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Abstract

Joint analysis of multiple phenotypes can increase statistical power in genetic association stud-
ies. Principal component analysis, as a popular dimension reduction method, especially when the
number of phenotypes is high-dimensional, has been proposed to analyze multiple correlated phe-
notypes. It has been empirically observed that the first PC, which summarizes the largest amount of
variance, can be less powerful than higher order PCs and other commonly used methods in detect-
ing genetic association signals. In this paper, we investigate the properties of PCA-based multiple
phenotype analysis from a geometric perspective by introducing a novel concept called principal
angle. A particular PC is powerful if its principal angle is 0o and is powerless if its principal angle
is 90o. Without prior knowledge about the true principal angle, each PC can be powerless. We pro-
pose linear, non-linear and data-adaptive omnibus tests by combining PCs. We demonstrate that the
Wald test is a special quadratic PC-based test. We show that the omnibus PC test is robust and pow-
erful in a wide range of scenarios. We study the properties of the proposed methods using power
analysis and eigen-analysis. The subtle differences and close connections between these combined
PC methods are illustrated graphically in terms of their rejection boundaries. Our proposed tests
have convex acceptance regions and hence are admissible. The p-values for the proposed tests can
be efficiently calculated analytically and the proposed tests have been implemented in a publicly
available R package MPAT. We conduct simulation studies in both low and high dimensional set-
tings with various signal vectors and correlation structures. We apply the proposed tests to the joint
analysis of metabolic syndrome related phenotypes with data sets collected from four international
consortia to demonstrate the effectiveness of the proposed combined PC testing procedures.
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1 Introduction

In the past decade, Genome-Wide Association Studies (GWASs) have identified thousands of

genetic variants associated with hundreds of human complex traits and diseases (Welter et al., 2014), as

reported in the National Human Genome Research Institute and European Bioinformatics Institute’s

(NHGRI-EBI) catalog. By using the open-access NHGRI-EBI catalog, Sivakumaran et al. (2011) found

abundant evidence of pleiotropy: 233 (16.9%) genes and 77 (4.6%) single nucleotide polymorphisms

(SNPs) show pleiotropic effects, and the numbers are still growing over time. As detailed phenotype

data from epidemiological studies, electronic health records (EHR), genome-wide omics profiling and

real-time mobile health devices are becoming rapidly available, there is an increasing interest in identi-

fying cross-phenotype associations (Solovieff et al., 2013; Bush et al., 2016), which hold great potentials

for novel drug target discovery, drug repurposing and informing precision medicine (Collins and Var-

mus, 2015).

Our work is motivated by studying the genetic basis of metabolic syndrome (MetS) (Brown

and Walker, 2016). A set of clinical phenotypes are involved in the disease process of MetS. Single-

trait GWAS studies have been conducted to identify susceptible SNPs associated with each of those

MetS related phenotypes. The following four consortia studied the genetic architecture of the MetS

traits. The International Consortium for Blood Pressure (ICBP) is an international effort to investigate

blood-pressure genetics. It conducted a GWAS of Systolic Blood Pressures (SBP) of 200,000 individuals

of European descent (ICBP et al., 2011). The Global Lipids Genetics Consortium (GLGC) performed

individual trait GWAS analysis of high-density lipoprotein cholesterol (HDL), low-density lipoprotein

cholesterol (LDL) and triglycerides (TG) (Teslovich et al., 2010). It examined the SNP-lipid associa-

tions in 188,578 European-ancestry individuals (Willer et al., 2013). The Meta-Analyses of Glucose

and Insulin-related traits Consortium (MAGIC) represents a collaborative effort to combine data from

multiple GWASs to identify genetic loci that impact glycemic and metabolic traits. The MAGIC study

performed meta-analysis of 29 GWASs of Fasting Glucose (FG) from 58,074 non-diabetic participants,

and 26 GWASs of Fasting Insulin (FI) from 51,750 non-diabetic participants (Manning et al., 2012),

with both analyses adjusting for Body Mass Index (BMI). The Genetic Investigation of ANthropomet-

ric Traits (GIANT) consortium investigates the genetic underpinning that modulates human body size

and shape. It performed a GWAS analysis of Body Mass Index (BMI) using 339,224 individuals (Locke

et al., 2015), and a BMI-adjusted GWAS analysis waist-hip-ratio (WHR) using 224,459 individuals of
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European ancestry (Shungin et al., 2015). Although those aforementioned studies identified the SNPs

associated with each of the eight phenotypes, the single-trait analysis paradigm is likely to suffer from

potential power loss for detecting the genetic variants associated MeS by ignoring the fact that these

clinical phenotypes of MeS are related and might share a common genetic basis.

It has been shown that joint analysis of multiple phenotypes together can increase statistical

power to detect genetic variants. Numerous methods have been proposed for multiple phenotype

analysis, see Solovieff et al. (2013) for a review. Examples include multivariate regression based meth-

ods, which improve power under specific parametric assumptions, such as homogeneous effects across

phenotypes, but are subject to power loss when these assumptions are violated (Schifano et al., 2013;

Zhou and Stephens, 2014); the p-value correction method TATES (van der Sluis et al., 2013), which ac-

counts for between-phenotype correlation, has a good power in the presence of a very few association

signals and can lose power otherwise. Furthermore, this method is subject to inflated type I error rate

by 12% (He et al., 2013). Zhu et al. (2015) proposed two tests, one for detecting homogeneous effects

and another for detecting heterogeneous effects based on a truncated test statistic. These tests were

found to have good performance when their corresponding assumptions hold. In practice, researchers

usually have little prior knowledge about which assumption holds, and hence it might be challenging

to decide which test to use. Moreover, the p-value of the truncated test for detecting heterogeneous

effects could not be calculated analytically and requires Monte-Carlo simulations, which are computa-

tionally expensive for genome-wide analysis of multiple phenotypes. Huang and Lin (2013) and Liu

and Lin (2017) proposed variance component tests for multiple phenotypes. We will show that this

variance component test is a special quadratic combination of PC test in this paper.

Principal Component Analysis (PCA), as a popular dimension reduction technique, especially

when the number of phenotypes is not small, is an appealing approach that transforms correlated

phenotypes into orthogonal composite scores (Aschard et al., 2014). Although it has been empirically

found that principal components (PCs) that explain a small amount of the total variance of the multiple

phenotypes can be as powerful or even more powerful than the PCs that explain a large amount of

the total variance of the multiple phenotypes (Aschard et al., 2014), however there is no theoretical

explanation for this counter-intuitive phenomenon. It is also unclear which PCs should be used to

achieve the best power for genetic association testing.

It is well known that the Uniformly Most Powerful (UMP) test does not exist for composite

hypothesis testing. The classical Wald test can lose substantial power when the first PC captures all
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the signals and also explains a large amount of the total variance. The canonical correlation analysis

aims to find a best linear combination of the multiple phenotypes (Ferreira and Purcell, 2009), and thus

can perform poorly when the relationship between a genetic variant and multiple phenotypes is not

linear. Therefore, there is a pressing need to develop effective powerful testing methods for multiple

phenotype association studies.

Since multiple PCs are likely to contain association evidence, it could be advantageous to com-

bine PCs together to achieve better power. There are several challenges on how to effectively combine

association evidence across multiple PCs. First, the underlying genetic effects are unknown and can be

heterogeneous, i.e., a genetic variant can have positive, negative or null effects on different phenotypes.

Second, the correlation structure among multiple phenotypes can be arbitrary, i.e., phenotypes can be

positively or negatively correlated with varying correlation strength. However, little is known in the

literature about the effect of the correlation structure on the power of the PC based tests. Furthermore,

it is more challenging to effectively combine PCs in high dimensional settings, such as in gene expres-

sion studies, because it is more complex to understand the interplay between the high dimensional

signal vectors and the between-phenotype correlation structures. Therefore, it is of significant interest

to develop more powerful testing procedures by effectively combining PCs and taking into account

the between-phenotype correlation structure, the effect size and the direction of the genetic effects, in

both low and high dimensional settings.

In this paper, we aim to address these problems by developing robust and powerful PC-based

methods for testing for genetic association with multiple phenotypes, as well as studying the effects of

the between-phenotype correlation structures on the power of the proposed PC-based tests. This paper

makes the following contributions. First, we introduce a novel geometric concept called principal angle

and show that a particular PC can be powerless if its principal angle is 90o and can be as powerful as

the Oracle test if its principal angle is zero. In practical settings, any PC can be powerless if one has no

prior knowledge about the true principal angles.

Second, we propose several data-driven methods to combine PCs to boost the power for testing

for the association between a genetic variant and multiple phenotypes. We first propose the mini-

mum PC p-value (PCMinP) and the Fisher’s method by combining PC p-values (PCFisher) as testing

statistics. We then propose linear and quadratic combinations of PCs weighted by the functions of

eigenvalues. Specifically, we show that an inverse-eigenvalue weighted linear combination of PCs

(PCLC) can be as powerful as the Oracle test when all the principal angles are equal to each other, but
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can lose power otherwise. Quadratic combinations of PCs are shown to be more robust than PCLC.

We show that the classical Wald test and the recently proposed variance component score test (Huang

and Lin, 2013; Liu and Lin, 2017) are special cases of the quadratic combinations of PCs. These two

tests both favor the alternatives under which the last principal angle is zero. As we usually have no

prior knowledge about the true signal direction in practice, we propose an omnibus test (PCO) which

uses the data driven method to best combine several linear and nonlinear PC tests together to achieve

robust power performance under various alternatives.

Third, we perform eigen-analysis to investigate the effects of the between-phenotype correla-

tion structure on the power performance of the PC-based tests. The subtle differences and close con-

nections between our proposed tests are compared graphically in terms of their rejection boundaries.

Our proposed tests all have convex acceptance regions and hence are admissible (Birnbaum, 1954,

1955). Fourth, the p-values of our proposed tests can be calculated analytically in a computationally

efficient manner.

The type I error rates of our proposed tests are shown to be well controlled by simulation

studies. The powers of the proposed tests relative to several commonly used methods, such as the

Wald test, the TATES method (van der Sluis et al., 2013), are compared using simulations in both low

and high dimensional settings. The robust power performance of the proposed omnibus test PCO is

demonstrated through simulations using a range of signal patterns and correlation structures. Lastly,

we applied our proposed tests to the aforementioned metabolic syndrome trait GWAS data sets and

identified additional new genetic variants that were missed by the original univariate analyses. Those

identified new SNPs might play important biological roles in the pathogenesis of MetS and can serve

as potential candidates for future functional studies.

The remainder of this paper is organized as follows. In Section 2, we describe our PC-based

testing procedures and perform power analysis. In Section 3, the omnibus PC-based tests are proposed

to improve robustness and power of the PC-based tests. In Section 4, we compare those tests in terms

of their rejection boundaries and demonstrate their differences graphically. In Section 5, we perform

eigen-analysis to investigate how the between-phenotype correlation structure affects the statistical

powers of our proposed tests. In Section 6, we conduct simulation studies to evaluate the performance

of our methods in both low and high-dimensional settings. In Section 7, we apply our tests to the

metabolic syndrome trait GWAS data sets. Finally, we conclude with discussions in Section 8.
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2 The Principal Component Association Tests

Suppose that there are K correlated phenotypes denoted by Y = (Y1, . . . , YK)T . Traditional

GWAS studies consist of hundreds of thousands of SNPs across the genome. One analyzes a SNP

a time for each phenotype separately. For a particular SNP, we have K correlated test statistics for

testing for the presence of genetic effects, i.e., Z-scores Z = (Z1, . . . , ZK)T that asymptotically follow a

multivariate normal distribution with the covariance matrix Σ, which is equal to the correlation matrix

of Y conditional on other covariates included in the univariate analysis under the null (Liu and Lin,

2017). In other words, the Z scores have already taken into account the effects of confounders, such

as population stratification, and Σ is not the crude covariance of Y but the residual covariance after

regressing Y on covariates. Although across the whole genome, different genetic variants could have

different minor allele frequencies (MAF), however their association test statistics Z follow the same

null distribution. This serves as the basis for consistently estimating Σ using the sample covariance

matrix of the Z-statistics across the genome under the null hypothesis (Zhu et al., 2015; Liu and Lin,

2017).

For simplicity, we assume Σ is known for the ease of discussions hereafter. For a given data set

of sample size n, univariate analysis for each phenotype can be performed. For a particular genetic

variant, we can obtain a K-dimensional vector of summary testing statistics Z ∼ N(β,Σ), where

β ∝ √n and n is the sample size for calculating Z. We are interested in testing H0: β = 0 against Ha:

β 6= 0, where β is referred to as the signal vector. We would like to develop robust and powerful tests

that are robust to the between-phenotype correlation structures and signal vector patterns, especially

when the dimension of phenotypes is not small.

2.1 The Oracle Test for the Fixed Alternative Hypothesis

Under the fixed alternative hypothesis β, the Uniformly Most Powerful (UMP) test is

Oracle = βTΣ−1Z, (1)

which directly follows from the Neyman-Pearson Lemma (Bittman et al., 2009). One can easily see that

the Oracle test is a linear combination of Z with the coefficients depending on the true β and Σ. It is

natural to view this hypothesis testing problem as a binary classification problem. We observe a vector
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Z and need to decide whether Z is from the null H0 or the alternative Ha. This classification problem

fits into the framework of linear discriminant analysis (LDA). In fact, this Oracle test can be viewed

as the Fisher LDA (Fisher, 1936), which is the Bayes optimal classifier (Bickel and Levina, 2004) and

provides the highest sensitivity uniformly at any given specificity (Su and Liu, 1993). In practice, we

do not know the true β and therefore we cannot perform this Oracle test. Nonetheless, we can use it

as an ideal benchmark for power comparisons with those implementable tests.

Under the alternative hypothesis Ha: β 6= 0, both β and correlation matrix Σ are unknown.

Equation (1) implies that only a ‘smart’ linear combination of individual Z-testing statistics that is as

close as possible to the unknown true quantity Σ−1β, can be as powerful as the Oracle test, but at the

potential risk of being powerless if the linear combination is not ‘smart’.

2.2 Single Principal Component Tests for the Composite Hypothesis

Consider the composite hypothesis H0: β = 0 versus Ha: β 6= 0. Using spectral decomposition,

we have

Σ = UΛUT =
K∑

k=1

λkuku
T
k ,

where Λ is a diagonal matrix whose diagonal elements are the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λK > 0 of

Σ, and U is the normalized orthogonal matrix whose kth column uk is the kth eigenvector associated

with the kth largest eigenvalue λk of Σ. We also require that U is a proper rotation matrix, that is

det(U) = 1 (Pettofrezzo, 1978). The K eigenvectors uk (k = 1, . . . ,K) form an eigen-basis and hence

constitute a new orthogonal coordinate system in which the kth coordinate direction corresponds to

the kth principal component PCk. It is straightforward to show that the distribution of PCk is

PCk = uTkZ ∼ N(uTk β, λk), 1 ≤ k ≤ K.

As ||uk||2 = 1, the non-centrality parameter (ncp) of PCk under the alternative is

ncpk =
(uTk β)2

λk
=
||β||2{cos(θk)}2

λk
,

where θk ∈ [0, 180o] is the angle between the signal vector β and the eigenvector uk and is defined as

the kth Principal Angle (PA), and ||β|| =
√∑K

k=1 β
2
k which is defined as the overall signal magnitude.

An underlying constraint for the principal angles is that
∑K

k=1 cos2(θk) = 1, which will be used for
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power analysis later. If the kth principal component PCk is used as a testing statistic for H0: β = 0

versus Ha: β 6= 0, then its theoretical power at significance level α is

Power = Φ(Zα
2

+
√
ncpk) + Φ(Zα

2
−√ncpk),

where Φ(·) is the cumulative standard normal distribution function, andZα
2

is its α/2 percentile. If θk =

0, then PCk is as powerful as the Oracle test; however if θk = 90o, then PCk is powerless. This geometric

perspective clearly explains why using any particular PC could be powerless to detect association

signals in the situations where its principal angle is 90o.

The Principal Angle of a PC measures the the degree of similarity between the direction of the

PC of multiple phenotypes and the direction of the genetic effect vector of a SNP on multiple pheno-

types. When the principal angle of a PC is zero, it means that the direction of the PC completely aligns

with the genetic effect direction, and is thus perfect for being used for summarizing multiple pheno-

types into a scalar super-phenotype for detecting genotype-phenotype associations. If the principal

angle of a PC is 90 degree, it means that the PC contains no information about the genetic effects and

is thus not useful for detecting the genotype-multiple phenotype associations.

The power analysis for single PC test serves as the building blocks of the power analysis of

combined PC based tests. We observe that the power of single PC test depends not only on β but also

Σ through its eigenvalues and eigenvectors, which will be investigated by eigen-analysis in Section 5.

It should be noted that the PC directions of the Z-scores are often not the same as the PC directions of

the original phenotypes Y, as the Z-scores have taken the confounders into account.

2.3 The PCMinP Test

As the signal vector β is unknown in practice, one usually has no prior information about

the true principal angles and thus cannot decide which PC to use for association testing. Hence, we

propose to use the minimum principal component p-value as a testing statistic named PCMinP,

PCMinP = min
1≤k≤K

pk,

where pk is the p-value based on PCk. In fact, PCMinP is equivalent to using sup1≤k≤K |PCk|/
√
λk as

a test statistic, and hence can be viewed as a nonlinear combination of PCs. Because the K PCs are
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mutually independent, so the p-value of PCMinP can be easily computed as p = 1− (1− PCMinP)K .

Denote α∗ = 1 − (1 − α)1/K where α is a pre-specified significance level, then the power of

PCMinP under the alternative is

Power = 1−
K∏

k=1

[
1−

{
Φ(Zα∗

2
+
√
ncpk) + Φ(Zα∗

2
−√ncpk)

}]
.

Suppose that ||β|| and λk are fixed, then the power of PCMinP is maximized when θK = 0 and its

maximal power is

Powermax = 1− (1− α)
K−1
K

{
1− Φ

(
Zα∗

2
+
||β||√
λK

)
− Φ

(
Zα∗

2
− ||β||√

λK

)}
.

This implies that PCMinP favors the alternatives under which the last PC captures all the signals.

Furthermore, the power of PCMinP goes to 1 as λK → 0. The power of PCMinP is minimized when

cos2(θk) = λk/K (k = 1, . . . ,K), and the minimum power is

Powermin = 1−
{

1− Φ

(
Zα∗

2
+
||β||√
K

)
− Φ

(
Zα∗

2
− ||β||√

K

)}K
.

The result follows directly from the inequality of arithmetic and geometric means. This implies that the

worst situation for PCMinP is that all the PCs are equally powerful, e.g., when multiple phenotypes

are independent, e.g., Σ = I.

2.4 The PCFisher Test

PCMinP aims to pick the most powerful PC direction and discards the other less powerful PCs.

Hence PCMinP does not fully use available information contained in all the PCs. We hereby propose

to combine all the K independent principal component p-values using Fisher’s method (Fisher, 1932)

with its null distribution given by

PCFisher = −2

K∑

k=1

log(pk) ∼ χ2
2K .

PCFisher can also be viewed as a nonlinear combination of the PCs,

PCFisher = −2

K∑

k=1

log{1− Fχ2
1
(PC2

k/λk)}, (2)
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where Fχ2
1
(·) represents the chi-squared cumulative distribution function with one degree of freedom.

Equation (2) implies that PCFisher allocates larger weights to PCs with smaller eigenvalues. Therefore,

PCFisher achieves its maximal power when θK = 0 and achieves its minimal power when θ1 = 0 for

fixed ||β|| and λk. The Fisher’s p-value combination method is asymptotically Bahadur optimal (ABO),

in the sense that the p-value of PCFisher converges to zero with the fastest rate under the alternative

when the sample size goes to infinity (Bahadur, 1967; Littell and Folks, 1971, 1973).

2.5 The Test Based on a Linear Combination of PCs

Motivated by the inverse variance weighting method commonly used when combining inde-

pendent tests (Mosteller et al., 1954; Liptak, 1958), we obtain the following linear combination of PCs

with each PC weighted by its inverse variance,

PCLC =
K∑

k=1

PCk

λk
∼ N(0,

K∑

k=1

λ−1k ).

Under the alternative hypothesis, its non-centrality parameter is

ncp =

(∑K
k=1 λ

−1
k uT

kβ
)2

∑K
k=1 λ

−1
k

=
||β||2

{∑K
k=1 λ

−1
k cos(θk)

}2

∑K
k=1 λ

−1
k

.

We now study when the power of PCLC will be maximized and minimized with respect to θk, for any

fixed ||β|| and λk. This can be formulated as the following constrained optimization problem

max
cos(θk)

∑K
k=1 λ

−1
k cos(θk)

s.t.
∑K

k=1 cos2(θk) = 1.

Using the Lagrange multiplier method, we obtain that the power of PCLC is maximized when the

principal angles satisfy the following conditions

cos2(θk) =
λ−2k∑K
k=1 λ

−2
k

, k = 1, . . . ,K. (3)

In fact, we can rewrite PCLC as PCLC = (UΛ−1J)TZ, where J = (1, . . . , 1)T . Hence, PCLC will

achieve its own maximal power when β ∝ UΛ−1J, which is equivalent to equation (3). It can be

easily seen that PCLC is powerless when β ⊥ UΛ−1J where positive and negative genetic effects are
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canceled out. The PCLC test can be as powerful as the Oracle test when β ∝ UJ, or equivalently when

all the principal angles are equal to each other, i.e., cos2(θk) = 1/K(k = 1, . . . ,K). In other words,

when all the K principal angles are the same, PCLC is more powerful than any other tests to detect

such alternatives.

2.6 Quadratic Combination of PCs

PCLC is very sensitive to principal angles and can be powerless as shown theoretically in Sec-

tion 2.5 and empirically in the simulation setting M5 in Table 3. To overcome this drawback, we

propose to combine PCs using the following weighted quadratic function that weights the PCs by

a function of the eigenvalues.

PCQγ =
K∑

k=1

λ1−γk

(
PCk√
λk

)2

, 0 ≤ γ < +∞,

where γ controls the relative importance of each PC in the quadratic combinations. For example, if PC1

captures most of the signals, then we can choose smaller γ; while if PCK captures most of the signals,

then we can choose larger γ. Let Kγ = UΛ−γUT and denote the transformation as φγ(Z) = UTZ/λγ/2,

then PCQγ can be rewritten as PCQγ = ZTKγZ = 〈φγ(Z), φγ(Z)〉, where 〈·, ·〉 denotes the inner product

in the transformed feature space. From this point of view, PCQγ is a kernel based testing statistic (Liu

et al., 2007). The choice of γ is essentially a choice of kernel and reflects our prior belief in the true

alternative. We show in this section that several commonly used tests with γ = 0, 1, 2 are special cases

of PCQγ .

When γ = 0, PCQγ has the following form

WI = PCQ0 =

K∑

k=1

PC2
k =

K∑

k=1

Z2
k ,

which follows from the fact that U is an isometric transformation and UUT = I. This choice of γ

assumes a working independence (WI) relationship among the K Z-scores since Kγ reduces to an

identity matrix. Under the null, WI follows a mixture of chi-squared distribution
∑

j λjχ
2
1j , where

λj are the eigenvalues of Σ and χ2
1j are independent χ2

1 random variables. Hence, its p-value can

be computed using the exact method (Davies, 1980). At the significance level α, we reject the null

hypothesis H0: β = 0 if
∑K

k=1 PC2
k > Cα where P (

∑K
k=1 PC2

k > Cα;H0) = α. Thus, the acceptance
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region of WI is a K-dimensional ball with radius equal to
√
Cα. Although the acceptance region of WI

is spherically symmetric, however the probability distribution of Z is not spherically symmetric unless

Σ is an identity matrix. Under the alternative, the power of WI favors the alternatives under which

PC1 captures all the signals. This is because PC1 has the largest variance and hence signals from the

PC1 direction are more likely to fall outside of this ball-shape acceptance region (See Figure 1).

When γ = 1, PCQγ becomes the classical Wald test as

Wald = PCQ1 =
K∑

k=1

PC2
k

λk
∼ χ2

K .

This can be easily shown using the fact that ZTΣ−1Z = (UTZ)TΛ−1(UTZ) =
∑K

k=1 PC2
k/λk.At the sig-

nificance level α, its acceptance region is determined by
∑K

k=1 PC2
k/λk ≤ Cα, which is aK-dimensional

ellipsoid and Cα is the 1 − α percentile of χ2
K . Under the alternative, the distribution of the Wald test

is a non-central chi-squared distribution with non-centrality parameter ncp =
∑K

k=1 ||β||2 cos2(θk)/λk.

To know when the Wald test achieves its maximal power for any fixed ||β|| and λk, we can solve the

following constrained optimization problem

max
cos2(θk)

∑K
k=1 λ

−1
k cos2(θk)

s.t.
∑K

k=1 cos2(θk) = 1.

Using standard linear programming technique, one can easily show that the power of the Wald test is

maximized when θK = 0, i.e, when signals lie in the last PC direction, and minimized when θ1 = 0,

i.e., when signals lie in the first PC direction. Again, even though the Wald test achieves its maximal

power when the last PC captures all the signals, this does not imply the Wald test is more powerful

than its competitors under such alternatives.

When γ = 2, PCQγ is

VC = PCQ2 =
K∑

k=1

PC2
k

λ2k
.

In this case, PCQγ corresponds to the variance component (VC) score test VC = ZTΣ−1Σ−1Z (Huang

and Lin, 2013; Liu and Lin, 2017), which assumes that the βk (k = 1, · · · ,K) follow a common distri-

bution with mean 0 and variance τ and tests for H0: τ = 0. The equivalence between VC and PCQ2

can be seen by observing that VC = ZTUΛ−2UTZ =
∑K

k=1 PC2
k/λ

2
k. Compared with the Wald test, VC
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gives even more weight to the last PC and hence is more powerful than the Wald test when θK = 0.

VC follows a mixture of chi-squared distributions
∑K

k=1 λ
−1
k χ2

1k under the null, where λk are the eigen-

values of Σ and χ2
1k are independent χ2

1 random variables, so its p-value can be computed using the

exact method (Davies, 1980). The acceptance region of VC is also a K-dimensional ellipsoid but has a

different shape from that of Wald as shown in Figure 1 in Section 4.

Here, we present a simple example to illustrate the power difference between the three quadratic

tests: WI, Wald and VC. Suppose we have a bivariate normal Z-scores with correlation ρ = 0.8. The

first eigenvector is u1 = (1/
√

2, 1/
√

2) and the second eigenvector is u2 = (−1/
√

2, 1/
√

2) by direct

calculation. If β = (2.5, 2.5)T which is in the direction of u1, then the powers of WI, Wald and VC are

0.75, 0.65, 0.09 respectively; and if β = (−0.8, 0.8)T which is in the direction of u2, then the powers of

WI, Wald and VC are 0.09, 0.61, 0.71 respectively. This shows that the Wald test is less powerful than

WI when the first PC captures all the signals, and the Wald test is less powerful than VC when the last

PC captures all the signals. More power comparisons among those three tests are provided in Table 3.

3 The Omnibus PC-Based Tests

3.1 Adaptive Quadratic Combination of PCs

The results in Section 2.6 show that a lack of prior knowledge about the true principal angle can

lead to an unwise choice of γ, and the resulting test might have little power to detect the alternative.

Therefore, we propose to choose γ in a data-adaptive fashion by choosing γ using the data that yields

the smallest p-value, and then use this smallest p-value as a test statistic. In practice, it is computa-

tionally expensive to perform an exhaustive search for the optimal γ in the whole range. Instead, we

restrict our search within γ ∈ {0, 1, 2} and then pick the smallest p-value among WI, Wald and VC as a

testing statistic named PCAQ

PCAQ = min
γ
pγ ,

where pγ is the p-value of PCQγ for a given γ. Note that WI, Wald and VC tests are correlated as

they are calculated using the same data. Hence their p-values pγ are correlated. Calculations of the

p-value of PCAQ need to take their correlations into account. Specifically, the p-value of PCAQ can be

calculated as

p = 1− P{min
γ
Xγ > Φ−1(PCAQ)}, (4)

12



where Xγ = Φ−1(pγ) and Φ−1(·) denotes the inverse standard normal cumulative distribution func-

tion.

Equation (4) can be efficiently computed using the following multivariate normal distribution

function that has been implemented in the FORTRAN language (Genz, 1992, 1993) and also wrapped

in the R package mvtnorm (Genz et al., 2009). This computation requires an input of the correlation

matrix RX of the vector (Xγ=0, Xγ=1, Xγ=2) which only needs to be estimated once for the whole

genome by the following algorithm:

1. Generate B random samples from Z ∼ N(0,Σ).

2. Compute the p-values of PCQ on the bth sample for γ = 0, 1, 2, 1 ≤ b ≤ B.

3. Perform inverse-normal transformation Xγ = Φ−1(pγ) on the bth sample, where γ = 0, 1, 2.

4. Take the sample correlation matrix R̂X across the B realizations of Xγ .

In practice, one can take B = 1000 and this algorithm can provide a good estimate of RX (in a few

seconds) which can be used for computing the p-values for millions of SNPs in the whole genome.

3.2 The Omnibus PC-based Test

The PCAQ test aims at constructing an optimal quadratic PC-based test. To construct an om-

nibus test across linear, quadratic and other non-linear tests, we can combine all the PC combination

methods including PCMinP, PCFisher, PCLC, WI, Wald and VC together by taking the minimum p-

value of them as the omnibus test statistic named PCO. The p-values of those six tests are correlated

as they are calculated using the same data. Similar to PCAQ, the p-value of PCO can also be com-

puted by first performing an inverse-normal transformation of the p-value of the test statistic under

consideration, then using a multivariate normal distribution function with the correlation matrix es-

timated using the same fast Monte Carlo simulation method described above. Compared to PCAQ,

PCO combines three more non-quadratic tests and is expected to be more robust than PCAQ for vari-

ous alternatives. However, a price PCO has to pay for combing more tests is that it might be slightly

less powerful than PCAQ when quadratic combinations of PCs already have good power, for example

in the simulation setting M3 in Table 3. PCO is expected to be more powerful than PCAQ when any

of PCLC, PCFisher or PCMinP has better power than the quadratic combinations of PCs to detect the

signals, as demonstrated in the simulation settings M4, M7, M12, M13 and M15 in Table 3.
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4 Comparison of the Rejection Boundaries of the PC-Based Tests

In this section, we compare the proposed PC-based tests graphically in terms of their rejection

boundaries. For the ease of illustration, we focus on the two dimensional (Z1, Z2)
T space as given in

Figure 1. We also included the Oracle test for β = (1, 1)T and β = (0, 1)T assuming the true alternative

is known. We set the correlation to be 0.6, so the two eigenvalues are λ1 = 1.6 and λ2 = 0.4, and

the two corresponding eigenvectors are u1 = ( 1√
2
, 1√

2
)T and u2 = (− 1√

2
, 1√

2
)T respectively. Suppose

that the true alternative is β = (1, 1)T which is in the same direction of u1, then PC1 has the same

rejection boundary as the Oracle test. Suppose that the true alternative is β = (0, 1)T which is in the

same direction of UJ where U = (u1,u2) is the eigenvector matrix and J = (1, 1)T , then PCLC has

the same rejection boundary as the Oracle test. One can further deduce that PC2 will have the same

rejection boundary as the Oracle test if the true alternative is proportional to u2. We observe that

all the proposed tests have convex acceptance regions. Hence the proposed tests are all admissible

(Birnbaum, 1954, 1955). This implies that each test can be more powerful than its competitors for some

alternatives but less powerful for others.

The rejection boundaries of PC1 and PC2 are all straight lines but are orthogonal to each other,

indicating that these two PCs aim to detect orthogonal alternatives. PC2 has a narrower gap between

the two rejection boundary lines than that of PC1, because PC2 has a smaller variance (eigenvalue).

The rejection boundaries of PCLC are also straight lines but are not orthogonal to either PC1 or PC2.

The angle between the rejection boundary lines of PCLC and PC1 is 14o. Hence, if the mean vector β

also has angle 14o with PC1 direction, then β is parallel to the rejection boundaries of PCLC and will

never be detected by PCLC. If β has angle 76o with PC1 direction as shown by the solid line with “T”-

type arrows, then β is orthogonal to the rejection boundaries of PCLC (shortest distance to the null)

and will be detected by PCLC with its maximal power. However, this does not imply PCLC is more

powerful than its competitors to detect the alternatives in the direction of the solid line with “T”-type

arrows because PCLC is not as powerful as the Oracle test for such alternatives.

The rejection boundary of PCMinP is a tilted rectangle with the edge lengths proportional to
√
λk, k = 1, 2. PCMinP achieves its maximal power when β is in the PC2 direction (shortest distance

to the null), while achieves its minimal power when β points to the four corners, under which PC1

and PC2 have equal powers. The rejection boundaries of Wald and VC are both ellipses. However,

the minor axis of VC is shorter than that of Wald, while the major axis of VC is longer than that of
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Figure 1: The rejection boundaries of the proposed PC-based tests for bivariate normal test statistics
(Z1, Z2) with correlation equal to 0.6. The dashed lines or curves represent the boundaries that separate
the acceptance and rejection regions at the significance level 0.05. The longer solid lines with arrows
represent the PC1 direction, the shorter solid lines with arrows represent the PC2 direction, and the
lengths of the longer and shorter solid lines with arrows are equal to 6

√
λ1 and 6

√
λ2 respectively. For

PCLC, the added solid line with “T”-type arrows illustrates the direction for alternative β which is
orthogonal to its rejection boundaries, where θ1 = 76o and θ2 = 14o.
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Wald. This implies that VC is more powerful than Wald when β is in the PC2 direction. The rejection

boundaries of PCFisher are similar to that of Wald, which well explains why they have similar powers

as will be demonstrated in the simulation studies. The rejection boundary of WI is a circle and WI

actually favors alternatives in the PC1 direction because it’s more likely for the signals to fall outside

of the rejection boundary of WI along the PC1 direction compared to other PC directions.

We observe that the rejection boundaries of PCMinP, PCAQ and PCO resemble each other be-

cause these three tests all use the minimum p-value as testing statistics across certain sets of tests and

hence are data adaptive. The rejection boundary of PCAQ is smooth and does not have sharp angles

like that of PCMinP. The rejection boundary of PCO is more bumpy than that of PCAQ since it com-

bines linear and non-linear tests. The rejection boundary comparisons well explain the differences and

connections between the proposed PC-based tests, and illustrate that there is no UMP test for all the β

directions.

5 Eigen-Analysis of Correlation Matrices and Their Effects on the PC-Based

Tests

The results in Sections 2 and 3 show that the powers of the PC-based tests depend on the prin-

cipal angles θk, the eigenvalues λk for a fixed norm of β. To test for associations between a SNP and

a set of multiple phenotypes, a question of practical interest is that how the PC-based tests perform

in the presence of a mixture of signal and noise phenotypes, especially when signals are sparse. For

example, in studying the effects of a SNP on a genetic pathway/network consisting of multiple gene

expressions, it is common that a SNP affects some gene expressions but not others in the genomic path-

way/network. In this section, we investigate how the correlation structure of Σ affects its eigenvalues

and eigenvectors, and subsequently affects the powers of PC-based tests. Suppose that K1 out of K

phenotypes are associated with a genetic variant and K0 = K −K1 of them are not, i.e., the signal vec-

tor β contains K1 non-zeros (signals) and K0 zeros (noises), denoted as βT = (β1, . . . , βK1 , 0, . . . , 0).

For Σ, we consider the following partitioned correlation matrix

Σ =




Σ1 Σ2

ΣT
2 Σ3


 ,
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where Σ1 and Σ3 denote the correlation matrices among signal and noise phenotypes respectively,

and the (i, j)th element of Σ2 denotes the correlation between the ith signal phenotype and the jth

noise phenotype, 1 ≤ i ≤ K1, 1 ≤ j ≤ K0. We first obtain eigen-analysis results for special structured

correlation matrices Σ, and then consider more general situations.

5.1 Exchangeable Correlation Matrices

If Σ is exchangeable with correlation ρ > 0, then its eigenvalues are

λ1 = (K − 1)ρ+ 1; λk = 1− ρ, k = 2, . . . ,K,

where the algebraic multiplicities of λ1 and λk are one and K − 1 respectively. This implies that

the eigenspace associated with λ1 is of dimension one and can be spanned by eigenvector uT1 =

( 1√
K
, 1√

K
., . . . , 1√

K
), while the eigenspace associated with eigenvalue λk, k = 2, . . . ,K is of dimension

K − 1 and can be expressed as

Eλ=1−ρ = {u ∈ RK :
K∑

k=1

uk = 0}.

Acutally, there are infinitely many possible choices of the K − 1 eigenvectors in Eλ=1−ρ when K ≥ 3,

and hence infinitely many possible choice of PCk, k = 2, . . . ,K.

The first eigenvalue (K − 1)ρ + 1 is usually much larger than eigenvalue 1 − ρ for relatively

large K. Such a correlation structure is related to the spiked population co-variance model (Johnstone,

2001). The principal angle between β and u1 is 0 when β = (1, 1, . . . , 1)T c where c is a non-zero scalar,

and is 90o when
∑K

k=1 βk = 0. Therefore, PC1 can best detect fully dense homogeneous signals, and its

power decreases when the signals become sparser or in different directions. In addition, the power of

PC1 decreases when the correlation ρ increases. When signals are fully dense and homogeneous, the

WI test will also have good power, but the Wald, and VC tests might have low power. For example,

in the simulation study, when K = 40 and ρ = 0.2, the WI test has power of 0.82 to detect fully dense

and homogeneous signals β = (1.4, 1.4, . . . , 1.4)T , but the Wald test has power of only 0.24 as shown

in the setting M9 in Table 3. However, if the signals are heterogeneous and
∑K

k=1 βk = 0 with at least

one βk nonzero, β is in the eigen-space Eλ=1−ρ and can be detected by Wald and VC with good power

but not WI.
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5.2 Block Diagonal Exchangeable Correlation Matrices

If Σ1 and Σ3 are exchangeable with correlations ρ1, ρ3 respectively, and theK1 signal phenotyes

are uncorrelated with the K0 noise phenotypes, then the four unsorted eigenvalues of Σ and their

algebraic multiplicities are

λ1 = 1 + (K1 − 1)ρ1, ν(λ1) = 1;λ2 = 1− ρ1, ν(λ2) = K1 − 1;

λ3 = 1 + (K0 − 1)ρ3, ν(λ3) = 1;λ4 = 1− ρ3, ν(λ4) = K0 − 1.

The signal phenotype eigenspaces are

Eλ1 = {u ∈ RK : uT = t(1/
√
K1, . . . , 1/

√
K1,︸ ︷︷ ︸

K1

0, . . . , 0︸ ︷︷ ︸
K0

), t ∈ R},

Eλ2 = {u ∈ RK :

K1∑

k=1

uk = 0, uK1+1 = · · · = uK = 0},

and the noise phenotype eigenspaces are

Eλ3 = {u ∈ RK : uT = t(0, . . . , 0,︸ ︷︷ ︸
K1

1/
√
K0, . . . , 1/

√
K0︸ ︷︷ ︸

K0

), t ∈ R},

Eλ4 = {u ∈ RK :

K∑

k=K1+1

uk = 0, u1 = · · · = uK1 = 0}.

Because the signal and noise phenotype eigenspaces are orthogonal to each other, thus those

K0 PCs in the noise eigenspace are all powerless to detect any signals. Therefore, we only need to

focus on discussing the powers of the K1 PCs in the signal phenotype eigenspaces. From Section 5.1,

we know that the PC in Eλ1 can best detect homogeneous effects while the PCs in Eλ2 can best detect

heterogeneous effects. Actually, as long as some principal angle is zero, then that particular PC with

zero principal angle in the signal eigenspace is as powerful as the Oracle test, regardless of signal

sparsity.

5.3 Block Diagonal Correlation Matrices

We now consider more general situations where Σ1 and Σ3 are unstructured. By performing

spectral decomposition on these two matrices, we have Σ1 = U1Λ1U
T
1 and Σ3 = U3Λ3U

T
3 , where
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Λ1 and Λ3 are diagonal matrices with diagonal elements the eigenvalues, U1 and U3 are eigenvector

matrices. If the signal and noise phenotypes are uncorrelated, then we have




Σ1 0

0 Σ3


 =




U1 0

0 U3







Λ1 0

0 Λ3







U1 0

0 U3




T

.

Therefore, the PCs from the signal eigenspace allocate zero loadings for the noise phenotypes.

In other words, if signal and noise phenotypes are uncorrelated, then the PCs from the signal eigenspace

are not contaminated by any noise phenotypes and thus one particular PC from the signal eigenspace

can be as powerful as the Oracle test if its principal angle is zero, regardless of signal sparsity.

6 Simulation Studies

6.1 Type I Error Rates

Single PC tests and PCLC follow the standard normal distribution under the null so that their

type I error rates are always well controlled, hence we omit their type I error results. Besides the Wald

test, we evaluate the sizes of the proposed PC-based tests, including the p-value based tests PCMinP

and PCFisher, and quadratic tests WI and VC, and the omnibus tests PCAQ and PCO, at the nominal

levels α = 0.05, 0.01, 0.001, 10−4, 10−5, in view of the small significance levels that are of common

interest in GWAS. For comparison purpose, we also included the p-value correction method TATES

(van der Sluis et al., 2013) for comparison purpose which also only requires GWAS summary statistics.

We first consider a low-dimensional unstructured covariance matrix ΣunK3 estimated from the global

lipids data (Teslovich et al., 2010) for high-density lipoprotein cholesterol (HDL), total cholesterol (TC)

and triglycerides (TG),

ΣunK3 =




1.00 0.16 −0.42

0.16 1.00 0.38

−0.42 0.38 1.00



. (5)

We also consider a high dimensional (K = 100) unstructured covariance matrix ΣunK100 generated

using the algorithm described in Marsaglia and Olkin (1984) and the actual matrix is provided in

the supplementary excel file. We generated 10 millions of multivariate normal samples of dimensions

K = 3 andK = 100 with mean zeros and covariance matrices equal to ΣunK3 and ΣunK100 respectively.
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We found that the type I error rates of the PC based tests are well controlled at those nominal levels

as summarized in Table 1. The type I error rates of the p-value correction method TATES are slightly

inflated, in line with previous findings by He et al. (2013).

Table 1: Type I error rates estimated as the proportions of p-values less than significance level α in 107

simulation replications under the nulls in both low and high dimensional settings.

Low dimensional setting: K = 3, covariance matrix is ΣunK3

α PCMinP PCFisher WI Wald VC PCAQ PCO TATES
0.05 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.051
0.01 0.010 0.010 0.010 0.010 0.010 0.0099 0.0099 0.011
0.001 0.001 0.00099 0.001 0.001 0.001 0.001 0.00099 0.00106
10−4 9.75× 10−5 1.01× 10−4 1.02× 10−4 1.01× 10−4 1.02× 10−4 9.81× 10−5 9.93× 10−5 1.08× 10−4

10−5 1.03× 10−5 9.32× 10−6 8.33× 10−6 8.61× 10−6 8.52× 10−6 8.47× 10−6 9.71× 10−6 1.05× 10−5

High dimensional setting: K = 100, covariance matrix is ΣunK100

α PCMinP PCFisher WI Wald VC PCAQ PCO TATES
0.05 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.051
0.01 0.010 0.010 0.010 0.010 0.010 0.0099 0.0099 0.011
0.001 0.001 0.00099 0.001 0.001 0.001 0.001 0.00099 0.00106
10−4 9.65× 10−5 1.01× 10−4 1.02× 10−4 1.01× 10−4 1.02× 10−4 9.86× 10−5 9.95× 10−5 1.06× 10−4

10−5 1.02× 10−5 9.38× 10−6 8.46× 10−6 8.78× 10−6 8.99× 10−6 9.37× 10−6 9.78× 10−6 1.05× 10−5

6.2 Power Comparisons of the PC Based Tests

As shown in Figure 1, different tests have different rejection boundaries and the power of each

test depends on both the mean vector and the covariance matrix of Z. We first provide empirical

evidence using bivariate phenotypes to show that the powers of the PC based tests depend on the

direction of the true β for a fixed between-phenoypte correlation matrix, and no single test is most

powerful for all directions of β, while the omnibus tests are more robust.

Consider a bivariate standard normal (Z1, Z2)
T with ρ = 0.6 and mean β = (β1, β2)

T 6= 0 under

the alternative. Using the polar coordinate system, we can rewrite β = r{cos(φ), sin(φ))}, where r ≥ 0

and φ ∈ [0, 360o]. For illustrative purpose, we set r = 2. Then the power of each test is a function

of φ only. We divide the interval [0, 360o] equally into 72 sub-intervals specified by 73 grid points,

φb = 0, 5o, . . . , 360o, b = 1, 2, . . . , 73. For each φb, we generated one million standard bivariate normal

samples with ρ = 0.6 and obtained one million p-values for each test. The power of each test for each

φb is estimated by the proportion of p-values that are less than α = 0.05. By connecting the 73 power

points of each test, we obtain the power function curves in Figure 2.
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Figure 2: This figure shows the power curve of each PC test for alternatives β = r(cos(φ), sin(φ))
where r = 2 and φ ∈ [0, 360o] are the polar coordinates. The bivariate correlation is ρ = 0.6. This figure
mirrors the rejection boundaries as shown in Figure 1.

We found a periodic pattern of the power curves with period equal to 180o, and within each

period, the power of each test is a function of φ, where φ specifies the direction of β in R2. PC1

is as powerful as the Oracle test when φ = 45o, 225o or equivalently when β = ±(
√

2,
√

2)T , and

consequently WI is almost as powerful as the Oracle test in such settings. Likewise, PC2 is as powerful

as the Oracle test when φ = 135o, 315o or equivalently when β = ±(−
√

2,
√

2)T , and VC is almost

as powerful as the Oracle test (more powerful than Wald) in these settings. Wald and PCFisher have

almost the same power curves. PCLC is as powerful as the Oracle test when φ = 90o, 270o or β =

±(0, 2)T . The omnibus tests PCAQ and PCO are never as powerful as the ideal Oracle test, but are

robust to the alternatives with little power loss compared to the Oracle test. When either the first or

the last principal angle is zero, PCAQ and PCO can be more powerful than Wald.

In low dimensional settings where K = 3 (M1-M5), we consider an unstructured correlation

matrix ΣunK3 given in equation (5) and the following five mean vectors: β1 = (−1.94, 1.58, 2.87),

β2 = (2.31, 2.62, 0.1), β3 = (0.99,−0.94, 1.18), β4 = (0.94, 0.86, 1.92), β5 = (0.79, 3.2, 0.16).

We also consider K = 8 and an unstructured correlation matrix ΣunK8 given in Table 4 of

Section 7, and three mean vectors: β6 = 4.5u1 = (1.18, 0.69, 1.33,−2.39, 1.39, 2.66, 1.27, 0.52),

β7 = 3.5u4 = (−0.8, 1.04, 0.74, 0.39, 1.69,−0.01,−0.67,−2.55), and β8 = 2.5u8 =

(0.08,−0.02,−0.11, 1.54,−0.65, 1.83,−0.08,−0.24), where u1,u4,u8 denote the first, fourth and eighth
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eigenvectors of ΣunK8 respectively.

In high dimensional settings, we first consider K = 40 and an exchangeable correlation

matrix ΣexK40 with off-diagonal correlation ρ = 0.2, and a fully dense and homogeneous signal

vector β9 = (1.4, 1.4, . . . , 1.4) as in setting M9. In setting M10, the correlation matrix ΣbexK40

is block diagonal where the signal (K1 = 6) and noise (K0 = 34) blocks are exchangeable

with correlations equal to 0.5 and 0.2 respectively, and the signal vector is sparse and β10 =

(1.98,−1.51,−0.12,−0.12,−0.12,−0.12, 0, . . . , 0) with six nonzero elements and 34 zero elements. We

also considerK = 100 and an unstructured correlation matrix ΣunK100 (provided in supplementary ex-

cel file) generated using the Marsaglia and Olkin (1984) algorithm. In settings M11 and M12, consider

two sparse signal vectors β11 = (0.03, 0.04,−0.02, 0.05,−0.04, 0.01, 0.02, 0.09,−0.13,−0.02, 0, . . . , 0)

and β12 = (−0.17, 0.4,−0.05, 0.19,−0.68, 0.21, 0.3,−0.28, 0.29,−0.11, 0, . . . , 0) that both contain ten

non-zero elements and 90 zeros. In settings M13-M15, consider three dense signal vectors (provided

in the supplementary excel file): β13 contains 90 signals and ten noises, β14 and β15 are set to be

proportional to the first and the eightieth eigenvectors of ΣunK100 respectively.

For each setup, we generated 105 multivariate normal samples with mean equal to β and corre-

lation matrix equal to Σ and obtained 105 p-values for each test. The empirical power was calculated as

the proportion of p-values less than α = 0.05. We summarize the power results in Table 3. The results

show that whenever θk = 0, then PCk is as powerful as the Oracle test as shown in the low dimen-

sional settings from M1 to M3. PC1 requires a larger overall signal magnitude ||β|| to have comparable

power as that of PC3, simply because PC1 has a larger variance. As expected, WI is more powerful

than Wald and VC whenever PC1 is the Oracle test, while VC is more powerful than WI and Wald

whenever the last PC is the Oracle test. PCLC is as powerful as the Oracle test as shown in the setting

M4 where the three principal angles are equal to each other, and PCLC is powerless in the setting M5

where the signal vector β is parallel to the rejection boundary of PCLC. The TATES method can have

comparable power to PCO in settings M1, M2 and M5, but it can perform poorly in settings M3 and

M4. By contrast, the PCO always has good power in all those five settings M1-M5. In M6, the PC1 test

attains the Oracle power, and hence WI and PCMinP are both more powerful than the Wald test, the

adaptive omnibus tests PCAQ and PCO also outperform Wald. In setting M7 where we set the fourth

principal angle to be zero, and thus the Wald test outperform WI and VC in this setting, but is still less

powerful than PCMinP. PCO outperforms Wald because PCMinP is one of its combining component.

In M8 where the last principal angle is set to be zero, the last PC is the Oracle test and VC is more pow-
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erful than Wald. PCAQ and PCO also outperform Wald. The TATES method has comparable power to

PCO in M6 but performs poorly than PCO in M7-M8.

In high dimensional setting M9, PC1 has the Oracle power to detect fully dense homogeneous

signals simply because the first principal angle is zero, while both PCFisher and Wald have very low

power in this setting. The TATES method is less powerful than the PCO in M9. In M10 where the

signals are sparse, we additionally considered the MinP test defined as the minimum p-values across

all the K original Z-testing statistics as in (Conneely and Boehnke, 2007), which is designed to de-

tect sparse signals. The power of MinP (not reported in Table 3) is 0.20, smaller than the powers of

PCFisher, Wald, VC, PCAQ and PCO. This surprising result demonstrates that PC based tests can

outperform MinP for detecting sparse signals by leveraging on the between-phenotype correlation

structures. The TATES method also has very low power in M10. In high dimensional settings M11 and

M12 where the signals are sparse, the MinP and the TATES methods are almost powerless while PCO

has very good power to detect these two sparse signals. The Wald test also performs poorly in these

two settings. For dense signals in settings M13 and M15, the TATES method is almost powerless and

the Wald test also has very low power, while the PCO test still has good power. In setting M14 where

we set the first principal angle to be zero, PC1 is the Oracle test and the WI test is thus very powerful,

while the Wald test has very low power. The TATES method has comparable power to the PCO test in

M14. We found that the TATES method has similar performance to the WI test, which can be explained

by the similarities between the rejection boundaries of these two tests. The rejection boundary of the

TATES method is provided in Figure S1 in Section S1 of the Supplementary Materials.

7 Joint Analysis of Multiple Metabolic Syndrome Related Phenotypes

We are interested in detecting the genetic associations between individual SNPs and multiple

phenotypes of metabolic syndrome using the GWAS summary statistics of the MetS-related pheno-

types from the four international consortia described in the Introduction Section. The GWAS sum-

mary statistics from these four consortia are publicly available. The website links for those data sets

are provided in Section S2 in the Supplementary Materials. However, the individual level phenotype

and genotype data are not directly accessible. Hence, any multiple phenotype analysis method that re-

quires individual level data cannot be applied. The single-trait GWAS analysis performed by the four

international consortia might miss susceptible SNPs that are associated with MetS, even with very
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Table 2: Parameter configurations for power comparison in simulation studies. The numbers in the
three columns correspond to principal angles θ1, θ2, θK are in the unit of degree. The last column
represents the power of the Oracle test.

Setup K β Σ ||β|| θ1 θ2 θK Oracle
M1 3 β1 ΣunK3 3.8 0 90 90 0.85
M2 3 β2 ΣunK3 3.5 90 0 90 0.89
M3 3 β3 ΣunK3 1.8 90 90 0 0.85
M4 3 β4 ΣunK3 2.3 54.7 54.7 54.7 0.79
M5 3 β5 ΣunK3 3.3 71.2 27.5 109.7 0.91
M6 8 β6 ΣunK8 4.5 0 90 90 0.93
M7 8 β7 ΣunK8 3.5 90 90 90 0.94
M8 8 β8 ΣunK8 2.5 90 90 0 0.92
M9 40 β9 ΣexK40 8.85 0 90 90 0.83
M10 40 β10 ΣbexK40 2.5 90 90 0 0.94
M11 100 β11 ΣunK100 0.18 90 90.3 3.6 0.92
M12 100 β12 ΣunK100 1.0 90 90 90 0.97
M13 100 β13 ΣunK100 3.38 90 90 90 0.97
M14 100 β14 ΣunK100 15.0 0 90 90 0.88
M15 100 β15 ΣunK100 2.0 90 90 90 0.97

Table 3: Powers estimated as the proportions of p-values less than significance level α = 0.05 in 105

replications under various alternatives. The setups are described in Table 2.

Low dimensional setting: K = 3 and K = 10

Setup PC1 PC2 PCK PCMinP PCFisher PCLC WI Wald VC PCAQ PCO TATES
M1 0.85 0.05 0.05 0.76 0.72 0.23 0.81 0.74 0.31 0.76 0.75 0.77
M2 0.05 0.89 0.05 0.80 0.75 0.30 0.79 0.77 0.44 0.73 0.77 0.77
M3 0.05 0.05 0.85 0.74 0.70 0.67 0.23 0.72 0.84 0.81 0.77 0.28
M4 0.17 0.23 0.59 0.53 0.63 0.79 0.42 0.65 0.68 0.65 0.72 0.43
M5 0.14 0.75 0.45 0.75 0.82 0.05 0.73 0.82 0.71 0.79 0.78 0.78
M6 0.93 0.05 0.05 0.76 0.61 0.14 0.84 0.67 0.32 0.80 0.75 0.71
M7 0.05 0.05 0.05 0.81 0.66 0.23 0.67 0.72 0.68 0.66 0.75 0.59
M8 0.05 0.05 0.92 0.76 0.61 0.34 0.33 0.67 0.83 0.78 0.74 0.34

High dimensional setting: K = 40 and K = 100

Setup PC1 PC2 PCK PCMinP PCFisher PCLC WI Wald VC PCAQ PCO TATES
M9 0.83 0.05 0.05 0.42 0.21 0.06 0.82 0.24 0.06 0.75 0.68 0.59
M10 0.05 0.05 0.94 0.64 0.30 0.12 0.10 0.36 0.55 0.45 0.56 0.20
M11 0.05 0.05 0.92 0.53 0.18 0.66 0.05 0.22 0.92 0.85 0.83 0.05
M12 0.05 0.05 0.05 0.75 0.24 0.09 0.05 0.31 0.07 0.19 0.63 0.06
M13 0.06 0.05 0.05 0.73 0.23 0.06 0.07 0.28 0.05 0.19 0.61 0.09
M14 0.88 0.05 0.05 0.42 0.15 0.04 0.86 0.18 0.05 0.77 0.71 0.70
M15 0.05 0.05 0.07 0.72 0.24 0.06 0.06 0.30 0.07 0.20 0.58 0.06

large sample sizes, because the genetic effects of common variants are usually small.

To increase analysis power for identifying additional SNPs associated with MetS, we applied

the proposed PC based testing procedures and the TATES method (van der Sluis et al., 2013) to the

24



GWAS summary statistics data by jointly analyzing the eight MetS-related traits described in the Intro-

duction Section. They include Body Mass Index (BMI), Fasting Glucose (FG), Fasting Insulin (FI), High-

Density Lipoprotein cholesterol (HDL), Low-Density Lipoprotein cholesterol (LDL), triglycerides (TG),

Waist-hip-ratio (WHR), and Systolic Blood Pressure (SBP). We first merged these four GWAS summary

statistics data sets using the common 1,999,568 SNPs shared by the four datasets. We then performed

our proposed PC based tests using these univariate Z-scores, and also applied the TATES method on

the univariate p-values. The correlation matrix Σ among these MetS related traits was estimated by

the sample correlation matrix across approximately independent SNPs after LD pruning (Zhu et al.,

2015; Liu and Lin, 2017), and is provided in Table 4.

Table 4: The correlation matrix Σ of single-trait GWAS Z-scores estimated using the MetS GWAS
summary statistics data sets. The eigen-values of Σ are: 1.75, 1.26, 0.99, 0.95, 0.94, 0.82, 0.75, 0.54.

Σ BMI FG FI HDL LDL TG WHR SBP
BMI 1 -0.02 -0.04 -0.2 0.05 0.16 -0.01 -0.03
FG -0.02 1 0.2 -0.02 0.01 0.05 0.03 0.08
FI -0.04 0.2 1 -0.11 0.03 0.15 0.12 0.08
HDL -0.2 -0.02 -0.11 1 -0.09 -0.42 -0.11 0
LDL 0.05 0.01 0.03 -0.09 1 0.24 0.06 0
TG 0.16 0.05 0.15 -0.42 0.24 1 0.15 0.07
WHR -0.01 0.03 0.12 -0.11 0.06 0.15 1 0.06
SBP -0.03 0.08 0.08 0 0 0.07 0.06 1

The QQ plots for the GWAS analysis using the PCA-based methods and the TATES method

are provided in Section S2 of the Supplementary Materials and show the proposed methods had good

genomic control. If a SNP was associated with any of the eight MetS related phenotypes, then it

should have been reported previously in the single trait analysis published in the literature. Therefore,

the newly detected SNPs are those SNPs that were detected by multiple phenotype analysis but were

missed by previous single-trait analysis performed by the four international consortia. In other words,

the p-values of those newly detected SNPs are not genome-wide significant in any of the eight single-

trait GWAS studies. Since the identified SNPs might be in Linkage Disequilibrium (LD) with each

other, we performed LD pruning to obtain almost independent SNPs using the LD threshold r2 < 0.01

within each 500kb region by PLINK (Purcell et al., 2007). After LD pruning, we greatly reduced the

numbers of newly detected significant SNPs, indicating that many newly detected SNPs are in LD with

each other. The numbers of new SNPs detected by each test are summarized in Table 5.

In what follows, we only report and discuss the identified SNPs after LD pruning. The last PC
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detected 26 SNPs after LD pruning, more than the other seven PCs. As expected, VC detected more

SNPs than Wald and WI. PCAQ, which combines WI, Wald and VC, detected 103 SNPs, while PCO de-

tected 98 SNPs. PCO detected slightly fewer SNPs than PCAQ because PCLC, PCFisher and PCMinP

did not contribute more new SNPs in addition to the WI, Wald and VC tests. Note by combining more

tests, PCO pays a higher price than PCAQ in the p-value adjustment. This is because PCO takes the

smallest p-value of the six tests as the test statistic, while PCAQ only uses the smallest p-value of the

three tests (WI, Wald and VC) as the test statistic. Many SNPs can be detected by more than one test.

For example, 95 SNPs can be detected by both PCAQ and PCO as shown in Figure 3. It can also be

seen from Figure 3 that VC and Wald detected 40 SNPs in common, while VC detected 29 SNPs that

Wald failed to detect, and Wald detected 25 SNPs that VC failed to detect. This illustrates that each

test can be more powerful than the others in some scenarios because of its admissibility property. It

should be noted that our proposed adaptive omnibus tests PCAQ and PCO detected more SNPs than

non-adaptive tests, demonstrating their robust performance.

The TATES method only detected three new SNPs missed by the original single-trait GWAS

studies. They are rs9600212 (p = 1.08×10−13), rs9592962 (p = 1.45×10−12), rs9592961 (p = 7.12×10−12),

within a 2kb intronic region of gene KLF12 on chromosome 13 before LD pruning. The most significant

SNP rs9600212 was retained after LD pruning. These three SNPs were also detected by PCFisher, WI,

Wald, VC, PCAQ and PCO. Note that KLF12 was found to be associated with the duration of the Q, R,

and S waves (QRS duration), which measures the duration of ventricular muscle depolarization seen

on a typical electrocardiogram and hence might play a role in affecting heart functions (Sotoodehnia

et al., 2010).

Note that it is possible that a SNP can be detected by single-trait analysis but might not be

detected by multiple trait analysis using PC based tests or the TATES method. For example, SNP

rs6129779 on chromosome 20 was found to be associated with LDL (p = 4.04 × 10−9) and has been

reported by the GLGC (Willer et al., 2013), but it was not detected using the proposed PC based tests

or the TATES method. This is because there is only one weak signal mixed with seven noises, and thus

joint analysis using either PC based tests or the TATES method might not be able to detect this rare and

weak signal with sufficient power.

We now take a subset of the newly detected SNPs presented in Table 6 to illustrate the dif-

ferences and connections of our proposed PC based tests. For the ten SNPs in Table 6, none of their

phenotype-specific p-values reached the genome-wide significance threshold, so those ten SNPs were
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Table 5: The numbers of newly detected SNPs (not reported by the original GWAS studies) that reached
the genome-wide significance at α = 5 × 10−8 by joint analysis of the eight MetS-related traits (BMI,
FG, FI, HDL, LDL, TG, WHR, SBP) using the proposed PC based tests and the TATES method before
and after LD pruning.

LD Pruning PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Before 23 7 16 6 29 32 19 108
After 7 2 3 1 5 4 1 26

LD Pruning PCMinP PCFisher PCLC WI Wald VC PCAQ PCO TATES
Before 123 404 7 210 458 476 682 581 3
After 25 60 3 42 65 69 103 98 1

29 2540

VC Wald

(a) VC vs Wald

41

3

62

PCAQ

Wald

(b) PCAQ vs Wald

37
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Wald
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8

3

95

PCAQ PCO

(d) PCAQ vs PCO

Figure 3: Venn Diagrams for the overlapping SNPs detected by Wald, VC, PCAQ and PCO tests after
LD pruning.

not identified by the original single-trait analysis performed by the four international consortia. We

also estimated the eight empirical principal angles (provided in the supplementary excel file) for each

of the ten SNPs by calculating the angles between the Z-score vector and the eigenvectors of the corre-

lation matrix in Table 4 to help illustrate the concept of principal angle in this real data example. For

SNP rs355838, its first principal angle was estimated as 41.8o and the p-value of PC1 was 1.53 × 10−9,

and all the other seven principal angles for this SNP were more closer to 90o and the p-values of all

the other seven PCs were not genome-wide significant. Intuitively, this means that the genetic effect

vector of SNP rs355838 is more similar to the first PC direction and less similar to the other PC direc-

tions. Using the first PC will more likely detect this association signal. As a result, the p-value of WI,

which has a similar performance to PC1, for detecting SNP rs355838 is more significant than those of

PCFisher, Wald and VC. Biologically, SNP rs355838 is located in an intronic region of gene COBLL1,

which was reported as a pleiotropic gene that was associated with metabolic syndrome and inflamma-

tion by (Kraja et al., 2014). Specifically, this SNP was found to be associated with at least one metabolic

trait and one inflammatory marker.

The last principal angle of SNP rs8321 was estimated to be 38o, and all the other seven principal
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angles for this SNP were more closer to 90o. The p-value of the last PC was 1.71× 10−11, and hence VC

was more significant than Wald, WI, PCFisher, PCLC and PCMinP. Another example is SNP rs308971

whose first principal angle was estimated to be 29.26o and the p-value of the first PC was 4.39× 10−8,

while the p-values of all the other seven PCs were not genome-wide significant, because their principal

angles are closer to 90o. For this SNP rs308971, the p-value of WI test was 2.48× 10−10 while the Wald

and VC tests were not even genome-wide significant. This gene SYN2 was found to be related to type

2 diabetes (T2D) (Zeggini et al., 2008).

As for SNP rs9394279, the p-value of PCLC was 1.4× 10−8 while the p-values of WI, Wald, VC

and PCAQ were not genome-wide significant. The PCO test which contains PCLC as one combining

component has p-value 2.98 × 10−8. This demonstrates that PCO which combines PCLC, PCMinP,

PCFisher, WI, Wald and VC all together is more robust than any of the individual components, and is

also more robust than PCAQ which only combines three tests: WI, Wald and VC. We can also see from

Table 6 that whenever any of WI, Wald and VC is significant, then the p-value of PCAQ is slightly

more significant than PCO. This is because PCLC, PCMinP and PCFisher contribute little or none

information in addition to WI, Wald and VC when the latter three tests can already capture the signal,

and in this case PCAQ will perform slightly better than PCO. However, as in case of SNP rs9394279, WI,

Wald, VC and hence PCAQ failed to detect this signal, but PCO was able to detect it. This is because

PCLC can capture this signal. Those identified new SNPs provide potential candidates for future

functional studies to better understand their biological roles in the etiology of metabolic syndrome.

8 Discussion

In this paper, we proposed a series of principal component based testing procedures to detect

genetic associations between a SNP and multiple phenotypes in GWAS studies. These methods are

implemented in our software package MPAT (Multiple Phenotype Association Tests). Contrary to the

common notion and practice of PCA analysis which usually retains the top few PCs that explain most

of the variability in the data for dimension reduction to be used for testing for genetic effects with

multiple phenotypes, we found that the higher order PCs can be more powerful than the top PCs for

association analysis. This counter-intuitive phenomenon can be well explained by the novel geometric

concept of principal angle first introduced in this paper. Theoretically, a particular PC is powerful

if its principal angle is zero and powerless if its principal angle is 90o. Prior to the introduction of
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Table 6: P-values of a selected subset of new SNPs detected by PC based tests. The p-values of PCAQ
and PCO for the first SNP rs355838 are reported as < 10−15 due to the numerical precision limits of the
R package mvtnorm. CHR represents chromosome number.

rsID CHR Gene FG FI HDL LDL TG WHR BMI SBP
rs355838 2 COBLL1 1.78E-01 1.56E-07 4.10E-07 3.05E-05 1.21E-04 1.70E-07 7.80E-06 1.13E-01
rs8321 6 ZNRD1 1.12E-01 2.96E-01 1.69E-05 1.91E-01 1.05E-06 1.10E-01 3.87E-01 3.19E-01
rs5754352 22 UBE2L3 5.21E-02 9.09E-01 6.57E-08 3.33E-02 9.11E-03 5.70E-01 5.93E-04 2.88E-01
rs308971 3 SYN2 5.25E-03 2.78E-06 3.27E-03 2.36E-02 3.51E-05 1.50E-04 5.54E-01 1.29E-02
rs2269928 11 C11orf9 4.64E-01 4.76E-01 7.63E-02 9.59E-08 1.32E-06 3.20E-01 7.87E-01 2.50E-01
rs10744777 12 ALDH2 9.99E-01 8.40E-01 1.46E-02 1.56E-07 2.18E-02 8.90E-01 1.18E-01 6.24E-06
rs11717195 3 ADCY5 2.68E-07 1.20E-01 4.77E-04 3.77E-02 4.52E-01 2.60E-01 1.34E-04 5.05E-01
rs6485702 11 LRP4 4.60E-02 8.54E-02 6.88E-08 4.68E-04 2.40E-07 2.10E-01 4.72E-01 2.99E-01
rs6810027 3 NISCH 4.11E-01 1.06E-02 1.07E-06 1.67E-02 3.09E-02 1.20E-07 8.68E-02 2.37E-01
rs9394279 6 intergenic 5.02E-01 2.62E-03 2.92E-05 2.96E-02 6.46E-01 1.60E-01 1.56E-01 2.27E-01

SNP CHR Gene PCLC PCFisher PCMinP WI Wald VC TATES PCAQ PCO
rs355838 2 COBLL1 1.42E-03 1.10E-16 1.23E-08 9.62E-18 1.28E-16 5.14E-11 6.15E-06 <E-15 <E-15
rs8321 6 ZNRD1 3.05E-06 1.25E-09 1.37E-10 1.28E-05 1.50E-10 9.30E-14 2.78E-04 9.44E-14 1.82E-13
rs5754352 22 UBE2L3 3.69E-05 2.04E-09 8.74E-07 4.28E-06 1.54E-09 7.13E-11 2.69E-05 7.13E-11 1.40E-10
rs308971 3 SYN2 1.73E-02 2.32E-06 3.51E-07 2.48E-10 2.32E-07 1.32E-03 7.29E-05 2.48E-10 4.92E-10
rs2269928 11 C11orf9 9.57E-02 5.71E-09 3.71E-05 7.67E-06 4.61E-09 5.07E-10 6.98E-06 5.38E-10 1.03E-09
rs10744777 12 ALDH2 1.11E-02 6.14E-10 1.43E-06 1.90E-07 6.63E-10 7.54E-09 2.24E-05 6.73E-10 1.22E-09
rs11717195 3 ADCY5 1.78E-06 1.18E-09 8.52E-04 1.69E-07 2.18E-09 4.71E-08 8.51E-06 2.18E-09 2.33E-09
rs6485702 11 LRP4 2.15E-01 7.79E-07 8.47E-07 2.07E-09 3.65E-07 5.21E-04 5.01E-06 2.16E-09 5.35E-09
rs6810027 3 NISCH 2.56E-03 1.69E-08 2.34E-05 4.74E-09 1.72E-08 1.70E-06 4.21E-06 4.94E-09 9.58E-09
rs9394279 6 intergenic 1.40E-08 2.36E-06 4.59E-03 1.34E-04 3.18E-06 1.71E-06 4.23E-04 2.48E-06 2.98E-08

the novel concept principal angle, the power of PC based tests for the multivariate normal means

depends on the mean vector (K parameters) and the correlation matrix (K(K−1)/2 parameters). With

the help of principal angle, the power of PC based tests only depends on the K principal angles, K

eigenvalues and the overall signal strength. Hence, the complexity of power analysis for PC-based tests

reduces from quadratic to linear order in the number of phenotypes. However, the principal angles

are generally unknown in practical settings. One cannot choose a particular PC based on estimated

principal angles and then use that cherry-picked PC for inference, because this approach will incur

data snooping bias and the type I error rate will be inflated. Actually, the proposed PCMinP test

correctly adjusts for this cherry-picking process and provides a valid inference.

Effective combination of PCs for multiple phenotype genetic association testing depends on

the K eigenvalues and the K unknown principal angles. We proposed linear, nonlinear and adaptive

omnibus combinations of PCs to achieve robust power. PCLC is an inverse-eigenvalue weighted linear

combination of PCs and can be as powerful as the Oracle test when all the principal angles are equal

to each other, but can lose power otherwise. In the worst case, PCLC is powerless when the signal

vector is parallel to its rejection boundaries. PCMinP is expected to perform well when there exists

one principal angle equal to zero, but can lose power when the signal vector lies in the middle of all
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the PC directions. The PCFisher test combines all the mutually independent principal component p-

values using Fisher’s method, which can be more powerful than PCMinP when the signal vector lies

in the middle of all the PCs but can be less powerful than PCMinP when some principal angle is equal

to zero. We further proposed three quadratic combinations of PCs: WI, Wald and VC. Surprisingly,

the classical Wald test and the variance component score test using the linear mixed model framework

(Huang and Lin, 2013; Liu and Lin, 2017) are two special cases of weighted quadratic combinations

of PCs. Using convex optimization, we found that the Wald test achieves its maximal power when

the last principal angle is zero and minimal power when the first principal angle is zero. The VC test

is more powerful than the Wald test when the last principal angle is zero and can be less powerful

otherwise. The WI test is more powerful than both the Wald and VC tests when the first principal

angle is zero but can be less powerful otherwise. None of them is robust to the unknown principal

angles.

The adaptive quadratic test PCAQ is more robust than the WI, Wald and VC tests. As demon-

strated by the simulation studies, PCMinP and PCLC can be more powerful than PCAQ in some situa-

tions. This suggests that an omnibus test that combines all these six tests together would be even more

robust than PCAQ. The p-values of PCAQ and PCO can both be calculated analytically by numerical

integration. This is advantageous when analyzing a large number of phenotypes with millions of SNPs

across the whole genome, as the principle angles are likely to change from one SNP to another and a

powerful test for one SNP might not be powerful for another SNP. All the proposed testing procedures

have been implemented in a publicly available R package MPAT. The connections and subtle differ-

ences between those PC based tests were illustrated graphically in terms of their rejection boundaries.

The theoretical conditions under which each PC based test can be more powerful than the traditional

Wald test are as follows: the principal angles θk = 0 for PCk, PCMinP and PCO; cos2(θk) = 1/K for

PCLC; θ1 = 0 for WI; θK = 0 for VC; θ1 = 0 or θK = 0 for PCAQ.

The eigen-analysis section investigates how the correlation structures among multiple pheno-

types can influence the eigenvalues and eigenvectors of the correlation matrix, and subsequently affect

the powers of PC based tests. From eigen-analysis and simulation studies, we found that the PCO test

can outperform the MinP and the TATES tests for the detection of sparse signals, especially when the

dimension is high. The classical Wald test can perform poorly in high dimension settings as discovered

by our eigen-analysis and demonstrated empirically by simulation studies, whereas the omnibus test

PCO can still have good power in those settings. The eigen-analysis highlights the importance of the
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correlation structures in affecting the powers of PC based tests for detecting both sparse and dense

signals. The eigen-analysis also shows that caution is needed for PC-based multiple phenotype anal-

ysis in the presence of highly correlated phenotypes. In such cases, the covariance matrix of multiple

phenotypes is close to be singular, and the eigenvalues of the last few PCs are likely to be very small,

making some tests that combine PCs, such as the Wald test, unstable. One can either remove some of

highly correlated phenotypes before performing multiple phenotype tests, or remove the last few PCs

with very small eigenvalues before combining PCs to construct tests. For the former, one can select

biologically meaningful phenotypes for a joint analysis in collaboration with domain scientists. At the

same time, statistical consideration of power and numerical stability also should be taken into account

when selecting phenotypes into analysis. Further research is needed on how to truncate PCs using

selective inference theory (Choi et al., 2014) and then use those truncated PCs to construct valid and

powerful tests by balancing the power and the numerical stability of the tests.

In this post-GWAS era, there are increasing amounts of GWAS summary statistics for multiple

phenotypes publicly available on dbGAP (http://www.ncbi.nlm.nih.gov/gap) and other places. Our meth-

ods and software provide a cost-effective way to analyze such data sets to discover novel biology by

borrowing information across multiple phenotypes. We demonstrated the usefulness of our methods

by analyzing multiple metabolic syndrome related clinical phenotypes with data sets collected from

four international consortia. This real data example illustrates that the PCO test has robust power to de-

tect additional novel loci underlying metabolic syndrome, outperforming the existing TATES method.

It is of future research interest to apply our tests to higher dimensional practical settings, for instance,

in the studies of the genetic basis of gene expression levels or DNA methylation levels in a biological

pathway/network when such data sets are available. When individual level data are available for

both phenotypes and genotypes in the future, it would be practically interesting to compare the per-

formances of our PC based tests with other multiple phenotypes methods as discussed in (Galesloot

et al., 2014).

PCA is just one dimension reduction method for transforming the correlated Z-statistics into

uncorrelated ones using spectral-decomposition of the correlation matrix. There exist other meth-

ods for de-correlating correlated Z-statistics, such as the Cholesky decomposition. It would be inter-

esting to explore the differences and connections between the testing statistics obtained from eigen-

decomposition and Cholesky decomposition. With the increased availability of phenome-wide data,

there will be a greater demand for analyzing multiple phenotypes in sequencing studies especially
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using electronic medical record data and molecular phenotype data. Since popular region-based as-

sociation testing statistics for rare variants are not normally distributed, for example, the SKAT test

statistic follows a mixture of chi-squared distributions (Lee et al., 2012), our current PC based tests

are not directly applicable for the detection of associations between rare variants and multiple pheno-

types. More future work is needed to extend the current PCA framework for joint analysis of multiple

phenotypes in GWAS to multiple phenotype analysis in sequencing association studies to detect rare

variant effects.

References
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Supplementary Materials

The supplementary pdf file contains simulation results and additional real data analysis results.

The supplementary excel file contains the unstructured correlation matrix of dimension 100× 100, and

the β vectors of length 100 in simulation settings M11-M15, and the estimated principal angles for the

ten SNPs in Table 6.
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Supplemental Material for

“A Geometric Perspective on the Power of

Principal Component Association Tests in

Multiple Phenotype Studies”

Zhonghua Liu and Xihong Lin

S1.Simulation Studies

The rejection boundary of the TATES method is givne in Figure S1.

S2 Joint Analysis of the MetS Related Phenotypes

In this section, we first provide the web links for the data sets used in the main text. The

GIANT consortium data sets can be downloaded at http://portals.broadinstitute.

org/collaboration/giant/index.php/GIANT_consortium_data_files in the sections

of GWAS Anthropometric 2015 BMI and GWAS Anthropometric 2015 Waist. The

lipids data sets can be downloaded at http://csg.sph.umich.edu/abecasis/public/

lipids2010/ and http://csg.sph.umich.edu/abecasis/public/lipids2013. The MAGIC

data sets are at https://www.magicinvestigators.org/downloads/ in the section of

Glucose and insulin results accounting for BMI. The ICBP data sets are located at https:
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Figure S1. The rejection boundary of the TATES method
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//www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000585.v1.

p1.

We first merged those raw data sets by the chromosome:position column and then

apply the proposed PC methods and the TATES method to the Z-scores of each phenotype

across all the SNPs. We further calculated genomic control factors for the p-values of the

original univariate analysis performed by the four consortia, PC based tests and the

TATES methods, and we didn’t observe any serious inflation with genomic control factor

in the range of (0.92, 1.13). The QQ plots for those p-values are also provided in Figure

S1-S8. Due to numerical precision of R software, the p-values of PCMinP, PCAQ and

PCO are truncated at zeros if smaller than certain thresholds.
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(a) HDL (b) LDL

(c) TC (d) TG

Figure S2. QQ plots for the p-values of the original univariate analysis of HDL, LDL and
TG by the GLGC, and SBP by ICBP
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(a) BMI (b) WHR

Figure S3. QQ plots for the p-values of the original univariate analysis of BMI and WHR
by the GIANT.

(a) FG (b) FI

Figure S4. QQ plots for the p-values of the original univariate analysis of FG and FI by
the MAGIC.
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(a) PC1 (b) PC2

(c) PC3 (d) PC4

Figure S5. QQ plots for the p-values of PC1, PC2, PC3 and PC4.
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(a) PC5 (b) PC6

(c) PC7 (d) PC8

Figure S6. QQ plots for the p-values of PC5, PC6, PC7, PC8.
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(a) TATES (b) PCLC

(c) PCMinP (d) PCFisher

(e) WI

Figure S7. QQ plots for PC9, TATES, PCLC, PCMinP, PCFisher and WI.
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(a) Wald (b) VC

(c) PCAQ (d) PCO

Figure S8. QQ plots for the p-values of Wald, VC, PCAQ, PCO.
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