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Abstract

Background: It has now become clear that gene-gene interactions and gene-environment interactions are
ubiquitous and fundamental mechanisms for the development of complex diseases. Though a considerable effort
has been put into developing statistical models and algorithmic strategies for identifying such interactions, the
accurate identification of those genetic interactions has been proven to be very challenging.

Methods: In this paper, we propose a new approach for identifying such gene-gene and gene-environment
interactions underlying complex diseases. This is a hybrid algorithm and it combines genetic algorithm (GA) and an
ensemble of classifiers (called genetic ensemble). Using this approach, the original problem of SNP interaction
identification is converted into a data mining problem of combinatorial feature selection. By collecting various
single nucleotide polymorphisms (SNP) subsets as well as environmental factors generated in multiple GA runs,
patterns of gene-gene and gene-environment interactions can be extracted using a simple combinatorial ranking
method. Also considered in this study is the idea of combining identification results obtained from multiple
algorithms. A novel formula based on pairwise double fault is designed to quantify the degree of complementarity.

Conclusions: Our simulation study demonstrates that the proposed genetic ensemble algorithm has comparable
identification power to Multifactor Dimensionality Reduction (MDR) and is slightly better than Polymorphism
Interaction Analysis (PIA), which are the two most popular methods for gene-gene interaction identification. More
importantly, the identification results generated by using our genetic ensemble algorithm are highly
complementary to those obtained by PIA and MDR. Experimental results from our simulation studies and real
world data application also confirm the effectiveness of the proposed genetic ensemble algorithm, as well as the
potential benefits of combining identification results from different algorithms.

Background
It is widely acknowledged that complex diseases are most
likely caused by a combination of environmental factors
and interactions among multiple genes [1]. With the fast
development of the genotyping technologies, single
nucleotide polymorphisms (SNPs) have become one of
the most commonly used biomarkers for disease asso-
ciated gene identification in case-control designed gen-
ome wide association (GWA) studies [2-5]. However,
there are several practical problems in analyzing the SNP
genotype data. First, to identify true disease associated
SNPs from a massive set of candidate SNPs, an accurate
SNP selection strategy is of critical importance. However,

the accurate identification of disease associated SNPs for
phenotype classification is hindered by the curse-of-
dimensionality and the curse-of-sparsity [6]. Furthermore,
the datasets generally contain high level of data noise,
high redundancy, and many missing values, and most
seriously, it is evident that epistasis is a ubiquitous phe-
nomenon in complex diseases [7,8], or in other words,
gene-gene interactions and gene-environment interac-
tions are likely to be important contributors to the devel-
opment of many complex diseases (note the phrases
gene-gene interaction and SNP-SNP interaction are used
interchangeably in this paper). The explanations from the
biological perspective are as follows: (1) a SNP in a cod-
ing region may cause amino acid substitution, leading to
the functional alteration of the protein; (2) a SNP in a
promoter region can affect transcriptional regulation,
causing the change of the protein expression abundance;
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and (3) a SNP in an intron region can affect splicing and
expression of the gene [9]. All these effects contribute
quantitatively and qualitatively to the ubiquity of bio-
molecular interactions in biological systems. Although it
is a common characteristic in complex disease develop-
ment, the identification of those genetic interactions have
been proven to be very challenging [10].
Most of the earliest studies focused on identifying a set

of SNPs in which individual SNP has a strong association
with the phenotype by applying statistical measures such
as c2-statistic and logistic regression [11,12]. However,
several problems arise when applying these methods.
First, it is unclear how to best adjust the resulting p-
values after testing for a very large number of possibly
non-independent hypotheses. Second, complex diseases
are usually caused by the action of multiple genes in a
nonadditive fashion. The standard analytical approaches
in GWA studies often proceed by identifying only a very
small number of SNPs (usually only one or two) that
exhibit strong statistical association with the target phe-
notype. In other words, only SNPs that independently
have a strong discriminating ability are selected, while
other SNPs that individually have weaker association are
not discovered [13]. However, it is common that a com-
bination of two or more SNPs, each having weak associa-
tion with the phenotype, can classify the phenotypes of
samples with a higher accuracy. This is natural since
complex diseases are most likely caused by multiple
genes and their interaction with environmental factors.
To cope with these problems, it is desirable to develop

new methods which can consider multiple loci jointly. A
number of such methods have been developed recently.
Among these methods, nonparametric methods like
Polymorphism Interaction Analysis (PIA) [14], Multifac-
tor Dimensionality Reduction (MDR) [15], and Combi-
natorial Partitioning Method (CPM) [16] are the most
popular ones probably due to their good generalization
property on different interaction models. Specifically,
PIA tries to apply multiple evaluation metrics for rank-
ing and scoring SNP combinations while MDR and
CPM attempt to modify the feature dimension to discri-
minate SNP-SNP interactions. However, there is no
one-size-fits-all method for the detection and characteri-
zation of gene-gene interaction relationships in GWA
studies. Several comparison and evaluation studies sug-
gested that applying a combination of multiple comple-
mentary algorithms, each having its own strength, could
be the most effective strategy to increase the chance of
a successful analysis [10,17,18].
A recent study by McKinney et al. [19] proposed to

use a combination of a machine learning filter and an
information theoretic approach to identify SNP-SNP
interactions. McKinney et al. found that combining the
set of SNP-SNP interactions into a graph can yield

interesting insights about the underlying biological pro-
cesses. It is anticipated that similar network-based analy-
sis approaches can be used as a down-stream analysis
for any gene-gene interaction identification algorithms.
In this study, we attempt to address the problem from

an alternative perspective by converting the issue into a
combinatorial feature selection problem. From the data
mining perspective, a sample from a SNP dataset of an
association study is described as a SNP feature set of
the form si = {g1, g2, ..., gn}, (i = 1, ..., m) where each
SNP, gi , is a categorical variable which can take the
value of 0, 1, and 2 for genotypes of aa, Aa, or AA at
this locus, and m is the number of samples in the data-
set. The dataset can, therefore, be described as an m × n
matrix Dmn = {(s1, y1), (s2, y2), ..., (sm, ym)}, where yi is
the class label of the ith sample. One can evaluate the
discrimination ability of a set of SNPs jointly by apply-
ing the following two steps:

• Generating a reduced SNP feature set si =

( )′ ⊂s si i , ( )′ ⊂s si i in a combinatorial manner

which restrains the dataset matrix into

D s s smd m my y y= ′ ′ … ′{( , ),( , ), ,( , )}1 1 2 2 . A key obser-

vation is that feature selection algorithms which
evaluate SNPs individually are not appropriate since
they cannot capture the associations among multiple
SNPs.
• Creating classification hypothesis h using an induc-
tive algorithm, and evaluating the quality of the
trained classification model using criteria such as
accuracy, sensitivity, and/or specificity with an inde-
pendent test set.

Without lose of generality, we use notation s to
denote applying a SNP subset to restrain the SNP data-
set Dmn. If a SNP combination s yields a lower misclas-
sification rate than others, we shall consider that it
possibly containing SNPs with main effects or SNP-SNP
interactions with major implications. We now have two
challenging problems for the SNP interaction identifica-
tion. The first challenge is to generate SNP combina-
tions efficiently since the number of SNP combinations
grows exponentially with the number of SNPs and it is
infeasible to evaluate all possible combinations exhaus-
tively. The second challenge is to determine which
inductive algorithm should be applied for the goodness
test of SNP combinations. To tackle the first problem,
we shall apply genetic algorithm (GA) since it has been
demonstrated to be one of the most successful wrapper
algorithms in feature selection from high-dimensional
data [20,21].
Furthermore, its intrinsic ability in capturing nonlinear

relationships [22] is valuable for modeling various
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nonadditive interactions. With regard to the second pro-
blem, there is no guiding principle on which inductive
algorithms are preferable for identification of multiple
loci interaction relationships. However, a promising
solution is to employ an ensemble of classifiers and then
to integrate/balance the evaluation results from these
classifiers [23]. The key issue in applying this method is
that the base classifiers used for ensemble integration
should be able to capture multiple SNP interactions
which commonly have nonlinear relationships. This may
be achieved by using appropriate nonlinear classifiers.
The rationale of using an ensemble of classifiers can

be described as follows: suppose that a given classifier i
generates a hypothesis space ℋi for sample classifica-
tion. If the number of training samples m is large
enough to characterize the real hypothesis f (in this con-
text, f is the set of disease associated SNPs and SNP
combinations) and the data are noise-free, the hypoth-
esis space generated by i should be able to converge to f
through training. However, since the amount of the
training samples is often far too small compared to the
size of the hypothesis space which increases exponen-
tially with the size of the features (SNPs), the number of
hypotheses a classifier can fit the available data is often
very large. One effective way to constrain the hypothesis
space is to apply multiple classifiers each with a differ-
ent hypothesis generating mechanism. If each classifier
fulfills the criteria of being accurate and diverse [24], it
can be shown that one is able to reduce the hypothesis
space to better capture the real hypothesis f by combin-
ing them with an appropriate integration strategy [25].
By combining GA and the ensemble of classifiers, we

obtain a genetic ensemble (GE) algorithm for gene-gene
interaction identification. The proposed algorithm has
the following advantages:

• It is a nonparametric and model-free approach.
Unlike traditional parametric methods (e.g. linear
regression etc.), there is no need to specify and
assume the number of parameters and the interaction
models. As a consequence, the proposed method gen-
eralizes well and can capture a range of interaction
relationship such as additive and dominant effects.
• It accommodates the detection of both linear and
nonlinear relationship of gene-gene interactions. As
aforementioned, the ensemble could be formed by
classifiers with nonlinear separation abilities. Both
linear and nonlinear gene-gene interaction relation-
ships are common in complex disease [26], and
could be captured by a nonlinear classifier [27].
• Unlike many other methods which often study dif-
ferent sizes of multi-loci interactions separately and
repeatedly, our algorithm identifies different sizes of
interactions in parallel. This feature makes the

proposed algorithm particularly attractive in identify-
ing higher-order gene-gene and gene-environment
interactions.
• The system is flexible. Different inductive algo-
rithms as well as integration methods can be readily
added in for further improvements.

One other motivation for developing alternative meth-
ods for SNP-SNP interaction identification is in the
hope that different algorithms may complement each
other to increase the overall chance in identifying true
interaction relationships. Therefore, to evaluate the
degree of complementarity of multiple algorithms for
SNP-SNP interaction identification is also an important
part of this study. Specifically, based on the notion of
double fault [28], we designed a formula for calculating
the co-occurrence of mis-identification which gives an
indication of the degree of complementarity between
two different algorithms. Accordingly, the joint identifi-
cation of using multiple algorithms is derived. There-
fore, the contribution of this work is two-fold: (1)
designing a genetic ensemble algorithm for SNP-SNP
and SNP-environment interaction identification; and (2)
proposing a method for evaluating the degree of com-
plementarity among multiple algorithms.

Methods
Overview of genetic ensemble
In our previous study, a multi-objective GA system is
implemented for high dimensional data analysis [29].
Here, we implement the GE algorithm in a similar way.
The algorithm executes in an iterative manner and
results collected through multiple iterations are used to
assess the relative importance of SNPs and SNP-SNP
combinations.
As illustrated in Figure 1, the GE algorithm is applied

to SNP selection repeatedly. In each run, randomly gen-
erated SNP subsets are fed into an ensemble committee
for goodness evaluation. Two classifier integration strate-
gies namely blocking and voting, and a diversity promot-
ing method called double fault statistic are employed to
guide the optimization process. When the evaluation of a
SNP subset is completed, the feedbacks of this SNP sub-
set are combined through a given set of weights and sent
back to GA as the overall fitness of this SNP subset.
After the entire population of GA is evaluated, selection,
crossover and mutation are applied and the next genera-
tion begins. At the last generation of GA, the chromo-
some with the highest fitness is selected, and the SNP
subset it represents is said to be the best SNP subset gen-
rated by GA. The entire GA procedure is repeated (with
different seeds for random initialization) n times (n = 30
in our experiments) to generate n best SNP subsets.
These SNP subsets are then analyzed to identify

Yang et al. BMC Bioinformatics 2010, 11:524
http://www.biomedcentral.com/1471-2105/11/524

Page 3 of 15



frequently occurring SNP-pairs, SNP-triplets, and higher-
order SNP combinations.
For SNP interaction identification, a combinatorial

ranking is applied to the n selected SNP subsets. Each
possible SNP combination is then given an identification
frequency score (the number of times it appears divided
by the total number of iteration n). For example, if the
SNP combination {snp1, snp2} appears in 25 out of 30
iterations, then its identification frequency score is 25/
30 = 0.833. Two alterative criteria can be used to decide
whether a SNP combination should be called or not.
The first criterion is to set a frequency score cut-off, say
0.8, and call all SNP combinations with frequency score
higher than this cut-off as functional SNP combinations.
The second criterion is to set a cut-off rank, and call all
SNP combinations with equal or higher to that rank as
functional SNP combinations. As will be demonstrated
in subsequent sections, the choice between this two cri-
teria is likely a balance between detection power and
false discovery rate.

Genetic algorithm
The number of SNPs considered by the genetic ensem-
ble algorithm for potential interaction detection ranges
from the lower bound of 2 to the upper bound of d,
where d is the “chromosome” size of GA. The size of
the GA chromosome has two implications. Firstly, it

controls the number of factors we can identify. For
example, if the size of d = 15 is used, we can identify
from 2-factor up to 15-factor interactions in parallel.
Secondly, d also influences on the size of the combina-
torial space to be explored. It is a trade-off between the
computational time and the combinatorial space to be
searched. Therefore, for different SNP sizes (that is, the
number of SNPs in the dataset), we shall use different
sizes of d accordingly. Similar to the size of GA chro-
mosome, the population size p and the generation of
GA g are also specified according to the SNP size in the
dataset. In our implementation of the GE algorithm, the
parameters d, p, and g can be specified by users. The
default values of these parameters are chosen empiri-
cally such they work well in a range of datasets.
For GA selection operation, we employ the tourna-

ment selection method as it gives the control of conver-
gence speed. Specifically, the tournament selection size,
denoted as t, is dependent on the size of the population,
varying from 3 to 7. The measure for determining the
winner is as follows:

Winner fitness R p i t
s p

i= = …
∈

arg max ( ( )) ( , , , )1 2 (1)

where Ri(.) is the random selection function which
randomly selects gene subset s from the GA population
p, t is the tournament size, and fitness(.) determines the

Figure 1 A schematic representation of the genetic ensemble algorithm. Multiple classifiers are integrated for gene-gene and gene-
environment interaction identification. Genetic algorithm is employed to select SNP subsets that represent potential gene-gene and gene-
environment interactions. After a pre-defined iterations of n, a total of n selected SNP subsets are ranked in a combinatorial manner. Each SNP
combination is then assigned an identification frequency score based on the proportion of times this SNP combination is present among the n
subsets. A SNP combination is called a functional SNP combination if it is highly ranked or if its frequency score is above a specified threshold.
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overall fitness of the randomly selected gene subset. Sin-
gle point crossover is adopted with the probability of
0.7. In order to allow pair mutations, we implemented a
multi-mutation strategy; that is, when a single mutation
occurs (configured with the probability of 0.1) on a
chromosome, another single point mutation may occur
on the same chromosome with a probability of 0.25 and
so on. The chromosome coding scheme is to assign an
id to each SNP in the dataset, and to represent the
chromosome as a string of SNP ids which specify a
selected SNP subset. For each position on a chromo-
some, it could be a SNP id or a “0” which specifying an
empty position.
Therefore, different sizes of SNP combinations are

explored in a single GA population in parallel. Table 1
summarizes the parameter settings.
The fitness of GA is defined as follows:

fitness s w fitness s w fitness s w fitness sB V D( ) ( ) ( ) ( )= × + × + ×1 2 3 (2)

where s denotes a SNP combination under evaluation.
The functions fitnessB(s), fitnessV (s) and fitnessD(s)
denote the fitness of a SNP combination s as evaluated
by the blocking, voting and double fault diversity mea-
sures, respectively. A complexity regularization proce-
dure is implemented in the GE algorithm to favor
shorter SNP combination if two SNP combinations have
the same fitness value. The computation details of each
component of the fitness function are described in the
next section.

Integration strategies
Blocking
Blocking is a statistical strategy that creates similar con-
ditions to compare random configurations in order to
discriminate the real differences from differences caused
by fluctuation and noise [30]. Suppose a total of M clas-
sification algorithms, each having a different hypothesis

denoted as hi
s , (i = 1, ..., M), are used to classify the

data using a SNP subset s. The fitness function deter-
mined by blocking integration strategy is as follows:

fitness s BC p hB i
s

i

M

( ) ( ( | , ), )=
=
∑ t D y

1

(3)

where y is the class label vector of the test dataset D,
function p(.) predicts/classifies samples in D as t using

hi
s , and BC(.) is the balanced classification accuracy

devised to deal with the dataset with an imbalanced
class distribution. In the binary classification, it is the
area under ROC curve (AUC) [31], which can be
approximated as follows:

BC p h
Se Sp

i
s( ( | , ), )t D y = +

2
(4)

Se
N

N
Sp

N

N
TP

case

TN

control

= × = ×100 100, (5)

where Se is the sensitivity value calculated as the per-
centage of the number of true positive classification
(NTP ) divided by the number of cases (Ncase). Sp is the
specificity value calculated as the percentage of the
number of true negative classification (NTN) divided by
the number of controls (Ncontrol). Such a balanced classi-
fication accuracy measure can accommodate the situa-
tion in which the dataset contains an imbalanced class
distribution of cases and controls [32].
The idea of applying this strategy for classifier integra-

tion in SNP selection is that by using more classifiers to
validate a SNP subset, we are able to constrain the hypoth-
esis space to the overlap region ℋo, increasing the chance
of correctly identifying functional SNPs and SNP-SNP
interactions.
Voting
The second classifier integration strategy applied in our
GE system is majority voting [33]. Majority voting is one
of the simplest strategies in combining classification
results from an ensemble of classifiers. Despite its simpli-
city, the power of this strategy is comparable to many
other more complex methods [34]. With a majority voting
of M classifiers, consensus is made by k classifiers where:

k
M M

M M
≥

+
+

⎧
⎨
⎩

/ :

( ) / :

2 1

1 2

if  is even

if  is odd
(6)

Again, suppose a total of M classifiers, each having a

different hypothesis denoted as hi
s , (i = 1, ..., M), are

used to classify the data using SNP subset s, the fitness
function derived from majority voting is as follows:

fitness s BC V p hV k i
s

i

M
( ) | | , ) ,= ′⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝⎜

⎞
⎠⎟=∑t t D y(

1
(7)

Table 1 Multi-objective genetic algorithm parameter
settings

Parameter Value

Genetic algorithm Multi-objective

Chromosome size 15-25

Population size 40-340

Termination generation 8-20

Selector Tournament selection (3-7)

Crossover Single point (0.7)

Mutation Multiple points (0.1 & 0.25)
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where y is the class label vector of the test dataset D,
Vk(.) is the decision function of majority voting, and t’ is
the voting prediction. Here the balanced classification
accuracy BC(.) is calculated with voting results.
The reason for using the majority voting integration is

to improve sample classification accuracy while also pro-
moting the diversity among individual classifiers impli-
citly [35].
Double fault diversity
The third objective function is an explicit diversity pro-
moting strategy called double fault statistic. This statis-
tic is commonly used to measure the diversity of
ensemble classifiers [28].
Let ca, cb Î {F, S} in which F denotes the sample

being misclassified by a classifier while S denotes the

sample being correctly classified. We define Nc ca b as

the number of samples that are (in)correctly classified
by two classifiers in which the correctness of the two
classifiers is denoted by ca and cb respectively. Using
this notation, we can obtain the term:

D p h p h
N

Nc
s

c
s

FF

a b
( ( | , ), ( | , ))t D t D = (8)

which is the estimation statistic of coincident errors of

a pair of classification models hc
s
a
and hc

s
b
(hence the

name “double fault”) in classification of a total of N
samples in test dataset D, using SNP subset s.
The fitness with regard to the diversity measurement

of M classifiers over subset s (denoted as fitnessD(s))
derived from the double fault statistic are defined as fol-
lows:

fitness s
M M

D p h p hD

b a

M

a

M

c
s

c
s

a b
( )

( )
( ( | , ), ( | , )= −

−
= +=
∑∑1

2
1

11

t D t D )) (9)

The value of this fitness function varies from 0 to 1.
The value equals 0 when all classifiers misclassified
every sample. It equals 1 when no sample is misclassi-
fied or there is a systematic diversity, leading to no sam-
ple been misclassified by any pair of classifiers.

Classifier selection
The motivation of applying nonlinear classifiers is based
on the assumption that nonlinear and nonadditive rela-
tionships are commonly presented in gene-gene interac-
tion [26]. This is particularly relevant in detecting complex
epistatic interaction that involves both additive and domi-
nant effects. Therefore, in ensemble construction, we
focus on evaluating nonlinear classifiers. Moreover, we
prefer classifiers that are relatively computationally effi-
cient since the identification of gene-gene interaction is
carried out in a wrapper manner. Thus, our attention has

been focused on decision tree based classifiers and
instance based classifiers, as well as their hybrids because
they are fast among many alternatives, while also being
able to perform nonlinear classification. However, we note
that any combination of linear and nonlinear classifiers
can be used in our framework.
With above considerations, an initial set of experi-

ments is conducted to select candidate classifiers for
ensemble construction. The classifier selection details
are presented in Results Section.

Datasets
Simulation datasets
In this study, we use the simulated datasets generated by
gene-gene interaction models described by Moore et al.
[32]. In each dataset, a pair of functional SNPs which
simulate gene-gene interaction are embedded along with
nonfunctional SNPs, and the task is to identify this
functional SNP pair from the nonfunctional ones.
For the datasets with balanced class distribution, the

class ratio is 1:1 with 100 case samples and 100 control
samples. The datasets are simulated under three differ-
ent genetic heritability models (heritability of 0.2, 0.1,
and 0.05), and two SNP sizes (SNP size of 20 and 100).
This gives six sets of datasets and each set contains 100
replicates each generated with a different random seed
[36]. The property of the imbalanced datasets used for
evaluation is the same as the balanced datasets, except
that the class ratio is approximately 1:2 with 67 case
samples and 133 control samples. For imbalanced data,
we restrict the evaluation to SNP size of 20, and there-
fore, we obtain three sets of datasets with each set con-
taining 100 replicates. Table 2 summarizes the
characteristics of the simulated datasets used for
evaluation.
Age-related macular degeneration dataset
Age-related macular degeneration (AMD) is the major
cause of uncorrectable blindness of the elderly in many
countries. As a typical complex disease, AMD is influ-
enced by complex interactions among multiple genes
and environmental factors, making it ideal for testing
gene-gene interaction identification methods. In our
experiment, the proposed GE algorithm, PIA, and MDR
are applied to the dataset generated from a GWA study
of AMD [2]. This dataset contains a genome-wide
screening of 96 AMD cases and 50 controls and more
than 100,000 SNPs have been genotyped for each
individual.

Evaluation statistics
Evaluation statistics for single algorithm
We compare the detection power of the proposed GE
algorithm with PIA (version: PIA-2.0) and MDR (ver-
sion: mdr-2.0_beta_6). In the previous studies of
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MDR [37] and PIA [14], the power of an algorithm for
identifying gene-gene interactions is estimated as the
percent of times the algorithm “successfully identifies”
the true functional SNP pair from 100 replicates of
simulated datasets. This is repeated for every heritability
model to quantify how well each algorithm performs
when dealing with datasets of different difficulties (lower
heritability being more difficult). An algorithm is said to
have successfully identified a functional SNP pair in a
dataset if the true SNP-pair is reported as the top rank.
For comparison with MDR and PIA, we follow this
approach and estimate the power of GE, MDR, and PIA
using following statistics:

Power
N

N

S

= (10)

where N is the number of datasets tested (N = 100
in our case), and NS is the number of successful
identification.
For GE in particular, we are also interested in estimat-

ing the distribution of false discovery rate (FDR) and
true positive rate (TPR) since, in the worst case, if there
is no SNP-SNP interaction in the dataset, a top-ranked
interaction list only contains false positive identifica-
tions. Formally, we estimate FDR as:

FDR c
N c

N c
FP( )

( )
( )

= (11)

where FDR(c) is the FDR at the cut-off of c, NFP (c) is
the number of accepted false positive identifications at
the cut-off of c, and N(c) is the number of accepted
identifications at the cut-off of c.
Similarly, TPR can is calculated as:

TPR c
N c

N c N c
TP

TP FN

( )
( )

( ) ( )
=

+
(12)

where TPR(c) is the TPR at the cut-off of c. NTP(c)
and NFN(c) are the number of accepted true positives
and the number of false negatives at the cut-off of c.

Both the rank and the identification frequency score
of each SNP combination can be used as the cut-off to
calculate FDR and TPR at different confidence levels.
We consider both approaches and using the 100 repli-
cate datasets of each heritability model, we obtain the
average FDR and TPR at different cut-offs for each her-
itability model.
Evaluation statistics for combining algorithms
One major motivation for developing a genetic ensemble
algorithm for gene-gene interaction identification is to
harness the complementary strength of different classi-
fiers such that a more robust and predictive SNP subset
can be obtained. To extend this idea further, we propose
to combine the inferred SNP-SNP interaction from dif-
ferent algorithms (such as MDR and PIA), in the hope
that more robust results can be obtained. However,
such benefits may come only when the results yielded
by different SNP-SNP interaction identification algo-
rithms are complementary to each other, which is analo-
gous to the idea of the ensemble diversity.
By modifying the equation of double fault, we design

the following terms to quantify the degree of comple-
mentarity (CD) of a pair of algorithms in SNP-SNP
interaction identification:

SF X Y N N DF X Y NFS SF FF( , ) , ( , )= + = (13)

CD X Y
SF X Y

DF X Y SF X Y
( , )

( , )
( , ) ( , )

=
+

(14)

where NXY is the number of datasets with certain
identification status using algorithms X and Y , and X, Y
Î {F, S} in which F denotes an algorithm fails to identify
the functional SNP pair while S denotes it succeeds to
identify the functional SNP pair. SF(X,Y ) (single fault)
is the number of times algorithms X and Y give incon-
sistent identification result, which is the situation that
one algorithm succeeds while the other one fails. DF(X,
Y) (double fault) is the number of times both X and
Y fail. The pairwise degree of complementarity of the
algorithms X and Y is determined by CD(X, Y).

Table 2 Summary of simulation datasets

Dataset Sample size Ratio Heritability SNP size No. replicates

balanced_200_0.2_20 200 1:1 0.2 20 100

balanced_200_0.1_20 200 1:1 0.1 20 100

balanced_200_0.05_20 200 1:1 0.05 20 100

balanced_200_0.2_100 200 1:1 0.2 100 100

balanced_200_0.1_100 200 1:1 0.1 100 100

balanced_200_0.05_100 200 1:1 0.05 100 100

imbalanced_200_0.2_20 200 1:2 0.2 20 100

imbalanced_200_0.1_20 200 1:2 0.1 20 100

imbalanced_200_0.05_20 200 1:2 0.05 20 100
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Excluding the case in which both X and Y achieve

100% successful identification (which gives 0
0
), the

value of CD(X, Y) varies between 0 and 1. When the
results produced by X and Y are completely comple-
mentary to each other, the value of DF (X, Y) decreases
to 0, and the value of CD(X, Y) reaches 1.
On the contrary, the value of CD(X, Y) decreases with

the decrease of the degree of complementarity between
algorithms X and Y , and reaches 0 when no degree of
complementarity is found.
Our premise is that combining algorithms with higher

degree of complementarity will yield higher identifica-
tion power. In this study, we estimate the joint power of
two or three algorithms as:

Power X Y N DF X YJ( , ) ( , )= − (15)

power X Y N TF X Y Z TF X Y Z NJ
FFF( , ) ( , , ); ( , , )= − = (16)

where TF(X, Y, Z) is the “triple fault” which gives the
coincident errors of three identification algorithms, and
PowerJ(X, Y) and PowerJ(X, Y, Z) are the joint power of
combining two and three identification algorithms
respectively.

Results
Classifier selection and ensemble construction
One of the most important steps in forming an ensem-
ble of classifiers is base classifier selection. As described
above, characteristics such as nonlinear separation cap-
ability, computational efficiency, high accuracy and
diversity should be taken into account. With those con-
siderations, a classifier selection and ensemble construc-
tion experiment was carried out. Specifically, we tested
the merits of each candidate classifier using datasets
with model number of 10, 11, 12, 13 and 14 from
Moore et al. [36], all of which have minor allele fre-
quency of 0.2, heritability of 0.1, and sample size of 200
(100 case and 100 control). These are considered as “dif-
ficult” datasets since they are simulated to have low
minor allele frequency, low heritability, and small sam-
ple size [14]. Twenty replicates from each model were
used for evaluation and the power of each classifier in
identifying the functional SNP pair was calculated.
Figure 2(a) shows the 12 candidate classifiers we evalu-
ated in this study. They are REPTree (REPT), Random
Tree (RT), Alternating Decision Tree (ADT) [38], Ran-
dom Forest (RT) [39], 1-Nearest Neighbor (1NN), 3-
Nearest Neighbor (3NN), 5-Nearest Neighbor (5NN),
Decision Tree (J48), 1-Nearest Neighbor with Cover
Tree (CT1NN), 3-Nearest Neighbor with Cover Tree
(CT3NN) [40], entropy based nearest neighbor (KStar)
[41] and 5-Nearest Neighbor with Cover Tree (CT5NN).

The identification power of each classifier was esti-
mated using the simulated datasets. Among the twelve
classifiers, six of them successfully identified the func-
tional SNP pair more than 50% of the time. Five of
them were selected to form the ensemble (colored in
red in Figure 2(a)). They are J48, KStar, and three Deci-
sion Tree and k-Nearest Neighbor hybrid - CT1NN,
CT3NN, and CT5NN.
The configuration of parameters such as GA chromo-

some mutation rate and integration weights of diversity
measure, blocking, and voting were tested using the same
sets of data as above. Specifically, the mutation rates
tested were 0.05, 0.1 and 0.15. The integration weights of
diversity tested were also 0.05, 0.1 and 0.15 while the
integration weights for blocking and voting were kept
equal, and the three weights add up to 1. This gives 9 pos-
sible configurations for the ensemble of classifiers. The
identification powers of the ensemble of classifiers using
these 9 configurations are shown in Figure 2(b). It is
observed that all the ensembles achieved better results
than the best single classifier which has an identification
power of 53.8%. Among them, the best parameter setting
is (0.1, 0.15) which specifies the use of a mutation rate of
0.1 and an integration weights of 0.15, 0.425, and 0.425
for diversity, blocking, and voting, respectively. This con-
figuration gives an identification power of 60.8% which is
a significant improvement from 53.8%. This setting was
then fixed in our GE in the follow up experiments.

Simulation results
Gene-gene interaction identification
In the simulation experiment, we applied GE, PIA, and
MDR for detecting the functional SNP pairs from 20
candidate SNPs and 100 candidate SNPs, respectively.
Table 3 shows the evaluation results. By fixing the can-
didate SNP size to 20 and testing datasets generated
with three heritability values (0.2, 0.1, and 0.05), we
observed a decrease of the average identification power
of the three algorithms (taking the average of the three
identification algorithms) from 98.33 ± 0.94 to 78.67 ±
2.62 and to 43.67 ± 0.94. By fixing the candidate SNP
size to 100 and testing datasets generated with three
heritability value (0.2, 0.1 and 0.05), the average identifi-
cation power drops to 93.67 ± 0.94, 48.33 ± 2.49, and
19.00 ± 1.63, respectively. It is clear that both heritabil-
ity and SNP size are important factors to SNP-SNP
interaction identification. By comparing the power of
each algorithm, we found no significant differences. The
standard deviation is generally small ranging from 0.94
to 2.62, indicating that the three algorithms have similar
performance.
To investigate whether an imbalanced class distribu-

tion affects identification power, we applied GE, PIA,
and MDR to imbalanced datasets with a case-control
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ratio of 1:2 and a candidate SNP size of 20. From Table
4, we found that the power of the three identification
algorithms decreased in comparison to those of the
balanced datasets (Table 3). Such a decline of power is
especially significant when the heritability of the dataset
is small. This finding is essentially consistent with [32]
in that datasets of larger heritability values are more
robust to imbalanced class distribution. Since the sam-
ple size and other dataset characteristics between the
balanced and the imbalanced datasets are the same,
the observed decline of power could be attributed to the
imbalanced class distribution. It is also noticed that the
identification power of PIA is relatively lower compared
to GE and MDR. This indicates that PIA may be more

sensitive to the presence of the imbalanced class distri-
bution than GE and MDR.
For the GE algorithm, two approaches were used to

study the distribution of the TPR and FDR. For the first
approach, we calculated the TPR and FDR by varying the
rank cut-off of the reported SNP pairs. Figure 3 shows
the distribution by using a rank cut-off of 1 to 10 (the
lower the number, the higher the rank). Note that the
rank cut-off of 1 gives the results equal to the power
defined in Equation (10). For the second approach, we
calculated the TPR and FDR by varying the identification
frequency cut-off of the reported SNP pairs. Figure 4
shows the distribution by decreasing the frequency cut-
off from 1 to 0. By comparing the results, we found that
the decrease of the heritability (from 0.2, to 0.1 and to
0.05) has the greatest impact on TPR of GE. Sample size
appears to be the second factor (from 20 SNPs to 100
SNPs), and the imbalanced class distribution is the third

Figure 2 Selection of base classifiers and ensemble configuration. (a) Classifier selection. The value on the top of each bar denotes the
estimated power in functional SNP pair identification using each classifier. (b) Ensemble configuration. The value on the top of each bar denotes
the power in functional SNP pair identification using ensemble of classifiers with different values of GA chromosome mutation rate and diversity
integration weight, respectively (denoted as a duplex in the X-axis).

Table 3 Functional SNP pair identification in balanced
datasets using GE, PIA, and MDR

Dataset GE PIA MDR

Power (%) Power (%) Power (%)

balanced_200_0.2_20 99 97 99

balanced_200_0.1_20 80 75 81

balanced_200_0.05_20 45 43 43

balanced_200_0.2_100 95 93 93

balanced_200_0.1_100 45 49 51

balanced_200_0.05_100 17 19 21

Table 4 Functional SNP pair identification in imbalanced
datasets using GE, PIA, and MDR

Dataset GE PIA MDR

Power (%) Power (%) Power (%)

imbalanced_200_0.2_20 92 90 95

imbalanced_200_0.1_20 59 45 62

imbalanced_200_0.05_20 32 24 27
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factor (from a balanced ratio of 1:1 to an imbalanced
ratio of 1:2).
Generally, by decreasing the cut-off stringency (either

rank cut-off or identification frequency cutoff), the TPR
increases, and therefore, more functional SNP pairs can
be successfully identified. However, this is achieved by
accepting increasingly more false identifications (higher
FDR). The simulation results indicate that FDR calcu-
lated by using the identification frequency cut-off is very
steady regardless the change of heritability, SNP size, or
class ratio. In most cases, an FDR close to 0 is achieved
with a cut-off greater than 0.78.
The degree of complementarity among GE, MDR, and PIA
As illustrated in Table 3 and Table 4, large candidate
SNP size, low heritability value, and the presence of
imbalanced class distribution together give the worst

scenario for detecting SNP-SNP interaction. Is there a
way to increase the chance of success identification in
such a situation? One solution is to combine different
identification results produced by different algorithms,
which extends the idea of ensemble method further.
However, similar to the notion of diversity in ensemble
classifier, the improvement can only come if the com-
bined results are complementary to each other. Hence,
the evaluation of the degree of complementarity among
each pair of algorithms becomes indispensable.
We carried out a pairwise evaluation using Equations

(13) and (14). Tables 5 and 6 give the results for balanced
and imbalanced situations, respectively. We observed
that higher degree of complementarity is generally asso-
ciated with higher identification power. For the balanced
datasets, the degree of complementarity of PIA and MDR

Figure 3 True positive rate and false discovery rate estimation of GE at different rank cut-off. Simulated datasets with different heritability
models, number of SNPs, and class distribution, are used to evaluate the true positive rate and false discovery rate of GE at different
identification cut-offs using different rank-values (1-10).
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is relatively low compared to those generated by GE and
PIA, or GE and MDR. The results indicate that the GE
algorithm, which tackles the problem from a different
perspective, is useful in complementing methods like PIA
and MDR in gene-gene interaction identification. As for
the imbalanced datasets, the difference of the comple-
mentarity degree between each pair of algorithms is
reduced. This suggests that more methods need to be
combined for imbalanced datasets in order to improve
identification power.
The last columns of Tables 5 and 6 show the joint

identification power of the three algorithms in analyzing
balanced and imbalanced data. These results indicate a
significant recovery of detection ability in functional

SNP pair identification by applying three algorithms col-
laboratively. This is especially true when analyzing
imbalanced datasets and the heritability of the underly-
ing genetic model is low. For example, the average iden-
tification power of three algorithms for imbalanced
datasets with heritability of 0.1 and 0.05 are 55.33% and
27.67%, respectively (Table 4). By combining the results
of the three algorithms, we are able to increase the
power to 76% and 47%, respectively, improving by
around 20% (Figure 5).

Real-world data application
As an example of real-world data application, we applied
the GE algorithm, PIA and MDR, to analyze the complex

Figure 4 True positive rate and false discovery rate estimation of GE at different frequency score cut-off. Simulated datasets with
different heritability models, number of SNPs, and class distribution, are used to evaluate the true positive rate and false discovery rate of GE at
different identification cut-offs using different frequency scores (1-0).
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disease of AMD. To reduce the combinatorial search
space, we followed the two-step analysis approach [42]
and used a SNP filtering procedure that is similar to the
method described in [23] which can be summarized as
follows:

• Excluding SNPs which have more than 20% miss-
ing genotype values of total samples;
• Calculating allelic c2-statistics of each remaining
SNP and keeping SNPs which have a p-value smaller
than 0.05 while discarding others. A number of 3583
SNPs passed filtering.
• Utilizing RTREE program [43] to select top split-
ting SNPs in AMD classification. Two SNPs with id
of rs380390 and rs10272438 are selected.
• Utilizing Haploview program [44] to construct the
Linkage Disequilibrium (LD) blocks around above
two SNPs.

After the above processing steps, we obtained 17 SNPs
from the two LD blocks. They are rs2019727, rs10489456,
rs3753396, rs380390, rs2284664, and rs1329428 from
the first block, and rs4723261, rs764127, rs10486519,
rs964707, rs10254116, rs10486521, rs10272438,
rs10486523, 10486524, rs10486525, and rs1420150 from
the second block. Based on the previous investigation of
AMD [45-47], we added another six SNPs to avoid analysis
bias. They are rs800292, rs1061170, rs1065489, rs1049024,
rs2736911, and rs10490924. Moreover, environment fac-
tors of Smoking status and Sex are also included for poten-
tial environment interaction detection. Together, we
formed a dataset with 25 factors for AMD association
screening and gene-gene interaction identification.
Tables 7 and 8 illustrate the top 5 most frequently

identified 2-factor interactions and 3-factor interactions,

respectively. At the first glance, we see that the identifica-
tion results given by different methods are quite different
from one another. Considering the results of 2-factor and
3-factor interaction together, however, we find that two
gene-gene interactions and a gene-environment interac-
tion are identified by all three methods. Specifically, the
first gene-gene interaction is characterized by the SNP-
SNP interaction pair of rs10272438×rs380390. The first
SNP is a A/G variant located in intron 5 of BBS9 located
in 7p14, while the second SNP is a C/G variant located in
intron 15 of CFH located in 1q32. The second frequently
identified gene-gene interaction is characterized by the
SNP-SNP interaction pair of rs10490924×rs10272438.
The first SNP in this interaction pair is a nonsynonymous
coding SNP of Ser69Ala alteration located in exon 1 of
ARMS2 located in 10q26. And the second SNP is again
the A/G variant located in intron 5 of BBS9 located in
7p14. As to the gene-environment interaction pair, it is
characterized by rs10272438×Sex. This pair indicates that
SNP factor of the A/G variant located in intron 5 of BBS9
in location of 7p14 is likely to associate with the disease
differently between male and female.
We also test the association of Age factor with AMD

by using Gaussian discretization to partition the age
value of each sample into three categories as follows:
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where μ is the average age value and s is the standard
deviation of age values.
After including the Age factor to the dataset, all three

algorithms identified the gene-environment interaction
of rs1420150×Age as the interaction with major

Table 5 Functional SNP pair identification in balanced datasets by combining multiple algorithms

Dataset (GE + PIA) (GE + MDR) (PIA + MDR) (GE + PIA + MDR)

CD PowerJ (%) CD PowerJ (%) CD PowerJ (%) PowerJ (%)

balanced_200_0.2_20 1000 100 1.000 100 0.667 99 100

balanced _200_0.1_20 0.448 84 0.556 88 0.240 81 88

balanced_200_0.05_20 0.303 54 0.303 54 0.068 45 55

balanced_200_0.2_100 1.000 100 0.923 99 0.444 95 100

balanced_200_0.1_100 0.441 62 0.400 61 0.148 54 63

balanced_200_0.05_100 0.093 22 0.116 24 0.025 21 24

Table 6 Functional SNP pair identification in imbalanced datasets by combining multiple algorithms

Dataset (GE + PIA) (GE + MDR) (PIA + MDR) (GE + PIA + MDR)

CD PowerJ (%) CD PowerJ (%) CD PowerJ (%) PowerJ (%)

imbalanced_200_0.2_20 0.714 96 0.818 98 0.750 97 99

imbalanced_200_0.1_20 0.567 71 0.481 73 0.475 68 76

imbalanced_200_0.05_20 0.286 40 0.301 42 0.287 38 47
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implication, indicating Age factor is, expectedly, strongly
associated with the development of AMD. The SNP that
interacted with the Age factor is a C/G variant located
in intron 9 of BBS9 located in 7p14.
Table 9 summarizes the factors involved in potential

interactions identified by all of the three different algo-
rithms. Overall, the experimental results suggest that
genes of BBS9 (Bardet-Biedl syndrome 9), CFH (comple-
ment factor H), and ARMS2 (age-related maculopathy
susceptibility 2) with the external factors of Age and
Sex, and the interactions among them are strongly asso-
ciated with the development of AMD. This is essentially
consistent with current knowledge of AMD develop-
ment in the literature [2,45-47].

Discussion and conclusion
How multiple genes contribute to the development of
complex diseases is an essential question for complex
disease study. This is because a single gene often does
not have the power to discriminate the status of the
complex disease, and it is likely that multiple genes each
with a weak or moderate effect together contribute to
the development of complex disease. Although great
effort has been devoted to characterizing such gene-
gene interactions in complex disease analysis, the results
remain unsatisfactory.
The advance of high-throughput genotyping technolo-

gies provides the opportunity to elucidate the mechan-
ism of gene-gene and gene-environment interaction via
SNP markers. However, current algorithms have limited

power in terms of identifying true SNP-SNP interac-
tions. Moreover, the simulation results indicate that the
factors such as heritability, candidate SNP size, and the
presence of imbalanced class distribution all have pro-
found impact on a given algorithm’s power in identify-
ing functional SNP interactions. One practical way to
improve the chance of identifying SNP-SNP interactions
is to combine different methods where each addresses
the same problem from a different perspective. The
rationale is that the consensus may increase the confi-
dence of identifications and complementary results may
improve the power of identification.
Due to these considerations, we proposed a hybrid

algorithm using genetic ensemble approach. Using this
approach, the problem of SNP-SNP interaction is con-
verted to a combinatorial feature selection problem. Our
simulation study indicates that the proposed GE algo-
rithm is comparable to PIA and MDR in terms of iden-
tifying gene-gene interaction for complex disease
analysis. Furthermore, the experimental results demon-
strate that the proposed algorithm has a high degree of
complementarity to PIA and MDR, suggesting the com-
bination of GE with PIA and MDR will likely lead to
higher identification power.
For the practical application of the GE algorithm, the

experimental results from the simulation datasets sug-
gest that taking the top-ranked result generally gives a
higher sensitivity of identifying SNP-SNP interactions
than using a frequency score cut-off. However, if the
delectability of the SNP-SNP interaction is low or no

Figure 5 A comparison of identification power of GE, PIA, MDR, and combination of the three algorithms. The name of each dataset
denotes sample size, heritability, and the number of SNP (SNP size). (a) Identification power of each algorithm and their joint power using
datasets with balanced class distribution. (b) Identification power of each algorithm and their joint power using datasets with imbalanced class
distribution.

Table 7 Two-factor interaction candidates of AMD dataset

GE CV Acc % PIA CV Acc % MDR CV Acc %

rs10272438×rs4723261 68.5 rs10272438×rs380390 64.2 rs10490924×rs1420150 65.5

rs10272438×rs2736911 66.9 rs10490924×rs10272438 68.2 rs10272438×rs1065489 68.4

rs10272438×rs964707 68.5 Y402H×rs10272438 65.5 rs10272438×rs2284664 66.7

rs10272438×Sex 67.5 rs10254116×Smoking 67.1 rs10272438×Sex 67.5

rs10272438×rs2284664 66.7 rs10490924×rs10254116 67.7 rs10254116×rs2736911 67.7
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such interaction is present in the dataset, the top-ranked
result is likely to be a false positive identification. A
more conservative approach is to use an identification
frequency cut-off of 0.75-0.8 which in our simulation
study gives identification results with an FDR close to 0.
For any identified SNP pair with an identification fre-
quency higher than 0.8, the confidence is very high.
As a down-stream analysis, we can fit the identified

SNP pairs using logistic model with interaction terms
and calculate the p-value of its coefficient in order to
quantify the strength of the interaction. In particular, to
test additive and dominant effects, we can fit the
reported SNP combinations using the model described
by Cordell [12] and analyze the coefficients associated
with additive and dominant effects of each SNP.
Current GWA studies commonly produce several

hundreds of thousands of SNPs, yet the gene-gene inter-
action identification algorithms like MDR, PIA and the
proposed GE algorithm can only cope with a relatively
small number of SNPs in a combinatorial manner.
Therefore, a filtering procedure is required to reduce
the number of SNPs to a “workable” amount before
those combinatorial methods can be applied to datasets
generated by GWA studies [48,49]. More efforts are
required to seamlessly connect these two components to
maximize the chance of detecting complex interactions
among multiple genes and environmental factors [42].
In conclusion, we proposed a GE algorithm for gene-

gene and gene-environment interaction identification. It
is comparable to two other state-of-the-art algorithms
(PIA and MDR) in terms of SNP-SNP interaction identi-
fication. The experimental results also demonstrated the
effectiveness and the necessity of applying multiple

methods each with different strengths to the gene-gene
and gene-environment interaction identification for
complex disease analysis.

Availability
The GE algorithm (GEsnpx) is implemented in Java. It is
freely available from the supplementary website at
http://www.cs.usyd.edu.au/~yangpy/software/GEsnpx.
html.
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