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Abstract

Motivation: Genome-wide mapping of chromatin states is essential for defining regulatory elem-

ents and inferring their activities in eukaryotic genomes. A number of hidden Markov model

(HMM)-based methods have been developed to infer chromatin state maps from genome-wide his-

tone modification data for an individual genome. To perform a principled comparison of evolution-

arily distant epigenomes, we must consider species-specific biases such as differences in genome

size, strength of signal enrichment and co-occurrence patterns of histone modifications.

Results: Here, we present a new Bayesian non-parametric method called hierarchically linked infin-

ite HMM (hiHMM) to jointly infer chromatin state maps in multiple genomes (different species,

cell types and developmental stages) using genome-wide histone modification data. This flexible

framework provides a new way to learn a consistent definition of chromatin states across multiple

genomes, thus facilitating a direct comparison among them. We demonstrate the utility of this

method using synthetic data as well as multiple modENCODE ChIP-seq datasets.

Conclusion: The hierarchical and Bayesian non-parametric formulation in our approach is an

important extension to the current set of methodologies for comparative chromatin landscape

analysis.

Availability and implementation: Source codes are available at https://github.com/kasohn/hiHMM.

Chromatin data are available at http://encode-x.med.harvard.edu/data_sets/chromatin/.

Contact: peter_park@harvard.edu or juhan@snu.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Readout of genetic information in eukaryotic genomes is mediated

by the dynamic chromatin environment, which regulates DNA ac-

cessibility for the gene expression machinery through chromatin

compaction, associated histone modifications and incorporation

of histone variants. Chromatin immunoprecipitation experiments

followed by genome-wide microarray (ChIP-chip) or sequencing

(ChIP-seq) have revealed that distinct genomic regulatory regions
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are associated with different covalent modifications of histone pro-

teins across various organisms (Kharchenko et al., 2011; Liu et al.,

2011; Mikkelsen et al., 2007; Park, 2009; Roudier et al., 2011). For

example, H3K4me3 (trimethylation of histone H3 at residue lysine

4) marks active promoters, H3K4me1 marks enhancers, H3K36me3

marks transcribed gene bodies, H3K27me3 marks polycomb-

repressed regions and H3K9me3 marks heterochromatin. Although

there are theoretically up to 2n possible combinations of n histone

modifications at any given locus in the genome, in practice we only

observe a small number of distinct dominant combinations, thus giv-

ing rise to the concept of chromatin states (Ernst and Kellis, 2010;

Filion et al., 2010; Heintzman et al., 2009; Hon et al., 2008;

Kharchenko et al., 2011; Liu et al., 2011; Mikkelsen et al., 2007;

Roudier et al., 2011), in which each state consists of a combination

of histone modifications.

A key idea underlying chromatin state analysis is to computa-

tionally identify the number and composition of chromatin states in

the genome based on multiple genome-wide profiles of histone

modifications and to annotate the genome with these chromatin

states. These states were found to be strongly correlated with vari-

ous functional genomic features such as promoters, actively tran-

scribing gene bodies, enhancers and heterochromatins. Although

many chromatin states are common across different cell types or

organisms, there are indeed clear examples of cell-type-specific chro-

matin states consisting of unique co-occurrence of histone modifica-

tions. The H3K4me3/H3K27me3 bivalent promoter state that is

prevalent in embryonic stem cells but mostly absent from terminally

differentiated cells is such an example (Bernstein et al., 2006).

Investigating co-occurrence of multiple histone marks facilitates the

differentiation of more subtle features in chromatin state, such as

identifying tissue-specific strong and weak enhancer regions (Ernst

et al., 2011) and changes in co-occurrence patterns between evolu-

tionarily distant species (Ho et al., 2014). Therefore, a chromatin

state map is a powerful means to infer potential genome function in

a systematic and automated fashion. In conjunction with transcrip-

tomic, DNase I and transcription factor binding data, chromatin

state analysis was used to infer putative biochemical functions to a

large fraction of the non-coding genomic regions (ENCODE Project

Consortium, 2012).

Various machine learning algorithms, such as ChromHMM

(Ernst and Kellis, 2012), Segway (Hoffman et al., 2012), TreeHMM

(Biesinger et al., 2013) and tiered HMM (Larson et al., 2013), have

been developed to generate such maps to facilitate cell type-specific

genome annotations in a systematic and automated fashion. All of

them are based on probabilistic graphical models such as the hidden

Markov model (HMM) and dynamic Bayesian network. One essen-

tial task for these algorithms is to learn the prominent combination

of histone modifications. Similar to any clustering problem, it is

often difficult to identify a reasonable number of combinations that

can adequately capture the major variation in the data. One possibil-

ity is to estimate the adequate number of states by performing ex-

ploratory analysis such as the principal component analysis

(Julienne et al., 2013). Another common approach is to run the

HMM learning multiple times with varying state numbers and iden-

tify the best fitting model using measures such as the Bayesian

Information Criterion. The inferred states do not necessarily have a

one-to-one correspondence with distinct functional regions in the

chromatin, but they do give a very good data-driven description of

the chromatin that can act as a starting point for further bioinfor-

matics and experimental analysis (Baker, 2011). Therefore, it is

still of great interest to develop principled methods for identifying

chromatin states within and across multiple genomes.

The cross-species chromatin state comparison problem was

motivated by a recent model organism encyclopedia of DNA elem-

ents (modENDCODE) project that aims to systematically compare

chromatin organization in Homo sapiens (human), Drosophila

melanogaster (fly) and Caenorhabditis elegans (worm) (Ho et al.,

2014). A naı̈ve approach to this problem would be to compute the

state map for each organism separately and then try to compare

them afterward. However, this causes significant problems for inter-

pretation because what was defined as an enhancer state in one

organism is likely not identical with that from another organism.

In the other extreme, we could simply concatenate the three gen-

omes into one and infer states, but then the inferred result would be

highly biased by the species with the largest genome size or by other

species-specific biases in the ChIP-seq signals. Similar problems

exist when comparing multiple developmental stages or cell types in

the same organism. In essence, we require a method that allows

the information of the state definition to be shared across multiple

genomes while retaining the ability for each genome to have its own

chromatin state definition.

In the context of that project, we developed a novel Bayesian

non-parametric method, called hierarchically linked infinite HMM

(hiHMM), to infer chromatin state maps across multiple genomes

simultaneously. The application of hiHMM in the human/fly/worm

cross-species comparison setting indicates that the chromatin state

segmentations in individual organisms generated by hiHMM are

highly comparable to the maps generated by ChromHMM (Ernst

and Kellis, 2010, 2012) and Segway (Hoffman et al., 2012)—two

widely used chromatin state segmentation algorithms (Ho et al.,

2014). Furthermore, hiHMM is designed to address species-specific

confounding factors such as variations in ChIP signal strength,

genome size and co-occurrence patterns. In this article, we will

present the method in detail as well as demonstrating the utility of

this method using a variety of simulated and real data.

2 Materials and Methods

2.1 Statistical model for joint chromatin state inference
To address the problem of inferring consistent chromatin state def-

inition across multiple related genomes, we employ an infinite

HMM (iHMM) (Beal et al., 2002), a non-parametric extension of a

finite state HMM, as a base model and extend it to model data from

multiple conditions. For ease of model description, we consider the

problem of chromatin state segmentation on multi-species histone

modification data, in which case multiple conditions correspond to

multiple species. The same statistical model can be used to describe

data from different types of conditions such as multiple developmen-

tal stages or cell types.

2.1.1 Background on chromatin state segmentation using HMM

We begin our model description by introducing the traditional

HMM for single species data. Let Y ¼ ðy1; . . . ; yTÞ be an m�T

matrix for histone modification data for m chromatin marks

measured at T contiguous locations along the genome. Each yt ¼
ðy1t; . . . ; ymtÞT 2 Rm corresponds to the observation data at gen-

omic location t. In a traditional HMM assuming K hidden states,

each genomic location t is associated with a hidden chromatin state

st 2 f1; . . . ;Kg from which the observation data yt is generated. We

assume that yt follows a multivariate Gaussian distribution condi-

tioned on its hidden state st such that ytjst � Nðlst
;Rst
Þ for lk 2 Rm

and Rk 2 Rm�m for k ¼ 1; . . . ;K. The parameter lk corresponds to

the mean signal strengths from state k for m marks. The transition
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probabilities between hidden states are defined by the transition ma-

trix p 2 RK�K such that pðstjst�1Þ ¼ pst�1 ;st
. The segmentation by the

chromatin states then can be naturally obtained from the hidden

state sequence S ¼ ðs1; . . . ; sTÞ. The hidden state sequence can be

inferred by the Viterbi algorithm (Forney, 1973).

2.1.2 Extension to hiHMM

To obtain a consistent state definition for principled comparison of

chromatin states between multiple species, we propose to model the

multi-species data by using an iHMM as a base model for each spe-

cies data and then by coupling species-specific iHMM parameters

together, so that state definition can be shared across species.

Under an iHMM (Beal et al., 2002; Teh et al., 2006), an infinite

number of hidden states is assumed a priori, and then the number of

hidden states is inferred by posterior inference from given data. An

infinite dimensional transition matrix p and an infinite number of

emission parameters of lk and Rk for k ¼ 1; 2; . . . are defined as fol-

lows. Each row pk of the transition matrix follows the so-called

Dirichlet process (DP), which defines a probability distribution on a

countably infinite dimensional space of f1; 2; . . . g (Blackwell and

MacQueen, 1973; Ferguson, 1973). Formally, we have pk � DPða0;

bÞ where b is the base measure (‘mean’ of the DP) and a0 is a scale

parameter controlling the concentration around the base measure.

To couple each row of the transition matrix, so that the state defin-

ition can be shared across rows, a common base measure b of an-

other DP is used, which we denote b � GEMðcÞ for a hyper-

parameter c under a stick-breaking process [for more details, refer

to Teh et al. (2006)]. For each state k, the emission parameter lk is

sampled from a prior probability H, which we assume to be a nor-

mal distribution Nð0;R0), where R0 is the initial covariance matrix.

In addition to the flexibility of allowing an infinite number of

states a priori, an iHMM has the advantage that it naturally extends

to a more general model in which multiple iHMMs can be coupled

together. Suppose we have chromatin data from multiple, say C,

species. Let c 2 f1; . . . ;Cg denote the species indicator. Random

variables s
ðcÞ
t and y

ðcÞ
t represent the hidden state and the observation

data, respectively, at locus t in species c. We associate each species

data with its own transition matrix pðcÞ, such that each row of pðcÞ

follows the same DP across different rows and different species.

Two versions of emission parameters are considered—one that as-

sumes a species-specific emission matrix (Model 1) and the other

assuming a common emission matrix across species (Model 2). The

generative model for Model 1 can be formulated as follows:

b � GEMðcÞ

pðcÞk � DPða0; bÞ

s
ðcÞ
t js

ðcÞ
t�1 � pðcÞ

s
ðcÞ
t�1

lðcÞk � H ¼ Nð0;R0Þ (1)

y
ðcÞ
t js

ðcÞ
t � NðlðcÞ

s
ðcÞ
t

;RÞ (2)

For simplicity, we may assume R0 ¼ r2
0I and R ¼ r2

I for real-

valued r2
0 and r2 and an identity matrix I. The formulation for

Model 2 is similar to the equations above except that Equations (1)

and (2) are replaced by:

lk � Nð0;R0Þ

y
ðcÞ
t js

ðcÞ
t � Nðl

s
ðcÞ
t
;RÞ

Note that the parameters are more tightly coupled in Model 2 than

in Model 1 in which species-specific parameters are weakly coupled

through a prior. We denote the proposed model as a hiHMM.

A similar formulation that extends an iHMM to handle multi-

population data was first introduced with application to the local

ancestry estimation problem (Sohn et al., 2012) but with a different

emission model and for a different data type.

2.1.3 Explicit control for self-transition probability

Dependencies among neighboring genomic locations may be better

reflected by introducing an explicit self-transition probability. To

implement this idea, we modify the transition probability as follows:

PðsðcÞt ¼ kjsðcÞt�1 ¼ jÞ ¼ p
ðcÞ
0 1ðk; jÞ þ ð1� p

ðcÞ
0 Þp

ðcÞ
jk

where p
ðcÞ
0 denotes the self-transition probability in species c, and

1ðk; jÞ ¼ 1 if k¼ j and 0 otherwise. We expect this model to prevent

the excessive transitions between locations and to help accommo-

date different genome sizes and the resulting self-transition probabil-

ities between species. The graphical representation for the final

model is shown in Figure 1.

2.1.4 Posterior inference

We employ a dynamic-programming technique called Beam sam-

pling (Van Gael et al., 2008) for efficient posterior inference dealing

with an infinite number of hidden states. It adaptively changes the

number of states over iterations, so at each iteration, it tries to in-

crease the state space, and based on the new parameters with

increased number of states, the hidden state sequence is sampled.

Then we check whether there is a hidden state having no associ-

ation. We remove those states from our state space. On the basis of

this new hidden state sequence, we re-sample HMM parameters.

Model 1: Species-specific emission

Model 2: Shared emission
βγ

H

· · ·

k = 1 : ∞

sc
0 sc

1 sc
T

yc
Tyc

1

πc
k

c = 1 : C

pc
0

μk

α0

β

· · ·

k = 1 : ∞

sc
0 sc

1 sc
T

yc
Tyc

1

πc
k

c = 1 : C

pc
0

μc
k

γ

H

α0

Hyperparameter

Unobserved variable Observed variable

Fig. 1. Graphical representation of hiHMM models 1 and 2
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We repeat this until Li, the mean of the last m posterior samples at

ith iteration, converges. That is, the convergence criteria is

jLi � Li�1j=jLi�1j < 1:0� 10�5. The other iHMM parameters and

the self-transition probabilities are inferred by Gibbs sampling.

2.1.5 Parameter initialization

Like most HMM-based learning methods, using good initial param-

eters is important in obtaining good learning outcome. To obtain

reasonable initial emission and transition matrices, we first concat-

enate all genomes together and perform a k-mean clustering step.

This also encourages coupling of emission matrices in different spe-

cies in case of Model 1.

2.2 Simulations
2.2.1 Simulation scenarios

We first demonstrate the main benefit of the proposed models on

simulated datasets. The simulation scenarios are mainly motivated

by a recent modENCODE project that compares the chromatin or-

ganization in human, fly and worm to reveal common and species-

specific chromatin states (Ho et al., 2014). We simulated histone

modification data with M¼8 marks from C¼3 species

(Supplementary Fig. S1). The transition matrix and the emission

parameters are simulated under various scenarios below. Non-zero

elements in the emission matrix correspond to the enriched marks.

At each parameter setting, a hidden state sequence and the corres-

ponding observation sequence of length T is generated under the

standard HMM model per species, and this is repeated 50 times.

We describe the default simulation setting for the HMM param-

eters first. For each state k among the assumed K hidden states, one or

two histone marks are randomly chosen to have non-zero signal for

all the species. The average signal strength skm of each enriched mark

m in state k is randomly sampled from uniform distribution U(1, 4)

for k ¼ 1; . . . ;K� 1 and from Uð0:05;1Þ for k¼K to simulate a

chromatin state with low signal. As the dynamic range of ChIP-seq

signal may not be identical across species due to technical differences,

we further incorporate a discrepancy parameter q, such that the signal

strength for the mark in species c is defined as lðcÞkm ¼ skm if c¼1 and

lðcÞkm ¼ skmð1þ ð�1Þðc�1ÞqÞ for c � 2. We keep q relatively small com-

pared with the average signal strength in U(1, 4); q ¼ 0:1 in most

scenarios below except for one scenario to examine the performance

behavior with respect to q. Finally, we set one state as species specific

by making one of the enriched marks at the state as un-enriched (i.e.

signal strength of zero) for species c � 2. The transition parameter is

defined as pðcÞ ¼ p
ðcÞ
0 IK þ ð1� p

ðcÞ
0 Þp

ðcÞ
0 , where pðcÞ0 ¼ p0 þ pc, p0 is a

random sparse matrix with 30% of randomly uniformly distributed

non-zero elements and constant across species and pc is a random

sparse matrix with 10% of non-zero elements, which are species-

specifically sampled. We normalize each row of pðcÞ to have row-sum

of one. IK is an identity matrix of size K�K. We fix K at 10.

Scenario I: We examine the effect of different genome size. The

following three settings are considered in which either the genome

size T or the self-transition probability p0 varies between species.

We fix q at 0.1.

• Scenario I-1: The same genome size of T ¼ ð2000;2000; 2000Þ,
for each of the three species, and the same average self-transition

probability p0 ¼ ð0:9;0:9;0:9Þ.
• Scenario I-2: Different genome size of T ¼ ð2000;5000; 10000Þ

and the same self-transition probability p0 ¼ ð0:9; 0:9; 0:9Þ.
• Scenario I-3: Different genome size T ¼ ð2000;5000; 10000Þ

and different self-transition probability p0 ¼ ð0:7; 0:8; 0:9Þ.

Scenario II: We study the effect of different ChIP-seq signal

strength across species. We vary q from 0.1 to 0.5 by step size of

0.2. The genome size and the self-transition probability were the

same as those in scenario I-1 in which the genome size and the self-

transition probabilities are the same across species.

Scenario III: The effect of the number of species-specific states is

studied in this scenario. We vary the number of species-specific

states n from 0 to 2. The other parameters were the same as in scen-

ario I-1.

2.2.2 Performance comparison

We compare the hiHMM Model 1 (hiHMM1) and Model 2

(hiHMM2) with an iHMM combined with the self-transition model

introduced in section 2.1.3 (iHMMþp0) that assumes a common

emission matrix and a common transition matrix for all species, the

iHMM without such additional self-transition model (iHMM), so

that transition probabilities are defined as PðsðcÞt ¼ kjsðcÞt�1 ¼ jÞ ¼ pðcÞjk

and the existing methods of ChromHMM and Segway. In hiHMM

1 and hiHMM2, we set the initial number of states K0 as 7, the vari-

ance parameters of r2 ¼ 1 and r2
0 ¼ 1. The traditional HMMs with

K¼10, 13, 16 states are also compared for which a Matlab toolbox

for HMM written by K. Murphy was used in its default setting

(http://www.cs.ubc.ca/murphyk/Software/HMM/hmm.html)

except that the full covariance matrix is assumed. In all cases other

than hiHMM1 and hiHMM2, genomes from different species were

concatenated as one sequence and used as input.

The segmentation performance is compared in two main aspects:

the accuracy of clustering genomic loci by hidden state labels and

the segment boundary detection accuracy. We use the adjusted Rand

Index (RI) for the former, and the F-measure computed from preci-

sion and recall for the latter. RI (Rand, 1971) is a traditional meas-

ure for clustering accuracy and considers the number of pairs of

samples whose labels are correctly assigned, that is the number of

pairs that are in the same (or different) cluster (i.e. the same hidden

state) both under the ground truth and under the estimated labels.

The adjusted RI is the normalized difference of the RI and its ex-

pected value under the null hypothesis, so that the expected value of

two random partitions becomes zero (Hubert and Arabie, 1985).

For segment boundary detection accuracy, precision is defined as

the number of true boundaries among detected boundaries divided

by the total number of detected boundaries, and recall is the number

of true boundaries among detected boundaries divided by the total

number of true boundaries. F measure is the harmonic mean of preci-

sion and recall, that is, F ¼ 2ðprecision � recallÞ=ðprecisionþ recallÞ.

2.3 Real data applications
2.3.1 Running hiHMM on fly and worm ChIP-seq data

The fly (genome assembly version dm3) and worm (genome assem-

bly version WS220) ChIP-seq and RNA-seq data were generated by

modENCODE consortia. All input-normalized ChIP-seq signal

tracks were downloaded from the ENCODE-X interactive faceted

browser: http://encode-x.med.harvard.edu/data_sets/chromatin/.

The original fly and worm ChIP-seq data were in 10-bp resolution.

All tracks were re-binned to 100 bp resolution by taking the mean of

10 consecutive bins. Data from multiple histone modifications were

concatenated as columns into a tab-delimited format. Bins that

overlapped unmappable regions were removed (mappability re-

gions were downloaded from https://www.encodeproject.org/

comparative/chromatin/#mappability).

hiHMM was run in Matlab with default parameters: 200 burn-

in iterations, which means the first 200 samples, are discarded

hiHMM for joint chromatin state inference 2069
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during iterations for posterior inference and then 10 consecutive

posterior samples are collected to produce the final Maximum-

A-Posterior output. For each comparison, all available histone

modification profiles produced by ChIP-seq experiments that are

common across the targeted species and cell types were used

(Supplementary Table S1). Chromatin states were trained on repre-

sentative fly chromosomes 2 L, 2LHet, X and XHet and worm

chromosomes II, III and X, as per the modENCODE study

(Ho et al., 2014). Our prior experience suggests that training with

all or only this representative subset of chromosomes in these organ-

isms make very little difference in terms of the resulting chromatin

state definition. Nonetheless, the hiHMM program is scalable to

analyze all the chromosomes—which would be useful for exploring

any previously uncharacterized chromatin landscapes.

Emission matrices from hiHMM output were examined and

states were named based on chromatin state definitions in previous

studies as well as overlap with expressed or unexpressed genes

(Ernst et al., 2011; Kharchenko et al., 2011) (Supplementary

Figs. S2 and S3). A custom R script is used to rename the states and

re-introduce unmappable regions as State 0.

2.3.2 Chromatin state statistics

Genomic coverage was calculated as the percentage of the mappable

genome that is occupied by each state, at the bin level. Expression

odds ratio was calculated as the ratio of the number of expressed ver-

sus silent genes that overlapped with each chromatin state, divided

by the genome-wide ratio of the number of expressed versus silent

genes. A gene was considered expressed if its mRNA expression lev-

els were >1 RPKM (Reads Per Kilobase per Million mapped reads).

Gene body overlap was calculated as the percentage of bins anno-

tated to each chromatin state that occur between the transcription

start site (TSS) and transcription end site (TES) of an annotated gene.

2.3.3 Meta-gene chromatin state enrichment profile

A meta-gene matrix was constructed from all annotated protein cod-

ing genes that were at least 1300 bp in length and do not overlap an-

other gene within 500 bp of its TSS or TES. Protein-coding gene

annotation was downloaded from https://www.encodeproject.org/

comparative/transcriptome/. We further excluded genes that

occurred within 1000 bp of a chromosome start or end. The meta-

gene matrix contains the chromatin state annotations of each ‘repre-

sentative’ gene extending to 500 bp upstream of the TSS and 500 bp

downstream of the TES. Enrichment profiles are presented as heat-

maps where the color indicates the percentage of genes that have

been annotated with that particular chromatin state at that relative

genomic position. Meta-gene profiles of expressed and silent genes

were computed separately.

2.3.4 Inter-sample chromatin state co-occurrence

Fold change was calculated as the observed number of bins that

transitioned between any two chromatin state annotations divided

by the expected number. The expected number was the mean num-

ber of bin transitions between those two states in 1000 Monte Carlo

simulations with a randomized chromatin state assignment, preserv-

ing the relative genomic coverage of each state. Fold change was

truncated between one and five for simplified visualization and

interpretation.

2.3.5 Co-occurrence matrices

Co-occurrence of genomic chromatin state annotation between ex-

periments was calculated as the number of bins that were annotated

as a particular chromatin state combination in two experiments div-

ided by the total number of bins annotated to those states in the re-

spective experiments. This gives a value between 0 and 1, which is

presented in a heatmap.

2.3.6 Gene ontology enrichment of target genes in a region

Official gene symbols for all genes that overlapped with the selected

regions were submitted to the DAVID bioinformatics tool (Huang

et al., 2009). The Benjamini adjusted P value (Benjamini and

Hochberg, 1995) of the 10 most significant gene ontology (GO) bio-

logical process results are presented for each analysis.

3 Result

3.1 Simulation study
3.1.1. An illustrative example

We compare the true simulated emission matrices and the estimated

ones by each algorithm on an example dataset with K¼10 chroma-

tin states model (Fig. 2). The true model contains two species-spe-

cific states (State 5 and State 9) that have species-specific mark

combinations. Therefore, the actual number of distinct chromatin

states across all the species can be viewed as 12. The genome size T

was 2000, 5000 and 10 000 for each of the three species.

As shown in Figure 2, Model 1 recovers the correct number of

hidden states and the correct mark combination. Model 2 recovers

one species-specific state correctly (State 9 in a cyan box Fig. 2), but

it misses the mark combination of the species-1-specific State 5

(green box in Fig. 2), possibly due to the shorter genome length of

species 1, resulting in lower overall representation of the state during

joint learning. Instead, two states corresponding to State 1 are re-

covered with slightly different signal strengths. This appears to hap-

pen because the average signal strength is not identical between

species. In contrast, Model 1 correctly recovers all the states as it

allows species-specific emission matrix that can have different signal

strength.

The standard HMMs fail to recover species-specific states even

when a large K of 16 was assumed. For example, although the signal

of the second mark in State 5 for species 1 is relatively strong, stand-

ard HMMs either miss the state completely (the case of K¼10) or

the recovered signal is very weak (cases of K¼13, 16). Again, this

seems to be because of the shorter genome size of species 1 and its

relatively low coverage. Moreover, State 9 in species 2 is completely

missing in all cases of K¼10, 13, 16 possibly because it is specific to

species 2 and its coverage is very low (1.7%). In summary, a stand-

ard HMM fails to recover the correct states, likely due to the exist-

ence of species-specific states, different genome size and possibly

different ChIP-seq signal range.

3.1.2 Comparison of segmentation accuracy

The overall performance over 50 simulated datasets per parameter

setting across scenarios is compared in terms of the adjusted RI be-

tween the true state labels and the estimated ones, and the segment

boundary detection accuracy of F-measure. Figure 3 shows boxplots

for the accuracy of each algorithm (Fig. 3A: scenario I, B: scenario

II, C: scenario III).

Both Model 1 (hiHMM1) and Model 2 (hiHMM2) perform su-

perior or comparable to the other algorithms across all the scen-

arios. HMM with K¼13 or 16 in which the assumed number of

states is larger than the true number of states consistently perform

the worst especially in terms of F-measure for the boundary detec-

tion accuracy. The traditional HMMs and ChromHMM tend to
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over-segment the genome and produce a large number of false-posi-

tive segment boundaries, resulting in low precision. When compar-

ing hiHMM1 and hiHMM2, their performances are comparable

overall in both aspects. When the signal strength variation q is low,

hiHMM2 outperforms hiHMM1 in terms of clustering accuracy

(e.g. P value of 0.02 from a paired t-test in case of scenario II-1), but

as the discrepancy increases, hiHMM1 significantly outperforms

hiHMM2 with a P value<2:2� 1016 (Fig. 3B). We find that the

performance change of each algorithm is the most dominant in scen-

ario II for which the signal strength variation q is changed.

Regarding computation time, hiHMM1 or hiHMM2 each took

less than 2 min on average per simulation dataset (scenario I-1) in a

single Intel(R) Xeon(R) CPU E5-2650 (8-core, 2.00 GHz) with

32 GB RAM (DDR3, 1600 MHz) and CentOS 6.4 (64-bit architec-

ture), which is shorter than that from Segway (around 3�4 min)

but longer than that from ChromHMM (<1 min).

3.2 Real data analysis
3.2.1 Case study 1: hiHMM identifies species-specific chromatin

states in fly and worm

The analogous developmental stage of stage 3 larva (L3) in fly and

worm was selected for this cross-species chromatin state analysis.

hiHMM was run using 25 starting states with Models 1 and 2 on

the combined data and 30 starting states using Model 2 to capture

more species-specific states.

Chromatin state analysis of fly L3 versus worm L3 shows both

shared and unique patterns of chromatin mark co-occurrence be-

tween the two species (Fig. 4A). We found 25 states that grouped

into six categories: promoters, enhancers, gene body, heterochroma-

tin, repressed and low signal. Most states are conserved and have

similar compositions but with some clear differences. Fly promoter

states (red) show a distinct lack of H3K23ac when compared with

worm (green highlight in Fig. 4A). Conversely, worm promoter

states lack H3K79me1 when compared with fly (BLACK highlight

in Fig. 4A). Genic and transcription states (green) in fly show enrich-

ment of H4K16ac, H3K79me1 and H4K20me1, all of which are

largely absent in the same states in worm (orange highlight in

Fig. 4A). H4K8ac, on the other hand, is enriched in these states in

worm but completely absent in fly (yellow highlight in Fig. 4A).

Further differences are visible in the repressed (purple) and hetero-

chromatin (black) states. In fly, there is a clear differentiation of re-

pressive histone modifications between the two state classes,

whereas the marks consistently co-occur in worm (purple highlight

in Fig. 4A). To verify that these differences were representative of

the data and not simply training errors, we examined the data in a

genome browser and visually confirmed the differences

(Supplementary Figs. S4–S6).

To compare the performance of hiHMM Model 1s and 2, we also

learned a shared chromatin state definition using Model 2

(Supplementary Fig. S7). Increasing the number of states from 25 to

30 allowed for the identification of a greater number of species-specific

states, apparent from an absence of the state (0 genomic coverage)

in one species (Supplementary Fig. S8). When examining the state

co-occurrence matrix between the two models, there are obvious

anomalies in species-specific states 10 and 12 (Supplementary Fig. S9).

3.2.2 Case study 2: hiHMM identifies developmental stage-specific

loci in fly

Three fly developmental stages were chosen for chromatin state

comparison: late embryo (EL), third instar larvae (L3) and adult

head (AH). hiHMM was run on the combined datasets using

25 starting states with Models 1 and 2.

Jointly learned average ChIP signal matrices for three developmen-

tal stages in fly show that the majority of observed histone modifica-

tion combinations and their genomic occurrence remain stable during

development (Supplementary Figs. S10 and S11). H3K79me1, how-

ever, shows a marked reduction in enrichment in active states in AH

compared with EL and L3 stages (Supplementary Fig. S12). Although

this difference is interesting, it is secondary to our ensuing analysis of

differential state co-occurrence during development. Examining the

co-occurrence between Models 1 and 2 shows a very high level of con-

cordance, so we continue the analysis using the shared chromatin state

definition learned by Model 2 (Supplementary Fig. S13).

Using these chromatin state maps, we implemented an unbiased

approach for identifying developmentally regulated genes from chro-

matin state co-occurrence between two developmental stages—EL

and AH—in fly (Fig. 5). In total, 1659 genes from regions that transi-

tioned from an active (promoter, enhancer, gene) state in EL to an in-

active (repressed, heterochromatin, low signal) state in AH (Fig. 5C,

top right) were strongly enriched for multiple developmental GO

terms, including ‘Respiratory system development’ (P value

1.66�10�8) (Fig. 5D). Similarly, 1889 genes that changed from in-

active in EL to active in AH (Fig. 5C, bottom left) were strongly en-

riched for terms expected from a fully developed organism, including

‘Transmission of nerve impulse’ (P value 1.48�10�7). These transi-

tions in developmental regulation are clearly visible in a genome

browser when the chromatin state tracks are visualized (Fig. 5E).

4 Discussion

The main innovation of our approach is that it provides a flexible

framework to enable information sharing between multiple HMMs.

Ground truth (Ktrue=10) 

State 1 
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( est )

c=1 c=2 c=3 

K=13 K=16 

0 1 2 3 4 5

Coverage (%)

T1=2,000 T2=5,000 T3=10,000 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1 
2 
3
4
5 
6 
7 
8 
9 

10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

c=1 c=2 c=3

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

No.undetectedstates

Model1 0

Model2 1

HMM K10 3

HMM K13 3

HMM K16 3

1 
2 
3
4
5 
6 
7 
8 
9 

10 

Fig. 2. An illustrative example using a toy simulated dataset. The heatmaps

show the emission parameters of the ground truth with K¼10 chromatin

states in three species (top panel) and the hiHMM and HMM estimated par-

ameters. As State 5 (green box) and State 9 (cyan box) have different combin-

ations of enriched marks between species, the number of distinct chromatin

states across all the species is 12. Model 1 recovers the correct number of

states and the enriched marks. Model 2 recovered one of the two species-spe-

cific state but missed the species-1-specific State 5. The standard HMMs miss

three states even when a large K is assumed
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The main difficulty of joint analysis of related datasets is how to ob-

tain a consistent state definition or the mapping between a set of

states defined in one species and the one in another species. If one

were to apply iHMM separately on each of the datasets, we face the

problem of mapping state definitions between species. The proposed

hiHMM solves this problem by assuming a common state space def-

inition across all the datasets. It is one of the main advantages of

using the non-parametric model based on the so-called hierarchical

DP, which is the core component of iHMM. Under a hierarchical

DP prior for data from multiple groups, each group is associated

with a group-specific DP and then those DPs share a common base

measure that is another DP. This is the major mechanism how the

atoms from each DP can be shared across groups. Model 1 couples

the state definition more loosely than Model 2 since in Model 1 in-

formation is shared via the prior only, whereas Model 2 explicitly

employs a shared emission matrix.

One distinguishing feature of hiHMM is that we can jointly infer

emission values for genomes of differing lengths without the domi-

nating influence of a longer genome on the result or the need to per-

form compensatory subsampling during training. This is a major

limitation of existing methods that concatenate multiple samples for

joint learning that is overcome using hiHMM.

Similar to Segway or the HMM approach of Kharchenko et al.

(2011), hiHMM directly models continuous ChIP signal values and

therefore alleviate the need of selecting a binary threshold cutoff.

We observe that this feature is potentially important for
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Fig. 3. Performance comparison on simulated datasets based on three aspects: (A) the effect of different genome size (scenario I), (B) the effect of different ChIP-

seq signal strength between species (scenario II) and (C) the effect of the number of species-specific states (scenario III). The plots in the top row show the F-

measure for the segment boundary detection, and the plots in the bottom row show the clustering accuracy by segment labels in terms of adjusted RI. Note that

iHMMþp0 and iHMM correspond to the plain iHMM combined with or without the self-transition model introduced in Section 2.1.3, respectively
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Fig. 4. Cross-species chromatin state analysis. (A) ChIP signal matrix showing the average observed histone modification profiles for each of 25 states inferred by

the hiHMM algorithm (Model 1) in fly and worm. Species-specific differences are highlighted. (B) Percentage of genome covered by the state (coverage), relative

enrichment of expressed genes per state (expression odds ratio) and the percentage of state annotations that occur between the TSS and TES of annotated genes

(gene body overlap)
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differentiating within a class of similar states, highlighted by the

interesting and diverse characteristics we observe in low signal states

(Supplementary Fig. S4).

Both our simulated and real data analyses show that the advan-

tages of Model 1 become more evident when the data discrepancy

across different conditions is large, for example, in the case of multiple

species data. In terms of revealing interesting biology, the ability to

infer sample-specific emission matrix parameters (as in Model 1)

allows for intuitive and detailed comparison of chromatin mark com-

binations between different species or cell types. This is evident from

our 25 state analyses in fly versus worm in case study 1. In addition to

the finding that fly and worm have different chromatin modifications

compositions in heterochromatin, here we observed several previously

unreported differences between the two species as described above,

most notably the relative depletion of H3K23ac and enrichment of

H3K79me1 in fly promoter states, as well as multiple differences in

the transcription states. Model 1 was also useful in identifying the un-

expected changes in the distribution of H3K79me1 during fly develop-

ment. Many of these observations were not possible in previous

studies that did not include these marks in their comparison

(Supplementary Fig. S14), and they may suggest different mechanisms

of genetic regulation between the two species.

Jointly learned and shared emission matrix parameters (as gener-

ated by Model 2) provide an easily interpretable platform on which

to compare multiple samples from the same genome without the

confounding factor of different state definitions. Additionally,

Model 2 enjoys better statistical properties such as faster conver-

gence and shorter running time, so Model 2 would be a better choice

when the discrepancy between genomes is expected to be relatively

small as in the case of different developmental stages or environmen-

tal conditions in a single species.

By applying hiHMM to this newly compiled dataset, we were

able to identify two previously uncharacterized chromatin states

that we have named ‘Repressed’ states in the fly development ana-

lysis (states 17 and 18 in Fig. 4A). These two states combined consti-

tute roughly 18% of the fly genome and are almost exclusively

characterized by marks that were not profiled in previous studies,

and so these states were missed.

Although hiHMM allows learning the optimal number of states

from the data in principle, the likelihood surface of the model over
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Fig. 5. Chromatin state characterization and analysis across developmental stages in fly. (A) ChIP signal matrix showing the average observed histone modifica-

tion profiles for each of 25 states jointly inferred by the hiHMM algorithm (Model 2) for three stages of fly development: late embryo (EL), stage 3 larvae (L3) and

adult head (AH). (B) Percentage of genome covered by the state (coverage), relative enrichment of expressed genes per state (expression odds ratio) and the per-

centage of state annotations that occur between the TSS and TES of annotated genes (gene body overlap). (C) Chromatin state co-occurrence between two devel-

opmental stages in fly (EL and AH). The observed versus expected fold change of the co-occurrence of each state in EL and each state in AH is shown. On the

basis of this analysis, we selected significantly over represented co-occurrence regions to investigate and characterize the genes involved through gene set en-

richment analyses. (D) Genome browser views of representative genes Ubx and Oamb with three stage chromatin states. These genes were identified through

chromatin state co-occurrence analysis as having different chromatin states in EL and AH. (E) The top 10 GO biological processes enriched in the genes that are

within regions of the genome that changed from an active state in EL to a repressive state it AH (top panel) or vice versa (bottom panel)
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the used parameter space is quite flat. Therefore, similar posterior

probability value can be obtained through different parameter value

combinations, and this makes the recovery of the correct number of

states still challenging. For systematic analysis of this issue, we

examined the effect on the accuracy and the number of inferred

states of three hyper-parameters: the initial number of states K0 and

the two variance parameters: r2
0 in the prior distribution for the

emission matrix and r2 for generating the observation signal given

the hidden state and the emission matrix (Supplementary Figs. S15

and S16 for Model 1 and Model 2, respectively). The smaller r2

produced better segmentation accuracy, which is expected as the

variance in the emission model should be small enough to assign the

observation signal to the correct state. Assuming proper normaliza-

tion by variance, r2 ¼ 1 seems to produce the best result. The num-

ber of inferred states depended on all the three parameters but most

significantly by r2
0. We see that r2

0 should be large enough to com-

pactly capture the varying signals from enriched marks as the prior

mean for the emission matrix is zero. For large r2
0 (>2), the number

of inferred states becomes less affected by other parameters. The de-

viation from the initial number of states to the inferred number is

also mostly determined by r2
0 but not significantly by others. It ap-

pears to be a good practice to set r2
0 to be around the mean signal

strength of the enriched marks. The initial number of states should

be selected close to the true number of states. Automatic estimation

of these hyper-parameters would need further investigation in our

future work.

Another important issue is to get a reasonably good initial state

assignment, which encourages consistent state-definition across

species. This issue is especially critical with hiHMM1 in which the

species-specific models are loosely connected. Our current joint ini-

tialization scheme of concatenating different genomes as one and

applying k-means clustering works reasonably well, but this would

be investigated further in our future study.

In this article, we demonstrated a variety of features of hiHMM

that makes it useful for cross-sample joint chromatin state

inference. We have devised two models of hiHMM, each having ad-

vantages and limitations of interpretation and inference. The flexi-

bility of using both learning models allows for a more

comprehensive analysis during different applications and experi-

mental designs.
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