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Abstract 

Range shifts due to annual variation in temperature are more tractable than range shifts linked 

to decadal to century long temperature changes due to climate change, providing natural 

experiments to determine the mechanisms responsible for driving long-term distributional 
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shifts.  In this study we couple physiologically grounded mechanistic models with 

biogeographic surveys in two years with high levels of annual temperature variation to 

disentangle the drivers of a historical range shift driven by climate change.  The distribution 

of the barnacle Semibalanus balanoides has shifted 350 km poleward in the past half century 

along the east coast of the USA.  Recruits were present throughout the historical range 

following the 2015 reproductive season, when temperatures were similar to those in the past 

century, and absent following the 2016 reproductive season when temperatures were warmer 

than they have been since 1870, the earliest date for temperature records.  Our dispersal 

dependent mechanistic models of reproductive success were highly accurate and predicted 

patterns of reproduction success documented in field surveys throughout the historical range 

in 2015 and 2016.  Our mechanistic models of reproductive success not only predicted 

recruitment dynamics near the range edge, but also predicted interior range fragmentation in a 

number of years between 1870 and 2016.  All recruits monitored within the historical range 

following the 2015 colonization died before 2016 suggesting juvenile survival was likely the 

primary driver of the historical range retraction.  However, if 2016 is indicative of future 

temperatures mechanisms of range limitation will shift and reproductive failure will lead to 

further range retraction in the future.  Mechanistic models are necessary for accurately 

predicting the effects of climate change on ranges of species. 

 

Introduction 

Range edges of species are retracting in response to climate change (Parmesan et al., 

2003; Chen et al., 2011).  Population dynamics at range edges are highly complex, and often 

it is not a simple case of the inability to survive beyond the current edge, making it 

challenging to predict the rate and magnitude of these retractions (Hargreaves et al., 2014).  
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Microhabitats can provide important thermal refugia (Lima et al., 2016; Jurgens & Gaylord, 

2018), physiological tolerances can vary throughout life history (Portner et al., 2017), and 

dispersal can create both direct (Gaylord & Gaines, 2000; Alexander & Edwards, 2010) and 

indirect barriers through interactions with physiology and habitat availability (Travis & 

Dytham, 1999; Sorte et al., 2018).  The importance of variation in thermal responses 

throughout life history, and the interactions of this physiological variation with dispersal are 

important in determining range edges in a wide variety of systems (e.g. mammals: Anderson 

et al., 2009; birds: Jiguet et al., 2007; lizards: Buckley, 2008; plants: Broennimann et al., 

2006; butterflies: Crozier, 2004; fish: Walsh et al., 2015; marine invertebrates: Sanford et al., 

2006).  In many of these same systems early life history stages represent important 

population bottlenecks (Sinclair et al., 2016).  For example, phenological mismatch between 

hatching time of birds and food peaks can lead to population declines (Jiguest et al., 2007), 

cold tolerance of butterfly larvae can play an important role in limiting colonization beyond 

the range edge (Crozier, 2004), viability of early life stages of fish drive much of the 

variation in population abundance (Peck et al., 2012), and crab larvae are unable to complete 

development at locations where adults are able to overwinter (Sanford et al., 2006).  Very 

few studies, however, mechanistically consider how early life history stages and dispersal 

work interactively to influence range dynamics when predicting how climate change will 

alter distributions of species.   

Correlative species distribution models (SDMs) are the most common approach to 

predicting changes in the distributions of species with climate change (Araújo et al., 2005; 

Broennimann et al., 2006; Araújo & Peterson, 2012).  Correlative SDMs use the current 

distribution of adults and environmental data to predict the distributions of species.  SDMs 

are then projected into novel environments to predict how distributions of species will be 

altered by climate change (Araújo et al., 2005; Pearman et al., 2008).  While these 
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approaches often yield accurate predictions, projections into novel environmental conditions 

can fail when the mechanism(s) limiting the distribution of species has changed, commonly 

known as a niche shift (Pearman et al., 2008; Alexander & Edwards, 2010).  Niche shifts can 

be driven by a release from dispersal barriers, rapid evolution, novel biological interactions, 

or novel climatological conditions (Soberón & Peterson, 2011; Woodin et al., 2013).  

Hindcasting, or projecting into past environmental conditions with historical records of the 

distribution for the target species, prior to predicting future changes in distribution is a good 

way to prevent inaccurate climate change predictions using SDMs (Araújo et al., 2005; Lima 

et al., 2007; Hilbish et al., 2012).  However, if range limiting mechanisms change through 

time model validation through hindcasting can still fall short.  Mechanistic models based on 

organismal physiology (Kearney & Porter, 2009), which consider both species interactions 

(Araújo & Luoto, 2007) and dispersal (Broennimann et al., 2006; Anderson et al., 2009) can 

avoid these shortcomings of correlative SDMs.  Mechanistic understanding of the drivers of 

range limits throughout life history is necessary to make accurate predictions about how 

species’ distributions will shift with climate change (Southward et al., 1995; Kearney & 

Porter, 2009; Sinclair et al., 2016). 

Shifts in distribution are occurring over decadal to centennial time scales (Parmesan et 

al., 2003; Chen et al., 2011; Southward, 1967; 1980; 1991; Hawkins et al., 2008; 2009; 

Poloczanska et al., 2008; Mieszkowska et al., 2014a) making it difficult to determine the 

underlying mechanisms driving these changes, although associations with temperature 

fluctuations (Southward, 1967) and large scale oceanographic cycles like the North Atlantic 

Oscillation and the Atlantic Multidecadal Oscillation have been observed in some cases 

(Broitman et al., 2008; Mieskowska et al., 2014b).  Biological responses to climatic variation 

occurs over much shorter time scales (Harley, 2008; Coma et al., 2009).  Climatic variation 

can also cause rapid range shifts (Crisp 1964a; Crickenberger & Moran, 2013; Morley et al., 
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2016), particularly near range edges where organisms live near their physiological limits for 

reproduction and survival (Hutchins, 1947; Wethey et al., 2011).  The shorter time-scale of 

climate variation can help inform long-term range dynamics and test the predictive accuracy 

of mechanistic species distribution models, but these types of comparisons are only possible 

in well-studied species. 

Rocky intertidal invertebrates provide ideal systems for mechanistically testing the 

importance of multiple population bottlenecks throughout life history because adults are often 

sessile enabling environmental conditions experienced to be quantified, long distance 

dispersal can be modeled using hydrodynamic data, long-term remotely sensed data are 

available to estimate physical constraints on individuals and populations, and similarly long-

term biogeographic patterns are well documented.  As a result of these advantages, 

distributional shifts driven by both climate change and climate variation are well documented 

in marine invertebrate populations (Crisp, 1964a; Lima et al., 2006; Helmuth et al., 2006; 

Mieszkowska et al., 2006; 2007; 2014a,b; Wethey & Woodin, 2008; Berke et al., 2010; Keith 

et al., 2011; Wethey et al., 2011).  However, it is often less clear which of the number of 

population bottlenecks throughout the life-histories of marine invertebrates determine their 

distribution and abundance (Pineda et al., 2009).  In many marine invertebrates early life-

history stages and adults are decoupled in the habitats they occupy providing a variety of 

mechanisms that could potentially delimit range boundaries.  Typically, adults must survive 

and reproduce in their benthic habitats to ensure the release of larvae into the plankton 

(Pechenik, 1990; Pineda et al., 2009).  Within the plankton larvae face a number of threats to 

survival including patchy food availability, phytoplankton mismatch, predation, and transport 

away from suitable habitat for settlement (Barnes 1956; Connell 1961; Hawkins & Hartnoll, 

1982; Pineda et al., 2009).  Larval transport is dependent on both planktonic larval duration 

and the velocity and direction of oceanographic currents (Pineda et al., 2007).  Temperatures 
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during the process of larval transport can influence both the length of larval development and 

the larval competency period, which is the period of time when larvae are capable of larval 

settlement and metamorphosis (Jackson & Strathmann, 1981).  Therefore, temperature can 

influence how long larvae can remain viable in the plankton, or in other words their capacity 

for dispersal (Marsh et al., 2001; Pineda et al., 2007). 

Here we use the barnacle Semibalanus balanoides as a model system to 

mechanistically model the importance of multiple population bottlenecks and dispersal on a 

range retraction driven by climate change because it is a well-studied marine invertebrate in 

terms of both its physiology and historical distribution (Darwin, 1854; Pilsbry, 1916; 

McDougall, 1943; Southward & Crisp, 1954; Crisp & Southward, 1958; Wells et al., 1960; 

Mohammed, 1961; Barnes, 1963; Tighe-Ford, 1967; Crisp & Patel, 1969; Jones et al., 2012; 

Rognstad & Hilbish, 2014).  Reproduction, larval duration, and adult survival are all 

dependent on temperature in S. balanoides.  Similar to other barnacles, S. balanoides is 

fertilized internally and then broods its embryos prior to release of stage I nauplii (Anderson, 

1994).  Larvae then develop through five more naupliar stages prior to metamorphosis to a 

non-feeding cyprid stage.  Reported lengths of larval development to the cyprid stage vary 

from nine to 48 days depending on temperature (Barnes & Barnes, 1958; Harms, 1984).  

Cyprids can remain competent to settle for up to 30 days at 10°C, and the length of their 

competency period is dependent on the availability of stored energetic reserves because 

cyprids are unable to feed prior to metamorphosis to a juvenile barnacle (Lucas et al., 1979).  

In the western Atlantic fertilization occurs between late October and November (Barnes, 

1958; Barnes & Barnes, 1976; Yuen & Hoch, 2010).  Following fertilization embryos 

develop within the mantle cavity prior to being released into the plankton as early as 

December (Fish, 1925; Barnes, 1956; Crisp, 1964b; Barnes & Barnes, 1976; J. Pineda pers. 

comm.).  Fertilization is reduced at temperatures ≥16°C in S. balanoides (Crickenberger & 
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Wethey, 2017) and reproductive output is reduced when embryos are brooded at temperatures 

above 10°C (Barnes, 1963; Crisp & Patel, 1969; Drévès, 2001; Rognstad & Hilbish, 2014; 

Abernot-Le Gac et al., 2016).  Temperatures in the late fall and winter approach these 

thresholds at the historical southern limit of S. balanoides near Cape Hatteras North Carolina 

(Crickenberger & Wethey, 2017). 

Historical records of biogeographic distribution dating back to the late 1800s place S. 

balanoides between Greenland (66.6°N) and Delaware Bay (38.8°N) in the western Atlantic 

(Darwin, 1854).  Prior to the 1960s S. balanoides was restricted to shorelines north of 

Delaware Bay likely due to the lack of hard substrate further south (Barnes, 1958).  

Following the installation of hard substrates, such as groynes, jetties, seawalls, and piers, on 

more southern shorelines its range expanded to Cape Hatteras North Carolina (35°N; Wells et 

al., 1960).  A few individuals were found further south in Beaufort North Carolina in 1961 

(34.7°N; Mohammad, 1961) where a study in the early 1940s did not find the barnacle when 

looking for it (McDougall, 1943).  Various hypotheses have been proposed to explain the 

geographic distribution of the species.  Hutchins (1947) suggested winter temperatures 

limited reproduction of S. balanoides to locations north of Cape Hatteras.  Both summer and 

winter temperatures are highly divergent on either side of this major marine biogeographic 

barrier leading Wells et al. (1960) to also suggest S. balanoides had reached its thermal limits 

to reproduction and survival.  More recent surveys of the southern range limit of S. 

balanoides found the range had retracted from Cape Hatteras to Lewes Delaware (Jones et 

al., 2012).  Additionally, they provided experimental evidence, and evidence from models 

based on field measurements of survival and temperature (e.g. Foster, 1969), that adult 

mortality was primarily responsible for the long-term range retraction, though reproductive 

failure may also play a role (Jones et al., 2012).  Here we coupled physiologically grounded 

dispersal dependent mechanistic models of multiple life history stages with biogeographic 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

surveys to examine the role of early life history stages in driving the range of Semibalanus 

balanoides 350 km poleward. 

 

Materials and methods 

Distributional surveys 

 From 22 to 25 March 2015 a total of 7 sites between Manomet Massachusetts and 

Oregon Inlet North Carolina were surveyed for the presence of Semibalanus balanoides 

recruits (Fig. 1; Table 1).  When recruits were present at a site four to six photographs with a 

scale in each photo were taken in the area of maximum abundance using an iPhone 5s.  In 

each photograph we counted the number of cyprids, uncalcified pink recruits, and calcified 

white recruits. Recruits become calcified 5 d after settlement (e.g. Wethey, 1985).  Following 

this initial survey a total of 15 sites within the area of range expansion were surveyed for the 

presence of adult S. balanoides and recruits between 06 April and 10 May 2015 (Fig. 1; Table 

1).  Surveys were repeated between 31 March and 09 May 2016 at all the same sites (Fig. 1; 

Table 1).  Similar to other studies on rocky intertidal biogeography, each site was surveyed 

for the presence of adults and recruits for 30 min.  If S. balanoides was not found during the 

30 min survey it was considered absent (Crisp & Southward, 1958; Jones et al., 2012).  When 

adults or recruits were found, six photographic quadrats were taken in the zone of maximum 

abundance using a Nikon Coolpix AW100 or Olympus TG-4 camera attached to a camera 

framer with a 10 × 10 cm base (Jones et al., 2010; Wethey et al., 2011; Jones et al., 2012).  

Densities of adults and recruits in photographs were quantified using ImageJ (Schneider et 

al., 2012). 
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Reproductive success modeling 

 We modeled reproductive success to predict the number of recruits per 100 cm2 using 

temperatures during the timing of fertilization (Barnes, 1958; Barnes & Barnes, 1976; Yuen 

& Hoch, 2010) and brooding (Fish, 1925; Barnes, 1956; Crisp, 1964b; Barnes & Barnes, 

1976; J. Pineda pers. comm.) along the east coast of the USA, which are November and 

December respectively.  We used the relationship between temperature and fertilization in 

Crickenberger & Wethey (2017) to model fertilization success and mapped this relationship 

using average November monthly sea surface temperatures (SST) between 1870 and 2016 

from 1°×1° monthly Hadley SST data (HADISST, 2016; Rayner et al., 2003; 2005).  Then 

we used the relationship between recruitment and winter temperature during brooding from 

the 33-year time series in Abernot-Le Gac et al. (2016), and mapped this relationship using 

average December monthly SSTs between 1870 and 2016 from the 1°×1° monthly Hadley 

SST data to model how temperatures during brooding impacted recruitment success.  We 

then multiplied predictions from the fertilization and recruitment maps to predict the 

geographic distribution of recruits per 100 cm2 between 1870 and 2016 (see Crickenberger & 

Wethey, 2017 for more details).  Additionally, we projected our fertilization and recruitment 

success models onto 0.05°×0.05° OSTIA SST data (OSTIA, 2016; Donlon et al., 2011) for 

2014 and 2015 to provide better spatial resolution in the years preceding our surveys of the 

southern range limit of S. balanoides.  Poloczanska and others (2008) found June SST was 

the best predictor of S. balanoides abundance, and a good predictor of recruitment because 

recruitment is a major determinate of S. balanoides population abundance in subsequent 

years.  Admittedly, June SSTs may capture the direct influence of temperature on larval and 

recruit survival because settlement time in the UK is typically between April and May, or 

may be a proxy for breeding success and larval survival because June SSTs were strongly 

correlated with SSTs and air temperatures in the preceding months (Poloczanska et al., 2008).  
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In our models we used temperatures for the months when the processes of fertilization and 

brooding happen on the east coast of the USA to directly capture the effect of temperature on 

each of these processes. 

For the two years when we measured field recruitment, 2015 and 2016, we 

additionally accounted for the influences of dispersal and adult density in our predictions of 

recruitment success.  To account for dispersal, we considered the predicted connectivity (see 

Methods below) and predicted reproductive success at each source population where adults 

were present.  To account for adult density we multiplied adult density by reproductive 

success at each source population before accounting for dispersal.  One was added to adult 

density at all sites to adjust for very low densities at some sites.  In total there were four 

models of reproductive success: 1) Brooding, 2) Brooding + Fertilization, 3) Brooding + 

Fertilization + Dispersal, 4) Brooding + Fertilization + Dispersal + Adult Density. 

 

Fate of settlers 

  To track the survival of settlers within the region of range expansion six permanent 10 

× 10 cm quadrats were established between 06 and 11 April 2015 on both north and south 

facing rocks at Oregon Inlet North Carolina (35.7715°N, 75.5284°W), Rudee Inlet Virginia 

(36.8304°N, 75.9671°W) and Lewes Delaware (38.7911°N, 75.1584°W).  Quadrats were 

photographed every one to two months.  At each sampling interval thermochron iButton 

dataloggers (Maxim Semiconductor, Dallas, Texas, USA) were deployed to measure 

temperature and attached next to quadrats using the two part marine epoxy Z-Spar Splash 

Zone Compound A-788 (Kop-Coat Marine Group, Rockaway, New Jersey, USA).  Survival 

of barnacles within the quadrats was modeled using minimum daily temperatures from 
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iButton temperature records and laboratory experiments examining the relationships between 

temperature and survival (Foster, 1969; Jones et al., 2012; Mislan et al., 2014). 

 

Dispersal modeling 

 We modeled competency-dependent dispersal with the Ichthyop Lagrangian transport 

simulator (version 3.3, Lett et al., 2008) using the Naval Oceanographic Office Regional 

Navy Coastal Ocean Model (NCOM, Martin et al., 2009; NCOM, 2017).  The NCOM model 

has a 1/30° grid (~3 km) and velocity fields and temperatures are available at 3 h intervals. At 

each site where recruits were found in our field surveys between 06 April and 10 May 2015 

we modeled dispersal in reverse to determine potential origins of these recruits by tracking 

the dispersal trajectories of 1,000 particles backwards in time from each site.  Potential larval 

recruitment dates from February 15 to May 31 were used in the simulations. At midnight 

GMT on each recruitment date, 1000 passive particles (larvae) were released in a 5 km 

diameter circle centered on the recruitment location. Their locations were projected 

backwards in time for 60 days, using a 5 min time step and Euler’s method for integration in 

Ichthyop, using the mean velocity fields from the top 10 m of the water column.  Geographic 

positions of all particles and the mean temperature in the top 10 m of the water column at 

each particle location were saved every 30 min. 

 Barnacle larvae grow through multiple naupliar stages, and then metamorphose into a 

non-feeding cyprid larval stage.  We modeled growth of nauplii as a function of temperature, 

using data from Harms (1984) 
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Length(t + dt) = Length(t) + (0.021 + 0.00375 × T(lon, lat, t)) × dt 

 (Eq. 1) 

where the model time step dt was 5 min, and T(lon, lat, t) was the water temperature in °C at 

the particle location (lon, lat) at time t.  We assumed larvae at hatching were 0.3 mm long, 

and the transition from nauplius to cyprid occurred at 1.3 mm. 

Cyprid larvae kept for up to 30 d at 10°C can settle and metamorphose successfully 

(Lucas et al., 1979).  Since cyprids do not feed, this duration of competence to settle and 

metamorphose is related to the temperature-dependent rate of metabolism of the stored lipid 

in the larva. We modelled the effect of temperature on the duration of cyprid competence to 

settle and metamorphose successfully using the same function used to model larval growth 

(Eq 1).  Cyprids do not grow, but we used modelled growth as a proxy for competence, by 

determining the size that a hypothetical growing cyprid would be after 30 d at 10°C 

(LCmax=3.2 mm).  At lower temperatures cyprids remain competent longer, and at higher 

temperatures cyprids remain competent for shorter times, using the time to reach LCmax as 

the upper limit for competence as a function of temperature.  To set bounds on recruitment, 

we assumed that cyprids settling on a particular date could be any age between a cyprid 

newly metamorphosed from nauplius stage VI, and a cyprid at its temporal limit for 

competence (equivalent to 30 d at 10°C).  Working backwards from these points, we 

calculated the number of days along the specific trajectory that it would take a larva to grow 

from egg hatching to the youngest or oldest possible cyprid stages.  This calculation allowed 

us to calculate the potential starting locations of larvae, as all coastal points less than 2.5 km 

away from the particle between the earliest and latest possible larval release dates.  We 

repeated this process for the same potential larval recruitment dates using NCOM data from 

2014, 2015 and 2016. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Data analysis 

 Predictive accuracy of the reproductive success models was assessed by comparing 

predicted recruitment to observed recruitment using data from our 2015 and 2016 surveys.  

To calculate model accuracy and bias (Finley, 1884; Liu et al., 2011) we considered 

predictions less than 1 individual per 100 cm2 equivalent to zero recruitment when using 

Hadley SST (HADISST, 2016; Rayner et al., 2003; 2005) and predictions less than 10 

equivalent to zero recruitment for OSTIA SST data (OSTIA, 2016; Donlon et al., 2011).  

Model accuracy ranges from 0 to 1 with 1 being a perfect score.  A perfect score for model 

bias is 1 with values less than 1 indicating underprediction and values greater than 1 

indicating overprediction.  Area Under the Curve (AUC) scores were calculated to compare 

predictive accuracy of each reproductive success model over a range of thresholds (AUC 

values of 0.5 indicate the model predictions are no better than random, 1 is a perfect score).  

AUC scores were compared with one-tailed DeLong tests, using the R package pROC (Robin 

et al., 2011).  Log-log linear regressions were used to assess the ability of the reproductive 

success models to accurately predict the magnitude of recruitment.  Realized connectivity 

was calculated as the product of estimated connectivity and adult density in 2015 and 2016.  

All analyses were run in R (R 3.1.0, R Core Team, 2014). 

 

Results  

Distributional surveys 

 In the March 2015 surveys cyprids and pink uncalcified recruits were found at all sites 

surveyed except for Manomet Massachusetts.  Calcified recruits were present at all sites 

except for Ocean City Maryland, Guilford Connecticut and Manomet Massachusetts (Fig. 2, 

Fig. 3).  During the 2015 surveys conducted in April and May all sites had recruits present, 
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while adults were present at Duck Pier North Carolina, Rudee Inlet Virginia, Kitopeke 

Virginia, Cape Charles Virginia, Chincoteague Virginia, Ocean City Maryland, Indian River 

Inlet Delaware and Lewes Delaware (Fig. 3).  During the 2016 surveys recruits were present 

at six of 15 sites and limited to sites on the Delmarva Peninsula (peninsula between 

Chesapeake Bay and Atlantic Ocean, see Fig. 1).  Adults were present in 2016 at Jennette’s 

Pier North Carolina, Duck Pier North Carolina, Rudee Inlet Virginia, Chincoteague Virginia, 

Ocean City Maryland, Indian River Inlet Delaware and Lewes Delaware (Fig. 3). 

 

Reproductive success modeling 

Reproduction was predicted to be possible just north of the historical range limit near 

Cape Hatteras North Carolina (35.5°N) between 1870 and 2014 with a poleward shift in 

2015.  In the spring of 2016 the southern extent of recruitment closely matched the predicted 

southern limit to reproductive success (Fig. 3, Fig. 4).  Predictions of reproductive success 

based on Hadley SST (1° x 1°, ~100 km ) were further north than those using OSTIA SST 

(0.05°×0.05°, ~5 km) due to the difference in spatial scale of the two different SST datasets 

and the lack of consideration of larval dispersal, which improved model predictions (Fig. 3, 

Fig. 4, Table 2).  In 1948, 1986, 1999, 2001, and 2015 reproductive failure was predicted 

within the interior of the range of S. balanoides (Fig. 4).  Predictions of reproductive success 

and failure were similar to field measurements of recruitment and each additional factor 

improved model accuracy (Table 2).  Models of reproductive success were good predictors of 

the magnitude of reproduction, particularly the full model (Brooding + Fertilization + 

Dispersal + Adult Density) which explained ~70% of the variance (Table 2).  The analysis of 

the Area Under the Curve (AUC) of the Receiver-Operator-Characteristic (ROC) for the 

models indicated an improvement from AUC=0.76 for the Brooding + Fertilization model, to 

AUC=0.94 for the Brooding + Fertilization + Dispersal model, to AUC=0.97 for the 
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Brooding + Fertilization + Dispersal + Adult Density model.  The incremental improvement 

of the full model (B+F+D+A) significantly improved AUC when compare to the models 

without dispersal (p=0.02 in both cases).  Based on this analysis, the full model generates 

almost perfect predictions. 

 

Fate of settlers 

 All settlers were dead by October (Fig. 5).  Settlers died earlier in south facing sites 

when compared to north facing sites (Fig. 5).  Temperatures exceeded the temperature for 

heat coma at 35°C on both north and south facing rocks at all sites, but only exceeded the 

lethal temperature at 44°C for S. balanoides (Foster, 1969) on south facing rocks at Rudee 

Inlet and Oregon Inlet (Fig. 5).  Models of cumulative survival closely matched both the 

magnitude and timing of observed patterns of survival (Lewes Delaware: North R2=0.87, 

South R2=0.62; Rudee Inlet Virginia: North R2=0.90, South R2=0.62; Oregon Inlet North 

Carolina: North R2=0.85, South R2=0.91).  Predicted timing of 50% mortality was within two 

weeks of model predictions (13.5 days ± 5.3 days) (Fig. 5). 

 

Dispersal modeling 

 Estimates of connectivity were similar among years (Fig. 6, Fig. S1, S2, S3, Table 

S1).  Connectivity estimates suggest recruits at sites along the outer coast of the Delmarva 

Peninsula were from that region.  Recruits at Cape Charles and Kitopeke also likely 

originated from the outer coast of the Delmarva Peninsula.  The other sites within the 

Chesapeake Bay had limited connectivity with sites outside of Chesapeake Bay (Fig. S1, S2).  

Sites near the mouth of the Chesapeake Bay (Kitopeke and Rudee Inlet) were connected to 

sites both within and outside of the bay (Fig. 6, Fig. S1, S2).  The southern coastal sites 
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between Rudee Inlet and Oregon Inlet had high levels of connectivity with both the northern 

sites on the outer coast of the Delmarva Peninsula and the other southern coastal sites (Fig. 

6., Fig. S1, S2). 

 When dispersal is considered in the context of the distribution and reproductive 

potential of adults in source locations, the predicted recruitment patterns are very consistent 

with the actual distribution of recruits (Table 2).  There was low to no observed recruitment 

in sites with high connectivity to sources outside the permissive zone for reproduction, and 

recruitment was observed in sites with high connectivity to sources within the permissive 

zone for reproduction (Table 2, Fig. 6, Fig. S2).  We incorrectly predicted recruitment failure 

in 2016 at Cape Charles (Table 2, Fig. S2).  Presumably this is because we did not find the 

actual source population of adults, which was likely in the upper Chesapeake Bay (Fig. S1).  

We predicted extremely low probability of recruitment (p < 10-3) at the southernmost sites in 

2016 (Kitty Hawk, Jennette’s Pier, and Oregon Inlet North Carolina) and did not observe any 

recruitment that year (Table 2, Fig 6, Fig. S2).  We correctly predicted recruitment at all sites 

in 2015 (Table 2, Fig 6, Fig. S2). 

 

Discussion 

 Climate change is altering the distribution and abundance of species over decadal to 

centennial time scales making identification of the mechanisms driving these changes 

challenging (Parmesan et al., 2003; Chen et al., 2011).  Biological responses to climate 

variation over shorter time scales can provide both a window into the past as well as the 

future to understand the drivers of changes on the distribution and abundance of species 

(Wethey et al., 2011).  The southern range limit of S. balanoides has retracted poleward 350 

km on the east coast of the USA in the past 50 years (Jones et al., 2012).  Following the 
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colder than average winter of 2014/2015 we found recruits as far south as the historical 

southern range limit of S. balanoides near Cape Hatteras North Carolina.  We used the 

presence of S. balanoides throughout the historical range of S. balanoides as an opportunity 

to test which mechanisms are responsible for driving the long-term range retraction. 

 No single mechanism limited the distribution of S. balanoides.  Predictions of the 

southern limits of reproductive success between 1870 and 2014 remained relatively 

unchanged (Fig. 4).  Historically, reproductive failure likely limited the colonization of sites 

south of Cape Hatteras, but does not explain the range retraction documented in 2007.  

However, the predicted poleward movement of the limit to reproductive success in the winter 

of 2015/2016 suggests that reproductive failure may play an increasingly important role in 

limiting the distribution of S. balanoides in the future (Fig. 4). 

 Recruitment can be the main determinate of adult density in S. balanoides (Svensson 

et al., 2004; 2005; Poloczanska et al., 2008).  Within the interior of the range reproductive 

failure was predicted in 1948, 1986, 1999, 2001, and 2015.  The abundant center hypothesis 

predicts species should be most abundant at the center of their distributions and decrease in 

abundance towards the periphery (Andrewartha & Birch, 1954).  Empirical evidence to 

support this idea is limited at best, and runs counter to the idea of troughs or gaps in 

abundance within the interior of species’ distributions (Sagarin & Gaines, 2002; Sagarin et 

al., 2006), which were predicted by our reproductive success model (Fig. 4).  In terrestrial 

ecosystems predictions of interior, climate-mediated range fragmentation are not uncommon 

(Calkins et al., 2011; Jeffress et al., 2013; Stewart et al., 2015).  In marine ecosystems 

evidence for these types of patterns is limited (but see Lima et al., 2006; 2007).  For example, 

models from Wethey et al. (2011; 2016) predicted climate-mediated interior range 

fragmentation for the polychaetes Diopatra spp. and Arenicola marina, and to a lesser extent 

for the barnacles S. balanoides and Chthamalus spp. along the coastline of continental 
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Europe.  Interior range fragmentation in marine organisms with high dispersal capacity may 

be challenging to detect when compared to terrestrial organisms with more limited dispersal.  

In marine organisms, regions of interior range fragmentation are likely ephemeral and filled 

in by adjacent source regions in subsequent years (e.g. Lima et al., 2006; Sousa et al., 2012).  

In our predictions we did not find more than a single year with reproductive failure (Fig. 4), 

making a scenario of ephemeral failure and range filling plausible. 

 Other factors during the larval period could also generate within range gaps of 

distribution or dips in abundance.  Mismatched timing of larval release and the phytoplankton 

bloom can result in near recruitment failure (Barnes 1956, 1957, 1962; Crisp & Spencer, 

1958; Hawkins & Hartnoll, 1982; Kendall et al., 1985), and the probability of phytoplankton 

mismatch is high within the interior of some portions of the range of S. balanoides in Europe 

matching dips in abundance of S. balanoides (Crickenberger & Wethey, 2017).  Larval 

transport both near shore, and at larger spatial scales, can also influence site specific 

recruitment rates of S. balanoides and other barnacles along complex coastlines (Bennell, 

1981; Hawkins & Hartnoll, 1982; Kendall et al., 1982; Burrows et al., 2010; Keith et al., 

2011).  Near the range edge along the east coast of the USA phytoplankton mismatch is 

extremely unlikely (Crickenberger & Wethey, 2017), and we found limited evidence of 

oceanographic currents generating a dispersal barrier for S. balanoides.  Further north in the 

Gulf of Maine the probability of phytoplankton mismatch is higher (Crickenberger & 

Wethey, 2017), and complex oceanographic processes may create barriers to larval dispersal 

(Yund et al. 2015), potentially leading to dips in abundance of S. balanoides within some 

sites in this region similar to those documented in Europe.   
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 Settlers did not survive in any of the monitored quadrats, and all were predicted to die 

from exposure to several warm days in a row (Fig. 5).  However, in both 2015 and 2016 adult 

barnacles were present at southern, shaded microhabitats on the outer coast following years 

when reproductive success was predicted to be high (Fig. 3).  These shaded coastal 

microhabitats (Jennette’s Pier and Duck Pier) are not dependent on stepping-stone dispersal 

and may receive recruits annually from further north in addition to local sources of recruits 

when temperatures are permissive to reproduction (Fig. 6, Fig. S1, S2).  In contrast, 

colonization of sites near and within the Chesapeake Bay appear to be dependent on stepping-

stone dispersal through either successful recruitment and survival at sites near the mouth of 

the bay followed by temperatures permissive to reproduction in the subsequent winter or 

cooler winters permissive of reproduction at more southern sites (Fig. 3, Fig. 6, Fig. S1, S2).  

Microhabitats are known to play an important role in altering patterns of survival in intertidal 

invertebrates (Wethey, 1983; Jones et al., 2012; Jurgens & Gaylord, 2018), particularly near 

retracting range edges (Lima et al., 2016).  The persistence of S. balanoides in cooler 

microhabitat sites will be dependent on the density and reproductive success of other 

populations further upstream.  If adult density and reproductive success continue to decrease 

along the Delmarva peninsula these microhabitat populations will go extinct, through either 

the direct lethal effects of temperature, or possibly through indirect effects on recruitment.      

 Larval competency period is often cited as limiting connectivity in benthic marine 

organisms (Jackson & Strathmann, 1981; Marsh et al., 2001), and connectivity is predicted to 

decrease in warmer oceans due to faster larval growth and a reduction in competency period 

(O’Connor et al., 2007).  Cooler temperatures during the winter of 2014/2015 led to 

successful reproduction and recruitment throughout the historical range of S. balanoides, 

while warmer temperatures during the winter of 2015/2016 reduced reproductive success and 

recruitment throughout the historical range (Fig. 3).  Interestingly, predicted patterns of 
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connectivity among southern coastal sites and more northern sites were similar in 2015 and 

2016, despite their differences in temperature (Fig. 6, Fig. S1, S2, S3, Table S1).  Therefore, 

we did not find any evidence that temperature dependent competency period limited 

connectivity from our models.  Instead, limited patterns of colonization documented in 2016 

may have been driven by both a more restricted distribution of adults and a reduced larval 

pool due to warmer temperatures during the processes of fertilization and brooding as 

suggested by our reproductive success models and recruitment surveys in 2016 (Fig. 6, Fig. 

S2). 

 Population dynamics near the range edges of species with long distance dispersive life 

history stages are complex making the mechanisms responsible for limiting distributions 

difficult to isolate (Broennimann et al., 2006; Jiguet et al., 2007).  Climate variation coupled 

with mechanistic modeling is a useful way to understand the relative contribution of various 

life-history stages to determining range limits.  In S. balanoides reproductive failure did not 

explain historical patterns of range retraction.  However, the magnitude of reproductive 

success did influence connectivity, which likely determines whether or not S. balanoides 

populations at southern, shaded microhabitats are able to persist (Fig. 6, Figure S2).  This 

complexity leads to an uncoupling from large scale oceanographic patterns like the Atlantic 

Multidecadal Oscillation; for example mean annual AMO (NOAA, 2018) was only weakly 

correlated to predicted recruitment success at some latitudes (linear regressions, p=0.004 to 

0.06, R2=0.002 to 0.06).  Mechanistic understanding of range limitation is essential for 

predicting how species will respond to future environmental conditions (Kearney & Porter, 

2009; Seabra et al., 2015).  In most cases mechanistic models are validated by comparing 

predictions of historical and current distributions prior to making future predictions.  If the 

winter of 2015/2016 is an indicator of future environmental conditions, reproductive failure 

will become increasing important in mediating the persistence of S. balanoides at its southern 
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range limit in the western Atlantic meaning mechanisms of range limitation can change 

through time.  Mechanistic models which consider the entire life-histories of organisms are 

the only way to capture these types of changes in range limiting mechanism through time and 

accurately predict the consequences of climate change on future distributions. 
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Tables 

Table 1. Sites surveyed for the presence of Semibalanus balanoides adults and recruits. 

Site Name Abbreviation Latitude Longitude Dates Surveyed 

Manomet, MA MA 41.9272 -70.5413 23-03-2015 

Guilford, CT GU 41.2592 -72.7309 22-03-2015 

Lewes, DE LE 38.7911 -75.1584 24-03-2015, 11-04-2015, 31-03-
2016 

Indian River Inlet, 
DE 

IR 38.6076 -75.0608 24-03-2015, 10-04-2015, 31-03-
2016 

Ocean City, MD OC 38.3243 -75.0851 24-03-2015, 10-04-2015, 31-03-
2016 

Chincoteague Island, 
VA 

CI 37.9010 -75.4075 10-05-2015, 01-04-2016 

Cape Charles, VA CC 37.2668 -76.0263 09-04-2015, 01-04-2016 

Kitopeke State Park, 
VA 

KP 37.1673 -75.9887 09-04-2015, 01-04-2016 

Fort Monroe, VA FM 37.0022 -76.3029 09-04-2015, 02-04-2016 

East Ocean Ave, VA EO 36.9503 -76.242 09-04-2015, 02-04-2016 

East Beach, VA EB 36.9306 -76.1828 09-04-2015, 02-04-2016 

Lynnhaven Pier, VA LP 36.9135 -76.0778 10-04-2015, 02-04-2016 

Rudee Inlet, VA RI 36.8304 -75.9671 25-03-2015, 08-04-2015, 02-04-
2016 

Duck Pier, NC DP 36.1823 -75.7503 07-04-2015, 09-05-2016 

Kitty Hawk Pier, NC KH 36.1014 -75.7109 07-04-2015, 04-04-2016 

Jennette’s Pier, NC JP 35.9101 -75.5954 07-04-2015, 04-04-2016 

Oregon Inlet, NC OI 35.7715 -75.5284 25-03-2015, 06-04-2016 
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Table 2. Verification statistics, AUC groupings based on one-tailed DeLong tests, 

coefficients of determination, and p-values for log-log regressions of observed vs. predicted 

recruitment for predictions of models of reproductive success. Accuracy and bias estimates 

assume predictions less than 1 individual per 100 cm2 are predictions of zero recruitment for 

Hadley SST source and predictions less than 10 are predictions of zero recruitment for 

OSTIA SST source. Accuracy ranges from 0 to 1 with 1 being a perfect score.  A perfect 

score for model bias is 1 with values above 1 indicating overprediction and values less than 1 

indicating underprediction.  AUC values of 0.5 indicate the model predictions are no better 

than random and 1 is a perfect score.  Letters for AUC groups indicate significant differences 

between models for each SST source (p < 0.05).  B=Brooding, F=Fertilization, D=Dispersal, 

A=Adult. 

Model SST 
source 

Accuracy Bias AUC AUC 

Groups 

R2 P 
(regression) 

B Hadley 0.8 1.10 0.76 A 0.203 0.007 

B+F Hadley 0.80 1.10 0.76 A 0.177 0.01 

B+F+D Hadley 0.90 0.95 0.94 AB 0.606 <0.0001 

B+F+D+A Hadley 0.93 0.90 0.97 B 0.695 <0.0001 

B OSTIA 0.87 1.19 1.0 A 0.622 <0.0001 

B+F OSTIA 0.87 1.19 1.0 A 0.626 <0.0001 

B+F+D OSTIA 0.93 0.90 1.0 A 0.75 <0.0001 

B+F+D+A OSTIA 0.93 0.90 0.97 A 0.787 <0.0001 
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Figure captions 

Fig. 1. Sampling sites for Semibalanus balanoides (a) along the entire east coast of the USA 

and (b) in the region of range retraction and recolonization.  Black box in (a) outlines the 

enlarged region in (b).  See Table 1 for site abbreviations. 

 

Fig. 2. Density (mean ± SE, n=4-6) of Semibalanus balanoides cyprids, pink uncalcified 

recruits, and white calcified recruits between 22 and 25 March 2015.  Sites listed north to 

south.  See Table 1 for site abbreviations. 

 

Fig. 3. Distribution and abundance of Semibalanus balanoides along the east coast of the 

USA between (a) between 1854 and 1916 (Darwin, 1854; Pilsbry, 1916), (b) between 1942 

and 1963 (McDougall, 1943; Wells et al., 1960; Jones et al., 2012), and (c) in 2007 (Jones et 

al., 2012).   The distribution and abundance of the total number of Semibalanus balanoides 

cyprids, pink uncalcified recruits, and white calcified recruits between (d) 22 and 25 March 

2015.  Distribution and abundance of Semibalanus balanoides (e) adults and (f) recruits in 

April to May 2015 and (g) adults and (h) recruits in March to May 2016.  Total reproductive 

success contour at 25 recruits per 100 cm2 (grey line), in (f) Recruits 2015 and (h) Recruits 

2016, corresponds to a nearest neighbour distances of 1 cm, which is the limiting distance for 

successful mating of neighbouring barnacles assuming individuals are evenly distributed.  

ACFORN density scales after Crisp & Southward 1958: A= abundant, C= common, F= 

frequent, O= occasional, R= rare, N= none. Recruit densities are based on a similar scale 

where A = 10 to 100 individuals cm-2, C = 1 to 10 individuals cm-2, F = 0.1 to 1 individuals 

cm-2, O = .01 to 0.1 individuals cm-2, R = 0 to .01 individuals cm-2, and N = 0 individuals cm. 
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Fig. 4. Predicted recruits per 100 cm2 of Semibalanus balanoides between (a) 1870 and 2016 

and (b) 1980 and 2016 to illustrate the occasional range fragmentation in the southern portion 

of the range. Interior range fragmentation due to reproductive failure was predicted in 1948, 

1986, 1999, 2001, and 2015.  White regions had predictions of fewer than 25 recruits per 100 

cm2 corresponding to a nearest neighbour distances of 1 cm, which is the limiting distance for 

successful mating of neighbouring barnacles assuming individuals are evenly distributed.  

Historical southern range limits (black squares), record of a single Semibalanus balanoides 

(black circle), and southern limit of recruits found in the spring of 2015 and 2016 (black 

triangles).   

 

Fig. 5. Predicted (lines) and mean observed (circles) cumulative percent survival of 

Semibalanus balanoides in quadrats (n=6) on north (black circles, solid lines) and south 

(white circles, dashed lines) facing rocks at (a) Lewes Delaware, (d) Rudee Inlet Virginia, 

and (g) Oregon Inlet North Carolina.  Temperatures from iButtons at Lewes Delaware on (b) 

north and (c) south facing rocks, at Rudee Inlet Virginia on (e) north and (f) south facing 

rocks, and at Oregon Inlet North Carolina on (h) north and (i) south facing rocks.  Horizontal 

lines indicate the acute temperature limits to heat coma (35°C, Southward 1964) and the 

acute lethal limit (44°C, Foster 1969).  Models of cumulative survival closely matched 

observed patterns of survival (Lewes, DE: North R2=0.87, South R2=0.62; Rudee Inlet, VA: 

North R2=0.90, South R2=0.62; Oregon Inlet, NC: North R2=0.85, South R2=0.91). 

 

Fig. 6.  Predicted patterns of realized connectivity (connectivity adjusted for observed adult 

density in the source population) in 2015 and 2016 in representative sites in the northern (IR: 

Indian River Inlet Delaware), central (KP: Kitopeke State Park Virginia and RI: Rudee Inlet 
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Virginia), and southern portion (JP: Jennette’s Pier North Carolina) of the region studied. 

Circles represent source locations for larvae (log10 of fraction of particles in competency 

dependent dispersal models) and plus symbols (+) and arrows indicate the location of each 

site of recruitment.  Open squares represent locations of observed recruitment in each year.  

Populations north of the contour (gray line) were predicted to be reproductively successful (> 

25 recruits per 100 cm2) and populations south of the contour were predicted to experience 

reproductive failure (< 25 recruits per 100 cm2). 
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