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Abstract

Motivation: Gene set analysis is a powerful tool for determining whether an experimentally

derived set of genes is statistically significantly enriched for genes in other pre-defined gene sets,

such as known pathways, gene ontology terms, or other experimentally derived gene sets. Current

gene set analysis methods do not facilitate comparing gene sets across different organisms as

they do not explicitly deal with homology mapping between species. There lacks a systematic in-

vestigation about the effect of complex gene homology on cross-species gene set analysis.

Results: In this study, we show that not accounting for the complex homology structure when

comparing gene sets in two species can lead to false positive discoveries, especially when com-

paring gene sets that have complex gene homology relationships. To overcome this bias, we

propose a straightforward statistical approach, called XGSA, that explicitly takes the cross-

species homology mapping into consideration when doing gene set analysis. Simulation experi-

ments confirm that XGSA can avoid false positive discoveries, while maintaining good statistical

power compared to other ad hoc approaches for cross-species gene set analysis. We further

demonstrate the effectiveness of XGSA with two real-life case studies that aim to discover

conserved or species-specific molecular pathways involved in social challenge and vertebrate

appendage regeneration.

Availability and Implementation: The R source code for XGSA is available under a GNU General

Public License at http://github.com/VCCRI/XGSA

Contact: jho@victorchang.edu.au

1 Introduction

In the past decade, biological discovery has been transformed by the

ability to profile the entire transcriptome of an organism using micro-

array and RNA sequencing technologies, giving us a global view into

gene regulation. Often gene set analysis (GSA) is the first step in an ex-

ploratory analysis of a genome-wide expression dataset. Commonly, a

set of differentially expressed (DE) genes are first identified using a stat-

istical test, then this set of genes is compared against a database of gene

sets, such as those derived from gene ontology (GO) or known molecu-

lar or signaling pathways. Many statistical methods have been adopted

or developed to perform GSA (Huang et al., 2009; Rivals et al., 2007),

including the Fisher’s exact test and its variants.

One central assumption in GSA is that the gene sets being com-

pared are subsets of the same set of genes, in practice meaning from

the same species. With an increasing variety of genetic resources

available in evolutionarily diverse model and non-model organisms,

there is an increasing interest in utilizing these cross-species gene set

resources in GSA. This is an important problem in the emerging field

of comparative transcriptomics, which aim to integrate knowledge

on regulation of biological pathways across the tree of life (Roux

et al., 2015). For example, consider the regeneration of organs and

appendages, an ability present in several diverse vertebrate organ-

isms but apparently missing from humans.

As the consistent gene set universe assumption fails when more

than one species is involved, it becomes increasingly problematic as

the number of many-to-many homologues increase between evolu-

tionarily distant species. Several largely ad hoc methods have been

proposed and used in the literature and have become the standard

analysis options. The naı̈ve cross-species mapping approach is to

apply an ‘at least one homologue’ function to map a gene set from

one species to another. This approach is the most common method

for homology mapping in general and is used by the majority of
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existing cross-species gene set analysis web based platforms, includ-

ing g:Profiler, Gene Weaver and GSGator (Baker et al., 2012; Kang

et al., 2014; Reimand et al., 2007).

When performing comparative analyses between evolutionarily

distant species, many researchers remove the increased complexity

from homology assignment by applying the BLAST best reciprocal

hits (BRH) approach (Britto et al., 2012; Gohin et al., 2010; Labbé

et al., 2012). BRH reduces complexity by restricting homology as-

signments to at most one per gene, choosing the best hits for each

gene (highest sequence similarity or lowest E value) and only as-

signing homology if the two genes are each other best hits. This

implies the assumption that the best hit is the only valuable hit,

which is particularly problematic when there are multiple closely

scored hits in one gene family. For distantly related organisms, a

large amount of non one-to-one homology information is dis-

carded before any analysis is done, reducing the potential insight

that can be gained.

Another alternative approach to reduce complexity is to perform

significance testing at the level of gene family, also called an ortholo-

gous group (OG) (Kristiansson et al., 2013; Rittschof et al., 2014;

Zheng et al., 2011). In this approach, the entire OG is assigned a

representative value summarizing the constituent genes (often the

normalized minimum P-value), discarding homology information

after this assignment. Traditional statistical enrichment tests are

then applied at the level of the OG. The OG structure between a

large selection of species can be retrieved from databases such as

eggNOG, OrthoDB and InParanoid (Kriventseva et al., 2015;

Powell et al., 2014; Sonnhammer and Ostlund, 2015). A strength of

the OG framework is the ability to test gene sets from more than

two species simultaneously. Nonetheless, similar to the BRH ap-

proach, one major limitation of this approach is the loss of informa-

tion regarding the signal from individual genes in the same OG, and

that the exact gene responsible for the final result can be unknown,

making interpretation and validation challenging.

Another approach is to computationally transfer the functional

annotations (based on protein domains for example) to a less

studied organism from well studied ones, as facilitated by

PANTHER (Mi et al., 2016). This annotation transfer reduces confi-

dence in annotation quality and relies on the assumption that the re-

lationship between the protein domain and functional annotation is

known and true, which limits its utility to molecular function anno-

tation as opposed to more general biological pathways. Several

other studies harness the strength of sequence information in micro-

array probes to transfer information between species (Le et al.,

2010; Lu et al., 2009; Xie et al., 2011). While these and other

approaches lend more confidence and resolution than simple ID

mapping, they do not create a general and principled cross-species

gene set analysis framework that specifically addresses complex

homology (Lu et al., 2010; Yang et al., 2014).

To our knowledge, there has not been any systematic investiga-

tion on the issues of cross-species GSA. An approach that utilises

the full and complex homology structure between two species is not

available. In this study, we discuss the statistical issues associated

with cross-species gene set analyses and define an informative hom-

ology complexity score. We show that the naı̈ve implementation of

homology mapping followed by Fisher’s exact test can lead to false

positive discovery. To alleviate this bias, we propose a straightfor-

ward statistical test, called XGSA, to perform cross-species GSA by

considering the complete homology structure between two species.

Our simulations show that XGSA can indeed remove the false posi-

tive bias, while maintaining good statistical power when analyzing

gene sets with complex homology structure. We apply XGSA to two

real biological applications that involve comparing gene sets from

distantly related organisms.

2 Methods

2.1 Problem definition
Let A ¼ fa1; a2; . . . ; alg and B ¼ fb1; b2; . . . ;bkg denote the set of all

genes (the gene universe) in two species A and B, respectively. We

further define subsets A0 and B0 as the gene set of interest in species

A and B respectively, where A0 � A and B0 � B.

Let there be a homology mapping function, m(a, b), that de-

scribes the sequence homology relationship between any gene a in

species A and any gene b in species B:

mða; bÞ ¼
1; if a and b are homologous

0; otherwise:

(

Given gene sets of interest A0 and B0, we can further define their

homologous partners in the other species as B00 ¼ fb 2 B : mða;bÞ
¼ 1; 9a 2 A0g and A00 ¼ fa 2 A : mða; bÞ ¼ 1; 9b 2 B0g

The cross-species gene set analysis problem can be defined as a hy-

pothesis test where the null hypothesis Hl is that the membership of

A0 and A00 are independent and B0 and B00 are independent (Fig. 1).

2.2 XGSA
We calculate the probability pA of co-membership of A0 and A00

equal to or greater than the observed co-membership if Hl is true,

using the hypergeometric distribution,

pA ¼
XminðjA0 j;jA00 jÞ

k¼jA0\A00 j

jA0j

k

 !
jAuj � jA0j

jA00j � k

 !

jAuj

jA00j

 !

where Au is the gene universe in A that has homology to the gene

universe in species B, Au ¼ fa 2 A : mða;bÞ ¼ 1;9b 2 Bg. This is

equivalent to an upper tail Fisher’s exact test. Similarly, we compute

the probability pB for observing the co-membership of B0 and B00 if

Hl is true,

pB ¼
XminðjB0 j;jB00 jÞ

k¼jB0\B00 j

jB0j

k

 !
jBuj � jB0j

jB00j � k

 !

jBuj

jB00j

 ! :

We calculate a statistic p to estimate the probability of Hl being

true, as the maximum of pA and pB,

p ¼ maxðpA; pBÞ:

We take the maximum in order to reduce the false positive rate

caused by complex homology, as illustrated in Figure 1.

2.3 Naı̈ve approach
We compared the performance of XGSA with other ad hoc

approaches for cross-species GSA. The naı̈ve approach is equivalent

to doing the above test in only one of the species, e.g. species A. In

this case, the P-value is the same as pA.

2.4 Best reciprocal hits
The best reciprocal hits approach only differs from the naı̈ve ap-

proach in that it reduces the complexity first. We created a subset of
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homology mappings for which the retained human and zebrafish

homology mappings were each other highest scoring partners, based

on sequence similarity percentages from Ensembl.

2.5 Orthologous group
We downloaded OG annotations from OrthoDB with no filtering

applied. We mapped genes to OGs and calculated pA at the OG

level.

2.6 Automatically identifying homology between

species using Ensembl BioMart
Following standard practice (Reimand et al., 2007; Yates et al.,

2016), we accessed Ensembl BioMart programmatically through the

R package biomaRt (Durinck et al., 2009) and retrieved homology

mapping between Ensembl gene ids in two species. We turned this

mapping into a sparse matrix using the R package Matrix.

2.7 Homology complexity score
We define a measure of complexity for a gene set in one species with

respect to its homology mapping to another species (A and B), as the

fraction of genes in the gene set GSA in species A which have more

than one homologue in species B,

ComplexityðGSA;BÞ ¼
ja 2 GSA :

X
b2B

mða; bÞ > 1j

jGSAj
:

2.8 Statistical power analysis
For each human gene ontology (GO) term, we find all of the zebra-

fish homologues for that GO term. Intuitively, when gene sets de-

void of any homologous genes are tested in a cross-species gene set

enrichment test, the P-value for that test should be 1 (no match).

Alternatively, when the entire set of homologues is tested, the P-

value should be close to zero (perfect match). Based on this logic, if

we incrementally add homologous genes to the gene set enrichment

test, the P-value should decrease. We can then interpret the rate at

which several methods reach significance as an indicator of their

relative power for that cross-species gene set enrichment test.

We start with a zebrafish gene set consisting of the same

number of non-homologous genes as there are zebrafish homo-

logues to the chosen human GO gene set. We incrementally sub-

stitute each non-homologous gene in the zebrafish set with a

homologous gene, and perform enrichment testing after each

substitution.

2.9 Data preprocessing for the vertebrate regeneration

case study
We downloaded four spinal cord regeneration datasets from three

species, zebrafish (Danio rerio), lizard (Anolis carolinensis) and

Western clawed frog (Xenopus tropicalis). We reprocessed the

zebrafish and frog results from the raw microarray data because the

lists of DE genes were not available in the original papers. All pro-

cessing was done in R using the limma package and custom scripts

x 10

Gene sets in species
A and B respectively.

Gene sets in species A
and B that have 
homology with genes 
in B’ or A’ respectively.

Species A

A’  = {a , a , a , a , a }

A” = {a , a , a , a , a }

B’  = {b , b , b , b }

B” = {b , b , b , b , b }

Species B

a

a

b

b

a

a

b

b

a

a

b

b

a

a

b

b

A' ¬A'
A" 4 2

¬A" 1 10

B' ¬B'
B" 2 3

¬B" 2 10

pA = 0.02763

p = max(pA, pB)
P = 0.5378

pB = 0.5378

A’ B’

A” B”

Fig. 1. A schematic diagram illustrating the XGSA method. Nodes represent genes in species A and B, with edges representing homology, and shading and out-

lines representing gene set membership. The gray box represents the remainder of the homologous universe of one-to-one relationships not assigned to either

gene set. The tables are contingency tables describing the observed overlap of the homologous gene sets in the two species. pA and pB show the different P-val-

ues derived from performing Fisher’s exact test in each species. The red box indicates the final value p produced by XGSA
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unless otherwise noted. Benjamini–Hochberg multiple hypothesis

testing correction was applied in each case.

2.9.1 Zebrafish 1

Raw agilent microarray data were downloaded from GEO (acces-

sion GSE39295), corrected for background effects (offset¼16),

log-transformed and quantile normalized (Hui et al., 2014). Probes

with an average expression less than 8 were removed as ‘not present’

probes after visual inspection of probe intensity distribution.

Differential expression at each post-injury timepoint compared to

time zero control was computed to match the published study de-

sign. We applied an absolute T-statistic threshold of 7 resulting in

404 significantly differentially expressed genes with Ensembl gene

IDs across the five timepoints.

2.9.2 Zebrafish 2

Preprocessing of raw data (accession GSE20460) as above (Guo et al.,

2011). Differential expression at 4 and 12 h post-injury compared to

matched sham timepoints was computed to match the published study

design, although we omitted the 264 h timepoint due to poor data qual-

ity. We applied an absolute T-statistic threshold of 4 resulting in 62

significantly differentially expressed genes across the two timepoints.

2.9.3 Frog

Raw Affymetrix CEL files were downloaded from Array Express (acces-

sion E-MEXP-2420) corrected for background effects, log-transformed

and quantile normalized using the RMA method (Love et al., 2011).

Probes with an average expression less than 6 were removed as ‘not

present’ probes after visual inspection of probe intensity distribution.

Differential expression followed a time series design with 6 h post-

amputation (PA) versus 0 h control, 24 h PA versus 6 h PA and 60 h PA

versus 24 h PA, to match the published study design. We applied an

absolute T-statistic threshold of 4 resulting in 666 significantly differen-

tially expressed genes across the three timepoints.

2.9.4 Lizard

We retrieved the differentially expressed gene lists from the supple-

mentary files of the published study (Hutchins et al., 2014).

3 Results

3.1 Human and zebrafish gene sets exhibit a broad

range of complex homology
We chose two model organisms with well annotated genomes, Homo

sapiens (human) and Danio rerio (zebrafish), retrieving homology map-

pings between 15 908 human Ensembl gene IDs and 18 777 zebrafish

Ensembl gene IDs. Henceforth the term ‘genes’ refers to Ensembl gene

IDs. 4179 human genes map to more than one zebrafish gene, and

2218 zebrafish genes map to more than one human gene, correspond-

ing to 26.3% and 11.8% of the respective homologous genomes.

We constructed a BRH subset of homology mappings (see

Section 2), henceforth referred to as the BRH set. The BRH set has

1807 fewer human genes and 4493 fewer zebrafish genes than the

complete set, corresponding to a reduction of 11.4% and 23.9% of

the respective homologous genomes.

We calculated human–zebrafish complexity scores (see Section

2) for each gene set in the gene ontology (GO). We observe a wide

range of complexity occurs in GO.

3.2 Naı̈ve cross-species GSA approach results in a

systematic bias
When a random selection of 1000 human genes is tested against the

human GO using the Fisher’s exact test as implemented in TopGO

(Alexa and Rahnenfuhrer, 2010), there are no significant results pass-

ing the significance thresholds after multiple testing correction, and a

relatively uniform distribution of P-values is observed as expected

(Fig. 2A, red bars). The same is true when 1000 zebrafish genes are

tested against the zebrafish GO, and these results were consistent for

100 different random selections of genes.

In contrast, when all the human homologues of 1000 randomly se-

lected zebrafish genes is tested against the human GO, a very strong

enrichment of small P-values is observed (Fig. 2A, blue bars). An en-

richment of small P-values passing multiple hypothesis testing thresh-

olds can be interpreted as evidence for a strong signal in the data.

Considering that the original selection of genes was entirely random,

this indicates that these significant P-values are false positives.

Repeating this virtual assay 100 times reveals that some GO

terms appear repeatedly in the list of enriched gene sets, with the

most recurrent gene set ‘flavonoid glucoronidation’ enriched in 38%

of trials (Fig. 2B). This shows a systematic bias leading to false posi-

tive results when using Fisher’s exact test, introduced by naı̈ve hom-

ology mapping from zebrafish to human genes. Importantly this bias

is species-dependent; as different pairs of species show different

biased GO terms. For example, mapping 1000 random genes from

Xenopus tropicalis to Mus musculus and performing GSA results in

a different set of biased GO terms, including’ sensory perception of

chemical stimulus’ in 65% of virtual assays. This indicates that the

bias may result from the complex homology mapping between two

species. When we look at the genetic homology between genes anno-

tated with the GO term ‘flavonoid glucoronidation’ we see several

striking examples of complex homology (Fig. 2C). Comparing the

complexity scores of the repeated bias GO terms versus all other

GO terms shows that the bias GO terms have a significantly higher

gene set complexity on average (two-sided t-test, P-val-

ue¼1.156e�07) (Fig. 2D). When we use the same sets of randomly

selected zebrafish genes but map them to human genes using the

BRH homology mapping, the bias disappears (data not shown).

Taken together, these findings provide evidence that the cause of the

bias is the introduction of complex homology mapping into the test-

ing framework without compensation.

3.3 XGSA alleviates the bias in the naı̈ve method
Using a toy example of the cross-species testing problem, we observe

that the directionality of the complex homology mapping creates the

bias (Fig. 1). Our solution involves performing testing in both

species / directions, and combining the results. This means that both

species act as the host for a Fisher’s exact test, with the test set being

naı̈vely mapped from the gene set in the other species. We then re-

turn the maximum P-value of the pair of tests. We call this approach

XGSA (see Section 2). Intuitively, this means that the gene set over-

lap must be significant in both species—that is, in both directions of

testing (Fig. 1). In this way, we reduce the effect of complex hom-

ology on the resulting P-value. When we applied our method to the

same 100 repetitions of 1000 randomly selected zebrafish genes we

saw that the systematic bias disappears—zero out of 100 repetitions

had any significantly enriched human GO terms. By accounting for

the effects of complex homology in our statistical testing frame-

work, we can remove the bias while still utilizing the full complex

homology structure.
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3.4 Simulation studies show XGSA maintains good

statistical power even when analyzing gene sets with

complex homology
As this problem has not been studied in depth before and no gold

standard exists against which we can evaluate our method, we

devised a novel testing approach to compare the power of different

methods (see Section 2). Briefly, after choosing a human GO gene

set, we incrementally replace zebrafish genes that are not homolo-

gous to the GO set with genes that are homologous and calculate

significance using different cross-species gene set enrichment testing

approaches. Based on the assumption that zero homologous genes

should return a P-value of 1 and all homologous genes a P-value

close to zero, we can compare the rate at which the P-value de-

creases as genes are replaced (Fig. 3).

We found that for low complexity gene sets, the four methods of

naı̈ve mapping, BRH, OG and XGSA perform comparably with no

practical difference at commonly used thresholds (Fig. 3A). However,

when testing higher complexity gene sets the power of XGSA be-

comes clearer (Fig. 3B). By retaining the full homology structure

XGSA continues to gain power from genes assigned to complex gene

families, as opposed to BRH and OG in which the power curve plat-

eaus when complex genes are added. The over-sensitivity of the naı̈ve

method to high complexity gene sets can be observed as abrupt rises

in the curve above the diagonal. In contrast, XGSA maintains a near

linear diagonal power curve as with low complexity gene sets.

We can summarize these curves by measuring the relative area

under them (Fig. 4). We find that for zero complexity gene sets all

methods perform similarly with small differences due to various

gene universe sizes—XGSA receives a lower score because it uses the

most extensive gene universe. ODB then drops in detection power as

complexity increases in the tested gene sets and plateaus are intro-

duced to the power curve. As gene set complexity increases the ad-

vantage of XGSA over both ODB and BRH becomes clear. While it

seems that XGSA may be too sensitive as complexity increases, this

is because the zero p-value saturates earlier in large and complex

gene sets, causing the power curve to change shape and the AUC to

increase.

3.5 Case study 1: discovering conserved pathways in

social challenge in evolutionarily distant organisms
Rittschof et al. (2014) studied the transcriptomic changes associated

with social challenge in three species: stickleback fish (Gasterosteus

aculeatus), mouse (Mus musculus) and honey bee (Apis mellifera).

They performed a ranked GSA (Sartor et al., 2009) on their DE

genes for each species by assigning GO membership based on pro-

tein domain (sequence) information using PANTHER. They also

performed a cross-species analysis using the homologous triplet OG

approach by harnessing the OrthoDB database, and used the mouse

GO as the reference gene sets. We downloaded their lists of DE

genes from each species and sought to recreate their analysis using

XGSA. Because the honey bee Apis mellifera is not yet included in

the Ensembl BioMart homology database, we mapped the 182

honey bee genes to 153 fly (Drosophila melanogaster) genes using

OrthoDB as suggested by FlyBase (Attrill et al., 2016), and used the

fly genes to continue the analysis.
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We visualize our results as a molecular concept map (MCM)

(Rhodes et al., 2007)—a network diagram where each node represents

a gene set and each edge represents a significant overlap between gene

sets (Fig. 5). Unlike Rittschof et al., we are directly comparing the ex-

perimental gene sets from all three species against the standard mouse

GO terms which allows us to interpret them in a single MCM. This ap-

proach is different from the approach used by Rittschof et al. where

they used computationally inferred GO membership for each species.

As with the original study we found very little in the way of

shared significant gene sets between two or more species when com-

paring the tests performed for each individual species. However,

gene set similarity clustering shows that some gene set categories

span multiple species, including ion transport and regulation of

neuronal and muscle activity, particularly between fly and mouse.

We also see a mouse specific viral and ribosomal response, as well as

a fish specific phototransduction response. Furthermore we included

KEGG pathways into the MCM analysis, allowing us to identify

interesting and relevant pathways for social challenge such as Long

Term Depression and Long Term Potentiation, and the only gene set

significant in two species (mouse and fly), Dilated Cardiomyopathy.

We found that 39%, 33% and 12% of our significant GO gene

sets overlapped with Rittschof et al. results in mouse, stickleback and

honey bee, respectively. Furthermore, 21% of our total significant GO

gene sets were significant in the Rittschof et al. homologous triplet OG

analysis, including representative gene sets spanning their major result

categories.

Our comparison with the study by Rittschof et al. raises several

issues. As a limitation, our analysis used the DE gene sets as opposed

to the ranked list used with GSEA in the original study. As we also

do not know the GO terms universe or term—gene assignment used

in that study, we cannot declare how closely our results matched

theirs. That our results, although retrieving fewer and different GO

terms, spanned their species-specific and homologous triplet catego-

ries indicate that we recreated many of their key findings. Mapping

from honey bee to fly was clearly not ideal and so it is not surprising

the fairly low correspondence of significant gene sets for that spe-

cies. An alternative is to create homology mappings from honey bee

to stickleback fish and mouse using BLAST, to enable direct

comparisons.

3.6 Case study 2: XGSA reveals conserved molecular

pathways in vertebrate organ regeneration
Many vertebrates display the ability to regenerate entire append-

ages, but humans or other common mammalian animal models have

very limited capacity to regenerate. With the availability of whole

genome sequences and functional genetic technologies for reptilian

and amphibian species with significant regenerative capacity,

genome-wide comparative studies of gene expression dynamics dur-

ing organ regeneration are now possible. Lizards, which are amniote

vertebrates like humans, are able to lose and regenerate a functional

tail with regrowth and patterning of cartilage, muscle, vasculature,

spinal cord and skin (Hutchins et al., 2014). In addition to the
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lizard, tadpoles of the African clawed frog, Xenopus laevis, are

also capable of regenerating their tails and fins, and there are ex-

tensive genomic resources available for this model. One import-

ant task in regenerative biology is to identify molecular pathways

that are conserved in multiple regenerative vertebrates during

organ regeneration.

Here, we performed a case study to investigate spinal cord regen-

eration across three species for which transcriptomic profiling of

regenerating spinal cord tissues was available; zebrafish (Guo et al.,

2011; Hui et al., 2014), lizard (Hutchins et al., 2014) and frog (Love

et al., 2011). We sought to explore the biology captured in these

datasets by leveraging the extensive gene sets available for human

and zebrafish in GO, MSigDB and SPEED (Subramanian et al.,

2005). In total, our analysis included 97 079 XGSA tests between

2804 gene sets which took 30 min on a single core and resulted in

175 significant overlaps. We analyzed the results using an MCM

(Fig. 6).

Zebrafish and tadpole regeneration gene sets show a direct over-

lap between them as well as many shared enriched gene sets, includ-

ing TNFa and E2F signaling, cell cycle, DNA repair and oocyte

maturation signals. The lizard gene sets are more isolated from the

other two, which is itself not surprising due to their different experi-

mental designs and tissues being profiled. We found that Lizard and

tadpole share endothelial to mesenchymal transition and extra cellu-

lar matrix assembly related signals. In the base of the lizards regen-

erating tail, we see a very strong enrichment of muscle-related gene

sets, likely due to the dominance of this tissue in this regenerative

region.

When we compared our gene sets against the MSigDB perturb-

ation gene sets, we find a gene set related to human carious teeth

that overlap significantly (adjusted P-value<0.05) with all three

species. The pulpal tissue of human carious teeth has been reported

to be a source of active multipotent mesenchymal stem cells and

may represent a tissue with limited regenerative capacity in human

(Rajendran et al., 2013). When focusing on the TF targets and im-

mune gene sets, we found the motif for SRF (a known regeneration

stimulant (Stern et al., 2013)) is enriched in DE genes from both liz-

ard and zebrafish, and that there is a conserved immune response in

zebrafish and tadpole.

We further looked at which genes are commonly DE between

multiple species. Aurora Kinase A (AURKA), which plays a crucial

role in spindle assembly, was DE in lizard and zebrafish regeneration

experiments, and is known to be required for regeneration in mouse

(Pérez de Castro et al., 2013). Furthermore, AURKB was DE in the

tadpole regeneration experiment, suggesting an evolutionarily con-

served role for Aurora kinases in regeneration. Another gene of inter-

est is Keratin 19 (KRT19), a marker of hepatic stem cells, endothelial

mesenchymal transition and TGFb signaling. KRT19 was DE in both

lizard and tadpole regeneration experiments, with other keratins

being DE in zebrafish. Thirteen more DE genes were conserved be-

tween zebrafish and tadpole regeneration, including PLK1 which is

required for cardiac regeneration in zebrafish (Jopling et al., 2010),

KIF23 which controls G2/M arrest and is also DE in axolotl limb re-

generation, SOCS3 which has been shown to suppress optic nerve re-

generation in mice (Smith et al., 2009), and several hepatocyte

regeneration markers (KIF20a, MCM4 and LIG1).

M
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Myogenesis & Muscle Contraction
TGFB & EMT
Phototransduction
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Fig. 5. Cross-species gene set analysis of transcriptional response to social challenge. (A) Molecular concept map showing the results of the XGSA pipeline,

nodes represent gene sets and edges represent a significant overlap between gene sets. B) Differences in complexity between gene sets recovered by XGSA ver-

sus Rittschof et al. (2014)
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4 Discussion

The main contributions of this work are: (1) formulation of the cross-

species gene set analysis problem, (2) investigation of the statistical bias

that may arise when comparing gene sets with complex homology

relationships, (3) development of a statistical hypothesis testing ap-

proach called XGSA and (4) demonstration of how XGSA can be used

in conjunction with MCM to identify evolutionarily conserved and

species-specific molecular pathways using two real datasets.

Effectively, current GSA approaches deal with the complex hom-

ology mapping issue by reducing the complexity of the homology

mapping (i.e. by removing non one-to-one homologous gene pairs

or abstracting the test to a higher level). In contrast, XGSA takes

into account the entire homology structure when performing GSA.

The benefit of XGSA is increased power to detect enrichment of

gene sets with complex homology. XGSA also alleviates the false

positive bias introduced by the naı̈ve testing framework by ensuring

gene set enrichment is significant in both species, overcoming the

main limitation of ‘at least one homologue’ mapping. When com-

pared to existing cross-species GSA approaches, XGSA balances

both sensitivity and specificity for all gene sets.

Our work does not deal with the issues of comparing ranked

lists, like the GSEA method (Subramanian et al., 2005). Also, our

method currently treats each homology relationship equally (absent

or present), whereas the information about the extent of sequence

homology was not used. Nonetheless, based on the formulation of

the problem statement, we aim to extend our method to incorporate

these features.

We have implemented the source code for XGSA in R. By har-

nessing the Ensembl BioMart portal our framework utilizes the lat-

est homology structure on a growing number of species supported in

Ensembl (currently 69). Due to the flexibility and simplicity of our

R framework such that users can include custom homology matrices

for unsupported species, the potential for XGSA to unlock cross-

species gene set analyses is widespread. The typical use case is

when investigating gene sets from an organism without a compre-

hensive gene set database. If the organism is supported by Ensembl

the XGSA workflow is straightforward, otherwise the user needs to

compute homology to a genomic model organism to unleash XGSA.

A second use case is when cross-species analysis is central to the bio-

logical questions being studied, such as in our case study of spinal

cord regeneration. The ability to integrate gene sets from different

species together into a unified network-based visualization such as a

MCM improves speed and confidence when interpreting insights

from traditionally problematic cross-species gene set analyses. This

improved workflow is expected to be valuable for researchers in

practice (Huang et al., 2009).
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