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B cells have a critical role in the initiation and acceleration of autoimmune diseases, especially those mediated by
autoantibodies. In the peripheral lymphoid system, mature B cells are activated by self or/and foreign antigens and
signals from helper T cells for differentiating into either memory B cells or antibody-producing plasma cells.
Accumulating evidence has shown that epigenetic regulations modulate somatic hypermutation and class switch
DNA recombination during B-cell activation and differentiation. Any abnormalities in these complex regulatory
processes may contribute to aberrant antibody production, resulting in autoimmune pathogenesis such as systemic
lupus erythematosus. Newly generated knowledge from advanced modern technologies such as next-generation
sequencing, single-cell sequencing and DNA methylation sequencing has enabled us to better understand B-cell
biology and its role in autoimmune development. Thus this review aims to summarize current research progress in
epigenetic modifications contributing to B-cell activation and differentiation, especially under autoimmune
conditions such as lupus, rheumatoid arthritis and type 1 diabetes.
Cellular and Molecular Immunology advance online publication, 29 January 2018; doi:10.1038/cmi.2017.133

Keywords: autoimmunity; B cell; DNA methylation; histone modification; microRNA

INTRODUCTION

Although increasing evidence has indicated a pivotal role of B
cell in the initialization and acceleration of autoimmune
disorders, the molecular mechanisms underlying dysregulated
B-cell activation and differentiation are still poorly defined.
Genome-wide association studies have identified hundreds of
gene polymorphisms associated with B-cell functions and
differentiation,1–3 which may increase the susceptibility to
autoimmune development. As the concordance rate of auto-
immune diseases is o50% in monozygotic (MZ) twins,4

the epigenetic differences in genomic distribution of
5-methylcytosine (5-mC) DNA and histone modifications
among MZ twins can alter the gene expression profile and
contribute to their disease susceptibilities.5–7 Moreover, these
epigenetic differences appear to result from environmental
factors, such as infection, diet, and drugs.8 Therefore, the
synergistic effects of both genetically and environmentally
induced epigenetic modifications may contribute to the etio-
pathogenesis of autoimmune diseases.

Epigenetic modifications mainly comprise DNA methyla-
tion/demethylation, histone modification and non-coding
RNAs, which can ultimately determine gene expression and
thereby have important roles in various biological processes,
such as cell growth, apoptosis, development, differentiation,
immune response and aging.8 It has been shown that DNA
methylation/demethylation regulates T-cell differentiation and
cytokine production.9–12 In addition, histone modifications and
non-coding RNAs also contribute to this regulation. Here we
focus on reviewing the epigenetic modifications in the activa-
tion and differentiation of B cells and their implications in the
understanding of autoimmune pathogenesis.

The main epigenetic modifications
DNA methylation. DNA methylation is defined as a poten-
tially heritable and stable epigenetic alteration, which is the first
recognized and intensively investigated epigenetic modification
of DNA. DNA methylation is a biochemical process in which a
methyl group is added to a cytosine or adenine residue at the
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fifth position on the pyrimidine ring, locking the gene
transcription in the ‘off’ status.13 Therefore, DNA methylation
acts as a flag indicating the repression of gene transcription,
which is a process involved in many important biological
processes. DNA methylation is mediated by methyltransferases,
including DNMT1, DNMT3a and DNMT3b. Notably, every
methyltransferase shows distinguished capacities. During DNA
replication, DNMT1 usually sustains the methylation status
while other two methyltransferases participate in de novo
methylation.14

DNA demethylation occurs during the programmed failure
in transmission of a methylation pattern, which results in re-
activation of transcription of silenced genes.15 DNA demethy-
lation occurs though the sequential iterative oxidation of 5-mC
while the final modified group is removed by thymine DNA
glycosylase (TDG) to yield cytosine instead of 5-mC.15 During
this process, oxidation of 5-mC to 5-hydroxymethylcytosine
(5-hmC) is mainly mediated by Ten-eleven translocation
(TET) family dioxygenase enzymes, including TET1, TET2 and
TET3,16 which can subsequently oxidize 5-hmC to 5-
formylcytosine (5-fC) and 5-carboxylcytosine (5-CaC), thereby
displaying the order of 5-mC, 5-hmC, 5-fC and 5-CaC.17 In
addition, both 5-fC and 5-CaC could be removed by TDG,
which can further trigger base excision repair.18,19 (Figure 1)

Histone modification. Histone modification is a covalent
posttranslational modification that regulates gene expression
via changing chromatin structure or recruiting other modifica-
tions, thereby involving numerous biological processes. It has
been well established that nucleosome is formed by 146 base
pairs corresponding to two turns of DNA wrapped around a
histone core, which displays two repeated sets of H2A, H2B,
H3 and H4. These histones possess small protein ‘tails’ from
the nucleosomes that are available for modifications, including
acetylation, methylation, ubiquitination, phosphorylation and
sumoylation.20 Acetylation and deacetylation can add or
remove an acetyl group, which are mediated by histone
acetyltransferases and histone deacetylases (HDACs),
respectively.21 Histone methylation, defined as transferring 1,
2 or 3 methyl groups to arginine or lysine residues, is mainly
mediated by histone methyltransferases and other enzymes,
such as EZH2, G9a, SUV39-h1, ESET, SETDB1 and so on. The
consequences of histone methylation depend on both modified
residue and the number of methyl groups. Generally,

acetylation promotes gene expression by opening the chroma-
tin, while methylation switches the chromatin to the tight
status, showing the opposite effects (Figure 2). For example,
H3K4me3 activates gene transcription, whereas H3K27me3
and H3K9me3 result in gene silencing.22,23 Similar to methyla-
tion, ubiquitination on histones is implicated in both activation
and repression of gene transcription.24 Many enzymes have
been identified to control the addition and removal of
ubiquitin. The ubiquitination on H2A and H2B has been
found to have an essential role in numerous biological
processes, such as transcription initiation, elongation and
repression and DNA repair.25 Phosphorylation can occur at
all four histone tails that contain acceptor sites, which is
mediated by protein kinases.26 These four modifications can
directly regulate histone–DNA interactions and also recruit
non-histone proteins to chromatin. And the combinations of
these modifications presenting on the same or the other
histone tails have been reported as ‘histone codes’, which is
deciphered by proteins that present specific binding motifs for
each modification.26

MicroRNAs (miRNAs). With a length of 21–25 base pairs,
miRNAs belong to non-coding RNAs that regulate posttran-
scriptional and posttranslational gene expression. miRNAs bind
to the 3′-untranslated region of specific target mRNA, resulting
in mRNA cleavage, degradation or block translation27–29

(Figure 3). miRNAs, similar to other epigenetic regulations,
involve numerous biological processes, including cell cycle,
differentiation, apoptosis and innate and adaptive immune
responses. Increasing evidence has shown that aberrant levels of
miRNAs in different cell subtypes and tissues are associated
with the pathogenesis of various diseases, facilitating them as
potential non-invasive biomarkers for prediction and diagnosis,
as well as potential treatment targets. To date, most work on
non-coding RNAs in B-cell differentiation and antibody
response has mainly focused on miRNAs. Moreover, miRNAs
cross-talk with histone modification and DNA methylation,30

synergically regulating biological processes.

Epigenetic modifications in B-cell activation and
differentiation
Epigenetic modification in B-cell activation. In the peripheral
immune system, naive B cells display an inactive epigenetic
status, showing genome-wide DNA hypermethylation and

Figure 1 DNA methylation and demethylation process.
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histone deacetylation,31 among which very few genes are
expressed except for B-cell lineage genes such as Cd19, Pax5,
Ebf1 and Spib, exhibiting active epigenetic status.32 Upon
encountering antigens, naive matured B cells divide and then
differentiate into germinal center (GC) B cells, and further
differentiate into either plasma or memory B cells. During
B-cell activation, the active epigenetic status of Igh, Cd19, Pax5,
Ebf1 and Spib persists,33,34 while genome-wide DNA is
hypomethylated, leading to increased levels of histone acetyla-
tion and miRNA expression.31,32

It has been well characterized that B-cell activation needs
two major signals. Primary stimuli comprise dual B-cell
receptor and Toll-like receptor binding to antigenic epitopes

and pathogen-associated molecular patterns, respectively. Co-
stimulatory signals are derived from CD40 and CD40L ligation,
as well as signals from transmembrane activator and calcium-
modulator and cyclophilin ligand interactor I (TACI) ligated
with a proliferation-inducing ligand and B-cell-activating factor
of the TNF family. The process induces several histone-
modifying enzymes35 that activate H3K4me3, H3K9ac and
H3K14ac in the promoter regions of activation-induced
cytidine deaminase (AID) and miRNA host genes, as well as
other somatic hypermutation (SHM)/class switch DNA recom-
bination (SHM/CSR) factor genes. Moreover, removal of
repressive H3K27me3 and H3K9me3 leads to chromatin
decondensation.36–38 Recent evidence suggests that miRNAs,
such as mir-16 and mir-155, decrease AID and Blimp expres-
sion in B cells.38,39 In contrast, AID regulates DNA methylation
dynamics in GC B cells.40,41 For B-cell activation, secondary
stimuli include cytokines such as interferon-γ, interleukin-4
and transforming growth factor-β, which activate transcription
factors that interact with selected IH promoters and initiate
germline IH-S-CH transcription, which then facilitate primary
stimuli-induced histone modification-related enzymes to bind
with RNA polymerase II to form a complex and then interact
with the Sg1 region, catalyzing histone modifications in the S
region for CSR targeting.42–45

Both DNA methylation and histone modification have an
essential role in the SHM machinery, which targets V(D)J DNA
through transcription.33,46–48 Remarkably, in comparable tran-
scription of both alleles, only the demethylated allele can be
hypermutated,33 indicating an essential role of DNA methyla-
tion in SHM. In an array-based genome-wide chromosomal

Figure 2 Open and closed chromatin status by histone acetylation
and methylation. White dots represent acetylation and red dots
represent methylation.

Figure 3 The pathway of miRNA regulation of gene expression. The maturation of miRNAs includes the production of the primary miRNA
transcript (pri-miRNA) by RNA polymerase II or III and cleavage of the pri-miRNA by the microprocessor complex Drosha–DGCR8 (Pasha)
in the nucleus. Then the pre-miRNA hairpin is exported from the nucleus by Exportin-5–Ran-GTP. In the cytoplasm, the RNase Dicer in
complex with the double-stranded RNA-binding protein TRBP cleaves the pre-miRNA hairpin to its mature length. The functional strand of
the mature miRNA is loaded together with Argonaute (Ago2) proteins into the RNA-induced silencing complex (RISC), where it guides the
RISC to silence target mRNAs through mRNA cleavage, translational repression or deadenylation, whereas the passenger strand is
degraded.
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imbalance and DNA methylation analysis, CREBBP and AID
have been found to be possible modulators of both genetic and
epigenetic co-evolution.49 DNA demethylation promotes
H3K4me3, H3K9ac, H3K14ac and H4K8ac, which present
enrichments in the V(D)J region, thereby leading to an ‘open’
chromatin status.50 In addition, histone modifications are
capable of recruiting of DNA polymerases on the stage of
DNA repair during SHM. For example, H2BK120 ubiquitina-
tion (ub) and H2AK119 (ub) are co-localized with error-prone
translesion DNA polymerase η in AID-containing foci.44

H2BS14 phosphorylation has been found to mark the V(D)J
region and this process is associated with AID regulation and
perhaps recruit DNA repair-related factors.33

Epigenetic modification in B-cell differentiation. After the GC
response, B cells ultimately differentiate into plasma cells.
Although memory B cells are not capable of secreting
antibodies, they can further experience SHM and/or CSR and
then differentiate to plasma cells upon subsequent antigen
exposure.51 Epigenetic modifications are involved in these
processes, though how these stimuli and signals contribute to
B-cell differentiation remains partially understood.

Epigenetic modifications in plasma cell formation. B lymphocyte-
induced maturation protein 1 (Blimp-1, encoded by Prdm1) has a
central role in the differentiation of plasma cells. Overexpression of
Blimp-1 in peripheral mature B cells promotes J-chain upregulation
and antibody production. Moreover, the knockdown of Blimp-1
expression in plasma cells retains plasma cell-related transcriptional
markers but loses the capacity to produce antibodies.52 Prior to
differentiation, Prdm1 is suppressed by Bcl-6. The increased expression
of Prdm1 may result from the release of Bcl-6-bound HDACs, thereby
increasing the histone acetylation levels on the promoter region of
Prdm1.53,54 Furthermore, the HDAC inhibitor trichostatin A is capable
of enhancing the expression of Blimp-155 and CD138, suggesting a
critical role of histone acetylation in B-cell differentiation.55 Moreover,
the expression of Blimp is regulated by several miRNAs, such as mir-

125b,56 mir-127,57 mir-9,58 mir-30,57 mir-146a59 and let7b.60 In
contrast, Blimp-1 can also regulate miRNAs such as mir-21.61

Additionally, mir-155, highly expressed by GC B cells, has been found
to be associated with B-cell differentiation. In mir-155 knockout mice,
reduced GC B cells and memory B cells are found with decreased
high-affinity IgG1 antibodies.62–64

Blimp-1 is the transcription repressor of Bcl6, Pax5 and Spib,
which, in return, suppress Blimp-1 expression and B-cell
differentiation.65 Blimp-1 induces histone deacetylation in the
promoter region of these genes, which display low histone
acetylation levels in plasma cells.66 Blimp-1 decreases c-Myc
expression to maintain the stable status of plasma cells via
similar epigenetic mechanisms.66 Furthermore, Blimp-1 has
been found to bind to H3K9 methyltransferase G9a, therefore
recruiting this enzyme to the promoter regions of Spib and
Pax5 and leading to gene silencing.67

Epigenetic modifications in memory B-cell formation. Epigenetic
modifications also contribute to the differentiation of memory B cells.
The hallmark genes of memory B cells, such as CD38 in mouse and
CD27 in human, seem to be controlled by histone modifications.68,69

In quiescent memory B cells, histone lysine methylation levels are
reduced compared with active memory B cells.70 Enhancer of zeste
homolog 2 (Ezh2), with the ability of catalyzing H3K27me3, displays
high levels in human GC B cells. The inhibition of Ezh2 activation in
GC B cells can result in a reduction of memory B-cell percentage, GC
reactions and antibody response,71 indicating an important role for
histone methylation in GC reactions and memory B-cell differentia-
tion, which might be associated with suppression of Prdm-1 and Irf4
transcription by Ezh2. In addition, histone acetyltransferase monocytic
leukemia zinc finger protein has been revealed as a modulator in
memory B-cell formation, by affecting the primary and secondary
antibody responses.72

DNA methylation contributes to memory B-cell differentia-
tion, a notion supported by the evidence that DNMTs are
highly expressed by memory B cells while immune-related
genes display distinctive DNA methylation patterns.73

Figure 4 The involvement of epigenetic modifications in B-cell differentiation.
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Furthermore, mir-125b and let-7 negatively regulate Blimp-1
expression.56,60 Both mir-16 and mir-15a have been observed
to regulate memory B cell via targeting Bcl-2;74 mir-223
contributes to B-cell differentiation though targeting LMO2,
an important transcription factor in this process; mir-155
regulates AID expression and has an vital role in the
differentiation of memory B cells.75

Therefore, epigenetic modifications coordinate with tran-
scription factors in the activation of SHM and CSR during
B-cell differentiation, determining cell fate and homeostasis
(Figure 4).

Dysregulated epigenetic mechanisms in B cells contributing
to autoimmune diseases
As described above, epigenetic modifications are closely
involved in the activation and differentiation of B cells. Thus
dysregulated epigenetic modifications in B cells may result in
autoimmune pathogenesis.

Systemic lupus erythematosus. Systemic lupus erythematosus
(SLE) is a multi-organ autoimmune disease characterized by
abundant autoantibodies in the circulation, which predomi-
nately affects females during their reproductive years.76 Numer-
ous lines of evidence have shown a key role of abnormal
epigenetic regulations in its pathogenesis.8,77–81 As the main
source of pathogenic autoantibodies, B cells have been well
documented as a major player in the pathogenesis of SLE.
Recent clinical trials of B-cell-targeting therapies prove to be
effective. DNA hypomethylation has been investigated in B cells
from lupus patients,82 which contribute to B-cell auto-
reactivity. Altered expression of HRES1/p28 in lupus B cells
is found to be mediated by DNA methylation.83 A decreased
methylation level of LINE-1 has been reported in B cells from
SLE patients.84 A role of DNA demethylation in B cells is
supported by the findings that adoptive transfer of DNMT1
inhibitor-treated B cells into syngeneic mice resulted in
increased production of antinuclear antibodies.85 Although it
is clear that DNA demethylation in V(D)J region and Igh 3′-
LCR contributes to antibody production,86 little is known of
this process during SLE. In addition, a lower level of DNA
methylation has been observed in auto-reactive B cells, which
might be a consequence of reduced DNMT1 and DNMT3b
expression, or AID-mediated active DNA demethylation.87

In SLE patients, increased levels of miR-30a have been
reported in B cells. The level of miR-30 negatively correlates
with Lyn, a key negative regulator of B-cell activation.88 Both
miR-155 and miR-181b have been found to negatively regulate
the expression of AID, thereby affecting antibody diversity.89,90

In regulatory B cells, the expression level of miR-15a has been
found to show positive correlation with the serum level of anti-
dsDNA antibodies in lupus mice.91 Our recent studies have
demonstrated that increased expression of miR-1246 in B cells
from lupus patients affects EBF1 expression and therefore
promotes costimulatory molecule expression and antibody
production by B cells.92 In addition, increased levels of mir-
21 and mir-17-92 have been observed in lupus B cells, which

may contribute to autoimmune development.93,94 Recently, the
microRNA profiling of B-cell subset has been proposed as
biomarkers in lupus.95 Conversely, mir-150 is decreased in
MRL-lpr mouse B cells, which may result from reduced
acetylation status and repression of the mir-150 host gene.96

Rheumatoid arthritis. Rheumatoid arthritis (RA) has been
defined as a chronic inflammatory autoimmune disorder that
immune system primarily attacks the joints,97 in which synovial
fibroblasts are believed to initiate RA.98,99 Epigenetic regulation
has become an intensive research field in the studies of the
pathogenesis of RA.100–106 Several epigenetic abnormalities
have been reported in RA, such as increased DNA
methylation,107 aberrant histone acetylation108 and differen-
tially expressed miRNAs.109

B cells are recognized to be involved in RA via two major
mechanisms: antigen presentation and autoantibody produc-
tion. Autoantibodies against type II collagen, rheumatoid factor
and citrullinated proteins have been found in the blood and
synovial fluid of 70% of patients with early RA.110 As described
before, epigenetic modifications tightly regulate antibody
production, indicating that epigenetically regulated B-cell
activation and differentiation have an important role in RA.
However, few studies have revealed the association of epige-
netic regulations in B cells in RA. Increased levels of mir-155
are found in B cells from the synovium and affect B-cell
function by targeting PU.1.111,112 Moreover, mir-29a has been
demonstrated to regulate B-cell proliferation and antibody
secretion in mice with collagen-induced arthritis and contri-
bute to the disease pathology,113 indicating that mir-29a is a
potential therapeutic target in RA. In recent studies, histone
deacetylases and their inhibitors have shown therapeutic effects
in RA mouse models via immune suppression and inflamma-
tory regulation.114–119 T cells and synovial fibroblasts are the
main targets for these therapies, but other cells, such as B cells
and neutrophils, might also be altered by these epigenetic
drugs, which need to be further investigated.

Type 1 diabetes. Type 1 diabetes (T1D) is an organ-specific
autoimmune disorder in which aberrantly activated immune
cells target pancreatic beta cells. T1D was believed to be a
T-cell-mediated disorder. However, recent studies have sug-
gested a pathogenic role of B cells in T1D.120–122 Two main
mechanisms are involved in the pathogenesis of T1D by B cells:
one is antigen presentation by B cells,123 whereas the other one
is autoantibody production by islet antigen-specific B cells.121

T1D usually occurs in genetically susceptible individuals and is
triggered by environmental factors.124 Epigenetic mechanisms
might partially exert the influences of environmental factors,
especially diet, on T1D.125

In a recent epigenome-wide association study, 406 365 CpGs
in 52 MZ twin pairs discordant for T1D in CD4+ T cells,
CD19+ B cells and monocytes were analyzed. A substantial
enrichment of differentially variable CpG positions was
observed in these three different cell types from T1D
twins,126 suggesting the contribution of DNA methylation of
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B cells to T1D development. Although there is little evidence
showing the association of epigenetic modifications in B cells
with the pathogenesis of T1D, epigenetic drugs such as 5-
Aza,127 HDACs128,129 and HDAC inhibitors130,131 may exert
their therapeutic effects on T1D via modifying B-cell activation
and differentiation. Thus further studies on the potential link
between abnormal epigenetic regulation of B cells and T1D
may broaden our understanding of T1D pathogenesis
(Table 1).

CONCLUDING REMARKS

Recent findings of epigenetic regulations enable us to better
understand the complex processes of B-cell activation and
differentiation. However, further epigenetic studies are needed
to define the role of B cells in the pathogenesis of autoimmune
diseases such as lupus, systemic sclerosis, RA and T1D, in
which epigenetic treatments, such as HDAC inhibitors, have
shown therapeutic effects. Remarkably, B cells from circulation
and local B cells from inflammatory sites can now be analyzed
by single-cell sequencing and other advanced techniques. With the
advent of the epigenomic era, new technologies will facilitate the
investigation of epigenetic dysregulation in B cells and its implica-
tion in disease pathogenesis, which may lead to the identification
of potential biomarkers and novel therapeutic targets.
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