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Commuting Efficiency Gains: Assessing Different Transport Policies with New Indicators 

 
ABSTRACT. This paper outlines new indicators for evaluating the probable impacts of introducing 
different land use/transport policies on the commuting efficiency of a city. It uses Beijing as a case 
study to describe how smartcard data can be used to derive a large number (n=216,884, 9% of the 
population) of bus commuters’ workplace and residential locations. Using existing excess 
commuting indicators and new commuting efficiency gain indicators established to assess policy 
options, it exemplifies how to assess impacts of different policies on bus commuting efficiency 
gains. The case study indicates policies that directly target bus commuters (such as BRT) bring 
greater commuting efficiency gains when compared to other policies such as car usage restrictions 
and stringent travel demand management measures in the downtown area. 
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Key Notations 
Tmin: the theoretical average minimum commute  
Tpol: the probable average commute after a policy is adopted  
Tact: the average actual or observed commute  
Trand: the average random commute  
Tmax: the theoretical average maximum commute  
Md: the existing travel cost matrix for all the existing TAZ pairs 
Mg: the new travel cost matrix for all the existing TAZ pairs where a policy is adopted 
Mt: the commuting trip matrix between the existing TAZ pairs 
Mp: the new commuting trip matrix for a policy scenario 
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INTRODUCTION 
 
Many cities and city-regions exhibit a severe separation of the location of employment and housing 
opportunities. In the academic literature this is referred to as a jobs-housing imbalance, or more 
formally, as a ‘geographic mismatch in the location of jobs and housing’ (Cervero, 1991, p.10). In 
theory, living in closer proximity to the workplace provides the opportunity for reducing the 
average commuting distance; indeed, shorter distances between home and work might also 
promote more sustainable modes of travel such as bus, rail, walking and cycling and thereby 
contribute to reducing car dependency, congestion, pollution and resultant greenhouse gas (GHG) 
emissions. As a result, a number of academics and policymakers have advocated improving the 
jobs-housing balance as a public policy goal (e.g., Atlanta Regional Commission, 2002; California 
Planning Roundtable, 2008; Cervero, 1991; Weitz, 2003). In California, cities and counties that 
are able to demonstrate an increased housing supply relative to existing jobs within their respective 
jurisdictions are eligible to apply for a jobs-housing balance incentive grant from the state 
government.  

In the academic literature, there have been competing ideas surrounding the jobs-housing 
balance concept, its potential usefulness and measurement (see for instance, Kanaroglou et al., 
2015; Niedzielski et al., 2013; Suzuki et al., 2012). Within this context, it is the excess commuting 
(EC) framework that has provided the most suitable approach for evaluating the jobs-housing 
balance and wider commuting efficiency in city-regions. Within this framework, all jobs, workers 
and housing units are assumed to be homogeneous within a city-region while workers are 
permitted to switch jobs and/or housing at no cost. For any city-region a theoretical minimum 
commute (Tmin) exists if workers, on average, travel to the closest possible workplace, where the 
travel is quantified by some measure of separation (e.g. time or distance). Tmin captures the optimal 
jobs-housing balance that is permitted by the existing spatial distribution of homes and workplaces. 
However, the actual or observed commute (Tact) for all workers is invariably greater than Tmin; this 
difference between Tact and Tmin has been referred to as “wasteful commuting” or “excess 
commuting” in the literature (Hamilton, 1982; Ma and Banister, 2006a, b; White, 1988). The 
notion that commuting is excessive or wasteful is, of course, relative to a situation where 
individuals are assumed to behave optimally in terms of their home and workplace choices and the 
arrangement of the transport network. 

In overall terms, the EC framework has been useful for understanding and measuring both 
jobs-housing balance and commuting efficiency in city-regions. While there has been a steady 
flow of literature on EC since its emergence as a separate concept in the 1980s, there continues to 
be gaps in terms of our understanding and use of the framework. For example, primarily due to 
data availability issues, the literature rarely disaggregates EC by mode of travel despite some 
notable exceptions (see Horner and Mefford (2007); Murphy (2009) and Murphy and Killen 
(2011)). A further gap is in relation to the application of the framework to developing countries 
where there has been comparatively little research completed to date although this has improved 
considerably in recent years (e.g., see Zhang et al., 2017; Zhou and Long, 2014; Zhou et al., 
2014a,b, 2017). In addition, there have been few applications of the framework to assess various 
land use/transport policy scenarios in cities or regions where public transit usage is still salient. 
The current paper is an attempt to address some of these shortcomings. 

As a whole, this study utilises a revised EC framework to study the commuting patterns of 
bus riders in developing countries under different policy scenarios. The analysis builds on the 
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previous work of Zhou et al. (2014a) and Zhou and Long (2014) but extends their work by 
demonstrating how the same set of smartcard data can be utilised to assess transport policy 
scenarios using the City of Beijing as an illustrative empirical study. More specifically, the paper 
contributes to existing EC studies in three dimensions. First, it provides an adapted application of 
the EC framework in the Chinese context, where bus commuting is still popular for a high 
percentage of workers. Second, it is one of a few studies utilising smartcard data in an attempt to 
understand commuting patterns in major world cities like Beijing where different transport policies 
such as car use restrictions and stringent travel demand management measures have been adopted 
and could be emulated elsewhere. Third, the paper is the first of its kind to develop extra new EC 
indicators for the evaluation of transport policy options and utilise them in a case study.  
 
Excess commuting and associated measures 
Hamilton (1982) pioneered the EC concept. He used the monocentric model to assess the 
difference between Tmin and Tact. Tmin is necessitated by the physical separation between where 
people live and work. The difference between that and the observed commute represented 
‘wasteful’ or EC in that it was not necessitated by distribution of home and workplace land use 
functions. Specifically, EC can be quantified as follows. 
 
EC= (1- Tmin

Tact
) ∗ 100                                                                                                 (1) 

 
White (1988) extended Hamilton’s work by utilising the transportation problem of linear 
programming (TPLP) to estimate Tmin. The TPLP is more appropriate in that it uses the existing 
distribution of homes and workplaces in a zonal configuration of the city for the calculation of 
Tmin. In the literature, Tmin is calculated as follows:  
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where  

m = number of origins;  

n = number of destinations;  

Oi = commuting trips beginning at zone i;  

Dj = commuting trips destined for zone j;  

Cij = travel cost from zone i to zone j;  
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Xij = number of trips from zone i to zone j;  

N = total number of commuters.  

In subsequent work Horner (2002) demonstrated how the inverse of the minimization 
problem (i.e. the maximum commute (Tmax)) could be considered as the upper limit of a city’s 
commuting range and as an indicator of the level of jobs-housing imbalance. In mathematical terms, 
the objective function of Tmax is the inverse of (1) and has identical model constraints: 
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Tmax also allows for an additional way in which to measure commuting efficiency - capacity 
utilization (Cu) - which provides a gauge of how much of the available commuting range has been 
consumed (Horner, 2002). Specifically, Cu is calculated as:  
 
Cu = Tact−Tmin

Tmax−Tmin
                                                                                                    (7).   

  

When taken together, Cu and EC provide dual measurements of the city’s commuting efficiency.  
The framework has also been extended in other ways. Following Hamilton’s original work 

Charron (2007) argued that the random commute (Trand) is a better benchmark for analysing 
commuting efficiency because it was a more realistic gauge of the commuting possibilities 
available to workers. He calculates a slightly biased Trand as follows: 
 
  
Trand = 1

N2
∑ ∑ OiDjCijj              i                                                                                    (8). 

            

Subsequent work by Murphy and Killen (2011) utilised a more reliable Trand based on a Monte 
Carlo method. Based on this new Trand, they proposed two additional measures of commuting 
efficiency - commuting economy (Ce) and normalised commuting economy (NCe) given by the 
following equations: 
 
     Ce = (1 − Tact

Trand
)*100                                                                                                        (9);                                                                                                                                                                                                                             

   NCe = �Trand−Tact

Trand−Tmin
�*100                                                                                                  (10).                                                                      

Ce demonstrates the extent to which actual behavior is reacting to the cost of consuming separation 
– typically positively - that exists between residences and workplaces in the urban region. NCe 
normalizes the extent to which observed commuting behavior deviates from random behavior 
within a framework where Trand is taken as the upper bound of commute inefficiency. In overall 
terms, the foregoing measures represent the main innovations in the EC literature hitherto since its 
emergence in the 1980s. 
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Excess commuting and policy scenarios 

Based on the existing EC indicators outlined above, we propose a new indicator, the commute of 
policy relevance (Tpol), or more specifically, the likely average commute after a policy is adopted, 
which can be used to assess the impacts of implementing a specific transport/land use policy on 
commuting outcomes. Like Tmin, Tact, Trand and Tmax, Tpol can be measured in terms of time, 
distance or even a monetary cost. When the associated commuting trip distribution is known or 
forecasted Tpol is calculated as follows: 

  
Tpol = 1

N
∑ ∑ CijXij

polm
j=1

n
i=1                      (11), 

where 𝑋𝑋𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 is the number of commuting trips between two zonal units when a policy is introduced 

while the remaining notation is the same as those in Equations (2) to (10). Tpol is a measure of the 
change in commuting cost (Cij) resulting from the introduction of a specific transport/land use 
policy.  

In order to demonstrate the usefulness of Tpol consider the following. Assume Person X 
lives at place O and works at place D. There are two distinct bus routes (R1 and R2) between O and 
D. Initially, the bus fare is the same regardless of which route person X chooses but person X takes 
R1 because it is a shorter commute. Given that R1 is a shorter route than R2, the number of people 
using the route increases and it becomes overcrowded.  The relevant transport authority responds 
by raising the fare of R1 and reducing the fare for R2. As a result, person X and many other bus 
commuters who are sensitive to the monetary cost associated with the route begin to utilize R2.  
Indeed, it may also be the case that some bus commuters swap their workplaces and residences in 
an attempt to minimize their commuting costs. If it were possible to simulate the route choices that 
person X and other bus commuters would make in advance, we could better evaluate the impacts 
of fare changes on the resultant commuting patterns and make informed decisions in order to 
mitigate any negative impacts associated with a particular policy option. The route choices of 
individuals would, of course, also have “an intrinsically behavioural interpretation” as described 
by Murphy and Killen (2011: p.1261) and this would be of particular interest to policy-makers and 
scholars.  

Tpol can be simulated via a doubly constrained gravity model which expands on the work 
of Yang and Ferreira (2008). In such a model, Xij, the number of workers who reside in zone i and 
work in zone j can be estimated using the following formula: 

Xij=AiBjOiDjexp(-µCij)                                                                          (12), 

where 

µ is a preference parameter; 

Ai and Bj are estimated adjustment factors based on the origin and destination constraints. Other 
notation remains the same as Equations (1) to (11). 

Following Yang and Ferreira (2008), Tmin is achieved when µ approaches infinity. Tact is achieved 
when an empirical value µ* is introduced into equation (11), which produces estimates of Xij that 
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best match the actual commuting trips between Zones i and j. Building on the work of Yang and 
Ferreira (2008), we further explain how µ is related to Tpol. It is important to note that Tpol does 
not change µ*; rather, it introduces certain policy interventions to alter either the route choice of 
commuters, their choice of workplace/residence and/or their costs of travel (e.g. time or distance). 
As a result, the impact of introducing such policies is to reduce the overall average commuting 
cost across the city. 
 

 
Figure 1: Commuting Patterns in a Hypothetical Example 

 
Figure 1 provides a hypothetical example of how public policy intervention can reduce 

average commuting costs. In this example, a city has m residential zones (O1,2,3…,m) and n 
employment zones (D1,2,3…n). Some zones such as D1, D2, O1 and O2 have an equal number of 
residences and jobs. Before Tpol is introduced, all workers residing in O1 commute to D1 and all 
workers residing in Residence Zone O2 commute to Employment Zone D2 (see Figure 1a). As a 
public policy intervention, let us assume that the government subsidizes employers via financial 
incentives so that all employers in D2 and D1 agree to swap their locations. As a result, both 
workers in O1 and O2 do not have to change their preferred/current employment and residence but 
would nevertheless see a decrease in their commuting distance and time thanks to route choice 
changes (Figure 1b). For all workers in the city, they would see a decrease in average commuting 
distance and time. This has occurred in reality. In the US context, for instance, despite the increased 
size of metropolitan areas, commuters have still enjoyed relatively stable average commuting times. 
This is referred to as the so-called co-location phenomenon, where employers and employees 
undertake relocation and/or mode-shifting efforts to ensure that employees do not have to endure 
a prohibitively long commute (Kim, 2008). In addition to co-location efforts, the government could 
also undertake measures to stabilize local commuting times. It could, for instance, subsidize, 
charge or regulate employees so that their commuting trips are more dispersed over a longer period 
of time.  This way, commuting employees would see less congestion along their commuting routes 
and ultimately lead to a reduction in travel cost for everyone. This is, to a large extent, what 
happened in the congestion pricing cases of Stockholm, London and Singapore (Armelius and 
Hultkrantz, 2006; Goh, 2002; Litman, 2011).  

The introduction of Tpol thus enriches the existing EC framework, enabling us to better 
connect the relatively abstract EC framework/indicators to real-world policy-making and 

O1 

O2 
D2 

D1 

(a) Commuting Pattern w/o Tpol 

O1 

O2 
D2 

D1 

(b) Commuting Pattern with Tpol 
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assessment. Using Tpol as a new input for Equations (9) and (10), we propose two extra indicators 
for EC studies: absolute commuting efficiency change for policy scenarios (𝐶𝐶∗

𝑝𝑝𝑝𝑝𝑝𝑝) and absolute 
normalised commuting efficiency change for policy scenarios (𝑁𝑁𝑁𝑁∗

𝑝𝑝𝑝𝑝𝑝𝑝), where 

C∗
pol = |(1 − Tpol

Tact
)|*100                                                                                                                       (13),                                                

NC∗
pol = | �Trand−Tpol

Trand−Tmin
� |*100                                                                                                              (14)， 

where “*” can be either “g”, which indicates that the gravity model is applied or “ng” which 
indicates that the gravity is not applied.  
 
Both C∗

poland NC∗
polprovide a new gauge of how a policy may change the commuting efficiency or 

economy of the study area relative to a do-nothing scenario. Intuitively, it would be expected that 
Tpol is smaller than both Trand and Tact; however, there could be cases whereby Tpol turns out to be 
larger. One example might be where a city shuts down a shorter route between two nodes and 
forces commuters onto a much longer route. In reality, where Tpol is equal to or larger than Trand 
or Tact a policy has no or even negative impacts on commuting and should not, therefore, be 
adopted or should be adapted as time progresses. In this study, we have introduced two scenarios 
for two types of Tpol: the short-term and long-term. For the short-term, we assume that 
commuters would not change their residences and workplaces and for the long-term, commuters 
would. Our simulated commuting trip distribution where the gravity model is applied generates 
Tpol’s (measured by distance) that are always larger than Tact in the policy scenarios under 
consideration. This is because our input for the gravity model to forecast trip distribution was a 
matrix that reflected the cost of travel between any pairs of Oi and Dj decreases by 0 to 20% 
when a new policy such as car use restriction was introduced. When the cost of travel by distance 
decreases, commuters tend to live relatively further away from their workplace; however, their 
average commuting time could still remain relatively stable (Levinson and Kumar, 1994; 
Levinson and Wu, 2005). In the ensuing sections we show such long-term impacts of a new 
policy as well the short-term ones, where the gravity model was not applied. In the latter case, 
commuters do not change their route choice and/or residential or workplace locations despite the 
changes in the cost of travel. Corresponding Tpol’s represent the short-term impacts of a new 
policy. As expected, in the short-term, Tpol is always smaller than Tact (See Table 6).  
 
Empirical study in Beijing 
 
The Site  
As of 2014, Beijing has over 20 million residents and covers an area of 16,410 square kilometers. 
Beijing Public Transportation Company (BPTC), a state-owned company provides public bus 
services in Beijing, has 28,343 buses on 948 bus routes with a total service length of 187,500 
kilometers as of 2011. In 2011 alone, these buses produced vehicle kilometers traveled of 1.7 
billion with a total of 4.9 billion passengers being transported. Table 1 shows the modal split for 
local residents in 2008 and 2010. It is evident that bus commuting is a very important and popular 
mode of transport in the city. In Beijing, 28.9% of residents reported that their mode of travel was 
bus only in 2008 when the city had 8.2 million workers at that time (Beijing Municipal Bureau of 
Statistics, 2010). 
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Table 1: Mode Share of Beijing Residents 

Mode 2008 (%) 2010 (%) 
Bus only 28.8 28.9 
Subway 8.0 10.0 
Taxi 7.4 7.1 
Car 33.6 34.0 
Bike and walking  20.3 18.1 
Company shuttle 1.9 1.9 
Total 100 100 

Sources: BTRC (2012).   
 

Since 2005, over 90% of bus riders in Beijing have swiped an anonymous smartcard when 
boarding and alighting (for suburb routes and long-distance routes in the central city) or when 
boarding (for inner-city routes) to pay for their fare (Long et al., 2012). The high rate of smartcard 
usage among bus riders is largely because of the subsidy the government gives to riders who pay 
their bus fare with a smartcard. Those riders enjoyed 60% discounts on any routes in the local bus 
system in 2011. Smartcards can also be used by commuters to pay for other services such as taxis, 
electricity and waste bills. It should be mentioned that the fare policy of public transit in Beijing 
was updated in 2015 and since then all bus lines require both swipe on and swipe off for payment. 
However, our data/files were for 2008 and thus still represents the travel behaviour of bus 
commuters prior to 2015. 
 

In 2008, BICP partitioned Beijing into 1,118 TAZs. On average, each TAZ is about 14 
square kilometers. For the inner city, TAZs are much smaller than the global average, as shown in 
Figure 2. The average size of TAZs in Beijing’s core is about 3 square kilometers, which is 
comparable to or even smaller than that of the TAZs or sub-divisions used in most existing EC 
studies. For instance, in Small and Song (1992), the 3,341-square-kiliometer Southern California 
Region was divided into 706 TAZs, where each TAZ is about 5 square kilometers. In Murphy 
(2009) and Murphy and Killen (2011), the Greater Dublin Region consists of 463 sub-divisions 
and covers 6,982 square kilometers, where each sub-division is about 15 square kilometers. 
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Figure 2: 1,118 TAZs in Beijing 

 
 
The Data 
To show the usefulness of the above-mentioned new indicators, we conduct empirical studies of 
Beijing, where we have access to local smartcard data, which capture a high percentage (over 90%) 
of local bus riders. Based on this data from Beijing Institute of City Planning (BICP), we can 
derive a large number of homes, workplaces and/or both of local workers. The period covered by 
the data was between 7-13 April, 2008. They thus represent a situation where the Beijing Olympic 
Games had not yet occurred. In addition to the smartcard data, we acquired the ShapeFiles (an 
open GIS data format) of local traffic analysis zones (TAZs) and the road network produced by 
BICP for its 2008 local travel demand model. All the above data/files enabled us to run all 
necessary models presented in this study.                                                                                                                                                                                                                                                                                                                                                                                 

When a cardholder in Beijing uses their smartcard to pay for bus services, the card reader 
installed on the bus automatically generates the following information: 
(a) bus trip origin and/or destination stop1; 
(b) boarding and/or alighting time; 

                                                           
1 For those inner-city routes, the card holder is only required to swipe his/her card when boarding the bus but not when getting off 
the bus. In this case, we deduced the bus origin and destination using the same card’s two swipes on a weekday.  
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(c) unique card number and card type (student card at a discount vs. regular card); 
This information (a) to (c) is instantly sent to and is stored at a central server. For this study, we 
were granted access to a full week’s historical data from the server administrator, which contains 
77,976,010 bus trips associated with 8,549,072 distinct cardholder records between April 7 and 
April 13, 2008. 

To identify a cardholder’s workplace, we queried one-day data on a MS SQL Server and 
repeated this process for seven days. In order to determine a person’s workplace the criteria were 
established based on a decision-tree method and local household travel survey (see Long and Thill 
[2015] for more details). Thus, a cardholder’s workplace was identified if it met the following 
criteria: 
(a) The card type is not a student card; 
(b) Hj>=6 hours, where Hj is the duration that a cardholder stays at place j, which is associated 

with all bus stops within 500 meters of one another; 
(c) j <>1, which means that j is not the first place in a weekday that the server records. 
The place where a cardholder visited most frequently in five weekdays is defined as the workplace 
of the cardholder in this study.  Based on the above, we identified 1,113,913 workplaces associated 
with 8,549,072 distinct cardholders.  

 
Similarly, a cardholder’s home was identified if they met the following conditions: 
(a) The cardholder has an identified workplace; 
(b) The card type is not a student card; 
(c) Th>=6 hours, where Th is the duration that a cardholder stays at place h, which is associated 

with all bus stops within 500 meters of one another; 
(d) Fh >= Fj, where Fh  is the first and the most frequent place a cardholder starts a bus trip of a 

day within the week, Fj is the trip frequency to or from j that the cardholder has.  
Based on the above, 3,778,673 homes associated with 8,549,072 distinct cardholders were 
identified.  

To further validate the deduced workplaces and homes, we checked our derived information 
with local household travel survey data, as well as a parcel-level land use map (for more details, 
see Long and Thill (2015)). In addition, to ensure that we singled out commuters solely by bus, 
we only selected cardholders that had continuous bus swipes. That is, our study does not consider 
commuters who are multimodal. Subway swipe information was available but the authors were 
not granted access to this data. The other thing should be noted here is that for most cardholders, 
we could only derive their home or workplace. We could only detect a much smaller number of 
cardholders’ homes and workplaces simultaneously. 

Similar to existing studies such as Frost et al. (1998), Horner (2002), Murphy (2009) and 
Murphy and Killen (2011), bus trips originating from and destined for locations outside the study 
boundary were excluded in this study. In the end, we successfully validated and identified both 
homes and workplaces of 216,844 cardholders out of a total of 8,549,072. Thus, if we assume 
workers’ mode of travel is the same as that of residents, there were 2.4 million workers who 
commuted by bus only (see Table 1 and associated text above). Our bus rider/worker samples 
(n=216, 844) derived from local smartcard data thus represent approximately 9% of local workers. 

We then geocoded and aggregated commuters’ home and workplace data by TAZ. Descriptive 
statistics associated with commuters’ homes and workplaces are given in Table 2. 
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Table 2: Descriptive Statistics of Homes and Workplaces by TAZ 
 Count* Sum Min. Max. Mean Std. Dev. 
Homes 729 216,844 1 2,880 297 346 
Workplaces 752 216,844 1 2,340 288 368 

*Altogether, there are 767 distinct TAZs that have at least one home or workplace.  
 
Figure 3 presents the top 500 TAZ pairs that have the most bus commuters, with the local job 
(derived from smartcard data) distribution as the background.  The graphic shows the tendency for 
radial trip making around employment subcenters beyond the core of the city. 
 
 

 
Figure 3: The TAZ Pairs with the Most Bus Commuters 

 
Based on the home and workplace distribution information, we constructed two matrices: 

one is for the commuting trips (i.e. Origin-Destination flow information) (Mt) and another for 
journey-to-work travel cost between OD pairs (Md). In contrast with the straight-line distances 
used in existing studies, in Md, we used network distances between TAZ centroids. The network 
distances were calculated in TransCAD 5.0. TAZ ShapeFiles and road network information from 
BICP are used as inputs. For trips within the same TAZ, we assumed that the commuting distance 
equals Ri, where, 
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Ri=�
A𝑖𝑖
π

                                                                                            (15). 

 Ai is the approximated area of each TAZi, as utilised in previous studies such as Frost et 
al. (1998), Horner (2002), Murphy (2009) and Murphy and Killen (2011).   
 

Policy Scenarios for Beijing 

In theory, we can devise as many as policy scenarios as we want and calculate corresponding Tpol’s 
for them. But some policy scenarios are always of greater interest to policymakers than others.  In 
the case of Beijing, we explored three policy scenarios and corresponding Tpol’s to assess how bus 
commuters’ EC indicators would compare to a base do-nothing scenario. The following policy 
scenarios were considered and all are based on revised distance-based trip matrices. 

Policy Scenario 1:  Beijing authorities restrict car usage on the basis of the last digit of a car’s 
number plate on weekdays. This results in a 0-20% decrease in travel costs between TAZs. In 
reality, Beijing has enforced such restrictions since 2008 and about 20% of all the private cars are 
not permitted on weekdays in the city. 

Policy Scenario 2: Beijing adopts comprehensive travel demand management (TDM) measures 
resulting in a 0-20% decrease in traffic flow and travel costs for trips to and from TAZs within the 
3rd ring road of Beijing. In reality, Beijing authorities have already started adopting a series of 
TDM measures since 2011. They include annual quotas and lotteries for new vehicle registrations, 
increased parking prices in the inner city and prioritizing public transportation projects (Gu et al., 
2017).  

Policy Scenario 3: In light of existing large volumes of bus riders to several employment centers 
(TAZs 97, 216, 284, 651 and 694—see Figure 3 for their respective locations on the local map) 
where there are more than 2,000 incoming bus commuters per day, Beijing now operates bus rapid 
transit (BRT) to and from these centers and consolidates services of certain existing bus routes. As 
a result, all bus trips to and from these top employment centers see a reduction of travel cost 
between 0 and 20%.  In reality, Beijing did introduce two BRT routes since the year 2000.  Some 
commuters from the south and the north have greatly reduced their commuting times to the central 
city as a result. 
 
For each policy scenario, we created a new distance-based travel cost matrix (Mg) for all the 
existing TAZ pairs, which has an existing travel cost matrix: Md. Ideally, both Mg and Md should 
be measured in time. But because we were not granted sufficient input data, we were not able to 
measure Mg and Md in time. Nevertheless, given that travel time and travel distance is roughly 
positively correlated. Our ensuing results can still somehow reflect the ideal scenario.  

For Mg, the cost of commuting between all or certain TAZ pairs results in a random (0-20%) 
decrease in commuting costs. In this study, we assume that the cost of commuting is the only utility 
that is of concern to commuters and that it has a positive linear correlation with the network 
distance between the centroids of any two TAZs. More details regarding how we assembled new 
Mg for each policy scenario and how each policy scenario is related to bus commuting is 
summarized in Table 3. What should be noted is that we made simple assumptions (e.g. all relevant 
commuting cost decreases by a random factor) about what would happen to commuting costs when 
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a policy is introduced. This is largely because we do not have access to important or historical 
local data before and after Beijing enforced car usage restrictions based on plate number. Therefore, 
our scenario analysis is illustrative rather than evaluative in nature. Thus, it provides a proof of 
concept for the use of the EC framework for analysing various policy scenarios and should be 
evaluated on this basis rather than on the specific scenario assumptions being adopted.  

Table 3: Policy Scenarios and Bus Commuting 

Policy 
Scenario 

Cost Matrix Characteristics 
(As compared to the 
baseline scenario) 

Relationship to Bus 
Commuting Notes 

1:  
Car 
restriction 

Travel costs (Mg) between 
any two TAZs decrease by a 
random factor of 0-20% 

On average, bus 
commuters would see a 
decrease in commuting 
cost as long as they 
travel within Beijing 

Trip distribution of bus 
commuters would change 
across the city 

2: TDM Travel costs (Mg) to and 
from any TAZs within the 3rd 
ring road (See Figure 3) 
decrease by a random factor 
of 0-20% 

On average, bus 
commuters to and from 
the TAZs within the 3rd 
ring road would see a 
decrease in commuting 
cost 

Only trip distribution of 
bus commuters to and 
from TAZs within the 3rd 
ring road would change 

3: BRT Travel costs (Mg) to and 
from any of the top five 
TAZs which have the most 
employment decrease by a 
random factor of 0-20% 

On average, bus 
commuters to and from 
the top employment 
centers would see a 
decrease in commuting 
cost 

Only trip distribution of 
bus commuters along 
certain corridors would 
change 

 

With the new Mg’s and the known numbers of homes (‘trip productions’) and jobs (‘trip 
attractions’) by TAZ, we used a gravity model to generate new commuting trip matrices (Mp’s) for 
Policy Scenarios 1 to 3, which would be necessary as input into the various modelling exercises 
of the EC framework that would allow us to obtain values for Tpol. The gravity model is the most 
widely used trip distribution model (Caliper Cooperation, 2015) and can be automatically run in 
modern commercial software packages like TransCAD, PTV and Cube once Mg, trip productions, 
trip attractions and parameters of the gravity model are known. Mathematically, a typical gravity 
model can be expressed as: 

Tij=KiKjOiDjf(Cij)                                       (16) 

Ki = 1
∑ kjDjf(Cij)j

                                                          (17) 

Kj = 1
∑ kiOif(Cij)j

                                  (18), 

where   
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Ki,j are balancing factors to be solved interactively; 

f(x) is the impedance function, which takes the form of   

f(Cij)=K*Cij
a*exp(b*Cij)                                                                                            (19); 

all other notation follows from previous equations.  

In a doubly constrained gravity model, for any i, the total number of trips from i predicted by the 
model always (mechanically, for any parameter values) equals the real total number of trips 
from zone i. Similarly, the total number of trips to zone j predicted by the model equals the real 
total number of trips to j, for any j. In our case study of Beijing, we applied a doubly constrained 
model for Beijing because the typical EC framework assumes a fixed distribution of residences 
and workplaces. The values of K, a and b in the impedance function were calibrated based on the 
derived bus commuting trip matrix Mt, which contains 216,844 commuting trips. Table 4 presents 
the resultant calibrated K, a and b values (coefficients). 

Table 4: Coefficients for the Gravity Model 

 K a b 

Coefficient (Calibrated)  0.011 1.01111 -1.1216 

The technical procedures regarding how to estimate the values of K, a and b can be found in Sen 
and Pruthi (1983). With the presence of commercial software packages, those procedures can be 
automatically implemented once Mt or Mp are known. In our case, we used MATLAB to 
implement the technical procedures and TransCAD to validate the means of K, a and b that 
MATLAB generated. The calibrated K, a and b allow us to simulate the bus commuting trips with 
good approximation in terms of trip distance distribution (Figure 4). Our results indicate that the 
actual commuting pattern in Beijing based on our 216,844 sample largely follows a conventional 
gravity model. The gravity model was able to simulate the bus commuting trips’ distance 
distribution with a small margin of error. Larger errors tend to occur when the trip distance is 
shorter than 8 km. But even the largest margin of error is still acceptable: for trips between 0 and 
2km, there are 5.5% and 4.9% of all the actual/simulated trips, respectively. In other words, the 
largest error of margin is only 0.6%. 
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Figure 4: Distance Distribution of the Actual and Simulated Bus Commuting 
 

Results 

Table 5 presents results for the baseline scenario as well as a selection of results identified from 
previous EC studies to add additional context to the Beijing case. It is notable that the results 
outlined for Tmin, Tact, Tmax, EC and Cu are different from earlier work by Zhou et al (2014) due to 
the use of bus/road network distances over air/desired distance as a proxy for commuting cost. The 
other key difference with the results emerging from this study is that Trand has been calculated 
whereas it was not for the previous study. The introduction of Trand has allowed for the calculation 
of Beijing bus commuters’ commuting economy (Ce) and normalised commuting economy (NCe), 
the first in the literature for the city. This enables a comparison of bus commuters’ commuting 
economy between Beijing and a western city (Dublin, Ireland), which is also the first of its kind in 
the literature. The comparison shows that Beijing’s bus commuters have a lower commuting 
economy (Ce) and normalised commuting economy (NCe) – 6% - to their public transport 
counterparts in Dublin for 2001 (28 and 40% respectively). This indicates bus commuters in the 
two cities differ significantly in their actual commuting behavior in terms of how they react to the 
cost of separation between homes and workplaces. Bus commuters in Dublin are further away 
from behaving as random commuters than their counterparts in Beijing, i.e., where the cost of 
commuting distance between land uses is considered irrelevant. Between Dublin and Beijing, we 
have observed divergence instead of convergence in bus/transit commuting/behaviours (c.f., 
Zhong et al., 2015, 2016). These results imply that Beijing’s bus network as of 2008 was still 
organised inefficiently relative to the existing distribution of homes and workplaces in the city. 

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

0~
2

2~
4

4~
6

6~
8

8~
10

10
~1

2
12

~1
4

14
~1

6
16

~1
8

18
~2

0
20

~2
2

22
~2

4
26

~2
8

28
~3

0
30

~3
2

32
~3

4
34

~3
6

36
~3

8
38

~4
0

40
~4

2
42

~4
4

44
~4

6
46

~4
8

48
~5

0
50

~5
2

52
~5

4
54

-5
6

56
~5

8
58

~6
0

60
+ 

KM

Actual

Simulated



17 
 

One caveat, however, is that NCe and Ce can be affected by city size and thus the differences in 
NCe and Ce between Beijing and Dublin may not as big as we had observed (Kanaroglou et al., 
2015).  
 
Table 5: Different EC Indicators of Beijing and Dublin 

Study/Survey Mode, year Sample size Tmin Tact Trand Tmax EC Cu  Ce NCe 
km % 

Current study 
(Network 
distance) 

Bus, 2008 
 

216,844 
(Commuting 
only) 

1.9 22.7 
(23.5#) 

24.1 40.7 92 54 6 6 

Current study 
(Straight-line 
distance) 

2.5 8.1 11.6 24.7 69 25 29 37 

Murphy and 
Killen (2011) 

Public 
transport*, 
2001 (Dublin) 

Not reported 2.8 6.5 9.0 11.6 60 58 28 40 

* Public transport system in Dublin consists of bus and light rail and bus trips account for the bulk share of the 
public transport trips.  
# Tact based on the gravity model. 
 
In addition to the EC indicators for the baseline scenario, we also calculated EC indicators for 
policy scenarios proposed in the methodology section (Table 6). When calculating the indicators, 
we have two sets of Tpol’s and of Cpol and NCPol, respectively. One applies the gravity model and 
the other does not. We can regard them as the long-term and short-term impacts of different 
policies on EC.  
 
Table 6: EC Indicators for Policy Scenarios 
 Tpol 

(Gravity 
model not 
applied, 
short-
term 
impacts) 

Tpol 

 (Gravity 
model 
applied, 
long-term 
impacts) 

Tmin 
 

Tact  

(All from 
the 
baseline 
scenario) 

Trand Tmax 
 

Gravity model 
not applied 

Gravity model 
applied 

Cng
pol

  NCng
pol 

 
Cg
pol

  NCg
pol 

Unit km % 

1: Car 
Restriction 16.7 23.6 1.9 

22.7 
 

18.3 30.0 26 10 4 32 

2: TDM 22.5 31.3 1.8 25.3 47.4 0.8 12 38 26 

3. BRT 22.6 31.6 1.9 25.5 48.7 0.4 12 39 26 

 
Based on the results in Table 6, we found that all the policy scenarios considered could lead to 
significant commuting efficiency gains (for bus commuters) over the short term implying city-
wide reductions in vehicle kilometers travelled, environmental emissions as well as improved 
fuel economies. This is unsurprising: it is quite typical for a policy to be introduced on the basis 
of anticipated positive benefits for the travelling public. What is interesting is that the policy 
scenarios that require larger scale efforts do not necessarily result in more commuting efficiency 
gains than other scenarios. The TDM scheme (Policy Scenario 2), for instance, which involves 
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pricing/restricting car commuters in the city, actually has similar impacts on commuting 
efficiency gains as the introduction of BRT (Policy Scenario 3) in the short term (measured by  
NCng

pol). In the long term, assuming that commuters switch route choices and/or 
workplaces/residences because of lower travel cost introduced by different polices, it can be seen 
that Policy Scenarios 1 to 3 would all eventually suffer from commuting economy loss.  

The results also show that under all policy scenarios commuting economy improves in the 
short term. The results for Cng

poldemonstrate that commuters have 26, 0.8 and 0.4 per cent gains in 
commuting economy under Policy Scenarios 1 to 3 respectively compared to the baseline scenario. 
However, when the data is normalised relative to the available commuting capacity of the city 
(assuming Trand as the upper limit on commuting behavior) it can be seen that Policy Scenario 1 is 
less effective than Policy Scenarios 2 and 3. This indicates that larger-scale efforts do not always 
increase commuting economy/efficiency as one might expect.  

As a whole, Table 6 and the corresponding policy scenario design and quantification also 
exemplifies that the introduction of new indicators such as Tpol, NC*

poland C∗
pol

 allow us to better 
connect the EC framework to real world policymaking and policy evaluation. These new indicators 
enable us to quantify the probable impacts of different policies on commuting efficiency/economy 
as compared to the baseline scenario. They also allow us to compare those impacts and decide 
which policy should be prioritised. Of course, the results of different policy scenarios presented in 
Table 6 are based on some simplifications of the real world and considerable assumptions about 
commuting cost. If we want to put the above new indicators to better use so that they are more 
relevant to real-world decision-making or policy assessment, we need to collect more input data 
so as to design better policy scenarios and obtain more convincing results about them than those 
presented in this illustrative study.   

 

DISCUSSION AND CONCLUSIONS 

In this paper, smartcard data, a type of ‘big data’, has been used to derive the residential and 
workplaces of bus commuters, thus enabling the retrieval of a much larger sample than would 
typically be the case in traditional EC studies. This paper has, above all, proposed new and 
transferrable indicators in light of local public policies, which helps to connect the excess 
commuting framework to daily and monthly policy evaluations and decision-making. It maintains 
some assumptions of the framework such as the total number of jobs and residences will be fixed 
within zonal units but assumes that policy changes will result in travel cost and trip distribution 
changes between zonal units. This is largely consistent with reality: it is very difficult to alter 
specific land use patterns once they are there; but it is very possible to introduce measures that 
result in travel-cost changes between origins and destinations. For the case of Beijing, we outline 
that introducing certain transport-policy options can improve the commuting economy of the city. 

The paper has compared results emerging from the excess-commuting framework from 
Beijing with Dublin specifically in terms of bus commuting economy. It has also outlined and 
demonstrated the application of new commuting economy measures for transport policy scenarios.  
Quite a few concrete findings have emerged. Our results show that smartcard data can be used to 
generate most if not all the input data necessary for the development of indicators for bus 
commuters within the excess-commuting framework. 
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They also show that the introduction of additional indicators such as Tpol, C*
poland NC∗

pol  
can facilitate the development and evaluation of policy scenarios that inform policymakers about 
the potential impacts of a range of options on commuting economy/efficiency. Indeed, our results 
demonstrate that policies directly targeting bus commuters (such as BRT) tend to bring comparable 
benefits to bus commuters like other larger-scale interventions (e.g., parking restrictions for all 
commuters to and from the downtown). However, we must admit that the specification of absolute 
values of these indicators means that although we can judge the effects of a policy change, we 
cannot evaluate its direction. 

In addition, our study can further inspire other researchers and decision-makers in at least 
three other aspects associated with smartcard data usage. First, like Beijing, many other cities have 
introduced a similar smartcard into their public transportation system. For instance, Chicago has 
the “Chicago Card Plus”, Los Angeles has the “Tap card”, Washington D.C. has the “SmarTrip” 
card and Atlanta has the “Breeze” card.  All these cards could generate similar raw smartcard data 
that we used in the case of Beijing. Such data, when appropriately processed and validated, could 
provide an alternative form of input data to support studies of commuting patterns and their 
determinants/impacts. In theory, these data can enable temporal studies across hours, days, weeks, 
months and years, and are much more efficient and economical to acquire than traditional data 
such as censuses and surveys. Such data has the potential to induce a paradigm shift in public 
transport planning, operation and related plan and policy evaluations (c.f., Batty 2013).  

Second, is linking smartcard data to other conventional data. Most smartcards do not store 
personal information such as home address, income, gender and age. However, they can still be 
used to generate home and workplace information with quite refined geographic resolutions, for 
instance, at the bus stop level. This means that the smartcard data can be aggregated later to larger 
units of analysis such as zip code, TAZ, or district. In this paper, we aggregated relevant data by 
TAZ. There are many variables such as the number of workers, residences and mean travel time 
available at the TAZ level from local transport planning entities. We did attempt but did not 
succeed in gaining access to these variables. For other cities where transport-planning-related data 
availability and access are not a sensitive issue, smartcard data can be aggregated to other units of 
analysis, say census block or tract. At those levels, there are often many publicly available 
variables, which would enable researchers to do more research. In the US, for instance, one can 
access age, sex, race, income, education, housing, mode choice, travel time, etc. information at the 
census tract level through the US Census’ website. If all the above data are not available, one can 
still design conventional surveys to supplement smartcard data. Combing smartcard data with these 
conventional/extra data would engender more relevant and useful studies of bus/transit commuters, 
which could inspire more informed plans and policies.  

Third, smartcard data can be used to help policy or plan evaluations. In this study, we 
devised three different policy scenarios, estimated Mp’s, the most probable trip distributions 
associated with them and calculated corresponding Tp’s and commuting economy. Our policy 
scenarios are by no means perfect as they are illustrative in nature and we did not have all the 
desired input data to estimate Mp’s. But our procedures, models and methodologies are replicable 
and transferrable. They highlight how researchers might do a better job in other cities where there 
are more or better input data. With such data, we are confident that they could complete more 
excess-commuting studies with policy relevance, even by simply replicating our efforts described 
above using local data as input. 

Finally, research in this area can be enhanced in three aspects in the future. First, smartcard 
data need to be better linked to customised household travel survey data, particularly for bus 
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commuters. This would give us better knowledge of local bus commuters travel behaviour, housing 
choice and their determinants. Of course, there are barriers to be overcome in this regard because 
of the tradition among local agencies to hoard most data they have from researchers in the Chinese 
context (Zhou and Wang, 2014). Second, combining our data with that of other modes, particularly 
automobiles, would be highly beneficial. The absence of reliable data for automobiles has 
prevented us from getting a fuller picture of local commuting patterns across different modes of 
travel. The trip distribution of auto commuters in different policy scenarios can significantly differ 
from that of bus commuters. But they mutually influence each other in terms of trip generation, 
travel time, route and/or mode choices. Third, it would also be beneficial to integrate bus data with 
rail data (e.g. subway data). Local agencies have this data but due to the privacy/security concerns 
mentioned above they were unwilling to share it. It is likely that adding extra information about 
subway users would make smartcard data processing, derivation of homes and residences and 
corresponding validation more complicated and challenging. But this extra information would 
enable us to better understand the EC of more commuters, in particular, those commuters who 
primarily or solely use subway, those who use both bus and subway, or those who walk/bike and 
use subway. This could be extremely important for a metropolis like Beijing where the subway 
system is growing rapidly together with an increase in the share of multimodal commuters whose 
primary mode is subway.  
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