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ABSTRACT The risk of cascading blackouts (RCB) is of great significance in practice because cascading
outages can have catastrophic consequences. As there is a positive relationship between the probability of
cascading blackouts and that of component failures, an effective way to mitigate the RCB is to perform
maintenance. However, this approach is of limited value when considering extremely complicated cascading
outages, such as those in particularly large systems. In this paper, we propose a methodology to efficiently
identify the most influential component(s) for mitigating the RCB in a large-power system based on
inference from the simulation data. First, we establish a data-based analytic relationship between the adopted
maintenance strategies and the estimated RCB. Then, we formulate the component maintenance decision-
making problem as a nonlinear 0—1 programming problem. We then quantify the credibility of the estimated
RCB and develop an adaptive method to determine the minimum required number of simulations, which is a
crucial parameter in the optimization model. Finally, we devise two heuristic algorithms to efficiently identify
approximately optimal solutions. The proposed method is then validated by way of numerical experiments

based on IEEE standard systems and an actual provincial system.

INDEX TERMS Data inference, maintenance strategy, risk of cascading blackouts.

I. INTRODUCTION

Under certain conditions, system disturbances or component
outages in a power system can trigger a sequence of com-
ponent failures, or cascading outages, that can have seri-
ous consequences, even catastrophic blackouts. Although
the probability of such catastrophic blackouts is very small,
the results of theoretical research and practical experience
indicate that the risk of cascading blackouts (RCB) should
not be ignored [1]-[4].

Intuitively, component maintenance is seen as an effec-
tive means to mitigate RCB since it directly reduces the
probability of component failures [5], [6]. In practice, of the
large number of components in a power system, a small
subset exerts a disproportionately large influence on the
RCB [7]-[9]. Therefore, by preferentially maintaining the
subset of the most influential components, the RCB can be
minimized with limited resources. It should be noted that
this is not a new idea, but has been extensively deployed
in conventional reliability-centered maintenance or risk-
based maintenance methods. In [10], a risk-based resource

optimization model for transmission system maintenance is
proposed where both the maintenance strategies and corre-
sponding risk reductions serve as input data. From a dif-
ferent perspective, risk can be defined and calculated via
scenario enumeration in which components associated with
high-risk scenarios are selected for maintenance [11]. In a
more rigorous approach, the researchers in [12] leverage
0-1 integer programming to optimize the system risk using
limited resources in power systems, where the system risk is
defined as the sum of the component risks and is calculated
by enumeration. A similar optimization model is presented
in [6]. In all of the above methods, maintenance strategies
are selected based on evaluating the risk with respect to the
maintenance strategies under consideration.

While the aforementioned methods have been shown to
work well in both reliability-centered maintenance or risk-
based maintenance methods, this is not the case when cas-
cading outages are considered. In fact, few practical methods
are available for analyzing cascading outages in large systems
due to the complexity of the required computations.
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As is well known, the propagation of a cascading outage
is a complicated dynamic process involving various ran-
dom factors, which makes it impossible to analytically cal-
culate the RCB. Hence, statistical methods like the Monte
Carlo (MC) method are often employed to indirectly estimate
the RCB. Howeyver, to realize a credible estimation, the MC
method must generate a large number of samples via cas-
cading blackout simulations [13]-[15], which is extremely
time consuming [16] for large systems in particular, and
maintenance only exacerbates this problem. Since there is no
analytic relationship to bridge the estimated RCB with the
probability of component failure that vary with maintenance
strategies, samples used to estimate the RCB with respect to
a particular maintenance strategy cannot be used for another.
This implies that whenever the maintenance strategy changes,
all blackout samples must be completely regenerated by con-
ducting blackout simulations. Considering the large scale of
real power systems and the immense number of possible
maintenance strategies, both sample generation and estima-
tion of RCB are extremely time-consuming. This further
increases the intractability of the corresponding maintenance
optimization problem.

In addition to the MC method, importance
sampling [17]-[19] and Splitting [20]-[22] are two other
efficient methods to simulate cascading outages. In the impor-
tance sampling method, the probability of severe cascading
outages is ‘amplified’ so that more rare cascading blackouts
can be captured. As for the Splitting method, the basic idea
is to divide the simulation process into sub-levels and then
copy samples in the beginning of each sub-level, so that more
rare cascading blackouts can be obtained. It is worthy of
noting that despite the important sampling method and the
Splitting method can remarkably improve the simulation effi-
ciency, they cannot explicitly reveal the relationship between
component failure probabilities and the corresponding RCB.
Therefore, they face with similar difficulties to the MC
method in the maintenance optimization problem.

Guo et al. [23] exploit the information pertaining to cas-
cading blackouts that is buried in the data of cascading
blackout simulations in their development of a semi-analytic
method to characterize the relationship between the unbiased
estimation of the RCB and component failure probabilities.
With this approach, it is possible to directly estimate the
RCB under varying component failure probabilities with no
need to regenerate any samples. In other words, this poten-
tially suggests an efficient RCB evaluation approach that
can address varying maintenance strategies. In this paper,
we extend that approach to address the optimal component
maintenance problem while considering the RCB. The major
contributions of our work are threefold:

1) An analytic relationship between the estimated RCB
and maintenance strategy is established based on infer-
ence from the cascading blackout simulation data.
On this basis, the optimal component maintenance
problem is formulated as a nonlinear 0-1 programming
problem. In the model, the evaluation of the RCB with
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respect to varying maintenance strategies is explicitly
expressed based on the initial simulation data.

2) To guarantee the validity of the RCB evaluation
result when solving the proposed optimization model,
we propose an adaptive method to determine an appro-
priate sample size via credibility analyses based on
inference from the simulation data.

3) The proposed optimization model is a high-dimensional
nonlinear 0-1 programming problem. However, for
simplicity, we propose two simple heuristic algorithms
to search for nearly-optimal solutions with very high
efficiency. This guarantees the proposed methodology
can be employed in real large power systems.

The rest of this paper is organized as follows. Section II
provides an overview of the basic definitions and notations,
based on which the optimization problem is formulated.
In Section III, based on credibility analyses of the estimated
RCB, the sample size, which is the critical parameter, is deter-
mined. The two high-efficiency heuristic algorithms and
accompanying holistic procedure are presented in Section IV,
while several case studies are described in Section V. Finally,
our conclusions are presented in Section VI.

Il. PROBLEM STATEMENT AND FORMULATION

In this work, we develop a method to mitigate the RCB
by maintaining a few key components in large systems.
In essence, the influence of maintenance on the component
failure probabilities can be estimated based on historical data
and experience. Therefore, the critical issue lies in char-
acterizing the relationship between the component failure
probabilities and RCB (or more precisely, the estimation
of the RCB). As long as the relationship is obtained, it is
straightforward to determine suitable maintenance strategies
by enumeration or optimization. To this end, an analytic
relationship is preferable for optimizing the maintenance
strategy. To realize this, we employ the method described
in [23] to analytically characterize this relationship through
inference from the simulation data, and then to explicitly
formulate the optimization problem.

A. DEFINITIONS

We begin by providing basic definitions of cascading outages,

the component failure probability function, and the RCB.
Invoking the description in [17], in a broad class of steady-

state simulation models, an n-stage cascading outage can be

defined as a Markov sequence denoted by

Z:={X0,X1, ... Xj, ..., Xp, X; € X,Vj €N}, (1)

with respect to probability series g(Z). Here, N :=
{1,2,.--,n} is the set of cascading stages; j is the stage
label; and X; represents the state variables of the sys-
tem at stage j, which can be ON/OFF states of compo-
nents, power injections at each bus, etc. In particular, Xo
is the initial system state of the cascading outage, which is
assumed to be deterministic. The state space X is assumed
to be finite. With regard to a specific cascading outage,
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z = {x0, ..., %, ..., x,} andits probability (series) is denoted
by g(2) := glxo, ..., %}, ..., X,). At stage j, the failure prob-
ability of component k is denoted by

@i (xj) := Pr(component k fails at x; ), 2)

where ¢y, is referred to as the component failure probability
function, which is determined by the inherent characteristics
of the component, e.g., the component type, operating condi-
tion, etc. In the literature, there are various forms of ¢ [3],
[13]-[15], [24]. On the other hand, if a certain component
k is maintained, the failure probability function will change
accordingly. We denote the failure probability function of
component k after maintenance by ¢i. It is worthy of noting
that it is difficult to estimate the impact of maintenance on
the component failure probability and choose appropriate ¢
in practice. Because there are many maintenance methods
and various kinds of components with different ages, while
the accurate data related to the specific component and main-
tenance method is far from sufficient. However, some exist-
ing methods can facilitate dealing with this issue [25]-[27].
In this work, we focus on the influence of component failure
probabilities on RCB and the maintenance-based risk man-
agement method. Therefore, we simply employ generic forms
of g and ¢, and do not discuss in detail the specific methods
to obtain ¢y and ¢y in this paper.

Note that a cascading outage can involve load shedding.
The general definition of the RCB associated with load
shedding is as in [17]. Specifically, the load shedding of
a cascading outage is denoted Y, which can be considered
as a function of the corresponding cascading outage, i.e.,
Y = h(Z). Then, the RCB with respect to g(Z) and a given
load shedding level Yy is

Re(Yo) :=E(Y - S(y>v,)) = Zg(z)h(z)(?{h(z)zyo}, 3
€2

where Z is the set of all possible cascading outages and
8y >Y,} 1s an indicator function of the events {Y > Yy}, given
by

5 N R D = (1 @
r=ro) = 0 otherwise.

The RCB defined in (3) is the expectation of load shedding
beyond the given level Yy. When Yy = 0, this is consistent
with the traditional definition of blackout risk. When Yy > 0,
this is consistent with the risk of those events with serious
consequences, i.e., those with a load shedding greater than Yj.

B. ANALYTIC RELATIONSHIP INFERENCE FROM THE
SIMULATION DATA

Invoking the Markov property and conditional probability
formula, g(z) can be rewritten as

n—1

xx0) = [ ginirlg), )
j=0

g(z) = g(xn’ e
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where g;1(xj11|x;) represents the transition probability from
state x; to state xj;1. Considering the failure components at
stage j, (5) is equivalent to

n—1
c@=[]|[Ta - [TA-ax@mn|.  ©®
j=0 | keF; keF;

where Fj is the component set consisting of the components
that are defective at x;j; 1 but operate normally at x;, while F i
consists of the components that function normally at x; .

Since maintenance only influences some of the compo-
nents in the system, we consider the items related to a specific
component k € K in (6) and define

n—1

[Ta = et Sif me =n
Mg =1"" )

@k (X)) l_[ (1 — ¢x(x)) : otherwise

J=0
where K is the set that includes all components; and 7y is the
stage at which component k fails. In particular, if component
k does not fail in the whole cascading process, let ny := n.
Then

8@ =[] N(gx. 2). ®)

kekK
Substituting (8) into (3) yields

Re(Yo) =) (h(Z)5{h(z)zY0} [T e z)>. ©

€Z keK

The inherent relationship between Ry(Yp) and ¢y is indi-
cated in (9). However, since |Z| and |K| ' may be very
large, it cannot be directly used in optimization. Alternatively,
we use an approximation of Rg(Yp) in terms of a set of
samples, which is given by

N
~ 1 .
Ry(vo) = = D hED iy vo)- (10
i=1
In (10), N is the number of independent identically distributed
(i.i.d.) samples generated using specific blackout simulation
models with respect to g(Z) (or more precisely, g, k € K);

7= {x, ... ,X], ..., x!} is the i-th sample, where n' is the
number of stages in the i-th sample. In particular, we define
Z, = {Z',i = 1,---, N}, which represents the sample set

generated with respect to g(Z).

When some of the ¢; values change due to maintenance,
g(Z) will be converted into another probability series that is
denoted f(Z). With regard to Z,, Guo et al. [23] state that the
unbiased estimation of R¢(Yp) is given by

N
o 1 . .
Ry (Yo) = + X; w(@HhE)S i) (11)
=
I represents the cardinality of a set.
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where w(z') is the sample weight of 7' and is defined as

_f@
(@)’
According to (11), it is interesting to note that IAef(Yo) only

requires the information of 7' that is generated in the blackout

simulations with respect to g(Z). This implies that when g(Z)

changes to f(Z), the RCB can be directly obtained using

the information of Zg, rather than by regenerating samples

via blackout simulations. Therefore, this approach provides a

means to explicitly express the RCB with respect to mainte-

nance strategies, which will greatly facilitate the formulation
of optimal maintenance decision-making problems.

w(Z) : V7 € 2). (12)

C. FORMULATION OF MAINTENANCE

STRATEGY OPTIMIZATION

Binary variable my represents the maintenance status of com-
ponent k. If component k is maintained, m; = 1; otherwise,
my = 0. Vector M := {my, k € K} represents the mainte-
nance strategy. For a specific sample 7/, we have

@ = [T [T @+ —mor@ 2. a3)

keK
Substituting (13) into (11) yields
Re(Yo)
N [T (@, )+ (1 —mT (g, 2]
_ 1 keK h i(S X
TN [T Tk 2) @ ez
i=1 kek
1 < [ ( I'(¢x, ) :
=52 | [T (1+m (— - 1>>h(2’)3{h(zi)zm]f
N Liexs Do, 2)
(14)

where K* is the set that includes all components available for
maintenance. Thus, K* C K and my = 0, Vk ¢ K*.

The relationship between the estimated RCB and main-
tenance strategies is detailed in (14), which is an explicit
expression that provides an estimate of the RCB. To minimize
the RCB with the limited number of components considered
to be in maintenance, the following optimization problem can
be formulated

1+ NG
min — T4my | ——=2—1 ) )i(@)8 i
Py [ [l ( I (F(wk,zw )) © “““EY‘J
i=1 Lkek*
st ) mk < My, (15)
keK*

where my, k € K™ are the decision variables, M,,,, is a
predefined parameter that stands for the maximum num-
ber of components considered in maintenance, and I'(¢, 7'),
[(@k, 2'), h(z'), and 8y ,iy>y,) are variables that rely on the
samples. For simplicity, we define an N-dimension vector C
and two |K*| x N matrices, P and Q, as follows

Ci i= h@Dyirzyy Vi
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Py = T(p, 7)) Vik
Ori = T'(gr,2') Vi k.

Remark 1: Note that in practice, cascading outages
always occur in power systems that are heavily loaded.
Therefore, we assume the initial state is deterministic
when formulating cascading outages. Similarly, in practice,
the proposed optimization model (15) is employed in typical
heavily loaded system states. On the other hand, it is worth
noting that these formulations and the proposed methodology
serve as the first step in related analyses. When multiple
initial states are considered, the methodology can be sepa-
rately employed in each initial state, and the final RCB can
be calculated by the average of the RCBs in multiple initial
states. The proof of this will not be provided here as it is
beyond the scope of this paper.

In large power systems that include thousands of compo-
nents, (15) is a high-dimensional 0-1 programming problem,
the solution for which involves the following two issues.

1) DETERMINING APPROPRIATE SAMPLE SIZE N

In the optimization model described by (15), the sample size
N is a crucial parameter because the objective function is
an unbiased estimation of the RCB and the estimation error
relies on N. To guarantee the credibility of the estimation,
a sufficiently large N is required. On the other hand, an N that
is too large will drastically increase the computational burden.
Unfortunately, it is not trivial to determine an appropriate
sample size. In this regard, we analyzed the variance of the
estimated RCB based on inferences from the simulation data,
which enabled us to develop an adaptive method to determine
a suitable sample size that achieves a good trade-off between
the estimation accuracy and computational complexity. The
details of this method are provided in Sections III and IV-B.

2) REDUCING COMPUTATIONAL COMPLEXITY

Even after an appropriate sample size N has been determined,
it is still challenging to solve the optimization problem in
(15). The number of decision variables in (15) equals |K*|,
and there are 21" — 1 product terms of decision variables in
the objective function. Therefore, the optimization problem
in (15) for a real large system may have thousands of deci-
sion variables and an astronomical number of product terms.
For this type of high-dimensional 0-1 integer programming
problem, enumeration and conventional optimization algo-
rithms, such as branch and bound, are demonstrably inef-
fective. To address these limitations, we devised two simple
yet efficient algorithms to identify nearly-optimal solutions
of (15) in a heuristic manner, which is a suitable approach in
practice for large systems. The details of these algorithms are
provided in Section IV.

IIl. DETERMINING N BASED ON CREDIBILITY ANALYSES
Due to the inherent uncertainty of the samples in Z, the esti-
mated RCB, IAQf(YO), given in (11) always includes a certain
amount of estimation error. In general, increasing the sample
size reduces the estimation error. However, to determine an
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appropriate sample size of Z,, i.e., N, the influence of N
on the estimation error must be characterized via a variance
analysis based on inference from the simulation data.

A. VARIANCE-BASED CREDIBILITY ANALYSES

We first consider the relative error bound of (11) with respect
to a specific Z,. Specifically, we denote € as the relative error
bound of R,«-(Yo) with a confidence level 8. Then, € should
bound the probability of Ry(Yp) within I := [f?f(Yo)/(l +
€), Ry (Y0)/(1 — €)] with a probability B, i.e.

Pr |Rr(Yo) — Ry (Yo)| <e) =g (16)
Rr(Yo)

where 2¢ /(1 —€2) is defined as the relative length of the error
bound used to quantify the credibility of the estimated RCB.

Note that (16) is equivalent to
€Rs(Yp)
0 ) =5,

_ €Rr(Yo) < Re(Yo) — i?f(Yo)
\/Df(YO VDs(Yo) \/Df(YO

(17

where Dy(Yy) is the estimation variance of IAQf(YO) given
by (11). Invoking the Central Limit Theorem, when N is
sufficiently large, we have:

Re(Yo) — i?f(Yo)
VDr(Yo)

In this context, € can be determined by solving (17), yielding

1(1/2+,3/2)\/D;‘(Yo (18)
Rr(Yo)

where @ is the cumulative density function of the standard
normal distribution, and ® ! is the inverse function of ®.

According to (18), a small enough Dy(Yp) is required
to ensure the credibility of the blackout risk estimation.
However, as the distribution of f?f(Yo) is unknown, Dy (Yp)
cannot be calculated accurately in practice. To address this,
we propose a proposition for estimating Dy(¥o) based on a
specific Z,.

Proposition 1: GivenZ,, g(Z), and f (Z), an unbiased esti-
mation of Dy(Yp) is given by

~ Norm(0, 1).

N o R 2
Dy(¥y) = l)N Z [ =y = Rr(Yo) |
(19)
Proof: ~We first define random variable L;(Yy) as
Li(Y) = ff}h(z Wiuerzry) § = 1o+ N. Since 2/ is

iid., Li(Yp) 1s also i.i.d. Therefore, the variance of random
variables L;(Yp) are the same. Specifically, we denote the
variance of L; by dr(Yp). We then have

1Y 1 1
Ds(Yo) =D (17 ;Li(m) = DY) = s (Yo),
(20)
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where D is an operator of the variance calculation. The second

equation holds by noting that L;(Yp),i = 1,--- , N arei.i.d.
According to the definition of the sample variance in [28],

the unbiased estimation of dr(Yp) based on Z, is given by

dr (Yo) = —Z[w(z)h(z)a{h(z>>yo}—Rf<Yo>] 1)

Therefore, by substituting (21) into (20), the unbiased esti-
mation of Dy(Yp) can be determined using (19). |
Combining (11), (18), and (19), € can be estimated by

1(1/2+,3/2)\/Df(Y0 )
Rf(Yo)
On the other hand, according to (18) and (20), we have
Vdr(Yo)
X ——. 23
VNR;(Yo) )

Since df (Yp) is deterministic for specific Z; and f (Z), when
the error bound of the estimated RCB in (11) does not satisfy
the predefined requirement, the sample size N should be
enlarged and Z, should be updated, as explained next.

m™>
I|

B. DETERMINING THE SAMPLE SIZE N

In this subsection, the previous credibility analyses are
employed to determine an appropriate N based on inference
from the simulation data in Z. In essence, if the estimation
error bound is determined (according to the requirement of
practical utilization), i.e.,é = 10%, then (22) gives

~ 2
Dy(Yo) = (q)_ld‘i) : (24)
1/2+B/2)

In (24), Df(Yo) represents the maximal estimation variance
required so that the relative error is within a given error bound
€ with a confidence level of S.

To ensure that Dy(Yp) is less than Df(Yo), the required
sample size N can be obtained using (20) and (21) as

1 q -1 2
N C_lf(YO) _ iif(YO) (Cb (1/%+/3/2)> 05
Dy (Yp) sz(YO) €

According to (25), when N < N, the sample size is not
large enough to guarantee the credibility of the blackout
risk estimation and more samples are required to reduce the
estimation variance. This provides a systematic approach to
the optimization problem (15) when determining an appropri-
ate sample size. The corresponding algorithm can be easily
implemented in practice, as described in Section IV-B.

It is noteworthy that both cAif(Yo) and Rf(Yo) in (25) are
calculated based only on the sample set Z,. Hence, N is
essentially inferred from the simulation data in Z, and there
is no need to regenerate any additional samples as long as the
sample size condition N > N holds.
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IV. SOLUTION ALGORITHMS
A. HEURISTIC ALGORITHMS
As mentioned previously, the optimization model (15) is a
high-dimensional nonlinear 0-1 programming problem that is
considered to be NP-hard. Many nearly-optimal solutions are
able to mitigate the RCB in practice, as will be demonstrated
in the Case Studies. We now devise two heuristic algorithms
to identify nearly-optimal solutions to (15) on a fixed Z,.
Since one significant obstacle is the large number of deci-
sion variables, a simplistic approach is to reduce the number
of components considered for maintenance, i.e., |K*|. With
this in mind, we employ a sensitivity-based approach in the
design of the following algorithm.

Algorithm 1
e Step 1: Sensitivity analysis. Construct |K*| scenarios in
which the ¢ of a single component k € K changes to ¢k.
Then, estimate the RCB using (11).
e Step 2: Scenario reduction. Choose the M} components
with larger reductions in the RCB to make up the Kj,.
Here, M is a predefined parameter based on M,,,, and the
experience. In particular, My, < My = |K,| < |K*|.
e Step 3: Solving the optimization problem. Substitute K*
in (15) with K;;, and solve (15) by enumeration.

Since (11) only requires a few algebraic calculations,
it is efficient to estimate the RCB in each scenario.
Suppose the average calculation time of a single sce-
nario is #;, then the total calculation time is (|JK*| +
C(My, My, )t Here,C(My, Myq,) is  the number of
M. —combinations from Mj elements. As the maximal
number of components that are considered for maintenance
Mqy is often small in practice, My can be chosen to be a
moderate number. Then, the number of scenarios and the
computation time by enumeration will be acceptable.

Nevertheless, as My and M,,,, grow larger, such as in
an actual large power system, the number of scenarios
(|K*|4+C (M}, Myyqy)) and computation time increase dramat-
ically. To address this, we propose the following additional
algorithm.

Algorithm 2
e Step 1: Initialization. Let K,,, = §. Then its complemen-
tary set, which is denoted by K,,, equals K*.
e Step 2: Estimation of RCB. Construct |K,,| scenarios.
In each scenario, for all components in K,, and a single
component in Ko, change their ¢y to ¢; and estimate the
RCB with (11).
e Step 3: Iteration. Choose the scenario with the lowest
RCB. Move the corresponding component from Ko to K.
If |Ky| = My, the procedure ends; otherwise, go back
to Step 2.

In Algorithm II, the components that must be maintained
are determined successively. In each round, the component
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FIGURE 1. Flowchart of the methodology.

that can most effectively reduce the RCB is selected. There-
fore, Algorithm II actually belongs to a family of so called
greedy algorithms. The total number of scenarios is (2|K*| —
Myax + 1)Myax /2. Since the number of scenarios increases
linearly with |K*|, the optimization process remains efficient
even in a large system.

B. PROCEDURE
The methodology (see Fig. 1) can be summarized as follows.

Procedure
e Step 1: Initialization. Initialize the system. In particular,
determine ¢ and ¢y for each component in the system. The
initial sample size is N = Nj.
e Step 2: Sample generation. Generate N samples based
on the specific blackout model and ¢, k € K. The sample
setis Z,. Based on Zg, ¢y, and ¢y, calculate matrices C, P,
and Q.
e Step 3: Maintenance optimization strategy. Solve the
optimization problem (15) using Algorithm I or II.
e Step 4: Credibility evaluation. For the optimal mainte-
nance strategy, calculate the necessary sample size N with
(25). If N > N, generate another N — N samples and add
them into Z,. Then, update C, P, Q and go back to Step 3;
Otherwise, directly choose the optimal one according to
the results in Step 3.

The proposed procedure incorporates an adaptive selection
of the sample size based on a credibility evaluation, as shown
in Step 4. In this way, the sample size can be minimized
while the estimation error is within a predefined limit with
respect to a given confidence level. It is noteworthy that to
benefit from the inference from blackout simulation data, all
samples are generated with respect to g(Z) only and not for
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different f(Z). This results in a significant reduction in the
sampling time and simplifies the implementation.

V. CASE STUDIES

A. SETTINGS

In this section, numerical experiments are carried out on
a IEEE 57-bus system, IEEE 300-bus system, and an
actual provincial power system in China with a simplified
ORNL-PSerc-Alaska (OPA) model that omits slow dynam-
ics [13]. In the simulations, a traditional MC method is
employed to consider the random failures of both the trans-
mission lines and power transformers. The failure probability
functions of the transmission lines and power transformers
are the same as those in [14] and [24], respectively. In all
cases in this work, typical parameters are applied, and for
simplicity, only the maintenance of power transformers is
considered.

The simulation model with specific component failure
probability functions mentioned above is only employed to
demonstrate the proposed method, and it is expected that
more realistic models and settings will be adopted in actual
situations.

B. IEEE 57-BUS SYSTEM

In this simulation, we employed a small system that included
53 transmission lines and 17 power transformers to demon-
strate the difficulties encountered in mitigating the RCB via
component maintenance and to highlight some salient fea-
tures of the proposed method.

1) RCB ESTIMATION

Here, we demonstrate the unbiasedness of (11) and the inher-
ent estimation error caused by the randomness of the samples.
First, we constructed a series of Z; with increasing sample
sizes and randomly changed the ¢y of four components. Then,
we calculated the RCB with Yy = 200 using (11). Next,
we estimated € with respect to 8 = 90% using (22) and
calculated the corresponding error bounds. For comparison,
we directly regenerated the samples with respect to the new
@i and estimated the RCB using (9). The results are presented
in Fig. 2.

Fig. 2 shows that the estimation errors between the cal-
culations and direct sampling become smaller as the sample
size increases until they are almost the same when the sam-
ple size is large enough. This indicates the effectiveness of
the RCB estimation given by (11). This can be illustrated
more rigorously by noting the relative length of the error
bounds (see Fig. 3) also becomes smaller as the sample size
increases.

At the same time, it is worth noting that Fig. 3 also indicates
that some amount of estimation error always exists. More
importantly, when the sample size is small, the estimation
error can be very large. Intuitively, optimized maintenance
strategies based on a small Z, may have a large devia-
tion in their performance of mitigating the RCB. Therefore,
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TABLE 1. RCB after component maintenance.

Compon- | Rf(0) Reduction | Compon- | Rf(200) Reduction
ent index ratio(%) | entindex ratio(%)
7 6.55 2.8 7 4.86 54
6 6.64 1.5 6 5.00 2.7
2 6.66 1.1 3 5.02 2.2
3 6.67 1.0 2 5.02 22
5 6.67 1.0 15 5.03 2.1
Mean 6.68 0.9 Mean 5.02 2.2

considering the calculation efficiency and possible estimation
error, it is important that the sample size of Z,, i.e., N, should
be selected appropriately.

2) INFLUENCE OF MAINTENANCE ON THE RCB

We constructed a Z, that included 100, 000 samples, based
on which we considered the simultaneous maintenance
of components. Since there were only 17 transformers in
this small system, we directly enumerated all the possi-
ble strategies and compared the respective risk reduction
performance. We first considered the maintenance of a
single component. The RCBs with respect to Yo = 0
and Y9 = 200 after maintenance are given in Table 1.
In particular, the original RCBs were IA?g(O) = 6.74 and
R¢(200) = 5.14.

The results in Table 1 intuitively indicate that component
maintenance is an effective way to mitigate the RCB. More-
over, a few critical components in the system have much
greater influence on the RCB than the others. For example,
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TABLE 2. Optimal maintenance strategies (Yo = 0).

Compon- | RCB  Reduction  Sum of individual
ent index ratio(%)  reduction ratio(%)
(7,6,2,5) | 6.505 35 6.4
(7,6,5,15) | 6.506 35 6.2
(7,6,2,15) | 6.507 34 6.4
(7,6,3,5) | 6.509 3.4 6.3
(7,6,5,14) | 6.511 34 6.2

Mean 6.643 1.4 3.6

TABLE 3. Optimal maintenance strategies (Yo = 200).

Compon- RCB  Reduction  Sum of individual
ent index ratio(%)  reduction ratio(%)
(7.65,15) | 4819 62 123
(7,6,2,5) 4.822 6.2 12.3
(7,6,3,15) | 4.823 6.1 12.4
(7,6,3,5) 4.823 6.1 12.3
(7,6,2,15) | 4.823 6.1 12.4

Mean 4.991 2.9 3.6

the maintenance of No. 7 transformer can result in a 2.8%
reduction in the RCB with respect to Yo = 0, while the
average reduction is only 0.9%. This result confirms the
efficacy of optimizing the maintenance strategy in mitigating
the RCB.

Next, we considered maintaining four transformers simul-
taneously and then estimated the RCBs with all possible
maintenance strategies. The strategies with the largest reduc-
tions in the RCBs with respect to the two Yy are pre-
sented in Tables 2 and 3, respectively. The results illustrate
the complicated relationship between maintenance strategies
(or more precisely, component failure probabilities) and the
RCB. Note that the degree of risk reduction associated with
the four components are much smaller than the sum of the
four individual components. Moreover, the optimal compo-
nents to be maintained (see Table 2 and Table 3) are not
simply combinations of components with smaller RCBs (see
Table 1). This indicates that the influence of component fail-
ure probabilities on the RCB is essentially nonlinear, which
implies that one cannot quantify the influence of maintaining
multiple components solely based on the influence of the
individual components.

Moreover, Tables 2 and 3 show that there are many nearly-
optimal maintenance strategies whose risk reduction ratios
are very close to the optimal one, even though the result-
ing components to be maintained are not identical. Con-
sidering the possible estimation error of the blackout risk
estimation, it is reasonable to also deploy these nearly-
optimal maintenance strategies. In other words, there is no
need to rigorously solve the optimization problem (15), par-
ticularly when finding a solution is very time consuming.
With this in mind, we employed two heuristic algo-
rithms to efficiently find (nearly-)optimal solutions in this
work.
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TABLE 4. Optimal maintenance strategies with different algorithms
(Yo = 200).

Method Strategy  Risk reduction ~ Number of
(%) Scenarios
Alg. I (M = 38) (7,6,2,3) 22 70
Alg. I (M =12) | (7,6,2,3) 22 495
Alg. I (7,6,2,3) 22 62
Enumeration (7,6,2,3) 2.2 2380

TABLE 5. Optimal maintenance strategies with different algorithms
(Yo = 100).

Method Strategy Risk reduction ~ Number of
(%) Scenarios
Alg. I (M =8) (6,2,5,14) 1.0 70
Alg. I (M, = 12) (6,2,3,7) 1.4 495
Alg. I (6,2,5,14) 1.0 62
Enumeration (6,2,3,7) 1.4 2380

3) HEURISTIC ALGORITHMS

To compare the two heuristic algorithms, we selected differ-
ent parameters, |Zg/|, Yo, Myuqx, and My, and compared the cor-
responding optimal maintenance strategies. Here, we present
two typical cases. Specifically, |Z¢| = 35000 and M, = 4.
We employed Algorithm I with My = 8, 12 and Algorithm II
to determine the optimal maintenance strategies with respect
to Ry(100) and Ry(200), respectively, and the results are
shown in Tables 4 and 5.

As shown in Table 4, both algorithms produced the same
maintenance strategy and achieved the global optimum,’
while in Table 5, Algorithm I with M} = 8 and Algorithm II
provided sub-optimal solutions. The reason is due to the
inherent nonlinearity between the component failure proba-
bilities and the RCB, as well as the inevitable uncertainty in
the samples. However, it is worth noting that, based on our
experience, Algorithm I with a moderate M} and Algorithm II
produce effective maintenance strategies in most cases, and
are therefore suitable for large systems.

C. IEEE 300-BUS SYSTEM

In this case, the complete proposed method is tested using
data from the IEEE 300-bus system with 304 lines and
107 transformers. Specifically, we set € = 10%, B = 95%,
Mo = 8, My = 30, No = 5000, Yo = 100.

1) SOLVING PROCESS
First, the solving process with Algorithm I is presented
in Table 6.

As shown in Table 6, we began with a Z, that included
5,000 samples, with which we obtained an optimal main-
tenance strategy. However, the relative error requirement €
could not be satisfied. Therefore, 8, 0000 samples were added

2Note that since |Zg| is different in Tables 3 and 4, the largest reductions
in the RCB obtained by enumeration are different, which indicates that
determining the sample size based on credibility analyses has practical
significance.
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TABLE 6. Solving process with Algorithm 1.

Step | Sample size Strategy RCB %)
1 5000 (6,17,46,53,68,75,88,1006) 2272 419
2 85000 (10,25,29,66,68,97,100,106)  2.007  10.3
3 95000 (10,25,29,66,68,77,100,106)  2.011 9.7

TABLE 7. Solving process with Algorithm II.

Step | Sample size Strategy RCB &%)
1 5000 (46,106,68,53,88,75,6,17) 2272 419
2 85000 (106,25,68,66,100,29,10,97)  2.007 10.3
3 95000 (106,25,68,29,66,100,77,10)  2.011 9.7

120 4
Il sampling
I Calculating C,P,Q .
Algorithm | 90.95
c _| I Algorithm 11
s
°
£
5
© 29.32
g LR < 7.03
o 0.74
.008

Step 1 Step 2 Step 3 Total

FIGURE 4. Computation time with two algorithms.

into Z, according to (25) in step 2. Then, the optimal main-
tenance strategy and € were recalculated. This process was
repeated in step 3 to determine the final optimal maintenance
strategy. The level of reduction in the RCB with respect to
Yo = 100 was 21.5%.

The solution process with Algorithm II is summarized
in Table 7. In this case, the optimal strategies in each step
are actually the same as the ones of Algorithm I. Note that the
components of each strategy in Table 7 are ordered according
to the decision process. Even though the results provided by
the two algorithms are similar in steps 2 and 3, the decision
processes are different. This observation again demonstrates
the complicated relationship between the component failure
probabilities and the RCB.

2) COMPUTATION TIME

We conducted all of the tests on a computer with an Intel Xeon
ES5-2670 processor running at 2.6 GHz and 64 GB of memory.
The computation times of the two algorithms are presented
in Fig. 4. Note that the computation time for sampling and
calculating C, P, Q in each step depends on the number of
additional samples, while the optimization time depends on
the number of total samples. From the figure, it can be seen
that the computation time for sampling was much larger than
that for the other times. In our cases, 107 min were required to
complete sampling. The requirement for repeated sampling is
why traditional methods are extremely inefficient at directly
estimating the RCB for all maintenance strategies. In contrast,
our methodology enables a very efficient estimation of the
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FIGURE 5. Optimal maintenance strategy in the provincial system.

RCB under varying maintenance strategies without requiring
the regeneration of any samples. In addition, the optimization
time of Algorithm II is smaller than that of Algorithm I as
it involves fewer maintenance scenarios. However, as Algo-
rithm II may result in sub-optimal solutions in some cases,
e.g., Table 4, it is preferable for large-scale systems with
many candidate components considered for maintenance.

D. AN ACTUAL PROVINCIAL SYSTEM

In this case, an actual provincial power system in China is
employed to show the advantages of the proposed method.
In particular, this system includes 1,122 buses, 1,230 trans-
mission lines, and 562 transformers. Considering the large
scale of the system, the chosen parameters were Yy = 1500
and M,,,, = 20. Under these conditions, even if a ‘small’ M
is chosen in Algorithm I, the number of possible maintenance
scenarios is astronomical, e.g., if My = 40, the number
of scenarios is greater than 100 billion. Therefore, we only
employed Algorithm II when determining the maintenance
strategy.

Algorithm II realizes the final optimal maintenance strat-
egy shown in Fig. 5. Specifically, the transformers on the
horizontal axis are ordered by the decision process in Algo-
rithm II, and the reduction ratio of the RCB after each trans-
former is maintained is shown on the vertical axis. Since
the most effective transformer is maintained in each step of
Algorithm II, the increase in the reduction ratio of the RCB
becomes slower along with the decision process. The final
reduction ratio is 23.1%. The computational time required
for the entire procedure was 3,134 min, and Fig. 6 shows the
specific proportions of different parts. From the figure, it can
be seen that the sampling required almost all of the time in
this large system. In contrast, Algorithm II is extremely effi-
cient. This not only verifies the applicability of the proposed
algorithm in actual large systems, but also demonstrates that
high-efficiency sampling methods [17], [20] can be employed
to further improve the scalability and efficiency of the
methodology.

E. SAMPLING TIME
In this case, we further compare the computational time taken
for sampling when using the traditional MC method. In three
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FIGURE 6. Computation time in the provincial system.

TABLE 8. Average time to generate one sample.

System Bus Line Transformer  time
number  number number (s)

IEEE 57-bus 57 53 17 0.03
IEEE 300-bus 300 304 107 0.06
Actual provincial 1122 1230 562 8.96

test systems, the average times to generate one sample are
listed in Table 8.

According to Table 8, as the scale of the system grows up,
the average time to generate one sample increases obviously.
The main reason can be attributed to two aspects:

1) As the system scale increases, the calculation of indi-
vidual power flows turns to be much more time-
consuming.

2) As the number of components in the system increases,
the average path length of individual cascading outages
becomes longer. That further leads to higher intensity
of computation.

Additionally, noting that both the state space of cascad-
ing outages and the number of possible maintenance strate-
gies are fairly large, the sample size required for cascading
outage simulations considering impacts of maintenance is
inevitably huge. It indicates that, in a maintenance optimiza-
tion problem, the total compuational burden for generating
samples are very heavy, particularly when a large scale sys-
tem is considered. In such a circumstance, traditional meth-
ods relying on conducting additional simulations appear to be
intractable.

VI. CONCLUSION WITH REMARKS

In this paper, we propose an efficient methodology to
optimize component maintenance strategies for effectively
mitigating the RCB. In the proposed method, an analytic
relationship between the estimated RCB and maintenance
strategies is developed through inference from simulation
data. The results of theoretical analyses and numerical exper-
iments confirm that:

1) A small set of components in power systems exert great
influence on the propagation of cascading outages, and
reducing their failure probabilities through component
maintenance can significantly mitigate the RCB.
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2) Variance-based analyses are employed to further eluci-
date the credibility of the estimated RCB while consid-
ering different maintenance strategies.

3) The proposed heuristic algorithms are found to effi-
ciently optimize the component maintenance strategies
in large power systems.

The proposed method also can be applied in other
fileds. For example, it can be employed to identify criti-
cal buses or branches in complex networks. Moreover, note
that as the scale of the system increases, the sampling pro-
cess will take more time. We intend to incorporate some
recently developed high-efficiency sampling methods, such
as Sequential Importance Sampling [17] and Splitting [20],
to further improve the performance of this method in future
work. Another area of ongoing work is to include a more
practical formulation of maintenance strategy optimization
and the corresponding solving algorithms.
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