians, the presence of exclusive pedestrian signals, the presence of 31 

curb parking, the presence of ground-floor shops, and the presence of playgrounds. 32 

The signs of these parameters were generally consistent with empirical judgements 33 

and the results of previous studies (Retting et al., 2003; Zegeer and Bushell, 2012; 34 

Stoker et al., 2015). 35 

Both pedestrian and vehicle volumes were significant and positive, with 36 

coefficients estimated at 0.23 and 0.27, respectively. This nonlinear relationship 37 

between the number of crossing pedestrians and the number of pedestrian crashes has 38 

been widely confirmed (Leden, 2002; Geyer et al., 2006; Schneider et al., 2010; 39 

Torbic et al., 2010; Miranda-Moreno et al., 2011; Elvik et al., 2013; Kröyer, 2016; 40 

Mooney et al., 2016). Jacobsen et al. (2015) attributed it to the behavior modifications 41 

by motorists when they encountered more people walking. All things being equal, an 42 

increase in pedestrian activity would lead to an increase in the total number of 43 

pedestrian crashes but a decrease in the crash risk for each individual pedestrian. That 44 
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is, a motorist is less likely to collide with a pedestrian when more people are walking 1 

(Jacobsen, 2003). However, this conclusion based on a cross-sectional research design 2 

should be interpreted with great caution, because it is impossible to determine 3 

whether this nonlinear association is a causal relationship or merely a statistical 4 

artifact (Bhatia and Wier, 2011; Xu et al., 2017b). Further efforts are therefore desired 5 

to identify the underlying mechanisms. 6 

Instead of simply encouraging people to walk, an alternative sound measure to 7 

improving pedestrian safety would be to restrict the usage of motor vehicles. In 8 

addition to the benefits of less congestion, fewer emissions of pollutants, and less 9 

traffic noise, the strategies to reduce vehicle volume would lower both the number of 10 

pedestrian crashes and the crash risk for pedestrians. According to our results, an 11 

intersection cutting its passing vehicle volume to half would expect a 17% decrease in 12 

pedestrian crashes ( 0.270.5 0.83 ). Therefore, the promotion of a modal shift from 13 

motor vehicles to other travel modes, such as public transit, walking, and cycling, 14 

should be highly advocated, especially in a dense urban setting. 15 

 Traffic signal has long served as a common control measure at intersections. 16 

Despite the wide use, its effects on pedestrian crashes remain under-investigated. In 17 

this study, we included the total cycle time, the number of signal stages, the presence 18 

of right-turn pocket, and the presence of exclusive pedestrian signals in our models. 19 

Our results revealed that only the presence of exclusive pedestrian signals had a 20 

significant relationship with the occurrence of pedestrian crashes. Accordingly, the 21 

installation of exclusive pedestrian signals for all crosswalks would contribute to a 22 

reduction of pedestrian crash risk by 43%. This finding is expected to a large extent, 23 

because the exclusive pedestrian phasing stops all vehicles to facilitate people making 24 

crossings, which dramatically reduces the conflicts between pedestrians and vehicles. 25 

Consistent with Quistberg et al. (2015b), the presence of curb parking close to 26 

intersections was associated with an elevated risk of pedestrian crashes. Based on our 27 

results, if curb parking were allowed at a crossing area, the risk of pedestrian crashes 28 

would increase by about 20%. Although on-street parking can provide friction to slow 29 

vehicles and act as a buffer for pedestrians (Ewing and Dumbaugh, 2009), the 30 

vehicles parked on the streets indeed obscure vision between motorists and 31 

pedestrians. One direct countermeasure is to restrict on-street parking, especially at 32 

peak hours with heavy pedestrian activities. While in areas with limited parking 33 

spaces and great parking demands, a replacement of parallel parking as diagonal one 34 

would be an effective measure. With the design of vehicles parked at an angle 35 

(typically 30 degree) to the curb in the direction of traffic flow, diagonal parking 36 

allows more pedestrians to scan for traffic before crossing and greatly reduces the 37 

number of pedestrians in front of a parked vehicle (Retting et al., 2003). 38 

With respect to land use, the presence of ground-floor shops was found to 39 

significantly increase the likelihood of pedestrian crashes. Similar results were also 40 

reported by Quistberg et al. (2015b) and Mooney et al. (2016). One plausible 41 

explanation is that the frequent roadside advertising alongside ground-floor shops can 42 

distract drivers’ attention (Young et al., 2009). As another, pedestrians are also more 43 

likely to jaywalk to reach stores without noticing the approaching vehicles. 44 
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Furthermore, the negative coefficient of the presence of playgrounds indicated that 1 

recreational land use pattern was associated with a lower frequency of pedestrian 2 

crashes. Compared with those located in commercial areas, intersections near 3 

playgrounds generally permit a broader view for both pedestrians and motorists, thus 4 

enhancing their visibility. Motorists may also adjust their behaviors when they expect 5 

more pedestrians near playgrounds. 6 

 7 

5. CONCLUSION 8 

 9 

This study sought to identify the factors that determine the frequency of motor 10 

vehicle–pedestrian crashes at signalized intersections, by use of a comprehensive 11 

dataset collected at 262 signalized intersections in Hong Kong over a 3-year period. 12 

Detailed site conditions, including the geometric design, traffic characteristics, signal 13 

control schemes, and built environment characteristics, were integrated with the 14 

vehicle and pedestrian volumes to construct our dataset. A Bayesian measurement 15 

errors model was developed to explicitly account for the uncertainties in volume data. 16 

To highlight the importance of pedestrian volume, models with and without it were 17 

calibrated and compared. 18 

Some key findings are worth noting. First, the omission of pedestrian volume in 19 

pedestrian crash frequency models would result in reduced goodness-of-fit and biased 20 

estimations. Our results indicated substantial inconsistences in the effects of several 21 

risk factors in the models with and without pedestrian volume. For example, the 22 

presence of non-harbor-shaped bus stops and the presence of metro signage were 23 

significant in the base model but became totally insignificant when pedestrian volume 24 

was added. The elasticity of vehicle volume, the presence of curb parking and the 25 

presence of ground-floor shops was also overestimated respectively by as much as 26 

37%, 10%, and 34%, whereas the effect of the presence of exclusive pedestrian 27 

signals was biased downwards by approximately 23%. 28 

Although pedestrian volume is indispensable in determining pedestrian crash 29 

occurrences, the major concern lies in the availability of reliable pedestrian volume 30 

data for a large number of sites. Unlike the vehicle volume typically obtained from 31 

counting stations, the number of pedestrians is mostly estimated based on a short 32 

period of manual observations. The fact that volume data are measured with errors is 33 

usually overlooked in previous studies. For this purpose, a Bayesian measurement 34 

errors model was introduced as a methodological alternative. Our empirical analysis 35 

demonstrated the existence of uncertainties in the volume data. We also revealed that 36 

in the presence of weak measurement errors, the measurement errors model had 37 

comparable performance with the traditional Poisson lognormal model in terms of 38 

overall fit and parameter estimates. 39 

Six variables were finally found to have a significant association with the 40 

frequency of pedestrian crashes at signalized intersections. The nonlinear relationship 41 

between the number of crossing pedestrians and the number of pedestrian crashes was 42 

confirmed, with an estimated coefficient of 0.23. Traffic volume, the presence of curb 43 

parking, and the presence of ground-floor shops were found to be positively 44 
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associated with pedestrian crash frequency, whereas the presence of playgrounds in 1 

the vicinity of intersections had a negative effect on pedestrian crash occurrence. By 2 

including signal control schemes in our models, we provided additional evidence to 3 

the existing research that the presence of exclusive pedestrian signals for all 4 

crosswalks could significantly reduce the risk of pedestrian crashes by 43%. These 5 

findings would be informative to policy makers and urban planners in the design of 6 

appropriate facilities to improve the safety and mobility of pedestrians at signalized 7 

intersections. 8 

Our study is not without limitations. Although we took advantage of Google 9 

Street View to extract more than 20 variables related to pedestrian facilities, several 10 

potential risk factors could not be accounted for. For example, we failed to 11 

accommodate vehicle speeds and demographic characteristics of the pedestrians who 12 

crossed at our sampled intersections. Further efforts are required to explore their 13 

effects on pedestrian crash occurrences. As our research is cross-sectional in nature 14 

that can provide correlational evidence only (Kim and Mooney, 2016), future studies 15 

using a quasi-experimental research deign (Ewing et al., 2013) are strongly advocated 16 

to provide more insights into the causation of pedestrian crashes. 17 

 18 
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Appendix Table A1. Studies investigating the influential factors on the number of pedestrian-motor vehicle crashes at intersections in the past two decades 1 

Authors 
Study 
region 

Study 
period 

Observations 
Research 
methods 

Exposure measures  Risk factors included 

Motor 
vehicles 

Pedestrians 
Geometric 

design 
Traffic 
control 

Land 
use 

Demographic 
patterns 

Leden 
(2002) 

Hamilton, 
Ontario, 
Canada 

1983-1986 

749 signalized 
intersections Multiple regression 

model with 
logarithmic transform 

8-hour traffic 
volumes 

8-hour pedestrian 
volumes 

    
126 signalized 
intersections 

Lyon and 
Persaud (2002) 

Toronto, 
Canada 

1985-1995 

684 four-legged 
signalized 

intersections 

Negative binomial 
model 

Annual 
average daily 

traffic 

8-hour pedestrian 
volumes 

    
263 four-Legged 

signalized 
intersections 

122 three-legged 
unsignalized 
intersections 

Geyer et al. 
(2006) 

Oakland, 
California, 

United States 
2000-2002 247 intersections Poisson model 

Annual 
vehicle 
volumes 

Estimated by 
Space Syntax 

    

Schneider et al. 
(2010) 

Alameda, 
United States 

1998-2007 81 intersections 
Negative binomial 

model 
4-hour vehicle 

volumes 
4-hour pedestrian 

volumes 
    

Tobic et al. 
(2010) 

Charlotte, 
United States 

1997-2005 
267 signalized 
intersections 

Negative binomial 
model 

Annual 
average daily 

traffic 

12-hour 
pedestrian 
volumes 

    

Pulugurtha and 
Sambhara 

(2010) 

Charlotte, 
United States 

2003-2007 
176 signalized 
intersections 

Negative binomial 
model 

12-hour 
vehicle 
volumes 

12-hour 
pedestrian 
volumes 

    

Miranda-Moren
o et al. (2011) 

Montreal, 
Quebec, 
Canada 

1999-2003 
519 signalized 
intersections 

Negative binomial, 
generalized negative 

binomial, and 
latent-class negative 

binomial models 

3-hour traffic 
volumes 

3-hour pedestrian 
volumes 

    
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Elvik et al. 
(2013) 

Oslo, 
Norway 

2004-2008 
2006-2010 

159 marked 
pedestrian 
crossings 

Negative binomial 
model 

Annual 
average daily 

traffic 

Number of 
crossing 

pedestrians 
    

Strauss et al. 
(2014) 

Montreal, 
Quebec, 
Canada 

2003-2008 

647 signalized 
intersections 

Bivariate Poisson 
model 

8-hour traffic 
volumes 

8-hour pedestrian 
volumes 

    
435 

non-signalized 
intersections 

Quistberg et al. 
(2015a) 

Seattle, 
United States 

2007-2013 
37,360 

intersections and 
mid-blocks 

Multilevel mixed 
effects Poisson model 

Annual 
average daily 

traffic 
     

Quistberg et al. 
(2015b) 

Lima, 
Peru 

2006 
137 intersections 
and mid-blocks 

Matched case-control 
design 

10-minute 
passing 
vehicles  

10-minute 
crossing 

pedestrians 
    

Elvik 
(2016) 

Oslo, 
Norway 

2006-2010 
389 marked 
pedestrian 
crossings 

Negative binomial 
model 

6-hour traffic 
volumes 

6-hour pedestrian 
volumes 

    

röyer (2016) Sweden 2008-2012 113 intersections 
Negative binomial 

model 
3-hour traffic 

volumes 
3-hour pedestrian 

volumes 
    

Mooney et al. 
(2016) 

New York, 
United States 

2007-2011 532 intersections 
Negative binomial 

model 
 

10-minute 
pedestrian 
volumes 

    

Lee et al. 
(2017) 

Florida, 
United States 

2010-2012 
8,347 

intersections 

Mixed effects 
negative binomial 

model 

Annual 
average daily 

traffic  
     

Thomas et al. 
(2017) 

Seattle, 
United States 

2007-2014 
12,266 

intersections 
Negative binomial 

model 
 Estimated by 

“Ballpark” model 
    

Wang et al. 
(2017) 

Hillsborough, 
Florida, 

United States 
2005-2009 279 intersections 

Fixed and random 
parameters negative 

binomial 

Annual 
average daily 

traffic 
     
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