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Abstract

Diabetic retinopathy (DR) is one of the leading causes of preventable vision impairment 
and blindness in the working-age population worldwide. Numerous animal models 
have been developed for therapeutic drug screening and to further our understanding of 
the molecular and cellular pathological processes involved in DR. In this book chapter, 
we describe the cellular, molecular and morphological features of mouse models of DR as 
well as their respective advantages and limitations. To date, no animal model can holisti-
cally reproduce the pathological progression of human DR; most only display early or 
advanced lesions of DR. However, a thorough understanding of genotypic and pheno-
typic expressions of existing models will facilitate researchers’ selection of the appropri-
ate model to simulate their desired clinical scenarios.

Keywords: animals, blood glucose, blindness, diabetic complications, diabetes mellitus/
pathology/physiopathology, neovascularization, proliferative, retinal vessels

1. Introduction

Diabetes mellitus is a growing epidemic and a major contributor to the global burden of dis-

ease [1]. Insulin deficiency leading to hyperglycemia occurs in type 1 diabetes (T1D or insulin-
dependent diabetes mellitus) as a result of autoimmune destruction of pancreatic beta islet 

cells. Type 2 diabetes (T2D or non-insulin-dependent diabetes mellitus) is characterized by 

insulin resistance, often due to physical inactivity and obesity, and may progress to impaired 

insulin production. T1D is unpreventable as of current understanding, while T2D, the more 

common type of the two, is preventable.

Diabetic retinopathy (DR) is one of the most common microvascular complications of dia-

betes and one of the leading causes of preventable vision impairment and blindness in the 
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working-age population worldwide. It can be broadly classified as non-proliferative dia-

betic retinopathy (NPDR) or proliferative diabetic retinopathy (PDR). According to the AAO 

International Clinic DR Disease Severity Scale, NPDR is further subdivided into mild, mod-

erate or severe NPDR, depending on the extent of microaneurysm, intraretinal hemorrhage, 

venous beading and intraretinal microvascular abnormality (IRMA) formation [2]. With 

worsening retinal ischemia and increasing microvascular damage, NPDR may progress to 

PDR, which is characterized by the presence of neovascularization and/or vitreous or pre-

retinal hemorrhage [2]. Severe cases of PDR may result in retinal edema, tractional retinal 

detachment and neovascular glaucoma. Diabetic maculopathy or macular edema, the most 

common cause of vision loss, may also arise at any stage of DR [3].

DR-associated visual impairment results in large socioeconomic costs for both the society and 

individuals. This calls for effective screening methods and increased efforts to understand 
the pathophysiological progression and to look for effective treatment strategies using both 
experimental animal models and clinical trials.

2. Pathological features of human diabetic retinopathy

Although DR has long been considered as a hyperglycemia-mediated microangiopathy, it has 

been recognized as a neurodegenerative process in view of the presence of neurodegenerative 

abnormalities preceding clinically apparent microvascular changes. Numerous cellular and 

molecular changes reflective of the DR pathogenesis have been identified, though the multi-
factorial nature of DR makes it challenging to clearly identify clinically relevant pathogenic 

pathways implicated in each stage of retinopathy. The common clinical, cellular, molecular 

features and functional changes of human DR are summarized in Table 1.

2.1. Cellular and molecular features

The DR hallmark lesions of capillary basement membrane (BM) thickening [4, 5] and pericyte 

loss [6] or apoptosis [7, 8] have been well described in human patients. Other microvascular 

changes include blood-retinal barrier (BRB) disruption (as evidenced by fluorescein leakage) 
[9] and the presence of acellular capillaries [6]. In regards to hemodynamics, it has typically 

been reported that retinal blood flow is increased in NPDR [10–12]. Conversely, in PDR, the 

nature of retinal blood flow changes appears to be dependent on the degree of non-perfusion 
and the pathological features present, with no marked increases in blood flow in cases with 
arterial narrowing [9, 10, 13]. As persistent inflammation is also implicated in DR, studies 
have demonstrated increased leukostasis (increased leukocyte entrapment and leukocyte 

endothelial cell adhesion) in diabetic retinae, perhaps resulting from increased expression of 

adhesion molecules (e.g. ICAM-1) in human DR [14].

Histologically, retinal thinning, particularly thinning of the pericentral total retinal thickness 

and the retinal nerve fiber layer (RNFL), is present in both T1D and T2D patients with no DR, 
NPDR or pre-proliferative DR [15–19]. Studies analyzing individual intraretinal layer thick-

nesses showed thinning of the ganglion cell layer (GCL), RNFL, inner plexiform layer (IPL) 
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and inner nuclear layer (INL) in patients with minimal DR as compared with controls, while 
such a difference was not observed in diabetic patients without DR [16, 19]. Numerous stud-

ies have also documented evidence suggestive of increased retinal ganglion cell (RGC) loss 

in DR [20].

In addition to neural apoptosis, reactive gliosis is another prominent feature of DR. Expression 

of glial fibrillary acidic protein (GFAP), an intermediate filament protein expressed by astro-

cytes, is normally confined to the proximal retina in non-diabetic retinae. In DR, there is 
aberrant overexpression of GFAP by Müller cells spanning across the entirety of Müller 
cell processes [21]. Microglial cells are also activated in NPDR [22]. In PDR, the microg-

lia surrounds the neovascularization area in the vitreous, with subsequent infiltration and 
migration of activated microglia into the subretinal space in cases with diabetic macular 

degeneration [22].

2.2. Electrophysiological alterations

Electroretinographic (ERG) alterations have long been documented in diabetic patients prior 

to the development of visible lesions of retinopathy. Delay in implicit times of oscillatory 

Features Non-proliferative diabetic retinopathy 

(NPDR)

Proliferative diabetic retinopathy (PDR) (in 

addition to features of NPDR)

Clinical  

features [2]

• Intraretinal hemorrhages
• Microaneurysms
• Cotton wool spots
• Venous beading
• IRMAs (e.g. vessel tortuosity, venous 
loops, vessel dilatation)

• Neovascularization
• Retinal or vitreous hemorrhage
• Tractional retinal detachment (advanced)
• Neovascular glaucoma (advanced)
• Retinal edema (can occur at any stage of DR)

Cellular and 

molecular features

• RGC loss [20]

• Reactive gliosis (overexpression of 
GFAP expression in Müller cells) [21]

• Activated microglia [22]

• Decrease in retinal thickness (total, 
RNFL, GCL, INL, IPL) [15–19]

• Pericyte loss [6] or apoptosis [8]

• Leukostasis [14]

• Capillary BM thickening [4, 5]

• Acellular capillaries (associated with 
microaneurysms) [6]

• BRB breakdown [9]

• Capillary non-perfusion and obliteration
• Increased retinal blood flow [10–12]

• Decreased arteriole-to-venule ratio 
(decreasing with increasing DR severity) [29]

• Retinal blood flow may be increased [11] or 

equivalent to that of normal patients [9, 10, 13]

• Infiltration of activated microglia into 
subretinal space (diabetic maculopathy) [22]

Functional 
changes (ERG)

• Increased OP peak latencies [25]

• Reduced OP amplitudes [23, 25]

• Delayed OP implicit times [23–25]

• Increased b-wave implicit time [26]

• (Reduced b-wave amplitude) [30]

• Reduced b-wave amplitude [25, 27, 28]

Table 1. Overview of common clinical, cellular, molecular features and functional changes of human DR.
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potential (OPs), particularly OP1, precede retinopathy development [23, 24]. The OPs are gen-

erated by inner retinal neurons and are often considered to be reflections of feedback circuits 
between amacrine and bipolar cells and/or circuits between amacrine and ganglion cells. Eyes 

with NPDR display a reduction in OP amplitudes [24, 25] and an increase in OP peak latencies 

[25]. There is some discrepancy regarding the onset of changes in b-wave responses, which 

are largely generated by depolarizing bipolar cells with some contribution from Müller cells. 
B-wave implicit times appear to be increased even in early stages of DR [26] while reductions 

in b-wave amplitudes have been suggested to be predominantly found in eyes with PDR [25, 

27, 28]. Changes in OP amplitude and implicit times have also been suggested to be a reflec-

tion of the severity and prospective progression of DR [24, 25, 27].

3. Models of diabetic retinopathy

Animal models of DR can be broadly classified into (1) diabetic models by pharmacological 
induction, diet induction or genetic manipulation and (2) non-diabetic models of proliferative 

retinopathy and angiogenesis. To date, no diabetic models fully develop end-stage retinopa-

thy, arguably due to the short lifespan of animals and differing anatomical structure from 
humans. Non-diabetic models are thus used to mimic the pathophysiology of end-stage DR, 

specifically the proliferative pathogenesis and neovascularization in the retinal vasculature. 
These models, however, are not DR-specific, and display phenotypes common to other condi-
tions with retinal neovascularization. While animal models are useful for drug testing and 

furthering our understanding of the molecular and cellular pathological processes involved 

in DR, no single model can holistically reproduce the pathological features of human DR. BRB 

breakdown, for example, is exhibited in numerous animal models. Yet macular edema result-

ing from the increase in permeability of retinal capillaries is seldom observed. Judicious evalu-

ation and selection of models according to research objectives is critical to avoid inappropriate 

translation of experimental findings to the clinical situation. An overview of existing models 
used to study DR is summarized in Table 2. The cellular, molecular and morphological fea-

tures of existing animal models of DR are described in Section 4 of this chapter and Section 1 

of the following chapter (Animal Models of Diabetic Retinopathy Part 2).

3.1. Diabetic models

3.1.1. Pharmacological induction of diabetes

Pharmacological induction of diabetes is most commonly performed using streptozotocin 

(STZ), a naturally occurring antibiotic in Streptomyces acromogenes, or alloxan, a pyrimidine 

derivative. Both chemicals destroy the β-cells of the pancreatic islets. STZ is preferentially 
used over alloxan due to its greater stability and more preferable chemical properties [31]. 

T1D or T2D can be induced by varying the dosage and/or number of doses administered, or 

by combination administration with other treatments (e.g. STZ injection with nicotinamide 

administration or high fat diet feeding). The use of this model to induce T1D is more common 

due to the inability of the two chemicals to directly induce insulin resistance. Low doses of 
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Model Diabetes Advantages Limitations

Diabetic 

models

Pharmacological 

induction

• STZ-induced
• Alloxan-induced

Type 1 

(or 2)

• Quick induction
• Lower cost

• Individual animals may 
demonstrate resistance to STZ-

hyperglycemia induction

• Requires exogenous injections
• Short lifespan of animals
• Toxicity of drugs

Genetically diabetic • Mice
 - T1D: Ins2Akita mouse, NOD mouse

 - T2D: db/db mouse, KKAy mouse

• Rats:
 - T1D: Biobreeding (BB) rat
 - T2D: Wistar Bonn/Kobori (WBN/Kob) rat, 
Zucker diabetic fatty (ZDF) rat, Otsuka Long-
Evans Tokushima fatty (OLETF) rat, non-obese 
Goto-Kakizaki (GK) rat, spontaneously diabetic 
Torii (SDT) rat, TetO rat

Type 1 

or 2

• Consistent phenotype
• High success rate of 
hyperglycemia induction

• No further manipulation 
required

• Higher cost
• Breeding time required

Diet-induced Galactose-feeding Type 2 • Longer lifespan of animals
• Allows for analysis of 
retinal features in animals 

beyond 1 year of age

• Isolated elevation of hexose 
levels without metabolic 

abnormalities of diabetes

• Longer time required to develop 
DR features
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Model Diabetes Advantages Limitations

Non-

diabetic 

models

Oxygen-induced 

retinopathy (OIR)

• Continuous hyperoxia → normoxia

• Alternating cycles of hyperoxia and 
hypoxia → normoxia

/ • Consistent and reproducible 
neovascularization

• Phenotype not specific to DR
• Mostly for small rodents (mice, 
rats)

• Only applicable to newborn 
rodents

• Neovascularization in 
undifferentiated retina
• Varying ocular angiogenesis 
responses in differing strains of rats
• Spontaneous regression of 
neovascularization features within 

1 week of neovascularization 

development

Retinal occlusion • Retinal vein occlusion / • Neovascularization in fully 
differentiated retinae
• Quick induction of 
neovascularization response

• Phenotype not specific to DR
• Acute ischemia

Intraocular 

injection

• Vascular endothelial growth factor (VEGF)
• (Fibroblast)

/ • Displays NPDR and PDR 
features (VEGF injection)

• Phenotype not specific to DR
• Mainly applicable to large 
animals (e.g. rabbits)

• Long duration of exogenous 
injection of pro-angiogenic 

molecules required

• Mimics proliferative 
vitreoretinopathy more than 

ischemic retinopathy (fibroblast 
injection)

Transgenic mice • Mice: Kimba mice, Akimba mice, TgIGF-I 
mice

(Akimba: 
type 1)

• Exhibits reproducible 
neovascularization

• Cost
• Some strains not commercially 
available

• Phenotypes may not be specific 
to DR

• Changes do not necessarily occur 
due to prolonged hyperglycemia

Table 2. Overview of existing models used to study DR.

Experim
ental A

nim
al M

odels of H
um

an D
iseases - A

n Effective Therapeutic Strategy
18



insulin are required for maintenance of STZ or alloxan-induced diabetic animals. It is impor-

tant to note that failure of hyperglycemia induction may occur in individual animals due to 

STZ resistance. Blood glucose monitoring is hence essential for confirmation of hyperglyce-

mia development. A review by Lai and Lo [32] comprehensively details existing regimens for 

induction of diabetes using STZ.

3.1.2. Genetically diabetic animals

Spontaneous hyperglycemia can occur in animals carrying endogenous mutations. Inbreeding 

of mutated animals with wild-type animals generates reliable hyperglycemic models with 

consistent phenotype expression. However, the establishment of large colonies may be time-

consuming. The target genes for genetic manipulation in specific animal models (e.g. insulin 
2 gene mutation in the Ins2Akita mouse; leptin receptor gene mutation in the db/db mouse) are 

detailed in Section 4 of this chapter and Section 1 of the following chapter.

3.1.3. Diet induced

Experimental galactosemia via feeding with 30–50% galactose can also be used to induce dia-

betic retinopathy. Galactose feeding causes the isolated elevation of blood aldohexose lev-

els. Other metabolic abnormalities (e.g. alterations in insulin, glucose, fatty acids, amino acid 
levels) characteristic of diabetes are absent in this model [33]. Despite the long feeding time 

required for the onset of DR-like lesions, these animals have a longer lifespan than other dia-

betic models. The model may hence be able to reflect the retinal complications arising from a 
prolonged period of isolated elevated hexose levels.

3.2. Angiogenesis models

3.2.1. Oxygen-induced retinopathy (OIR) model

Originally developed as a model for retinopathy of prematurity, the oxygen-induced reti-

nopathy (OIR) model has also been used to investigate angiogenesis in other retinal diseases, 

including proliferative DR. The OIR model is mostly used in small rodents such as mice and 

rats. In brief, neonatal rodents are exposed to hyperoxia to induce vaso-obliteration. Upon 

removal from hyperoxia, hypoxia develops in the retina. This triggers a compensatory revas-

cularization response, resulting in neovascularization [34]. This model differs from DR in that 
OIR-induced neovascularization occurs in incompletely differentiated retinae, while neovas-

cularization in DR results from progressive retinal ischemia and capillary obliteration in fully 

differentiated retinae.

3.2.1.1. OIR mouse model

The OIR mouse model involves exposing postnatal 7-day-old (P7) mice to 75% oxygen for 5 

days before placing them back in normoxia at P12. Upon return to room air, vessel regrowth 

occurs at P12–P17, with neovascularization beginning at P14. Neovascularization peaks at P17 

and complete spontaneous resolution is subsequently achieved by P25 [35, 36].

Animal Models of Diabetic Retinopathy (Part 1)
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3.2.1.2. OIR rat model

The OIR rat model involves either continuous hyperoxia or alternating cycles of hyperoxia 

and hypoxia. In general, the continuous hyperoxia model involves placing rats under 80% 

oxygen conditions for 22 hours per day until P11. Rats are then transferred to room air for 

7 days (P11–P18). In the alternating hyperoxia model, newborn rat pups are exposed to sus-

tained cycles of hyperoxia (50–80%)/hypoxia (SHH) for 14 days and subsequently returned 

to room air [37, 38]. OIR methods involving the use of varying oxygen concentrations have 

been described.

3.2.2. Retinal occlusion

Retinal vein occlusion via laser photocoagulation or photodynamic therapy has been 

used to induce neovascularization in fully differentiated retinae of mice, rats, pigs and 

monkeys [39–43]. This model induces a near immediate neovascular response with 

development of retinal edema within hours and the development of intravitreal vessels 

within days. As DR is predominantly a chronic ischemic disorder, the use of these retinal 

occlusion models involving periods of reperfusion following acute ischemia induction 

is less suitable.

3.2.3. Intraocular injection of vascular endothelial growth factor (VEGF)

In view that pro-angiogenic molecules are strongly implicated in retinal neovasculariza-

tion, researchers have injected VEGF and cultured fibroblasts into monkeys and rabbits, 
respectively. Intravitreal injection of VEGF in monkeys successfully induced the develop-

ment of many NPDR and PDR features [44]. However, the rabbit model involving intravit-

real injection of fibroblasts mimicked proliferative vitreoretinopathy more than ischemic 
retinopathy, as the elicited neovascular response was more traumatic and inflammatory 
than ischemic [45, 46].

3.2.4. Transgenic models

Transgenic mouse models of neovascularization include the Kimba mouse, Akimba mouse 
and transgenic mouse overexpressing insulin growth factor I, as detailed in the following 

section.

4. DR features of animal models

Among all of the existing animal models of DR, mice and rats are most commonly used, pos-

sibly due to their small size, availability, genetic tractability and relatively faster development 

of DR lesions as compared with larger animals. Table 3 summarizes the cellular, molecular 

and morphological features of mouse models of DR. Features of rat and non-rodent models 
are detailed in the next chapter (Animal Models of Diabetic Retinopathy Part 2).
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Mouse model Type of 

diabetes

Hyperglycemia 

onset

Cellular, morphological and vascular features of human DR displayed in mouse models

(Age at which correlates are first reported unless otherwise specified)
(+Time post treatment: diabetes, galactosemia, or induction of VEGF overexpression)

NPDR features PDR features Functional changes (ERG)

STZ injection 1 (or 2) Within 1 week 

(wk)

• 7 days+: Müller cell gliosis* [63]

   RGC loss* [63]

• 8 days+: increased vascular permeability [109] (2 mo+) [52]

• 2 wks+: increased RGC apoptosis [50]

• 3–4 wks+: decreased total, GCL, IPL, OPL thickness [51]

• 4 wks+: decreased arteriolar velocity [58, 59]

   Decreased venular velocity [58]

   Decreased arteriolar and venular shear rates [58]

   Decreased arteriolar and venular blood flow rate [58]

   Decreased arteriolar and venular diameter (not 
observed at 8 wks post diabetes induction) [59]

• 21 days+: increased acellular capillaries* [63] (6 mo+) [53] 

(9 mo+) [51, 54]

   IRMAs* [63]

   Possible venous dilation or beading* [63]

   Preretinal neovascular tufts* [63]

• 5 wks+: reactive gliosis and increased number of astrocytes 
[47]

• 6 wks+: reduced number of RGCs [48] (7 wks) [49] (10 wks) 

[50]

• 2 mo+: pericyte loss [52] (6 mo+) [53] (9 mo+) [54]

   Leukostasis [56, 57] (3 mo+) [51, 54]

• 10 wks+: decreased total, INL and ONL thickness [50]

• 3 mo+: increased number of leukocytes [54]

• 17 wks+: capillary basal lamina thickening [55]

• 6 mo+: capillary apoptosis [53]

• 21 days+: 
neovascularization* [63]

• 17 wks+: increased 
density of capillaries 

suggestive of 

neovascularization [110]

*in a novel FOB_FT strain 
of mice

• 4 wks+: decreased OP3 
and total OP amplitude 

[60, 61]

Prolonged OP2, 3 

implicit time [61]

• 6 mo+: decreased 
a-wave and b-wave 

amplitudes [51]

Alloxan 

injection

1 (or 2) 1–4 days [64, 

65]

• 7 days+: disorganized capillaries* [63]

• 21 days+: microaneurysm* [63]

   IRMA-like lesions* [63]

   Capillary dilatation with preretinal neovascular lesions* 
[63]

• 3 mo+: shortened dendrites in microglia [64]

*in a novel FOB_FT strain of mice

• 3 wks+: decreased 
b-wave amplitude [65, 

66]

• 3 mo+: decreased b/a-
wave ratio [64]

  Delayed OPs [64]
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Mouse model Type of 

diabetes

Hyperglycemia 

onset

Cellular, morphological and vascular features of human DR displayed in mouse models

(Age at which correlates are first reported unless otherwise specified)
(+Time post treatment: diabetes, galactosemia, or induction of VEGF overexpression)

NPDR features PDR features Functional changes (ERG)

Galactose-fed / / • 11 mo+: reduced number of endothelial cells [67] (22 mo) [69]

   Pericyte loss [67] (22 mo) [69] (26 mo) [33]

• 13 mo+: acellular capillaries [68] (15 mo*) [33] (20 mo) [67] (21 

mo) [33, 69]

• 21 mo+: saccular microaneurysms [33]

   Increased capillary BM thickness [33]

*50% galactose diet (remaining = 30% galactose diet)

Ins2Akita 1 4 wks of age 

(male mice)

• 8 wks: retinal apoptosis [71–74]

   Increased leukocytes adherent to vessels [71]

  Activated microglia [71] (21 wks [76])

• 12 wks: increased vascular permeability* [71] (9 mo [73])

  Reduced total retinal and outer retina thickness (in vivo) 

[77]

• 22 wks: reduced INL and IPL thickness (ex vivo)^* [71]

   Reduced number of RGCs* [71, 72, 75] (9 mo [77])

• 6 mo: reduced inner retinal thickness (INL-NFL)(in vivo) 

[77]

• 25 wks: increased GFAP expression in Müller cells* [76]

   Microgliosis [76]

• 7 mo: amacrine cell apoptosis [74]

31–36 wks: increased number of acellular capillaries [71]

• 6–9 mo: microaneurysm formation [73]

• 9 mo: increased capillary BM thickness [73]

*Conflicting results from alternate studies
^In vivo imaging techniques failed to reveal inner retinal 

thinning [76, 78]

• 6–9 mo: retinal 
neovascularization [73]

• 7 mo: decreased retinal 
blood flow rates [79]

• 3 mo: reduced b-wave 
amplitude

9 mo:

• Reduced scotopic 
b-waves [73]

• Reduced a, b-wave 
amplitude [77]

• Increased a, b-wave 
implicit time [77]

• Reduced OP 
amplitude [77]

• Increased OP implicit 
time [77]

• Reduced b/a-wave 
ratio [77]
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Mouse model Type of 

diabetes

Hyperglycemia 

onset

Cellular, morphological and vascular features of human DR displayed in mouse models

(Age at which correlates are first reported unless otherwise specified)
(+Time post treatment: diabetes, galactosemia, or induction of VEGF overexpression)

NPDR features PDR features Functional changes (ERG)

NOD 1 Female mice: 
initial onset at 

12–14 wks of 

age [81]; 80% 

reaching hyper-

glycemia at 30 

wks

• 3 wks+: arteriolar vasoconstriction (in close proximity to 
venules) [83]

• 4 wks+#: ganglion cell, pericyte, endothelial cell apoptosis 

[84]

   Retinal capillary BM thickening [84]

   Perivascular edema [84]

• 6 mo: retinal microvessel loss [85]

   Major vessel vasoconstriction or degeneration [85]

#changes became more obvious after 12 weeks of 

hyperglycemia

• 6 mo: disordered focal 
proliferation of new vessels 

[85]

db/db 2 4–8 wks of age 

[86]

• 8 wks: reduced number of RGCs [88]

   Increased apoptotic cells in GCL [88] (15 mo) [87], INL 
[89] and GCL [89]

   Glial activation (increased GFAP expression in Müller 
cells) [88, 89] (15 mo) [87]

   ONL thinning [88]

   DNA fragmentation in photoreceptors [88]

   Increased glutamate levels and reduced GLAST content 
[88]

   BRB disruption [89] (19 weeks) [111] (15 mo) [87]

• 16 wks: reduced central and peripheral total retinal 
thickness [88]

• 18 wks: increased RBC velocity [91]

• 18–20 wks: increased VEGF and decreased PEDF in vitreous 
[94]

• 22 wks: retinal capillary BM thickening [93]

• 26 wks: pericyte loss [92] (15 mo) [87]

• 31 wks: increased endothelial cell/pericyte ratio [112]

   Acellular capillaries [112] (34 wks) [92]

• 15 mo: retinal capillary 
proliferation [87]

• 8 wks:
  • Progressive 

reduced c-wave 

amplitude [90]

  • Reduction in fast 

oscillation amplitude [90]

• 12 wks
  • Reduction in off 
response amplitude [90]

• 16 and 24 wks
  • Increased b-wave 

implicit time [88]

  • Reduced b-wave 

amplitude [88, 90]

  • Increased 

oscillatory potential (OP) 

implicit time (scotopic 

conditions) [88]

  • Reduced OP 

amplitude (scotopic 

conditions) [88]

• 24 wks
  • Reduced a-wave 

amplitude [90]
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Mouse model Type of 

diabetes

Hyperglycemia 

onset

Cellular, morphological and vascular features of human DR displayed in mouse models

(Age at which correlates are first reported unless otherwise specified)
(+Time post treatment: diabetes, galactosemia, or induction of VEGF overexpression)

NPDR features PDR features Functional changes (ERG)

KKAy 2 5 wks of age 

[96]

• 3 mo
  • Retinal neuronal cell apoptosis in GCL and medial INL 
[98]

  • Increased capillary BM thickness [98]

OIR / / • P18 [99] Reduced IPL and total retinal thickness
   Decreased outer segment length
   Müller cell gliosis (increased GFAP expression)
   Activated microglia

• P18 (postnatal day 18) 
[99]

  • Intravitreal 

neovascularization across 

all retinal eccentricities

  • Decreased vessel 

profiles in deep plexus
  • Absence of vessels in 

the inner retinal plexus

• p18 [99]

  • Reduced a-wave, 

b-wave amplitude

  • Increased b-wave 

implicit time

  • Reduced OP3, OP4 

amplitude

Kimba 
(trVEGF-029)

/ / • P7 reduced total, INL, ONL thickness [101]

• P28 reduced IPL and outer segment thickness [101]

   Microaneurysms [101, 113] (10 wks) [100]

   Vascular leakage [101] (moderate phenotypes 

displaying decline in leakage at 9 weeks and cessation of 

leakage at 19 wks (mild and moderate phenotypes)) [102]

   Tortuous vessels [101] (9–19 wks) [102], capillary 

dropout [101]

• 6 wks: increased leucocyte adhesion and leucostasis [102]

• 9 wks: pericyte loss* [102]

   Acellular capillaries* [102]

   Reduced vessel length* [102]

   Reduced area coverage by vessels* [102]

   Reduced number of crossing points* [102]

• 10 wks: capillary non-perfusion [100]

*for Kimba mice displaying moderate signs of retinopathy; the 
observed changes were observed at 24 weeks of age for those 

with a mild phenotype

• P28
  • Neovascularization 

[100]
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Mouse model Type of 

diabetes

Hyperglycemia 

onset

Cellular, morphological and vascular features of human DR displayed in mouse models

(Age at which correlates are first reported unless otherwise specified)
(+Time post treatment: diabetes, galactosemia, or induction of VEGF overexpression)

NPDR features PDR features Functional changes (ERG)

Akimba / / • 8 wks: uneven retinal thickness on OCT [78]

   Pericyte loss [103]

   Microaneurysms [78]

   Hemorrhage [78]

   Vascular leakage (cessation at 20 weeks) [78]

   Reduced endothelial junction protein levels [103]

   Vessel tortuosity, dilatation, constriction, beading; 
venous loops [78]

   Capillary dropout and capillary non-perfusion [78]

   Retinal edema [78]

• 24 wks: RGC loss [78]

   Neural retina thinning [78]

• 8 wks:
  • Retinal detachment 

[78]

  • Neovascularization 

[78]

TgIGF-I / / • 2 mo: pericyte loss [107]

   Retinal capillary BM thickening [107]

   Acellular capillaries [107]

• 3 mo: Increased GFAP expression in Müller cells and 
astrocytes [107]

   Increased VEGF [107]

• ≥6 mo: venule dilatation [107]

   IRMAs [107]

   BRB disruption
7.6 mo: reduced ONL and INL thickness [114]

• ≥6 mo

  • Retina and vitreous 

neovascularization [107]

  • Retinal detachment 

[107]

  • Neovascular 

glaucoma [107]

• 7.5 mo
  • Reduced scotopic 

b-wave amplitude and 

oscillatory potential 

amplitude [114]

Intraocular 

VEGF 
injection [108]

/ / • 2–4 wks*: venous dilatation

   Microaneurysm
• 8 wks*: vascular leakage

*post VEGF injection

• 12 wks*
  • Increase in number of 

retinal blood vessels in INL

Table 3. Summary of the cellular, molecular and morphological features displayed in mouse models of DR. This table has been modified from a review by Lai and Lo [32].
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4.1. Mouse models

4.1.1. Pharmacological

4.1.1.1. STZ induced

STZ-induced mice are one of the most commonly used DR models for DR characterization 

and therapeutic drug studies. The mice develop hyperglycemia within 1 week after being 

injected with a dose of STZ.

STZ-induced mice have been reported to exhibit various NPDR features. Signs of neuronal 

degeneration, including a decrease in RGC number and reactive gliosis, were observed as 

early as at 5–6 weeks post-hyperglycemia induction [47–50]. Thinning of the GCL, IPL, OPL 
and total retinal thickness occurred at 3–4 weeks of hyperglycemia [51], with INL and outer 
nuclear layer (ONL) thinning by 10 weeks [50]. Microvascular changes included increased 

vascular permeability within 8 weeks of hyperglycemia, pericyte loss as early as at 2 months 

[52–54], capillary basal lamina thickening at 17 weeks [55], capillary apoptosis [53] and 

increased acellular capillaries by 6–9 months [51, 53, 54]. Persistent inflammation resulted 
in leukostasis at 2–3 months of hyperglycemia [51, 54, 56, 57] with an increased number of 

leukocytes in the microvasculature at 3 months [54]. Hemodynamic changes have also been 

documented. There was a decrease in arteriolar and venular velocity, shear rates, blood flow 
rates and diameter at 4 weeks of hyperglycemia [58, 59]. However, the changes in the arterio-

lar and venular diameters were no longer apparent at 8 weeks of hyperglycemia and hence 

may not be a reproducible feature of the model. ERG demonstrated decreased total OP and 

OP3 amplitudes with prolonged OP2-3 implicit times at 4 weeks of hyperglycemia [60, 61]. 

One study also noted decreased a- and b-wave amplitudes, though this was not evident in the 

majority of reports [51].

Evidence regarding diabetes-induced RGC apoptosis and loss remain controversial. Some 

studies reported increased RGC apoptosis within 2 weeks of diabetes induction [50] and 

decreased RGC numbers by 6–10 weeks of diabetes [48, 50]. Others found no evidence of RGC 

apoptosis or GCL cell loss after up to 10 months of hyperglycemia [51, 56, 62]. The transient 

increase in neural apoptosis and astrocyte activation that regressed after a longer duration of 

diabetes in one study suggested that such changes may have been induced by STZ toxicity 

[53]. Variations in the onset of DR features may be attributable to the use of different strains of 
mice (despite most using C57BL/6 mice) or differing STZ-injection protocols.

More recently, in a study of various inbred strains of mice selected using “The Collaborative 

Cross” mouse resource, the FOT_FB strain was identified to exhibit a wide range of NPDR 
and PDR lesions within a significantly shorter duration of hyperglycemia induction. Classical 
features of neurodegeneration including Müller cell gliosis and RGC loss were displayed 
7 days after diabetes induction. Other lesions included IRMAs, dilated vessels resembling 

venous dilatation and venous beading, increased acellular capillaries, and signs of vessel 

invasion into the avascular vitreous cavity [63]. The presence of PDR features absent in con-

ventional strains of mice with STZ-induced diabetes may be attributable to the expression of 
genes implicated in DR in the FOB_FT strain [63]. Though further characterization studies on 
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this model may be needed, the FOT_FT mouse may represent a novel resource for the study 
of DR related genes and for testing of therapeutic interventions targeting vascular, neural and 

inflammation-mediated damage in DR.

4.1.1.2. Alloxan induced

Few studies have examined neuronal and vascular DR features of alloxan-induced diabetic 
C57BL/6 or albino mice, perhaps due to the absence of demonstrable lesions. About 3 months 
of alloxan-induced diabetes in C57BL/6 mice failed to induce neuronal apoptosis, glial activa-

tion, and microaneurysm and hemorrhage formation [64]. Only functional changes on ERG 

were observed, with decreased b-wave amplitudes at 3 weeks in albino mice [65, 66] and 

decreased b/a-wave amplitude ratio and increased OP latency at 3 months of hyperglycemia 

in C57BL/6 mice [64]. Morphologically, shortened dendrites and thickened proximal pro-

cesses of microglia suggested the activation of microglia after 3 months of diabetes [64]. In the 

less conventionally used FOT_FB mouse strain, the study reported disorganized capillaries 
within 7 days of diabetes induction [63]. By 21 days of diabetes, microaneurysms, IRMAs and 

capillary dilatation with preretinal neovascular lesions were found in the mice retinae [63].

4.1.2. Diet induced

Mice fed with a 30% galactose diet were found to have reduced endothelial cells and pericyte 

loss beginning as early as at 11 months of hypergalactosemia [67]. With prolonged hyperga-

lactosemia, the number of acellular capillaries increased [33, 67–69]. By 21–22 months, micro-

vascular changes, including saccular microaneurysms and capillary BM thickening, were 

present [33]. Variations in age of reported features exist depending on the strain of mice used 
and the percentage of galactose incorporated into the mice’s diet. The majority of reports used 

mice on a 30% galactose-fed diet.

4.1.3. Transgenic diabetic mice

4.1.3.1. Ins2Akita mouse

The Ins2Akita mouse is a T1D mouse model carrying an endogenous point mutation in the 

Mody4 locus (i.e. Insulin 2 gene) with an autosomal dominant mode of inheritance. The muta-

tion results in misfolding of the insulin protein, leading to beta-cell death and decreased 

insulin secretion, with subsequent development of hypoinsulinemia and hyperglycemia at 

around 4 weeks of age in male mice. Female mice are less commonly used for DR studies due 
to their remission to a mild to moderate hyperglycemic state after sexual maturation follow-

ing transient hyperglycemia during puberty [70]. Males, on the other hand, develop progres-

sive hyperglycemia, resulting in a shortened average survival time of 305 days [70].

Early subclinical DR features in heterozygous Ins2Akita mice retinae have been consistently 

reported by numerous studies. Cellular changes observed in humans, including increased 

retinal apoptosis [71–74] and activated microglia, have been documented in mice as early as 

at 8weeks of age. RGC loss by 22 weeks has also been evidenced by several groups [71, 72, 75].  
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Morphologically, there was abnormal swelling in RGC somas, axons and dendrites, with 

increased dendritic length in ON-type RGCs in three-month old mice [75]. One study 

revealed increased GFAP expression in Müller cells in 25-week-old mice [76], yet another 

only found increased GFAP immunoreactivity in astrocytes [71].

Retinal microvascular changes consistent with clinical NPDR have been documented in Ins2Akita 

mice. It is important to note that advanced DR clinical correlates of proliferative DR, such as 

preretinal neovascularization, have not yet been detected in this model. Studies have reported 

increased leucocyte adhesion to retinal vessels in eight-week-old mice [71] with increased reti-

nal vascular permeability [71, 73] and presence of acellular capillaries [71] in older mice. Ex vivo 

and in vivo histological analyses demonstrated inner retinal thinning at 22 weeks [71, 74] and 6 

months, respectively [77], conceivably due to dopaminergic and cholinergic amacrine cell loss or 

dendritic atrophy [74]. Total and outer retinal thinning had been evidenced earlier on at 3 months 

of age [77]. By 9 months, there was increased capillary BM thickness, with evidence of neovas-

cularization and worsening microaneurysm formation [73]. The use of in vivo imaging tech-

niques (OCT) in other studies, however, failed to show evidence of retinal thinning [76, 78] and 

neovascularization (both by histology and in vivo imaging techniques) in 25-week-old mice [76].  

Vascular function assessments revealed significantly reduced retinal blood flow rates, blood 
cell velocity and vascular wall shear rates without signs of increased hypoxia in mice after 

26 weeks of hyperglycemia [79]. Corresponding functional deficits, as documented by signifi-

cantly reduced scotopic a-wave, b-wave and OP amplitudes, increased a-wave, b-wave and 

OP implicit times, and reduced b/a-wave ratio have also been found in mice 9 months of age 

[73, 77]. It has been suggested that differences in reported DR morphological features may be 
due to the potential presence of rd8 mutations in the Crb1 gene in C57BL/6 N mice used for 
the generation of Ins2Akita mice. Affected mice have been described to display signs of retinal 
degeneration and ocular lesions due to the presence of rd8 unrelated to the mutated genes of 

transgenic mice [80].

Despite its short average lifespan [70], the Ins2Akita mouse is a well-characterized model of 

T1D exhibiting changes associated with early DR. It’s stable insulin-deficient diabetic state 
that does not require exogenous administration of insulin and lack of systemic immunologic 

modifications makes it ideal for DR therapy testing. However, it still fails to display preretinal 
neovascularization and other features of advanced-stage DR.

4.1.3.2. Non-obese diabetic (NOD) mouse

The Non-obese diabetic (NOD) mouse spontaneously develops T1D beginning from 12 to 

30 weeks of age. An autoimmune process involving CD4+ and CD8+ cells triggers insulitis and 

subsequent overt T1D in 80% of female and 20% of male mice by the age of 30 weeks [81, 82].

After 3 weeks of hyperglycemia, constriction of retinal arterioles in close proximity to venules was 

observed in NOD mice [83]. There was evident degeneration of RGCs, endothelial cell and peri-

cyte apoptosis, retinal capillary BM thickening, perivascular edema and microvascular occlusion 

by 12 weeks of hyperglycemia (pathological changes initially arose after 4 weeks of hyperglyce-

mia) [84]. Six-month-old mice exhibited further vascular changes, including retinal microvessel 

loss, vasoconstriction or degeneration of major vessels and focal proliferation of new vessels [85].
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Only female mice were used in the studies due to the inconsistent and low rates of hyper-

glycemic induction in males. However, estrogen is speculated to play a protective role in 

DR. This may arguably affect the interpretation of potential therapeutic drug studies [32]. 

Although the NOD mouse represents an autoimmune diabetic model similar to the patho-

genesis of human T1D, the onset of hyperglycemia is highly variable, making it a less reliable 

model for DR studies.

4.1.3.3. Db/db mouse

The C57BL/KsJ-db/db or Leprdb/db (db/db) mouse is a T2D model carrying a mutation of reces-

sive inheritance in the leptin receptor gene. Homozygotes develop obesity at 3–4 weeks of 

age, and hyperglycemia at 4–8 weeks [86].

The mice exhibited progressive neuronal cell loss [87], glial activation [87], neuroretinal 

thinning, BRB disruption and accumulating glutamate concentrations accompanied with 

downregulation of the glutamate/aspartate transporter (GLAST) as early as at 8 weeks of age 
[88, 89]. Progressively worsening retinal function and retinal pigment epithelium dysfunc-

tion with persistent hyperglycemia have been evidenced by ERG changes (a-wave, b-wave, 

c-wave and oscillatory potential changes) beginning at 8 or 16 weeks of age [88, 90]. Sustained 

hyperglycemia is also suggested to be associated with increased RBC velocity in these mice 

at the age of 18 weeks [91], though the nature of microcirculatory hemodynamic changes in 

diabetes remains controversial. Upon lowering of blood glucose levels by dietary restriction, 

many of the observed neurodegeneration abnormalities regressed or were arrested [88]. Such 

findings suggest that the observed neurodegeneration features are attributable to the effect of 
diabetes as opposed to genetic factors.

Microvascular complications, such as pericyte loss [87, 92], presence of acellular capillaries [92] 

and thickening of the capillary BM [93], were also displayed in this model. Retinal angiogenesis 

dysregulation in these mice is further supported by corresponding associated biochemical changes 

in the vitreous and retina associated with DR pathogenesis (increased VEGF) and decreased pig-

ment epithelium-derived factor (PEDF)) [94, 95]. The presence of more advanced features of DR, 

however, is limited to the proliferation of retinal capillaries at 15 months of age [87].

While the model confers signs of retinal neurodegeneration, the mice have a shortened life 

span and do not breed well [86]. Homozygote females are infertile and homozygote males 

have low fecundity. Despite such limitations, with numerous reports characterizing struc-

tural abnormalities and increasing studies examining its functional deficits in recent years, the 
db/db mouse remains an extensively used model for therapeutic drug research.

4.1.3.4. KKAy mouse

The KKAy mouse (or Yellow KK mouse) is a congenic strain of the KK mouse. It was created 
through the transfer of the yellow obese gene (Ay) into KK mice, on the basis that diabetic 
traits were inherited by polygenes [96]. The mice develop hyperglycemia, hyperinsulinemia 

and obesity beginning at around 5 weeks of age and display marked hyperglycemia by 

16 weeks of age [96]. At the age of 40 weeks, the mouse reverts back to normal [97]. Only one 
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study to date has documented retinal changes in the KKAy mouse. The study reported retinal 

neuronal cell apoptosis in the GCL and inner INL [98] with capillary BM thickening [32] after 

3 months of hyperglycemia.

4.1.4. Angiogenesis models

4.1.4.1. Oxygen-induced retinopathy (OIR)

Characterization of retinal features exhibited by mouse models of OIR has been performed 

on postnatal day 18-old (P18) mice [99]. Documented cellular features included reduced IPL, 
outer segment (central and mid-peripheral) and total (central) retinal thickness, and increased 

gliotic Müller cells and reactived microglia predominantly in areas where deep plexus vascu-

larization was absent. Substantial intravitreal angiogenesis was present in all retinal eccentric-

ities. The number of vessels was reduced in the inner and deep vascular plexues (central and 

mid-peripheral), with the central retina remaining fairly avascular. Corresponding functional 

changes on the ERG were also observed. A-wave, b-wave, OP3 and OP4 amplitudes were 

reduced and the b-wave implicit time was increased. The OIR model is not widely utilized for 

therapeutic drug studies for DR, owing to the spontaneous regression of neovascularization 

within a week of its development.

4.1.4.2. Kimba mouse

The Kimba trVEGF029 mouse (Kimba) is a neovascularization model whereby photoreceptor-
specific human VEGF

165
 overexpression is induced using a truncated rhodopsin promoter 

[100]. The Kimba mouse line displays features most similar to NPDR or early PDR out of 
the four hVEGF-overexpressing transgenic mouse lines generated, while displaying stable 
mild to moderate retinopathy for at least 3 months [100]. The phenotypic observations dis-

cussed below correspond to the Kimba trVEGF029 individuals displaying mild or moderate 
retinopathy.

Vascular changes in this model have been documented as early as at postnatal day 7 (P7), with 
INL, ONL and total retinal thinning as one of the first features displayed. P28 mice exhibited 
classical features of NPDR (tortuous vessels, microaneurysms, vascular leakage and capil-

lary hemorrhages) that progressed with increasing age [100–102]. The development of such 

retinal vascular abnormalities was accompanied by increasing adherent leucocyte numbers 

corresponding to the severity of the abnormality observed [102]. Counter intuitively, vascular 

leakage began to cease at 9 weeks among moderate phenotypes, but this is most likely due to 

the significant reduction in hVEGF
165

 expression. Mild neovascularization and altered retinal 

vasculature demonstrating reduced vessel length, coverage area and crossing points have also 

been reported in mice 9 weeks of age [102]. However, the observed neovascular changes in such 

VEGF models occur in the outer retina, as opposed to the inner retina as seen in DR. While 
new vessels typically grow into the vitreous in DR, vessel growth in this model occurs in the 

opposite direction, from the capillary bed to the ONL. There has not been widespread use of the 
Kimba mouse in DR studies perhaps as a result of the commercial unavailability of the mouse.
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4.1.4.3. Akimba mouse

To create a hyperglycemic model displaying signs of PDR, the Ins2Akita mouse was crossbred 

with the Kimba mouse to generate the Akimba mouse (Ins2AkitaVEGF+/−). With the inheritance of 

diabetic and retinal neovascular phenotypes from parental strains, the Akimba mouse exhib-

its most characteristic features of NDPR and PDR, with the exception of preretinal neovascu-

larization. By 8 weeks of age, the Akimba mouse had developed major retinal microvascular 

abnormalities including vessel tortuosity, venous loups, vessel beading, vascular dilatation, 

microaneurysms and non-perfused capillaries [78]. Increased vascular leakage was accompa-

nied with lowered levels of endothelial junction proteins [103]. Significant capillary drop out 
resulted in leakage cessation at 20 weeks of age [78]. Neural retinal thickness decreased with 

age [78]. Severe loss of ganglion cells and complete photoreceptor loss occurred in 24-week-

old mice [78]. Retinal edema, neovascularization and retinal detachment were also present 

in the mice at an early age. The vascular changes observed here were more severe than those 

of Kimba mice [78], suggestive of the dual (and possibly synergistic) effects of simultaneous 
hyperglycemia and VEGF upregulation, and the potential use of this model to study the inter-

action of these two factors in DR. However, the vascular abnormalities may have developed 

predominantly due to VEGF upregulation rather than longstanding hyperglycemia as seen in 
human DR, making the model unsuitable for etiological studies. In spite of such dissimilari-

ties in the sequential pathogenic processes, the Akimba mouse is a unique model simulating 

an advanced human DR retinal environment.

4.1.4.4. TgIGF-I mouse

Insulin-like growth factor I (IGF-I) is a VEGF inducer that has been associated with the 
pathogenesis of DR. Clinically, increased levels of IGF-I have been found in the vitreous of 
DR patients [104, 105]. To create a model of neovascularization via increased VEGF expres-

sion, the RIP/IGF-I chimeric gene was first introduced into mice with a C57BL/6-SJL back-

ground, and these mice were subsequently backcrossed to CD-1 mice to create transgenic 

mice overexpressing insulin-like growth factor I (TgIGF-I) [106]. The mice were reported to 

exhibit NPDR-like features at the age of 2 months, including pericyte loss, retinal capillary 

BM thickening and presence of acellular capillaries [107]. With increasing age, there was 

progressive development of venule dilatation, IRMAs, retinal and vitreous neovasculariza-

tion, and subsequent retinal detachment [107]. The model has also been found to induce 

rubeosis iridis, neovascular glaucoma and cataract under normoglycemic and normoinsu-

linemic conditions [107].

4.1.4.5. Intraocular injection of VEGF

As intraocular injections of VEGF are less feasible in rodent models, subretinal injection of 
a binary recombinant adeno-associated virus construct producing green fluorescent protein 
(GFP) and VEGF was used in one study. VEGF overexpression resulted in microaneurysm 
formation, venous dilatation and vascular leakage [108]. However, the model failed to induce 

the pronounced neovascularization seen in transgenic animals and was only able to manifest 
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some features of NPDR. Significant new vessel formation was restricted to the INL of VEGF 
expression site. Only one mouse displayed signs of retinal degeneration with blood vessel 

growth into the subretinal space.
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