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Speed has become a signature of modern financial markets. This paper studies investors’ endoge-
nous speed acquisition, alongside their information acquisition. In equilibrium, speed heterogeneity
endogenously arises across investors, temporally fragmenting the process of price discovery. A
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1 Introduction

Price discovery is a fundamental function of financial markets. It involves two steps: First,

investors acquire information about the underlying security. Second, via trading, such information

is incorporated in price. The first step determines the amount of information that the price can

eventually reflect, i.e. the magnitude of price discovery. The second step is about the aggregation

of information into the price, i.e. the process of price discovery.

Speed is an intrinsic characteristic underlying the process of price discovery. This is because

trading takes time: Not all investors with information instantaneously gather together; neither do

their trading orders. If the informed only slowly arrive in the market, the resulting price discovery

process will also be slow. All else equal, the market is more efficient (in price) if the informed

investors trade faster.

To date, the literature has mainly emphasized information acquisition, i.e. the magnitude aspect

of price discovery, following the pioneering works by Grossman and Stiglitz (1980) and Verrecchia

(1982). This paper complements this canonical perspective, with an enriched price discovery

process, by studying investors’ speed acquisition alongside their information acquisition.

Indeed, the notion of speed roots in the course of financial securities trading. Loosely speaking,

there are three stages that affect trading speed: First, after acquiring information, investors can

form a concrete trading idea sooner—based on the raw data—by hiring a larger analyst team or

buying more computers. Second, before hitting the trading desk, investors’ trading orders need

to journey through middle/back offices for risk management, due diligence, and compliance. The

tightening regulatory environment in recent years, e.g., Dodd-Frank Act and Volcker Rule, arguably

has slowed down this second stage. Third, from the trading desk and onward, the speed of execution

depends on technology investments on computer hardware, algorithms, and connection to exchange

servers (co-location, fiber-optic cables, and microwave towers). This last aspect of trading speed

has progressed drastically in the last decade, evidenced by the rise of machines—algorithmic and
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high-frequency trading technologies.

The above real-world aspects of trading speed raises a set of questions: How much speed

technology should investors acquire? Is speed technology favored over information technology?

How does speed acquisition affect investors’ demand for information, and vice versa? Most

importantly, what are the implications for the overall quality of price discovery and efficiency?

This paper develops a model to address these questions. The model builds on an economy

populated by a fixed measure of atomless investors, who first invest in both speed and information

technology and then trade a risky asset. The information technology determines an investor’s

private signal precision about the asset value, while the speed technology allows him to trade ahead

of his peers. To fix the idea, consider a hedge fund for example. Its information acquisition involves

investments in, e.g., sending analysts for firm visits or buying various datasets. The fund’s speed

acquisition covers a different aspect. It can invest in equipment, infrastructure, or simply more

staff to speed up processing the acquired (raw) data, to streamline the compliance process, and to

expedite order execution by its trading desk.

The rent-seeking investors in the model have incentive to acquire both technologies. The

information technology directly adds to one’s information rent (higher signal precision). Indirectly

via the speed technology, the sooner an investor trades, the less price discovery has already occurred

and the more rent can he extract from the same private signal—a “first-mover advantage”. The

equilibrium is found where each investor optimally acquires the two technologies to maximize his

information rent, accounting for the investment costs and the competition from others.

A driving feature of the model is the temporal fragmentation effect of the speed technology. Due

to endogenous speed acquisition, investors of different speed participate in the market at different

times. Accordingly, the price discovery process also splits into parts, e.g., an early fragment with

fast investors and a late fragment with slow investors. So long the speed technology is affordable,

such fragmentation is a robust equilibrium feature: While all investors want to acquire speed to

enjoy the “first-mover advantage”, not everyone will be equally fast, for otherwise there is no “first-
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mover” and some will want to stay slow to save the speed acquisition cost. Speed heterogeneity

thus naturally arises, temporally fragmenting the price discovery process.

The fragmented price discovery process delivers novel insights on the interaction of the two

technologies and how both the magnitude and the process of price discovery might be affected.

First, through the temporal fragmentation, the speed technology has a nonmonotonic impact on the

magnitude of price discovery. With a more advanced (cheaper) speed technology, more investors

acquire speed and become fast, increasing the magnitude of price discovery in the early fragment.

At the same time, fewer investors remain slow and the late fragment of price discovery shrinks. The

market’s eventual price efficiency, therefore, can be either improved or hurt by the speed technology,

depending on whether the boost in the early fragment or the decay in the late fragment dominates.

This result holds even when information acquisition is shut down.

Second, the speed and the information technologies can be either substitutes or complements,

as determined by the relative levels of the two. Consider, for example, a positive shock in the

information technology, following which all investors acquire more information. How is the

demand for speed affected? The answer depends on the relative change between fast and slow

investors’ rents. As everyone acquires more information, intratemporal competition intensifies,

attenuating the rents, respectively, for the fast and for the slow investors, as in Grossman and

Stiglitz (1980). New in this model, the increased early price discovery intertemporally hurts the

slow ones’ rent. (Intuitively, if the fast investors—“first movers”—have done almost all the price

discovery, there will be little rent left for the slow.) Netting the intra- and intertemporal effects,

if the fast are hurt more, some of them will want to stay slow instead, i.e., information acquisition

substituting speed acquisition. If, however, the fast investors are not hurt much, more will want to

trade early and the demand for speed will rise, complementing information acquisition. The model

further characterizes the conditions for the complementarity or the substitution effect to dominate.

Third, when the two technologies exhibit complementarity, an advancement in the information

technology—though, prompting all investors to acquire more information—can still hurt the long-
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run price efficiency. The reason is that, due to complementarity, the information technology

also stimulates demand for speed, which fragments the price discovery process. As before, the

fragmentation boosts the fast but shrinks the slow fragment of price discovery magnitude. When

the decay in the slow fragment dominates, the overall magnitude of price discovery worsens. The

key mechanisms at work—the endogenous complementarity and the temporal fragmentation by the

speed technology—are the insights taught by the model.

The last result above cautions the dysfunction of information aggregation in financial markets.

The “information technology” in the model can be interpreted broadly. For example, recent years

have seen strengthened transparency and disclosure requirements by regulators. Policies like

Sarbanes-Oxley, Regulation Fair Disclosure, and Rule 10b5-1 have arguably reduced the cost of

information acquisition. In the meantime, there is evidence of speed acquisition complementing

the accessibility of information. For example, Du (2015) finds that high-frequency traders are

constantly crawling the website of U.S. SEC in order to trade on the information in latest company

filings. To this extent, this paper argues that transparency and disclosure policies might generate

unintended negative impact on information efficiency.

Some recent empirical evidence echoes this view. Weller (2016) shows that algorithmic trading

has risen at the cost of long-run price discovery. Gider, Schmickler, and Westheide (2016) shows

how high-frequency trading hurts the predictability of earnings in the far future. To emphasize,

while the predictions are consistent, the mechanism put forward in this paper is new. For example,

the argument by Weller (2016), and via equilibrium models by Dugast and Foucault (2017) and

by Kendall (2017), is that short-run (early) price discovery can crowd out the acquisition of more

precise information in the long-run (late)—a substitution effect. In contrast, the current paper

emphasizes the endogenous complementarity between information and speed acquisition. As

the information technology advances and incentivizes more investors to acquire speed, the price

discovery process fragments at the cost of the (long-run) magnitude.

Different financial assets are exposed to different levels of information and speed technology.
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The model thus also offers cross-sectional predictions of how technology advancement might affect

different assets (e.g., stocks) differently. Bai, Philippon, and Savov (2016) finds a rising trend of the

price informativeness of S&P 500 nonfinancial firms in a half-century sample period starting from

the 1960s. The finding for firms beyond the S&P 500, however, is the opposite. Farboodi, Matray,

and Veldkamp (2017) reproduce the patterns and explain these phenomena via investors’ strategic

information acquisition choice, facing attention constraints. This paper adds to the discussion

that the distinction in different technologies—speed v.s. information—is important in determining

individual stocks’ respective price efficiency.

This paper further contributes to three strands of the literature. First, the vast literature on

costly information acquisition largely focuses on the magnitude aspect of price discovery, follow-

ing the seminal works by Grossman and Stiglitz (1980) and Verrecchia (1982). Recent studies

explore other dimensions. Peress (2004, 2011) studies the wealth effect on information acqui-

sition. Van Nieuwerburgh and Veldkamp (2009, 2010) analyze how investors acquire different

types of information under limited attention. Goldstein and Yang (2015) explore the implication

of information diversity. Banerjee, Davis, and Gondhi (2016) focus on how transparency affects

information efficiency in a setting with price-elastic liquidity demand. Farboodi and Veldkamp

(2016) look at the role of the financial sector and highlight the trade-off between the analysis of

fundamental and order flow information. To compare, the aforementioned literature assumes that

the market always clears with all investors trading at the same time—they have the same speed.

Introducing endogenous speed acquisition, this paper allows to study the process of price discovery

with investors arriving and trading asynchronously.

Second, the temporal fragmentation (due to speed technology) in this paper differs from the

existing literature on spatial market fragmentation.1 Regarding the focus on price discovery, an

1 For example, Admati (1985), Pasquariello (2007), Boulatov, Hendershott, and Livdan (2013), Goldstein, Li,
and Yang (2014), Cespa and Foucault (2014), among many others, study information and cross-market learning of
correlated assets. Pagano (1989), Chowdhry and Nanda (1991), and Baruch, Karolyi, and Lemmon (2007) study
trading of the same asset on different venues (e.g., dual-listed stocks). More recently, market fragmentation has been
theorized in the context of dark v.s. lit trading mechanisms, as in Ye (2011), Zhu (2014), Brolley (2016), and Buti,
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important feature of temporal fragmentation is that the information revealed in an early fragment

naturally carries over to a late fragment—the market never forgets. Thus, slow investors’ information

rent is eroded away by fast investors, giving rise to the intertemporal competition. Such natural

accumulation of information over time is critical in determining the complementarity or substitution

between the two technologies. In a model of multiple venues (spatial fragmentation), there is no

naturally directioned “flow” of information from one venue to another. More fundamentally, as

investors trade simultaneously across venues, the notion of speed does not exist. Introducing the

speed technology, this paper, therefore, studies a unique angle of market fragmentation.

Third, this paper lends equilibrium support to the literature with endogenous bundling of speed

and information acquisition. As price discovery accumulates over time, the remaining information

rent diminishes. Individual investors’ incentive to acquire information, therefore, also increases

with their trading speed: The model predicts that fast investors always acquire more information

than slow investors. This insight justifies a popular connotation for fast traders that they are also

more informed: See, among others, models by Hoffmann (2014), Biais, Foucault, and Moinas

(2015), Budish, Cramton, and Shim (2015), and Bongaerts and Achter (2016); and evidence by

Brogaard, Hendershott, and Riordan (2014) and Shkilko and Sokolov (2016).

The rest of the paper is organized as follows. Section 2 sets up the model and Section 3 derives

its equilibrium. Section 4 then explores the model implications on investors’ technology acquisition

and on aggregate price efficiency. Discussions on model assumptions, robustness, and extensions

are collated in Section 5. Section 6 then concludes.

2 Model

Assets. There is a risky asset and a risk-free numéraire. At the end of the game, each unit of the

risky asset will pay off a normally distributed random amount V units of the numéraire. Without

Rindi, and Werner (2017). Finally, Chao, Yao, and Ye (2017a,b) study the competition among exchanges by zooming
in on fee structure and tick size.
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loss of generality, normalize EV to 0. Denoted by τ−1
0 (> 0) the unconditional variance of V .

Investors. There is a unity continuum of atomless investors, indexed by i ∈ [0, 1]. They have

constant absolute risk-aversion (CARA) preference with the same risk-aversion coefficient γ (> 0).

Speed technology. An investor i can invest in a speed technology to affect ti , a set of time points

when he can trade in the market (see “Timeline” below). Without investing in speed, all investors

are slow, trading at ti = tS = {2} (“S” for slow). One can instead become fast and trade at ti = tF

(“F” for fast) by paying 1/дt units of the numéraire. The exogenous parameter дt (> 0) measures

the level of speed technology. The larger is дt , the more advanced (cheaper) is the technology.

This paper explores two scenarios for fast investors: 1) They can only trade at tF = {1}, “pure

speed differential”; or 2) they can trade at both dates with tF = {1, 2}, “frequent fast trading”.

The first scenario applies to situations where, for example, fast active funds buy-and-hold (due to,

e.g., transaction costs) some securities for long-term investment purposes. The second scenario

speaks to funds that are more flexible in frequent, active trading strategies. The analysis will mainly

focus on the first scenario to articulate the model’s main intuition. The second scenario, studied in

Section 5.1, serves as a robustness check for the main results.

Information technology. Before trading, each investor i observes a private signal Si about the

payoffV . Specifically, Si = V + εi , where εi is independent ofV , independent of any other εj,i , and

normally distributed with zero mean and variance h−1
i (> 0). The investor i can spend mi (≥ 0)

units of the numéraire on an information technology to improve his private signal precision:

hi = дhkh(mi),

where kh(·) is twice-differentiable, concave, and strictly monotone increasing; and дh (≥ 0) is a

parameter measuring the marginal productivity of this information technology. Without investing

in this technology, the investor gets no signal; i.e. kh(0) = 0.

Due to the monotonicity of kh(·), an investor’s information acquisition can be referred to as

either hi (the precision) or mi (the cost) interchangeably: There exists a weakly convex, monotone
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t = 3t = 1t = 0

All acquire speed
and information

Fast investors
arrive and trade

t = 2

Pure speed differential:
Slow investors arrive and trade

Payoffs realize;
investors consume

Frequent fast trading:
All investors arrive and trade

Figure 1: Timeline of the game. The model has four dates: t ∈ {0, 1, 2, 3}. At t = 0, all investors invest
in technology; at t ∈ {1, 2}, investors arrive in the market at the time(s) according to their speed technology
and submit their demand schedules to trade the risky asset; finally, at t = 3 the risky asset liquidates and all
investors consume their terminal wealth. The figure outlines two scenarios: Under “pure speed differential”,
fast investors only trade once at t = 1 and there are only slow investors trading at t = 2. Under “frequent fast
trading”, fast investors can also trade at t = 2.

increasing information acquisition cost function c(·) such that ∀hi ≥ 0,

mi = c(hi) := kh−1(hi/дh).

To ensure that there is always some information in the market, let Ûc(0) = 0; equivalently, Ûkh(0) → ∞.

The information technology is assumed to be orthogonal to the speed technology (дt and дh

are exogenous parameters, independent of each other). This is an intentional modeling choice,

so that the comparative static analyses will help isolate the effect of one technology against the

other. In reality, the two technologies will likely affect each other. Section 5.2 discusses such

interdependence and its implications.

Timeline. There are four dates in the model: time t ∈ {0, 1, 2, 3}, as illustrated in Figure 1.

At t = 0, all investors independently invest in technologies ti and hi . Time t ∈ {1, 2} are trading

rounds. The set of investors {i | t ∈ ti } arrive at t together and they independently submit demand

schedules {xi(pt ; ·)} to trade the risky asset, based on his information set—private signal si , his

existing holding of the asset (if any), and the public history of past prices. Specifically, at t = 1 only

fast investors arrive and trade. At t = 2, only slow investors trade under “pure speed differential”

(main model, Section 3 and 4), while all investors trade under “frequent fast trading” (robustness
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check, Section 5.1). Finally, at t = 3, the risky asset liquidates atV and all investors consume their

terminal wealth.

Trading. In each trading round t ∈ {1, 2} there is noise demand Ut , which is independent of

all other random variables and is i.i.d. normally distributed with zero mean and variance τ−1
U .

(Section 5.3 discusses the robustness to time-varying noise trading.) The aggregate demand at t is

Lt (p) =
∫
i∈[0,1]

xi(p; ·)1{t∈ti }di +Ut .(1)

There is a competitive market maker, who clears the market at all times at the efficient price given

all historical public information (as in Kyle, 1985). Thus, the trading price in each round t is

Pt = E
[
V
�� {L(·; r )}r≤t ,∀r∈{1,2} ] .(2)

This way, the market price is always (semi-strong) efficient and suits the purpose of studying price

efficiency. See, among others, Vives (1995); Hirshleifer, Subrahmanyam, and Titman (1994); and

Cespa (2008). Section 5.4 discusses the motivation for and the robustness of this choice.

Strategy and equilibrium definition. To sum up, each investor maximizes his expected utility

over the final wealth by optimizing his (cumulative) demand xi(·) at each t ∈ ti ; and, backwardly,

by choosing his technology pair (ti ,hi) ∈ {tS, tF} × [0,∞) at t = 0.

Denote by π (ti ,hi) the investor i’s ex ante certainty equivalent (whose functional form will

be derived below). Define P := {(ti ,hi)}i∈[0,1] as the collection of all investors’ investment

policies. A Nash equilibrium is a collection P, such that for any investor i, fixing P\(ti ,hi), he has

π (ti ,hi) ≥ π (t ,h), ∀(t ,h) ∈ {tS, tF} × [0,∞).

3 Equilibrium analysis

This section studies the equilibrium under “pure speed differential”, where the speed technology

enables fast investors to trade early, but only, once at tF = {1}. This scenario has more tractability
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and allows the analysis to zoom in on the economic mechanisms behind the results. Section 5.1,

“frequent fast trading”, later demonstrates the robustness of the results when fast traders will be

able to trade early and again at tF = {1, 2}. Since in this section each investor only trades once,

rather than a set of ti = {1} or {2}, the notations for investors’ speed acquisition will be simplified

to ti = 1 for fast and ti = 2 for slow.

3.1 Optimal trading

The equilibrium analysis begins with an investor’s optimal trading demand at his trading round ti .

Fix all other investors’ strategies and consider an investor i with technology (ti ,hi). At t = ti , he

chooses his demand schedule xi to maximize his expected utility over final wealth:

xi ∈ arg max
xi
E
[
−e−γ ·(V−Pt )xi |V + εi = si , Pt = p, Pt−1, ...

]
where Pt is given by the market maker’s efficient pricing as in equation (2). Note that the investor

also observes the price history {Pt−1, ...} (with P0 = E[V ] = 0). Standard conjecture-and-verify

analysis as in Vives (1995) yields the following lemma.

Lemma 1 (Trading under “pure speed differential”). For any technology pair (ti ,hi), an

investor i with signal si submits the optimal linear demand schedule at t = ti:

xi =
hi
γ

(
si − pti

)
.

His certainty equivalent at the time of technology investment (t = 0) is

π (ti ,hi) =
1
2γ

ln
(
1 +

hi
τti

)
− c(hi) −

2 − ti
дt
,(3)

where the price efficiency τt := var[V | {Lr (·)}∀r≤t ]−1 satisfies the recursion of

∆τt = τt − τt−1 =

(∫
{tj=t}

hj

γ
dj

)2

τU(4)
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with the initial value τ0 = var[V ]−1. The equilibrium price Pt satisfies the recursion of

∆Pt = Pt − Pt−1 =
∆τt
τt

©­«V + γUt∫
{tj=t} hjdj

− Pt−1
ª®¬(5)

with the initial value P0 = EV (= 0).

An investor’s demand xi scales with the difference between his private signal and the trading price,

where the scaling factor hi/γ—his trading aggressiveness—increases with the precision of his

signal and decreases with his risk-aversion. His certainty equivalent has three components: The

first term represents the information rent due to his private information, while the second and the

third term correspond to the cost of information and speed acquisition, respectively.

Note that slow investors (ti = 2) do not (directly) trade on the fast round price p1, thanks to the

competitive market maker who sets p2 while recalling the information from t = 1 trading. As such,

from a slow investor’s perspective, observing only p2 is as good as observing both p1 and p2.2

3.2 Optimal technology acquisition

The next step is to find investors’ optimal technology investment (ti ,hi) at t = 0. To proceed, define

the population sizes as

µF :=
∫
i∈[0,1]

1{ti=1}di and µS :=
∫
i∈[0,1]

1{ti=2}di,

where, by construction, µF + µS = 1. The search for equilibrium is a fixed-point problem: Given

the population sizes µF and µS, what is each investor’s optimal information acquisition hi? Given

information acquisition {hi}, what is the “break-even” µF and µS, so that no individual investor

wants to change his speed choice?

Consider first investors’ optimal information acquisition hi , by fixing their speed. That is,

suppose there is an exogenous fraction µF ∈ [0, 1] (µS = 1 − µF) of investors who are fast (slow).
2 This feature inherits from Vives (1995) and dates back to the competitive market maker in Kyle (1985). In the

dynamic equilibrium, also examined in Back (1992) among others, only the contemporaneous price pt is relevant as a
state variable, not the entire price history. See also Cespa (2008) for an application of dynamic information selling.
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Note that an investor is atomlessly small and, hence, his individual information acquisition hi does

not affect the aggregate price efficiency τ1 or τ2. To maximize his certainty equivalent, an investor

takes τti as given and chooses his information precision hi according to the first-order condition of

equation (3):

1
2γ

1
τti + hi

− Ûc(hi) = 0,(6)

which has a unique solution h(τti ), satisfying the second-order condition, thanks to the convexity

of the cost c(·); see the “Information technology” paragraph in Section 2. By symmetry, therefore,

all investors of the same speed ti = t ∈ {1, 2} acquire the same amount of information: hF = h(τ1)

for fast investors and hS = h(τ2) for the slow.

The convexity of c(·) further implies that the unique solution to equation (6), h(τ ), is decreasing

in τ . As such, fast investors always acquire more information than slow ones:

hF ≥ hS.(7)

This is because the price discovery process is always cumulative: τ2 ≥ τ1, as the market never

forgets whatever has been revealed (∆τt ≥ 0 by equation 4). The earlier an investor can trade,

the less price discovery the market has seen and the more valuable is his private information.

To take this advantage, fast investors always have stronger incentive to acquire more information.

This equilibrium result supports a popular connotation for fast traders that they are also more

informed: A number of theory studies assume so exogenously: Hoffmann (2014), Biais, Foucault,

and Moinas (2015), Budish, Cramton, and Shim (2015), and Bongaerts and Achter (2016). The

empirical evidences by Brogaard, Hendershott, and Riordan (2014) and by Shkilko and Sokolov

(2016) agree this perspective.

The second step is to fix investors information acquisition hF and hS and find the equilibrium

speed acquisition µF and µS. The price efficiency τt recursion (equation 4) can be rewritten as

∆τ1 = τ1 − τ0 =
τU

γ 2h
2
Fµ

2
F and ∆τ2 = τ2 − τ1 =

τU

γ 2h
2
Sµ

2
S.(8)

12



These increments in price efficiency, ∆τ1 and ∆τ2, are referred to as the “early fragment” and the

“late fragment” of price discovery, respectively. In contrast, the cumulative price efficiency, τ1

and τ2, are called the “short-run” and the “long-run price efficiency”, respectively. An important

observation is that the price discovery ∆τ is nonlinear in the population size µ of the trading

round. Under the current parametrization, fixing hF and hS, ∆τ is convexly increasing in µ. Such

nonlinearity underlies “the temporal fragmentation effect” of speed technology, as discussed in

detail later in Section 4.2 (Proposition 4).

Equation (3) implies that investors of the same speed have the same ex ante certainty equivalent:

πF =
1
2γ

ln
(
1 +

hF

τ1

)
− c(hF) −

1
дt

;

πS =
1
2γ

ln
(
1 +

hS

τ2

)
− c(hS).

(9)

If πF > πS, all investors will acquire speed and become fast, leading to a corner solution of µF = 1

and µS = 0; and vice versa. In an interior equilibrium, it must be πF = πS so that no investor

has incentive to change his speed acquisition. The optimal population mix is determined via the

break-even condition πF = πS.3

The following proposition summarizes the discussion above and states the equilibrium.

Proposition 1 (Equilibrium under “pure speed differential”). There exists a unique equilib-

rium P, depending on the speed technology дt relative to a threshold д̂t (> 0, see the proof):

Case 1 (corner). When дt ≤ д̂t , all investors invest in (ti ,hi) = (2,hF), where hF, together

with τ2, uniquely solves the first-order condition (6) and the recursion (8) with µF = 0 and µS = 1.

Case 2 (interior). When дt > д̂t , a mass µF ∈ (0, 1) of investors invest in (ti ,hi) = (1,hF),

while the rest µ2 investors invest in (ti ,hi) = (2,hS), such that the equilibrium is uniquely solved

3 One can interpret the pair µF and µS as investors’ ex ante probability mix between becoming fast or staying slow.
That is, they play a symmetric mixed-strategy in speed acquisition: Each independently chooses to acquire speed,
ti = 1 (together with hF), with probability µF or to stay slow, ti = 2 (together with hS), with probability µS = 1 − µF.
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by {hF,hS, µF, µS} under the following equation system:

Optimal information acquisition:
1
2γ

1
τ1 + hF

− Ûc(hF) =
1
2γ

1
τ2 + hS

− Ûc(hS) = 0;

Indifference in speed: πF = πS;

Population size identity: µF + µS = 1;

where the expressions of τ and π are given by equations (8) and (9).

The equilibrium depends on the level of speed technology: When дt ≤ д̂t , investing in speed

is too costly for any investor and nobody acquires speed in equilibrium. Only for sufficiently

advanced speed technology (дt > д̂t ) will there be some investors acquiring speed.4 In fact, this

same intuition holds in the other way:

Corollary 1. Fixing the speed technology дt , there exists a threshold д̂h such that the equilibrium

is interior if and only if дh ≥ д̂h.

That is, when the information technology is too poor, the benefit in information rent of becoming

fast is not sufficient to compensate for the cost of acquiring speed. As such, all investors stay slow.

3.3 Two constrained equilibria

In order to provide a clear contrast of the results, Section 4 will study two constrained versions of

the model, where the acquisition of either one of the two technologies is shut down. The following

two corollaries provide the existence and the uniqueness of equilibrium under these two constrained

models. As both are special cases of Proposition 1, for brevity, their proofs are omitted.

4 However, there are always non-zero mass of investors staying slow in equilibrium (µS > 0). To see the reason,
suppose there is an equilibrium with all investors acquiring speed, i.e., µF = 1 and µS = 0. In this case there is no
price discovery in the late fragment, i.e., τ1 = τ2. Equation (9) then suggests that the marginal fast investor is strictly
better off if he instead does not invest in the speed technology, saving the speed acquisition cost 1/дt . Hence, some
fast investors will deviate to staying slow.
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Corollary 2 (Constrained equilibrium: exogenous speed). Fix each investor’s speed ti with

exogenous µF and µS (= 1 − µF). Then there exists a unique equilibrium in which fast and slow

investors’ information acquisition, hF and hS, solve the first-order conditions (6).

When the speed technology is not available, only the interior case of Proposition 1 is relevant.

Further, since the investors cannot choose speed, the indifference condition πF = πS becomes

irrelevant. Only the “optimal information acquisition” condition remains.

Corollary 3 (Constrained equilibrium: exogenous information). Fix fast and slow investors’

information acquisition at hF and hS, respectively. Then there exists a unique equilibrium,

depending on the speed technology дt relative to a threshold д̂t :

Case 1 (corner). When дt ≤ д̂t , all investors stay slow with µF = 0 and µS = 1.

Case 2 (interior). When дt > д̂t , a mass µF ∈ (0, 1) of investors acquire speed and become

fast, while the rest µS stay slow. The equilibrium population sizes {µF, µS} uniquely solve πF = πS

and µF + µS = 1.

Corollary 3 is also a special case of Proposition 1, where the “optimal information acquisition”

condition is dropped in the interior equilibrium as investors’ signal precision are exogenously fixed.

4 Equilibrium properties

This subsection studies investors’ speed and information acquisition and the effects on market

quality. Three issues stand out: How does an advancement in one technology affect 1) investors’

investment in it, 2) investors’ investment in the other technology, and ultimately 3) the aggregate

market quality—in particular, the price discovery.

In order to isolate the different implications of the speed and the information technology, the

analysis begins by exploring two constrained model variants: Section 4.1 switches off speed acqui-

sition and Section 4.2 information. Section 4.3 then studies the interaction of the two technologies.
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The results of these sections are summarized in Table 1 in Appendix A. Finally, Section 4.4

introduces the new concept of “the speed of price discovery” and discusses its importance.

4.1 Information acquisition with exogenous speed

This subsection sets benchmark results under a constrained setting with only information acquisi-

tion: Investors’ speed is exogenously given. Specifically, fix a mass µF ∈ [0, 1] of investors who are

fast (ti = 1), and the rest µS = 1 − µF investors stay slow (ti = 2). Thus, all results are with respect

to the information technology дh. The equilibrium corresponds to Corollary 2.

Proposition 2 (Information technology and information acquisition). Fix the fast and the

slow investors’ sizes µF and µS. As the information technology дh increases, both the fast and the

slow investors individually acquire more information: ∂hi/∂дh > 0 for i ∈ {F, S}.

The result is not surprising. As дh increases, each investor can acquire more precise information at

the same expense. That is, information becomes relatively cheaper and all investors, fast or slow,

acquire more of it. Panel (a) of Figure 2 illustrates this effect. The red-dashed line also plots the

total information acquisition in the economy,
∫
i∈[0,1] hidi = µFhF + µShS.

Intuitively, as all investors acquire more information, the price becomes more efficient as well:

Corollary 4 (Information technology and price efficiency). Fix the fast and the slow investors’

sizes µF and µS. As the information technology дh increases, both the short-run and the long-run

price efficiency improve. Mathematically, ∂τ1/∂дh > 0 and ∂τ2/∂дh > 0.

Recall from equation (8) that ∆τ = τUh
2µ2/γ 2. Because the population sizes {µF, µS} are exoge-

nously fixed and because the individual information acquisition hi monotonically increases with дh,

so does the price discovery ∆τ . Panel (b) of Figure 2 graphically illustrates the corollary.

Less trivial, perhaps, is the curvature patterned in Panel (a): When дh is moderately large,

both hF and hS are concavely increasing and, in particular, hS grows slower than hF. The reason is

that investors’ individual information acquisition “crowds out” each other (Grossman and Stiglitz,
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Figure 2: Information technology with exogenous speed. This figure shows how information technologyдh
affects individual investors’ information acquisition hi in Panel (a) and the aggregate price efficiency τt in
Panel (b). The red-dashed line in Panel (a) plots the aggregate demand for information in the economy,∫
i ∈[0,1] hidi. The primitive parameters used in this numerical illustration are: τ0 = 1.0, τU = 4.0, γ = 0.1,

and kh(m) = √
m. The fast investor’s population size is fixed at µF = 0.4; and, hence, µS = 0.6.

1980): As the information technology improves, investors individually acquire more information,

improving the aggregate price efficiency τ , which, in turn, discourages investors’ information

acquisition hi . (The optimal h(τ ) is, all else equal, a decreasing function per equation 6.)

Notably, such crowding out takes two forms. First, intratemporally, all fast investors crowd

out each other’s information acquisition at t = 1; and all slow investors at t = 2. This yields the

concavity ofhF andhS inдh. Second, intertemporally, the fast investors crowd out the slow, because,

naturally, the price efficiency cumulatively grows over time (τ2 ≥ τ1). It is this intertemporal

crowding-out effect that makes hS even more concave in дh, compared to hF.

This intertemporal crowding-out effect is a novel insight revealed by the model. Its distinction

versus the conventional intratemporal crowding-out effect (when all investors trade at the same

time) bears great significance. Once both the speed and the information technology are made avail-
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able to investors, the two forces drive substitution/complementarity between the two technologies

in contrasting directions (Section 4.3). Before that, it is useful to look at the other constrained

equilibrium, where investors can acquire speed but not information.

4.2 Speed acquisition with exogenous information

This subsection exogenizes investors’ information acquisition. Specifically, each investor has

an endowed signal with precision fixed at the same level of hi = h◦ > 0, ∀i ∈ [0, 1]. They

cannot acquire additional information but can still acquire speed: Their speed choice ti ∈ {1, 2}

and, consequently, the aggregate population sizes {µF, µS} are endogenous.5 The equilibrium

corresponds to Corollary 3.

In this equilibrium, a better speed technology дt reduces investors’ cost to become fast. The

usual demand effect applies: Demand rises when price drops, as illustrated in Panel (a) of Figure 3

and formally stated in the proposition below.

Proposition 3 (Speed technology and speed acquisition). Fix all investors’ signal precision

at hi = h◦ (> 0). In the interior equilibrium, as the speed technology дt advances, more investors

acquire speed: ∂µF/∂дt > 0.

An advancement in the speed technology дt , however, has different implications on the short-

run and the long-run price efficiency. The following proposition states the result and Panel (b) of

Figure 3 illustrates the patterns.

Proposition 4 (Speed technology and price efficiency). Fix all investors’ signal precision

at hi = h◦ (> 0). In the interior equilibrium, as the speed technology дt advances, the short-run

price efficiency τ1 monotonically increases, while the long-run price efficiency τ2 first decreases

and then increases.
5 More generally, one can bundle the speed and the information technology: When an investor acquires speed, he

gets the pair (ti ,hi ) = (1,hF) and instead if he stays slow, he gets (2,hS), withhS ≶ hF. The special case ofhF = hS = h◦
simplifies the exposition to highlight the effect of speed acquisition. What matters for this subsection is that both hF
and hS are fixed and investors cannot acquire more information—the information acquisition channel is shut down.
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Figure 3: Speed technology with exogenous information. This figure shows how speed technology дt
affects individual investors’ speed acquisition ti in Panel (a) and the aggregate price efficiency τt in Panel (b).
The horizontal axis shows the speed technology level дt . To the right of the vertical dashed line, the
equilibrium is interior—there are both fast and slow investors. In Panel (a), the vertical axis indicates the
population sizes of the fast (shaded area) and the slow investors (white area). The primitive parameters used
in this numerical illustration are: τ0 = 1.0, τU = 4.0, γ = 0.1, and kh(m) = √

m. Investors’ common signal
precision is fixed at h◦ = 0.1.

The driver of this result is the temporal fragmentation effect of the speed technology—it tem-

porally fragments investors’ participation. When the speed technology is affordable (beyond the

threshold д̂t ), the unity of investors no longer trade at the same time. A fraction µF of them becomes

fast and trade at t = 1, while the rest µS (= 1 − µF) still trade slowly at t = 2.

Just like the investors, so is the price discovery process fragmented into an early fragment ∆τ1

and a late ∆τ2. From equation (8), it follows that the early fragment increases with дt :

∆τ1 =
τU

γ 2h
2
◦µ

2
F,

as µF is increasing with дt (Proposition 3). However, the late fragment drops with дt :

∆τ2 =
τU

γ 2h
2
◦µ

2
S =

τU

γ 2h
2
◦ · (1 − µF)2.
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The long-run τ2 = τ0 + ∆τ1 + ∆τ2 is subject to the joint force of both fragments of price discovery

and, therefore, exhibits a nonmonotonic trend in the speed technology дt .

Further, Proposition 4 states that the long-run price efficiency τ2 is U-shape in the speed

technology. This U-shape arises from the fact that each fragment of price discovery, ∆τ , is a convex

function in the population size µ.6 Because of such convexity, the impact of a marginal change in µ

(due to speed technology) on τ depends on the initial level of µ. For example, when дt is close

to the threshold of д̂t , most of the investors are slow—µF closer to zero and µS to one. Suppose a

small increase in the speed technology dдt prompts a small population dµF to move from slow to

fast. The resulting loss in price efficiency in the late fragment ∆τ2 is much larger than the gain in

the early ∆τ1:

dτ2 =
∂τ2
∂µF

dµF =

(
∂∆τ1
∂µF

+
∂∆τ2
∂µF

)
dµF =

τU

γ 2h
2
◦
∂

∂µF

(
µ2

F + µ
2
S

)
︸           ︷︷           ︸

=2(2µF−1)<0 for µF close to 0

dµF.

The reverse holds true when µF is close to one and µS close to zero.

Finally, to reinforce/the understanding of the temporal fragmentation effect, note that the level

of the long-run price efficiency τ2(дt ) is the same at the either extreme of дt :

lim
дt↓д̂t

τ2(дt ) = lim
дt↑∞

τ2(дt ) = τ0 +
τU

γ 2h
2
◦.

This equality should not come as a surprise because in either of the two extremes, the investors are

no longer fragmented: When дt ↓ д̂t , all investors remain slow and trade at t = 2. When дt ↑ ∞, all

investors become fast and trade at t = 1. That is, the temporal fragmentation of speed only manifests

for moderate levels of speed technology, which in turn affects price efficiency nonmonotonically.

6 The convexity of price discovery ∆τ in population size µ is a universal feature in the literature. See, among
many others, Grossman and Stiglitz (1980), Hellwig (1980), Verrecchia (1982), for example. The source of such
convexity—more specifically, the quadratic term µ2—is the conventional choice of the price efficiency measure: the
reciprocal of the conditional variance, a statistic of the second moment, of the risky asset value.
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4.3 Interaction between speed and information technology

In this subsection, both speed and information technologies are made available to investors. The

unconstrained equilibrium stated in Proposition 1 holds, together with Corollary 1. Suppose there

has been an advancement in one technology. The discussion below focuses its three effects: 1)

investors’ acquisition in this advancing technology; 2) investors’ acquisition in the other technology;

and 3) the market’s price discovery function.

4.3.1 Own-price effect: Acquisition in the advancing technology

The level of a technology are modeled as, effectively, the marginal cost of acquiring that tech-

nology. As such, when a technology advances, the first-order effect is essentially its own-price

effect: investors’ demand responding to a cheaper technology. Unsurprisingly and consistent with

Proposition 2 and 3, demand increases when a technology improves.

Proposition 2 (continued). Whether investors’ speed acquisition is exogenous or endogenous,

in the interior equilibrium, investors’ information acquisition monotonically increases with the

information technology: ∂hi/∂дh > 0 for i ∈ {F, S}.

Proposition 3 (continued). Whether investors’ information acquisition is exogenous or endoge-

nous, in the interior equilibrium, as the speed technology advances, more investors acquire

speed: ∂µF/∂дt > 0.

For completeness, Panel (a) and (b) of Figure 4 illustrate this intuitive own-price effect of the speed

and the information technology.

4.3.2 Cross-price effect: Are speed and information substitutes or complements?

Perhaps more interesting is investors’ demand for one technology when the other improves. The

cross-price effects are graphed in Panel (c) and (d) in Figure 4. Panel (c) shows how investors’

(aggregate) demand for speed,
∫
[0,1] 1{ti=1}di = µF, changes when the information technology дh
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Panel (c) and (d): Two technologies’ cross-price effects

Figure 4: Technology acquisition. This figure illustrates how investors’ technology acquisition (demand
for speed and for information) are affected differently by levels of technologies. Panel (a) and (b) show
the technologies’ own-price effect. Panel (c) and (d) show the cross-price effect. The vertical dashed lines
indicate the thresholds of the corresponding technology, below which all investors stay slow. The red-dashed
lines in Panel (a) and (d) are the aggregate demand for information in the economy,

∫
i ∈[0,1] hidi. The

primitive parameters used in this numerical illustration are: τ0 = 1.0, τU = 4.0, γ = 0.1, and kh(m) = √
m.

For Panel (b) and (d), дh = 0.2. For Panel (a) and (c), дt = 10.0.
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increases. Panel (d) plots three lines: a fast investor’s individual demand for information, hF; a slow

investor’s, hS; and the aggregate demand,
∫
[0,1] hidi = µFhF + µShS (the red-dashed line). In both

panels, it can be seen that the aggregate demand for one technology, when the other improves, is first

increasing but eventually decreasing, cateris paribus. The speed and the information technology

can be either complements or substitutes, depending on their relative levels.

Proposition 5 (Complementarity and substitution between speed and information). Fixing

the speed technology дt , as the information technology дh increases, an investor’s speed and

information acquisition are initially complements but eventually substitutes. The same holds

true when дt increases, fixing дh.

To understand such cross-price effects, it is useful to recall the different “crowding-out effects”

discussed in Section 4.1. Consider an advancement in the information technology дh (as in

Panel (c)), which stimulates both fast and slow investors to acquire more information (Proposition 2

above). Three crowding-out effects arise: intratemporal crowding-out among fast investors at t = 1,

intratemporal crowding-out among slow investors at t = 2, and intertemporal crowding-out from

fast investors to slow investors. The first effect hurts fast investors’ information rent, making them

less willing to acquire speed—reducing demand for speed. The second and the third effects hurt

slow investors, incentivizing them to leave t = 2 and to compete with fast investors at t = 1

instead—raising demand for speed.

It is these countervailing crowding-out effects that drive the net demand for the speed technology

to increase or to decrease with the information technology improves. When initially the information

technology is low (close to д̂h), there are very few fast investors (µF close to zero; Corollary 1).

As such, the slow investors’ intratemporal crowding-out effect dominates, stimulating them to

acquire speed and move to t = 1, forming complementarity between speed and information. As

more investors have acquired speed, they yield additional intertemporal crowding-out effect on the

remaining slow ones, further strengthening their incentive to move to t = 1. (The two forces jointly

make the initial rise of µF with дt very steep.) Eventually, however, when there are too many fast
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investors, the intratemporal crowding-out effect at t = 1 dominates: Fast investors’ rent is hurt

too much by the advancement of information technology, their competition too fierce, no longer

profitable to acquire speed.

Panel (d) can be intuitively explained with the three crowding-out effects as well. As the

speed technology дt increases, more and more investors acquire speed (Proposition 3 above). The

increase in µF intensifies the fast investors’ competition and their intratemporal crowding-out at

t = 1 reduces their individual information acquisition hF. For the slow investors, the pattern of

hS looks different because it is subject to both the intratemporal crowding-out at t = 2 and the

intertemporal crowding-out by fast investors. Initially, when the speed technology is low (close

to д̂t ), most of the investors are slow (µF close to zero) and, hence, the dominating effect is the

reduction of intratemporal crowding-out at t = 2 (as investors move to fast, fewer remain slow). As a

result, with less crowding-out, the remaining slow investors individually acquire more information.

However, when a lot of investors are already fast, the intertemporal crowding-out is no longer

negligible. It eventually becomes the dominant effect that drives down slow investors’ information

acquisition hS.

Not all stocks enjoy the same levels of speed technology and information technology. For

example, in terms of speed, it is known that algorithmic traders concentrate on large stocks. In

terms of information, some firms have higher analysts’ coverage, more media exposure, and higher

institutional holdings than others. The above predictions on investors’ technology acquisition

thus speak to the cross-section of financial markets. Further, the model also relates to investor

demographics in different securities. For example, one can interpret the fast investors as hedge

funds, who trade more often and possibly have information advantage over slow investors like

pension funds and retail investors. Proposition 5 implies that securities with moderate information

acquisition cost, e.g., medium cap and moderate analyst coverage, should see most concentrated

trading by (fast and informed) hedge funds, holding everything else the same. In particular, they

should trade sooner (faster) on their information.
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4.3.3 Technology and price discovery

The effects of the technologies on the aggregate price efficiency τt are illustrated in Figure 5.

The patterns shown in Panel (a), where the speed technology дt varies with a fixed information

technology дh, are qualitatively similar to those shown in Panel (b) of Figure 3. This suggests

that even with endogenous information acquisition, the speed technology’s temporal fragmentation

effect dominates.The following result extends Proposition 4.

Proposition 4 (continued). Whether investors’ information acquisition is exogenous or endoge-

nous, in the interior equilibrium, as the speed technology дt advances, the short-run price

efficiency τ1 monotonically increases, while the long-run price efficiency τ2 initially decreases

but eventually increases.

The speed technology’s temporal fragmentation effect highlights the contribution of this paper.

For example, this mechanism differs from Dugast and Foucault (2017) and Kendall (2017), who

show that the acquisition of shallow information in the short-run can crowd out the acquisition

of deep information, therefore hurting the long-run price efficiency. Banerjee, Davis, and Gondhi

(2016) also argue that cheaper fundamental information could still worsen price efficiency, because

investors might want to learn more about a price-elastic liquidity shock component in asset prices.

Panel (b) of Figure 5 contrasts Panel (b) of Figure 2 with varying information technology дh.

While the short-run price efficiency τ1 monotonically increases in both cases, the long-run price

efficiency τ2 is no longer monotone when investors can endogenously acquire speed. Surprisingly,

advancements in the information technology might hurt overall price efficiency:

Proposition 6 (Information technology and price efficiency). In the interior equilibrium,

advancements in the information technology always improves short-run price efficiency τ1.

However, with endogenous speed acquisition, long-run price efficiency τ2 is initially hurt but

eventually improved. Mathematically, ∂τ1/∂дh > 0 for all дh; and ∂τ2/∂дh < 0 (> 0) when дh is

small (large).
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Figure 5: Price efficiency. This figure illustrates how the aggregate price efficiency τt is affected differently
by different technologies. Panel (a) shows the response to varying speed technology дt and Panel (b) to
information technology дh . To manifest the patterns, only the range with interior equilibrium is shown;
i.e. дt > д̂t in Panel (a) and дh > д̂h in Panel (b). Further, the vertical axis in Panel (b) is split into two
ranges, respectively, for the long-run and the short-run price efficiency. The primitive parameters used in
this numerical illustration are: τ0 = 1.0, τU = 4.0, γ = 0.1, and kh(m) = √

m. For Panel (a), дh = 0.2. For
Panel (b), дt = 10.0.

To understand how information technology might hurt price efficiency, one needs to recall from

the discussion above 1) that the two technologies can exhibit complementarity (when дh is close to

the threshold д̂h); and 2) that speed technology temporally fragments the price discovery process.

Combining these two sheds intuition on the U-shape τ2: Start from a very low level of information

technology (дh close to д̂h), at which most investors stay slow (trading concentrates at t = 2). When

дh improves, because of the complementarity, investors acquire both speed and information. In

turn, those who have acquired speed fragment the price discovery process and such fragmentation

hurts the long-run price efficiency τ2 (Proposition 4). Eventually, as the information technology

improvement furthers (large дh), few investors acquire speed because the two technologies become

substitutes, the population again concentrates at t = 2, the fragmentation effect diminishes, and the

aggregate price efficiency improves.
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Technology has always been evolving but has price efficiency improved alongside the tech-

nology? Proposition 4 and 6 both predict that long-run price efficiency has a U-shape in either

technology, and there is empirical evidence supporting such nonmonotonicity. For example, Fig-

ure 6 of Morck, Yeung, and Yu (2000) shows that the firm-specific component of stock returns

exhibits a U-shape trend after World War II. They argue that the firm-specific component of stock

return variation reflects the firm-level information.

It is tempting, looking at the U-shapes in Figure 5, to draw the conclusion that the potential

dysfunction of the price discovery function of the financial market is not necessarily relevant:

Since the decreases in the long-run price efficiency only occurs to a local range of parameters, if the

technologies are advanced enough, the price efficiency would only monotonically increase. Such

a conclusion is partial. The panels of Figure 5 only show the effect of one technology, holding

the other technology constant. (Equivalently, both Proposition 4 and 6 study comparative statics,

cateris paribus.) In reality, both technologies advance continuously, and it is the joint force of the

two that determines whether price efficiency increases or decreases. This point is further illustrated

in Figure 8, a contour plot of (дt ,дh), later in Section 5.2.

4.4 The speed of price discovery

A noteworthy feature of the model is the temporal fragmentation of the price discovery, due to

investors’ endogenous speed technology acquisition. This feature enables researchers to study, for

example, “given certain information and speed technology, how fast does price discovery occur?”

This novel angle of “price discovery speed” differs from the conventional focus on the magnitude

and is of great importance for market quality. Compare two market environments, both of which

eventually (in the long-run) will lead to the same level of price efficiency, τ2. All else equal, the one

that achieves “faster” price discovery is more efficient than the other, as the end-users of the financial

market can utilize such information more timely for purposes like hedging, real investment, and

production.
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To see the importance of price discovery speed, consider an economy with only the speed

technology, as studied in Section 4.2. The effect of дt is illustrated in Panel (b) of Figure 3. There

is a firm who learns from the asset’s price to make real investment decisions. It can decide in the

short-run at t = 1 (e.g., end of the current trading day) or wait for more information in the long-run

at t = 2 (e.g., end of the week). The firm needs at least three units of price efficiency, i.e. τt ≥ 3,

to deem the asset’s price reliably informative. When the speed technology is low, roughly дt < 60,

the firm will have to wait till the long-run (t = 2) because τ1 < 3 < τ2. (Note the horizontal-axis is

in log-scale.) If waiting is costly, a boost in the speed technology, e.g. to дt > 60, can help the firm

expedite decision making sooner at t = 1. The real efficiency benefits from such speed technology.

There is a catch, however, due to the non-monotone effect on the magnitude of price discovery.

The long-run price efficiency τ2 initially decreases (and eventually increases) with the speed

technology. This could create problem for the firm in the example above, especially when it

requires a more informative asset price, e.g. τt ≥ 4. If the speed technology is still very low (дt

close to д̂t ), the firm will be able to make its decision eventually in the long-run (t = 2) as τ2 > 4.

However, as the speed technology (moderately) improves, to around дt = 10, the speed technology

fragments price discovery and hurts the magnitude of price efficiency. Now even in the long-run,

τ2 < 4 and the firm is never able to rely on the asset price confidently. The real efficiency is hurt.

The above example shows that real-decision makers (hedgers, producers, etc.) value both the

speed and the magnitude of price discovery. The magnitude τt has been well-define and extensively

studied in the literature. This paper formally introduces the price discovery speed as:

∆τ1
∆τ1 + ∆τ2

,

i.e., the percentage of price discovery that is achieved in the short-run over the total price discovery

in the long-run. Such a ratio isolates the magnitude of price discovery on the speed. The higher

(lower) is the ratio, the faster (slower) is price discovery, as most of the discovery is achieved in

the short-run (long-run). The following proposition describes how this perspective of the quality
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Figure 6: Speed of price discovery. This figure illustrates how the speed of price discovery is affected
differently by different technologies. The level of the speed technology дt varies in Panel (a), while the
level of the information technology дh varies in Panel (b). The primitive parameters used in this numerical
illustration are: τ0 = 1.0, τU = 4.0, γ = 0.1, and kh(m) = √

m. For Panel (a), дh = 0.2. For Panel (b),
дt = 10.0.

of price discovery is affected by technological advancement.

Proposition 7 (Speed of price discovery and technology). In the interior equilibrium, the

speed of price discovery increases with the speed technology. However, an improvement in the

information technology initially increases, but eventually decreases, the speed of price discovery.

Figure 6 numerically illustrates the patterns. Panels (a) shows that as the speed technology

increases, the speed of price discovery monotonically increases as well. This is unsurprising as

the dominating effect of speed technology is to drive up µF, the size of the fast investors, which in

turn adds to the early price discovery ∆τ1 = τUµ
2
Fh

2
F/γ 2, relative to the late price discovery ∆τ2 =

τU · (1 − µF)2h2
S/γ 2.

This monotone increasing pattern, however, no longer holds with respect to the information

technology дh, as shown in Panel (b). While initially speeding up, the price discovery process even-
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tually slows down for sufficiently high дh. This is because of the complement and the substitution

effect between the speed and the information technology, as discussed in Proposition 5. Initially,

when дh increases from a relatively low level, there is complementarity between investors’ speed

and information acquisition: Not only do they acquire more information, but also more speed.

The increase in µF, drives up ∆τ1 more than ∆τ2, speeding up the price discovery process. When

the information technology is advanced enough, however, the intratemporal competition among

fast investors is so intense that fewer of them are willing to stay fast, reducing the equilibrium µF;

see Panel (c) of Figure 4. Information acquisition eventually substitutes speed acquisition: As µF

reduces (and µS increases), price discovery slows down and occurs more at t = 2.

Further analysis of how the price discovery speed would affect real-efficiency (Bond, Edmans,

and Goldstein, 2012) will be an interesting extension from the current model. In particular, the

analysis will likely reveal new channels of how technologies could create (or destroy) real social

value, due to real agents’ value in price discovery speed. As such extension will require a formal

model of the real sector (and its interaction with the financial market), which is beyond the current

paper’s focus on the financial market, it is left for future research.

5 Discussion and robustness

This section discusses some choices in setting up the model. The robustness of the model predictions

as well as potential alternative interpretations of the results are also offered.

5.1 Frequent fast trading

The model so far has analyzed the scenario of “pure speed differential”, in which the speed

technology allows fast investors trade at t = 1, sooner than slow investors at t = 2. Under the

alternative “frequent fast trading”, fast investors can trade at tF = {1, 2}. That is, the speed

technology in addition allows fast investors to trade more frequently. It turns out that the main
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results studied in Section 4 qualitatively remain the same when fast investors are given this additional

trading opportunity.

To begin with, the following lemma establishes investors’ optimal trading.

Lemma 2 (Trading under “frequent fast trading”). An investor i’s cumulative demand in

round t is xit = hi
γ (si − pt ), where hi is his information acquisition, si is his private signal, and

pt is the round t trading price set by the competitive market maker. The price discovery ∆τt and

the trading price pt satisfy the same recursions (4) and (5) as stated in Lemma 1. At t = 0, fast

and slow investors’ certainty equivalent are given, respectively, by

πF =
1
2γ

ln

(
1 +

hF

τ1
+
hF

τ 2
2

∆τ2
τ1

)
− c(hF) −

1
дt

;

πS =
1
2γ

ln
(
1 +

hS

τ2

)
− c(hS).

(10)

Lemma 2 above outlines investors’ optimal trading strategy in each round, the dynamics of price

efficiency τt , as well as investors’ ex ante certainty equivalent. Two observations are worth

highlighting when comparing with Lemma 1: First, inheriting from Vives (1995), the recursions

of price efficiency τt and of the price pt remain exactly the same, in spite of fast investors’ frequent

trading. The reason is that the competitive investors only acquire information once. While the fast

investors trade repeatedly, they do not reveal additional information to the market. To see this, note

that a fast investor’s cumulative demand at t is xit = hi
γ (si − pt ). His net demand in round t = 2,

therefore, is xi2 − xi1 =
hi
γ (p1 − p2), independent of his private signal si . (He simply rebalances his

position based on the new price p2.) As such, a fast investor contributes his private signal to price

discovery once and only once, at t = 1.

Second, a fast investor’s ex-ante certainty equivalent sees an extra term of
h2

F
τ 2

2

∆τ2
τ1

inside the ln(·)

operator. In fact, this is the only difference of this extension compared to “pure speed differential”.

This positive term represents fast investors’ additional information rent from repeated trading. It is

increasing in hF as this extra information rent still relies on the precision of his private information.
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Figure 7: Price efficiency under repeated fast trading. This figure replicates the patterns shown in
Figure 5 to illustrate how the aggregate price efficiency τt is affected differently by different technologies,
under the model extension where fast investors can trade at both t = 1 and t = 2. The primitive parameters
used in this numerical illustration are: τ0 = 1.0, τU = 4.0, γ = 0.1, and kh(m) = √

m. For Panel (a), дh = 0.2.
For Panel (b), дt = 10.0.

It decreases in both ∆τ1 and ∆τ2 because more price discovery in either t = 1 or t = 2 reduces the

advantage of his private signal from repeated trading.

To solve the equilibrium, it remains to pin down investors’ optimal information acquisition hF

and hS for fast and slow investors, respectively, together with the equilibrium population sizes µF

of fast investors (and µS = 1 − µF of slow investors) so that πF = πS. Unfortunately, the additional

term h2
i

τ 2
2

∆τ2
τ1

in fast investor’s certainty equivalent limits the analytic tractability. Nevertheless, the

properties of the equilibrium can be numerically examined. It turns out, after very extensive

numerical exploration, that the patterns found under “pure speed differential” remain robust when

fast investors trade more frequently. (That is, the frequent trading advantage of the speed technology

only provides a second-order effect.) To demonstrate the robustness, Figure 7 reproduces Figure 5

to show that both speed and information technologies have U-shaped nonmonotonic effect on the

long-run price efficiency. Other numerical results are omitted for brevity.
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It is worth emphasizing that allowing fast investors to trade more frequently does not invalidate

the two main findings: 1) that speed technology has a temporal fragmentation effect on price

discovery; and 2) that different (inter/intratemporal) crowding-out effects drive the speed and the

information technology to be either substitutes or complements. In fact, these two findings only

depend on the price discovery component, ∆τt , which, as Lemma 2 shows, remains the same as

under “pure speed differential”.

5.2 Dependence between the two technologies

In the current model, the acquisition of one technology does not affect the other. The independence

between the two technologies need not necessarily be the case. On the one hand, the two can

complement each other. The complementarity can arise from the common hardware needed, e.g.

processing capacity (CPUs), bandwidth (cables and optical fiber), etc. Thus, having invested in

such hardware for one technology can reduce the cost for the other (e.g., дh increases in дt ). This

feature is often seen in the algorithmic trading and high-frequency trading literature, where an

investor’s technology investment gives him a “bundled” advantage in both information and speed.

Examples include Hoffmann (2014); Biais, Foucault, and Moinas (2015); Bongaerts and Achter

(2016); among others. In contrast, the current model predicts “endogenous bundling” of the two

technologies, as fast investors always acquire more information than slow ones (equation 7).

On the other hand, the two technologies can exhibit certain substitution. Dugast and Foucault

(2017) argue that because information processing is time consuming, the speed of the “deeply”

informed investors is limited and they can only trade after the “shallowly” informed. For example,

sending analysts for firm visits is a time-consuming way of acquiring information. That is, investing

in one technology might increase the (marginal) cost for the other (e.g., дh decreases in дt ).

Exactly how speed and information technologies interfere with each other is perhaps a question

of engineering and computer science. The current model specification sets a benchmark with

independent technologies—an agnostic view. The outcomes of the model, therefore, offer a
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Figure 8: Price efficiency plotted against both technologies. This contour graph plots how the long-run
price efficiency τ2, in blue-solid line, and the short-run price efficiency τ1, in red-dashed line, vary with the
two technologies, дt and дh . The two arrows illustrates the different effects of an information technology
advancement. The left arrow (green) shows complementarity between the two, while the right arrow (blue)
shows substitution. The primitive parameters used in this numerical illustration are: τ0 = 1.0, τU = 4.0,
γ = 0.1, and kh(m) = √

m.

clean set of predictions on investors’ endogenous demand for the two technologies, as opposed to

exogenous substitution/complementarity built in the cost functions.

In fact, with independent technologies, the current model offers a starting point to study

situations where the two technologies exhibit exogenous substitution of complementarity. Suppose

the market quality of interest is price efficiency τt . Figure 8 plots τ1 (blue-solid line) and τ2 (red-

dashed line) on a contour of (дt ,дh).7 When the two technologies exhibit complementarity, the

effect of an increase in one technology can be examined by, e.g., the left (green) arrow in the figure

7 Note the pattern shown is consistent with Figure 5: Moving right on a horizontal cut of Figure 8, the information
technology дh is fixed and as the speed technology дt improves, the short-run price efficiency τ1 nonmonotonically
increases, while the long-run price efficiency τ2 first decreases and then increases. Moving upward on a vertical cut,
дt is fixed and as дh increases, τ1 monotonically increases but τ2 first decreases and then increases.
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(дh increases from 0.15 to 0.16, while дt increases from about 10 to 100). If instead the substitution

of the technologies dominate, the effect can be shown by, e.g., the right (blue) arrow (дh mildly

increases from 0.125 to 0.135, while дt drops sharply from about 4,000 to 50). In both examples,

note that the long-run price efficiency τ2 (blue-solid contour lines) drops. Note that the right (blue)

arrow is consistent with Dugast and Foucault (2017), who show that when processing information

takes time, better information might hurt price efficiency.

5.3 The amount of noise trading

Introducing noise trading Ut in each round is a standard practice to avoid a fully revealing equilib-

rium. The current setup assumes that the magnitude of noise trading in each round is the same:

var[Ut ] = τ−1
U for all t ∈ {1, 2}. This need not be the case. It is straightforward to extend the model

to account for time-varying noise trading by assuming time-dependent var[Ut ] = τU
−1
t . Such an

extension will only quantitatively change the equilibrium. The key economic insights of the model

are unaffected. First, irrespective of the relative sizes of noise trading, the speed technology creates

temporal fragmentation in investors’ participation and in the price discovery process. Adapting the

price efficiency recursion (equation 8) yields

τ2 = τ0 +
τU1
γ 2 µ2

Fh
2
F +

τU2
γ 2 µ2

Sh
2
S

and it can be seen that the speed technology still fragments the price discovery process into the early

and the late fragments (but with different τU in each fragment). Second, the result that the speed

and the information technologies can be either substitutes or complements depends only on the

relative strength of intratemporal competition and intertemporal crowding out. Having different

sizes of noise trading would only affect the threshold of when which effect dominates. Indeed,

all the analysis in Section 4 qualitatively go through. For example, Figure 9 illustrates that the

qualitative predictions of Proposition 4 and 6 remain robust about the long-run price efficiency τ2.

The underlying assumption for such (possibly time-varying) exogenous noise trading is that
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(b) Varying t = 2 noise trading τU2 (fixing τU1 = 4.0)
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Figure 9: Time varying noise trading. This figure illustrates how different amount of noise trading
τU1 and τU2 affects the long-run price discovery, τ2. Three levels of noise trading are illustrated: τUt ∈
{2.0, 4.0, 6.0}. Panel (a) varies τU1 while fixing τU2 = 4.0. Panel (b) varies τU2 while fixing τU1 = 4.0. In
each panel, the left and the right graph increases the speed and the information technology, respectively. The
other primitive parameters used in this numerical illustration are: τ0 = 1.0, γ = 0.1, and kh(m) = √

m.
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some investors in the economy (unmodeled) have no flexibility at all in terms of how much and

when to trade. Endogenizing such “noise trading”, making such “noise” demand either price-

elastic or timing sensitive, will lead to richer predictions. For example, the aggregate noise can

arise from investors’ hedging of their endowment shocks, as in Diamond and Verrecchia (1981).

More recently, Goldstein, Ozdenoren, and Yuan (2013) and Banerjee, Davis, and Gondhi (2016)

assume price-elastic liquidity trading. Such extensions are beyond the scope of the current paper

and are left for future research.

5.4 The market clearing mechanism

In each trading round t ∈ {1, 2}, investors’ demand schedules are cleared by a competitive market

maker, who can take any position at the efficient price. The key advantage of having such a market

maker is that he helps ensure the trading price pt is always semi-strong efficient (as in Kyle, 1985).

This way, price efficiency in a later round is naturally higher than in earlier rounds, as the market

never forgets the information already discovered.

A market maker is not the only way to facilitate trading. An alternative is to determine the

price pt by market clearing, as in Grossman and Stiglitz (1980) and Verrecchia (1982). Under

this alternative setup, investors will trade for two reasons: 1) their private information and 2)

providing liquidity for the noise demandUt . The liquidity provision motive for trading is not in the

current model: The competitive market maker can take any position needed to clear the market and

investors only trade for their information advantage. Cespa and Vives (2012, 2015) study these two

different motives in details.

The current model is set up intentionally with the competitive market maker, so that all the

results clearly go only through the information channel, uncontaminated by liquidity provision

motives. Including the latter will be an interesting extension, but beyond the current paper, to

study how speed technology affects liquidity provision in the market. Importantly, irrespective

of the market maker, this paper’s two key mechanisms—the temporal fragmentation by the speed
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technology and the novel intertemporal crowding out effect— remain robust.

6 Conclusion

There are two aspects of price discovery: the magnitude and the process. The magnitude aspect

(investors’ information acquisition) has been a key focus of the existing literature. Studying a

model with investors’ endogenous speed acquisition (alongside their information acquisition), this

paper turns the focus to the process of price discovery, i.e., the process through which acquired

information is incorporated into price. The analysis reveals that these two aspects of price discovery

are intrinsically connected via investors’ competition. There are two key mechanisms at work: First,

with heterogeneous speed, the investors participate in the market at different points of time and

the price discovery is accordingly fragmented temporally. Such temporal fragmentation allows

the model to differentiate investors’ well-known intratemporal competition (e.g., Grossman and

Stiglitz, 1980) from a novel intertemporal crowding out effect. Second, investors’ information and

speed acquisition can be either complements or substitutes of each other, depending on the relative

strengths of the intra- and the intertemporal competition. Based on the interaction of these two

mechanisms, the model generates testable implications on how advancement in technology would

affect market quality. Most notably, when either the speed or the information technology improves,

through the negative impact on the price discovery process, the aggregate magnitude of price

discovery can be hurt. This provides a cautionary tale of the disruptive effects of how technological

advancement, as seen in recent years, might negatively affect aggregate price efficiency in financial

markets.
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Appendix

A Summary of equilibrium properties

The model predictions from Section 4.1 to 4.3 are summarized in the form of “regressions”
in Table 1. The “dependent variables”, shown in columns, include investors’ (individual and
aggregate) information acquisition and speed acquisition, as well as the effects on short-run and
long-run price discovery. The “regressors” are (positive) shocks to the technology levels, дh and
дt .

(1) Information acquisition (2) Speed acquisition (3) Price discovery

hF hS
∫ 1
0 hidi µF µS

∫ 1
0 1{ti=1}di τ1 τ2

(a) Exogenous speed and endogenous information

дh: ↗ ↗ ↗ ↗ ↗

(b) Exogenous information and endogenous speed

дt : ↗ ↘ ↗ ↗ ↘↗

(c) Endogenous speed and endogenous information

дh: ↗ ↗ ↗ ↗↘ ↘↗ ↗↘ ↗ ↘↗

дt : ↘ ↗↘ ↗↘ ↗ ↘ ↗ ↗ ↘↗

Table 1: Summary of effects of technology shocks. This table summarizes how technology shocks affect
different aspects of the market: (1) investors’ information acquisition; (2) speed acquisition; and (3) price
discovery. For each of these three aspects, both the short-run (hF, µF, and τ1) and the long-run (hS, µS,
and τ2) effects are shown. In addition, investors’ aggregate demand for information (

∫ 1
0 hidi) and for speed

(
∫ 1
0 1{ti=1}di) are also tabulated. Three setting are considered: investors (a) have exogenous speed but can

endogenously acquire information; (b) have exogenous information but can endogenously acquire speed;
and (c) can endogenously acquire both speed and information. Each row represents a positive shock in the
respective technology, дh for information and дt for speed. A monotone increasing (decreasing) response to
the technology shock is indicated by ↗ (↘), while a hump-shape (U-shape) by ↗↘ (↘↗).
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B Proofs

For notation simplicity, the proofs will often use µ1 = µF, µ2 = µS, h1 = hF, h2 = hS, π1 = πF,
and π2 = πS. This way, the subscript t = 1 can handily refer to both the time t = 1 and the “F”ast
investors; and similarly, t = 2 refers to both the time t = 2 and the “S”low investors.

Lemma 1

Proof. The proof proceeds by conjecture-and-verify (as in Vives, 1995). Conjecture that a fast
investor i’s demand schedule is xi = ai,1si − bi,1p1 and that a slow investor i’s demand schedule is
xi = ai,2si − bi,2p1 − ci,2p2. At t = 1, with only the fast investors, the aggregate demand is

L1(p1) =
∫
i∈[0,1]

xi(p1, si)1{ti=1}di +U1 =

(∫
ti=1

ai,1di
)
V −

(∫
ti=1

bi,1di
)
p1 +U1,

where the convention
∫
εidi = 0 is used. From the market maker’s perspective, the sufficient

summary statistic, therefore, is the intercept of the above linear demand, which can be transformed
into z1 := V +U1/

(∫
ti=1 ai,1di

)
. Therefore, using standard property of normal distribution,

τ1 = var[V | L1(·) ]−1 = τ0 +

(∫
ti=1

ai,1di
)2
τU.(B.1)

The incremental price discovery is ∆τ1 =
(∫

ti=1 ai,1di
)2
τU. The maker maker sets the efficient price

p1 = E[V | L1(·) ] = E[V | | z1 ] =
τ0
τ1
p0 +

∆τ1
τ1

z1.(B.2)

As such, the trading price p1 is an equivalent statistic of z1. From a fast investor’s perspective,
var[V | si ,p1 ]−1 = var[V | si , z1 ]−1 = hi+τ1 andE[V | si ,p1 ] = E[V | si , z1 ] = (τ0p0+hisi+∆τ1z1)/(τ1+

hi). Using the above, a CARA fast investor i’s optimal demand is

xi =
E[V | si ,p1 ] − p1

γvar[s1,p1]
=

1
γ
(hisi + ∆τ1z1 − (τ0 + hi + ∆τ1)p1) =

hi
γ
(si − p1).

(Recall the normalization p0 = 0.) The conjectured linear demand xi = ai,1si − bi,1p1 for fast
investors has thus been verified with coefficients ai,1 = bi,1 = h/γ .

At t = 2, only slow investors trade and the aggregate demand is

L2(p2;p1) =
∫
i∈[0,1]

xi(p2, si ;p1)1{ti=2}di +U2

=

(∫
ti=2

ai,2di
)
V −

(∫
ti=2

bi,2di
)
p1 −

(∫
ti=2

ci,2di
)
p2 +U2,
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Recallingp1, the market maker updates his information set to {p1, z2}, wherez2 := V+U2/
(∫

ti=2 ai,2di
)

summarizes the new information in L2(·). Then,

τ2 = var[V | p1,L2(·) ]−1 = var[V | z1, z2 ]−1 = τ1 +

(∫
ti=2

ai,2di
)2
τU,(B.3)

where the incremental price discovery ∆τ2 =
(∫

ti=2 ai,2di
)2
τU. The market maker then sets the

efficient price

p2 = E[V | p1,L2(·) ] = E[V | z1, z2 ] =
τ0
τ2
p0 +

∆τ1
τ2

z1 +
∆τ2
τ2

z2.(B.4)

A slow investor updates var[V | si ,p1,p2 ]−1 = var[V | si , z1, z2 ]−1 = h1 + τ2 and E[V | si ,p1,p2 ] =
E[V | si , z1, z2 ] = (τ0p0 +∆τ1z1 +∆τ2z2 +hisi)/(τ2 +hi). Solving a quadratic optimization problem,
a CARA slow investor’s optimal demand is

xi =
E[V | si ,p1,p2 ] − p2

γvar[s1,p1,p2]
=

1
γ
(hisi + ∆τ1z1 + ∆τ2z2 − (τ0 + ∆τ1 + ∆τ2 + hi)p2) =

hi
γ
(si − p2).

Thus the conjectured linear demand for slow investors is also verified with coefficients ai,2 = ci,2 =
hi/γ and bi,2 = 0. That is, the slow investor’s demand is independent of p1.

The analysis so far has proved the investors’ optimal demand as stated in the lemma. In the
meantime, equations (B.1) through (B.4) verify the recursion systems of pt and ∆τt . It remains to
compute the investors’ ex ante certainty equivalent. Consider a fast investor. Before accounting
for the technology acquisition cost, his expected utility at t = 0 is −E

[
exp

{
− [E[V | si,p1 ]−p1]2

2var[V | si,p1 ]
}]
. The

expressions derived earlier yield the following: E[V | si ,p1 ] − p1 =
hi

τ1+hi

(
τ0
τ1
V + εi − ∆τ1

τ1

U1∫
tj=1(hj/γ )dj

)
and var[V | si ,p1 ]−1 = τ1 + hi . Plug the above into the t = 0 expected utility for a fast investor,
simplify, and the resulting ex ante certainty equivalent before technology acquisition costs is
1
2γ ln

(
1 + hi

τ1

)
. Subtracting the information acquisition cost and the speed acquisition cost gives

the expression stated in the lemma. The calculation for slow investors repeats the above and is
omitted. □

Lemma 2

Proof. An investor i’s terminal wealth is (p2 − p1)xi,1 + (V − p2)xi,2, where xi,t is his cumulative
position by round t . In particular, a slow investor has xi,1 = 0. Thus, at t = 2, each investor i solves
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maxxi,2 E
[
− exp

{
−γ ·

[
(P2 − P1)xi,1 + (V − P2)xi,2

]}�� si ,p1,p2,xi,1
]
, or, equivalently,

− exp
{
−γ · (p2 − p1)xi,1

}
max
xi,2
E
[
− exp

{
−γ · (V − P2)xi,2

}
| si ,p1,p2

]
.(B.5)

Hence, the optimization problem reduces to the same one as the one faced by the slow investors
in the main model. (The position xi,1 is irrelevant for the t = 2 optimization.) The same
conjecture-and-verify analysis as in Lemma 1 applies and gives the optimal linear cumulative
demand, xi,2 = (hi/γ )(si − p2), for both the fast and the slow investors.

Now consider fast investors’ optimization at t = 1. Substituting his optimal demand xi,2 into
optimization (B.5), at t = 1, a fast investor i solves

max
xi,1
E

[
− exp

{
−γ · (P2 − P1)xi,1 −

h2
i

2(τ2 + hi)
(Si − P2)2

}
| si ,p1

]
,

where var[V | si , P2 ]−1 = τ2+hi . Note that the second term in the exponential does not affect the op-
timization. Further, due to the competitive market maker, E[V | si ,p1 ] = E[E[V | si ,p1, P2 ]| si ,p1 ] =
E[P2 | si ,p1 ]; and, similarly, var[V | si ,p1 ] = var[P2 | si ,p1 ]. Hence, the fast investor equivalently
solves maxxi,1 E

[
− exp

{
−γ · (V − P1)xi,1

}
| si ,p1

]
. The optimization problem is equivalent to the

one for fast investors solved in the proof of Lemma 1 and the same conjecture-and-verify analysis
gives xi,1 = (hi/γ )(si − p1).

The recursions of τt and pt can be found using the above optimal demand functions. At t = 1,
since the fast investors’ optimal demand is the same as shown in Lemma 1, the same results hold:

∆τ1 = τ1 − τ0 =
(∫

tj=1
hj
γ dj

)2
τU and p1 = p0 +

∆τ1
τ1

(
V +

γU1∫
tj=1 hjdj

)
. At t = 2, the market maker

observes the aggregate demand

L2(p2) =
∫
tj=1

(
xj,2(sj ,p2) − xj,1(sj ,p1)

)
dj +

∫
tj=2

xj,2(sj ,p2)dj +U2

= p1

∫
tj=1

hj

γ
dj − p2

∫
∀j
hj

γ
dj +V

∫
tj=2

hj

γ
dj +U2,

where the second equality follows the optimal demand schedules derived earlier. Observe how
the fast investors’ signals are exactly offset, not contributing to the price discovery in the second
fragment (t = 2). Intuitively, this is because their signals are already reflected in the first fragment
(the t = 1 trading) and the only new information arises from the slow investors’ signals. Again,
the market maker sets the price exactly the same as in Lemma 1 and the resulting recursions hold:

∆τ2 = τ2 − τ1 =
(∫

tj=2
hj
γ dj

)2
τU and p2 = p1 +

∆τ2
τ2

(
V +

γU2∫
tj=2 hjdj

− p1

)
.

Finally, consider investors’ ex ante certainty equivalent. Since slow investors only trade once
at t = 2, they expect the same certainty equivalent πS as solved in Lemma 1. A fast investor i’s
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unconditional expected utility, before paying the technology cost, is

E

[
− exp

{
−γ · (P2 − P1)xi,1 −

h2
i

2(τ2 + hi)
(Si − P2)2

}]
=E

[
− exp

{
−γ · (Si − P1)xi,1 + γ · (Si − P2)xi,1 −

h2
i

2(τ2 + hi)
(Si − P2)2

}]
=E

[
− exp

{
−hi · (Si − P1)2 + hi · (Si − P2)(Si − P1) −

h2
i

2(τ2 + hi)
(Si − P2)2

}]
where the last equality follows the optimal demandxi,1(·) derived above. DefineY := [Si−P1; Si−P2]
as a bivariate normal (column) random vector, with

EY =

[
0
0

]
and varY =

[
τ−1

1 + h
−1
i τ−1

2 + h
−1
i

τ−1
2 + h

−1
i τ−1

2 + h
−1
i

]
.

Then the above expected utility can be rewritten as E[−eYTAY ] where the coefficient matrix A is
given by A = [−hi ,hi/2;hi/2,−h2

i /(2(τ2 + hi))]. Evaluating the expectation with the density of the
bivariate normal Y yields the expected utility of −τ1τ2/

√
τ1 · (hi + τ2)(−hiτ1 + (hi + τ1)τ2). Solving

the certainty equivalent yields the form of πF stated in the lemma. □

Proposition 1

Proof. The proof begins by writing investors’ certainty equivalent π1 and π2 as functions of the fast
population size µ1 in [0, 1]. To do this, first note that from the first-order condition (6), investors’
endogenous choice of hi can be written as a monotone function of τti . By Lemma 1, τ1 = τ0 + ∆τ1

and τ2 = τ0 + ∆τ2, where ∆τt = τUµ
2
t h

2
t /γ 2. Hence, τ1 is effectively a function of µ1, while τ2

of both µ1 and µ2. Finally, note that µ2 = 1 − µ1. As such, investors’ certainty equivalent πt are
functions of µ1. Then, depending on µ1, there are three cases.
Case 1: First, suppose µ1 = 1 and µ2 = 0; i.e. all investors pay the speed technology cost 1/дt

and become fast. If this is the case, then in equilibrium π1 ≥ π2 must hold. Consider
an investor i’s unilateral deviation to not investing in the speed technology, saving the
cost of 1/дt and becomes slow. By equation (4), the price efficiency remains the same,
τ1 = τ2, because a single investor’s deviation has zero population measure. Then i’s optimal
technology investment hi , by the first-order condition (6), remains the same as if he were
fast: hi = h(τ2) = h(τ1) = h1. As a result, his certainty equivalent π2 = π1 + 1/дt > π1

and he indeed will deviate. Such a case of µ1 = 1 and µ2 = 0, therefore, can never be an
equilibrium.
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Case2: Second, consider the case of µ1 = 0 and µ2 = 1. (This will correspond to the corner
equilibrium stated in the proposition.) If this is an equilibrium, it has to be the case
that π1 ≤ π2, i.e., all investors stay slow. The argument below shows that fixing all
other exogenous parameters, π1 ≤ π2 holds if and only if дt < д̂t , for some threshold д̂t .
At µ1 = 0, τ1 = τ0 < τ2 and thus a slow investor’s unilateral deviation to fast yields
π1 |µ1=0 =

1
2γ ln

(
1 + h1

τ0

)
− Ûc(h1) − 1

дt
, where h1 is the unique solution implied by the first-

order condition (6) with τ1 = τ0. By envelope theorem, ∂π1/∂дt = 1/д2
t > 0. Therefore,

π1 |µ1=0 is monotone increasing in дt with limits limдt↓0 π1 = −∞ < 0 < π2 < limдt↑∞ π1.
(Note that π2 |µ1=0 is a finite number unaffected by дt .) By continuity, therefore, there exists
a unique д̂t such that π1 = π2 when µ1 = 0. As such, π1 ≤ π2, supporting µ1 = 0 and
µ2 = 1, if and only if дt ≤ д̂t . When instead дt > д̂t , this corner equilibrium does not exist.

Case3: Third, consider the interior case of µ1 ∈ (0, 1), implying π1 = π2. The key is to show
the following result: The difference π1 − π2 strictly decreases in µ1. Evaluate the partial
derivative of π1 − π2 with respect to µ1 and after some simplification,

∂(π1 − π2)
∂µ1

· 2γ =
[
h2/τ2
τ2 + h2

− h1/τ1
τ1 + h1

]
∂τ1
∂µ1
+

h2/τ2
τ2 + h2)

∂∆τ2
∂µ1
.

Note that the term in the square-brackets is non-positive, because τ2 ≥ τ1 by construction
and because ht = h(τt ) decreases in τt as implied by the first-order condition (6).
One still needs to sign both ∂τ1/∂µ1 and ∂∆τ2/∂µ1. To do so, rearrange the first-
order condition (6) for t = 1 as (τ0 + ∆τ1 + дhkh(m1))/ Ûkh(m1) = дh/(2γ ) with ∆τ1 =

µ2
1д

2
h
kh(m1)2τU/γ 2 following equation (4). It can then immediately be concluded that

m1 strictly decreases in µ1, as otherwise the left-hand side of the above equation is al-
ways increasing in µ1, unable to maintain the equality. (Recall that kh(·) is concavely
increasing.) Similarly, it is also known that τ1 (= τ0 + ∆τ1) decreases in m1. Hence, τ1

(and ∆τ1) increases in µ1. For t = 2, (τ0 + ∆τ1 + ∆τ2 + h2)/ Ûkh(m2) = дh/(2γ ) with ∆τ2 =

(1 − µ1)2д2
h
kh(m2)2τU/γ 2. Note that ∂∆τ2

∂µ1
=

(
−2(1 − µ1)h2

2 + 2(2 − µ1)2h2
∂h2
∂µ1

)
τU
γ 2 . As such,

if ∆τ2 increases in µ1, then it has to be the case that ∂h2/∂µ1 > 0. Because h2 = дhkh(m2),
m2 is also increasing in µ1. It then follows that the left-hand side of the above equation
strictly increases in µ1—∆τ1, ∆τ2, and m2 all increase with µ1, invalidating the equality.
Therefore, it must be ∆τ2 decreases in µ1.
As τ1 increases in µ1 but ∆τ2 decreases in µ1, one can conclude from the above partial
derivative that the difference π1 − π2 indeed strictly decreases in µ1.

To sum up, recall from the first cases that at µ1 = 1, π1 < π2. From the second case, at µ1 = 0,
π1 > π2 if and only if дt > д̂t . Hence, when дt ≤ д̂t , the equilibrium with interior µ1 does not exist
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due to the above monotonicity of π1 −π2 in µ1. When дt > д̂t , there exists a unique µ1 ∈ (0, 1) such
that π1 = π2, sustaining this equilibrium. This completes the proof of this proposition. □

Proposition 2 and Corollary 4

Proof. First, the following shows that ht is monotonically increasing in дh for both t = 1 and t = 2.
The first-order condition (6) can be written as Ûkh(mt )/(2γ ) −kh(mt ) = τt/дh, which uniquely solves
mt . Holding дh (and γ ) constant,

∂mt

∂τt
=

1
дh

( Ükh(mt )
2γ

− Ûkh(mt )
)−1

≤ 0(B.6)

where the inequality follows the concavity of kh(m). (Note that this also implies that m1 ≥ m2

because τ2 ≥ τ1.) In addition,

∂mt

∂дh
= − τt

д2
h

( Ükh(mt )
2γ

− Ûkh(mt )
)−1

= − τt
дh

∂mt

∂τt
≥ 0.(B.7)

From the definition of ht = дhkh(mt ), ∂ht/∂дh = kh(mt )+дh Ûkh(mt )∂mt/∂дh ≥ 0. Therefore, in any
case, the equilibrium ht is increasing in the information technology дh.

The rest of this proof only deals with the case of exogenous speed acquisition, i.e., with fixed µ1

and µ2. The proof for the case of endogenous µt is deferred to proof of Proposition 6. Consider the
short-run of t = 1. While дh increases, h1 increases to satisfy the first-order condition, as shown
above. It then follows that ∂τ1/∂дh > 0 because τ1 = τ0 + τUh

2
1µ

2
1/γ 2 with µ1 exogenous.

Consider the long-run of t = 2 now. Suppose the opposite, ∂τ2/∂дh < 0, is true. Then h2

should be decreasing with дh because τ2 = τ1 + τUh
2
2µ

2
2/γ 2 with τ1 is increasing in дh. However, the

transformation of first-order condition 6, дh/(2γ ) = (τ2+h2)kh−1(h2/дh), shows that it is impossible
for both τ2 and h2 to be decreasing with дh at the same time. Thus, the assumed inequality is wrong
and τ2 increases with дh. □

Proposition 3

Proof. To avoid repetition, the proof only considers the full equilibrium where the information
acquisition is available. A similar argument can be constructed for the special case where all
investors have the same exogenous information h◦. In the interior equilibrium, π1 − π2 = 0 and,
following the proof of Proposition 1, the equality implies an implicit function of µ1 in terms of the
speed technology дt , which implies: dµ1

dдt = − ∂π1/∂дt
∂(π1−π2)/∂µ1

, where the denominator of the fraction is
negative as shown in Case 3 of the proof for Proposition 1. The numerator equals 1/д2

t > 0 by
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envelope theorem. Therefore, µ1 increases in дt . □

Proposition 4

Proof. This proof deals with two cases. The first case is where all investors’ information precision
is exogenously given at h◦. The second case is where investors endogenously acquire information.

In the first case, as shown in the proof of Proposition 3, µ1 is increasing with дt , which directly
implies that τ1 is increasing with дt . For the long-run price efficiency τ2, by the implicit function
theorem, ∂τ2/∂µ1 = 2τUh

2
oµ1/γ 2−2τUh

2
oµ2/γ 2, or ∂τ2/∂дt = 2(τUh

2
oµ1/γ 2−2τUh

2
oµ2/γ 2)(∂дt/∂µ1).

It is clear that ∂τ2/∂дt < 0 when µ1 is close to zero and µ2 close to one (i.e., дt is small), and
∂τ2/∂дt > 0 when µ1 is close to one and µ2 close to zero (i.e., дt is large).

For the second case, two steps are involved. The first step is to prove that ∂τ1/∂дt > 0. In the
interior equilibrium, the first-order condition (6) for t = 1, together withτ1 = τ0+τUh

2
1µ

2
1/γ 2, implies

an implicit function ofh1 = дhkh(m1) and µ1, from which ∂h1/∂µ1 = − 2τUµ1h
2
1/γ

2

2τUµ2
1h1/γ 2+1−Ükh (m1)/ Ûkh (m1)

< 0,
where the inequality follows because kh(·) is concavely increasing. From the effect of speed
technology and population of sizes, ∂µ1/∂дt > 0. Therefore, by chain rule, ∂h1/∂дt < 0. The
first-order condition (6) also implies that τ1 decreases with m1 and, hence, also with h1, yielding
∂τ1/∂дt > 0.

The second step is to prove that τ2 first decreases and then increases with дt . In the interior
equilibrium, the first-order condition (6) for t = 2 always holds. Recall τ2 = τ0 + τUτ

2
1 µ

2
1/γ 2 +

τUτ
2
2 µ

2
2/γ 2. By implicit function theorem, it implies

∂h2
∂µ2
= −4τU

γ

µ2h
2
2 − µ1h

2
1 − µ2

1h1∂h1/∂µ1

−Ükh(m2)/ Ûkh(m2) + 2γ + 4τUµ
2
2τ2/γ

.

As done in the proof of step 1, the idea is to first sign the above partial derivative and then
sign ∂h2/∂дt using chain rule: ∂h2

∂дt
=
∂h2
∂µ2

∂µ2
∂µ1

∂µ1
∂дt
, where ∂µ2/∂µ1 = −1 following the identity µ1 +

µ2 = 1 and ∂µ1/∂дt > 0. In particular, consider the limits of ∂h2/∂µ2 as дt ↑ ∞ and дt ↓ д̂t ,
respectively. To evaluate these limits, one needs to show that h1, h2, and ∂h1/∂µ1 are have finite
bounds.

The finite bounds for ht can be easily established by noting from the first-order condition (6)
that τt in equilibrium is monotone decreasing in τt . From the model setting, it is known that τt has
strictly positive lower bound τ0. Therefore, both h1 and h2 have finite upper bounds. (They also
have lower bounds of zero by construction.) Finally, from the expression of ∂h1/∂µ1 derived in the
proof of the previous step, it can be seen that µ1 · (∂h1/∂µ1) = − 2τUµ2

1h1/γ 2

2τUµ2
1τ1/γ 2+1−Ükh (m1)/ Ûkh (m1)

h1 > −h1

is also bounded.
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Now the limits can be evaluated. When speed technology дt ↑ ∞, almost all investors become
fast and µ2 ↓ 0 and limµ2↓0( ∂h2

∂µ2
) = −4τU

γ

−µ1h
2
1−µ

2
1h1∂h1/∂µ1

−Ükh (m2)/ Ûkh (m2)+2γ > 0. Similarly, when speed technologyдt ↓

д̂t , almost all investors stay slow, µ1 ↓ 0, and limµ1↓0( ∂h2
∂µ2

) = −4τU
γ

µ2h
2
2

−Ükh (m2)/ Ûkh (m2)+2γ+4τUµ2
2h2/γ

< 0. As
the above shows, for sufficiently large (low) дt , h2 increases (decreases) in µ2 and hence decreases
(increases) in дt by the chain rule expression above. The first-order condition (6) implies that τ2

decreases with τ2 and the stated results are proved. □

Proposition 5

Proof. Fixing дt , дh increases from д̂h to ∞. The aggregate demand for speed in the economy
is

∫
[0,1] 1{ti=1}di = µ1. From ∆τ1 = τUh

2
1µ

2
1/γ 2, by implicit function theorem,

∂µ1

∂дh
=

γ 2

2τUµ1h
2
1

(
∂∆τ1
∂дh

−
2τUµ

2
1h1

γ 2
∂h1
∂дh

)
.(B.8)

Hence, the sign of ∂µ1/∂дh depends on the difference between the two terms in the brackets.
Consider first the case of a very small дh. Corollary 1 establishes the existence of a lower bound д̂h
for дh, such that the equilibrium is interior if and only if дh ≥ д̂h. In particular, when дh ↓ д̂h,
the marginal investor is just indifferent between becoming fast or not, implying µ1 ↓ 0. The first-
order condition (6) at this limit gives 1/(2(τ0 + h1)γ ) − Ûc(h1) = 0, which has interior solution of
0 < h1 < ∞, thanks to the assumption of Ûc(0) = 0. By differentiability, therefore, ∂h1/∂дh is finite
in this limit as well. Taken together, the second term in the above brackets has limit zero as µ1 ↓ 0,
when дh ↓ д̂h. The remaining term is ∂∆τ1/∂дh, which is shown by Proposition 6 to be strictly
positive. Thus, ∂µ1/∂дh is positive in the case of a very small дh, close to the lower bound of д̂h.

Consider next the case of a very large дh, i.e. дh ↑ ∞. First, there exists an upper bound for
investors’ expense on information acquisition,mt . To see this, note from the first-order condition (6):

1
2γ

Ûkh(mt ) >
1
2γ

Ûkh(mt ) −
1
дh
τt = kh(mt ) ≥ kh(0) +mt

Ûkh(mt ) =mt
Ûkh(mt )(B.9)

where the first inequality holds because τt ≥ τ0 > 0 and the last inequality holds by concavity
of kh(·) and by kh(0) = 0. Therefore, for t ∈ {1, 2}, there exists an upper bound formt ≤ 1/(2γ ), an
upper bound for kh(mt ) ≤ kh(1/(2γ )), and a lower bound for Ûkh(mt ) ≥ Ûkh(1/(2γ )) > 0. Second, in
the limit of дh ↑ ∞, the equilibrium is always interior (following Corollary 1). Hence, the limit of
the fast investor’s ex ante certainty equivalent limдh↑∞ π1 =

1
2γ limдh↑∞ ln

(
1 + h1

τ1

)
− limдh↑∞m1 − 1

дt

exists and must be nonnegative to sustain the interior equilibrium. Sincem1 is bounded from above,
it follows that limдh↑∞(h1/τ1) also exists and is strictly positive. That is, there exists some a ∈ (0,∞),

47



such that limдh↑∞(τ1/h1) = a. Equivalently, as τ0 is a finite constant, limдh↑∞(∆τ1/h1) = a. Further,
a fast investor’s first-order condition (6) can be rewritten as 1

2γ
дh

τ1+h1
− Ûc(h1/дh) = 0. Since the above

holds under дh ↑ ∞, it follows that h1 ∼ дh; or limдh↑∞(h1/дh) = b ∈ (0,∞). (If h1 is of higher
magnitude than дh, the limit of the first term above falls to zero, while the limit of the second term
is strictly positive as c(·) is strictly convex. If instead h1 is of lower magnitude than дh, the limit of
the first term approaches infinity, while the second term falls to zero.) Now consider the limit of
the difference in the brackets of equation (B.8):

lim
дh↑∞

(
∂∆τ1
∂дh

− 2
τUµ

2
1h1

γ 2
∂h1
∂дh

)
= lim

дh↑∞

(
∂∆τ1
∂дh

− 2
∆τ1
h1

∂h1
∂дh

)
= (ab − 2ab) < 0

where the last equality follows L’Hôpital’s rule. Therefore, in the limit of дh ↑ ∞, ∂µ1/∂дh < 0.
Finally, consider the value of µ1 in this limit. Note that ∆τ1 = τ0 + τUµ

2
1h

2
1/γ 2. Therefore, in order

for limдh↑∞(∆τ1/h1) = a ∈ (0,∞) to hold, it must be such that limдh↑∞(µ2
1h1) = c ∈ (0,∞), i.e., µ1

in this limit is of magnitude h−1/2
1 . As h1 ↑ ∞, this also implies that µ1 ↓ 0 in this limit.

Fixing дh, дt increases from д̂t to ∞. The aggregate demand for information is h̄ := µ1h1 + µ2h2.
Since µ1 is monotone in дt (Proposition 3), it is sufficient to examine the partial derivative of the
above aggregate demand with respect to µ1: ∂h̄/∂µ1 = h1 − h2 + µ1 · (∂h1/∂µ1) − µ2 · (∂h2/∂µ2).
At the initial extreme of дt ↓ д̂t , the proof of Proposition 4 has shown that 1) µ1 ↓ 0, 2) µ1 · ∂h1/∂µ1

is bounded, and 3) ∂h2/∂µ2 < 0. Taking these into the above partial derivative yields ∂h̄/∂µ1 →
h1 − h2 − µ2 · (∂h2/∂µ2) > 0, recalling that h1 ≥ h2 from equation (7). At the eventual extreme
of дt ↑ ∞, the proof of Proposition 4 has shown that 1) µ2 ↓ 0, 2) ∂h1/∂µ1 < 0, and 3) ∂h2/∂µ2 > 0.
In addition, since µ2 ↓ 0, ∆τ2 = µ2

2h
2
2τU/γ 2 ↓ 0 (h2 is bounded), implying τ2 ↓ τ1 and 4) h2 ↑ h1.

Taking the above into h̄ yields ∂h̄/∂µ1 → µ1 · (∂h1/∂µ1) − µ2 · (∂h2/∂µ2) < 0. □

Proposition 6

Proof. By construction, τ1 = τ0+∆τ 1 and τ2 = τ0+∆τ 1+∆τ 2. The first-order condition implicitly
has m1 and m2 as functions of m1(∆τ1) and m2(∆τ1,∆τ2). Further, ∆τt = τUд

2
h
kh(mt )2µ2

t /γ 2, or
µt =

γ√
τU

√
∆τt

дhkh (mt ) . Therefore, the unconstrained equilibrium (with endogenous acquisition of both
speed and information) is pinned down by a two-equation, two-unknown system: π1 − π2 = 0 and
µ1 + µ2 − 1 = 0; or, equivalently, with a vector function F (∆τ1,∆τ2;дh),

F =


(

1
2γ ln

(
1 + дhkh (m1)

τ1

)
−m1 − 1

дt

)
−

(
1
2γ ln

(
1 + дhkh (m2)

τ2

)
−m2

)
√
∆τ1

kh (m1) +
√
∆τ2

kh (m2) −
√
τU
γ дh

 =
[
0
0

]
,(B.10)
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where {mt }t∈{1,2} are functions of ∆τ1 and ∆τ2 following the first-order condition (6), which can be
rewritten as Ûkh(mt )/(2γ ) − kh(mt ) = τt/дh.

Take total derivatives with respect toдh on the equilibrium condition F = 0 to get

[
F11 F12

F21 F22

] [
d∆τ1

d∆τ2

]
+[

F1д

F2д

]
dдh =

[
0
0

]
. One can easily evaluate, using envelope theorem,

F1д =
1
2γ

kh(m1)
τ1 + дhkh(m1)

− 1
2γ

kh(m2)
τ2 + дhkh(m2)

=
1
дh

(
kh(m1)
Ûkh(m1)

− kh(m2)
Ûkh(m2)

)
> 0,

where the second equality follows the first-order condition (6), while the last inequality follows the
concavity of kh(m), knowing thatm1 > m2. Also,

F2д = −
√
∆τ1

kh(m1)2
Ûkh(m1)

∂m1
∂дh

−
√
∆τ2

kh(m2)2
Ûkh(m2)

∂m2
∂дh

−
√
τU

γ

= −
√
τU

γ
µ1дh

Ûkh(m1)
kh(m1)

∂m1
∂дh

−
√
τU

γ
µ2дh

Ûkh(m2)
kh(m2)

∂m2
∂дh

−
√
τU

γ
< −

√
τU

γ
< 0,

where the equality uses the expression of µt and the inequality holds because ∂mt/∂дh is derived
earlier to be positive (inequality B.7).

The elements in the Jacobian matrix can also be evaluated. Using envelope theorem,

F11 = − kh(m1)
Ûkh(m1)τ1

+
kh(m2)
Ûkh(m2)τ2

≤ 0

where the inequality holds because kh(m1)/ Ûkh(m1) ≥ kh(m2)/ Ûkh(m2) (concavity) and τ1 ≤ τ2.
Similarly,

F12 =
kh(m2)
Ûkh(m2)τ2

> 0.

Now consider the partial derivatives with respect to F2:

F21 =
1

2
√
∆τ1kh(m1)

−
√
∆τ1

kh(m1)2
Ûkh(m1)

∂m1
∂τ1 �

�
�∂τ1

∂∆τ1
−

√
∆τ2

kh(m2)2
Ûkh(m2)

∂m2
∂τ2 �

��
τ2
∆τ1

=
1

2
√
∆τ1kh(m1)

−
√
τU

γ
µ1дh

Ûkh(m1)
kh(m1)

∂m1
∂τ1

−
√
τU

γ
µ2дh

Ûkh(m2)
kh(m2)

∂m2
∂τ2
> 0

where the equality follows the expression of µt and the inequality holds because ∂mt/∂τt ≤ 0 as
shown before (inequality B.6). Similarly,

F22 =
1

2
√
∆τ2kh(m2)

−
√
∆τ2

kh(m2)2
Ûkh(m2)

∂m2
∂τ2 �

�
�∂τ2

∂∆τ2
> 0.
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By Cramer’s rule,

∂∆τ1
∂дh

=

�����−F1д F12

−F2д F22

����������F11 F12

F21 F22

�����
and

∂∆τ2
∂дh

=

�����F11 −F1д

F21 −F2д

����������F11 F12

F21 F22

�����
.

The sign of the denominator is easy to shown: F11F22 − F12F21 < 0. It remains to examine the
numerators. For τ1, it can be seen that −F1дF22 + F12F2д < 0; hence ∂τ1/∂дh = ∂∆τ1/∂дh > 0.

To sign ∂τ2/∂дh is equivalent to signing the sum of the numerators of ∂∆τ1/∂дh and ∂∆τ2/∂дh:

(−F1дF22 + F12F2д) + (−F11F2д + F1дF21) = (F21 − F22)F1д + (F12 − F11)F2д .

To prove the statement made in the proposition, the objective is to show that under the limits of
дh ↑ ∞ and of дh ↓ д̂h, the sign of the above term is negative and positive, respectively (recall that
the determinant for the denominator is negative). The proof of Proposition 5 shows that in the
upper limit, µ1 ↓ 0 and µ2 ↑ 1. The proof of Corollary 1 shows that in the lower limit, investors are
just indifferent between acquiring the speed or not, implying again µ1 ↓ 0 and µ2 ↑ 1. Using these
limiting values of µ1 and µ2, the above simplifies to(

1
2
√
∆τ1kh1

− 1
2
√
∆τ2kh2

)
F1д +

kh1
Ûkh1τ1

F2д,(B.11)

where, simplifying the notation, kh(·) and Ûkh(·) are replaced by subscripts of t ∈ {1, 2}.
Consider the limit of дh ↑ ∞ first. Equation (B.11) satisfies the following inequality:(

1
2
√
∆τ1kh1

− 1
2
√
∆τ2kh2

)
F1д +

kh1
Ûkh1τ1

F2д <
F1д

2
√
∆τ1kh1

because F1д > 0 and F2д < −√τU/γ < 0. The proof of Proposition 5 establishes that ∆τ1 → ∞ .
In addition, the inequality (B.9) establishes that in equilibrium, both m1 and m2 have finite upper
and lower bounds, implying that both kh1 and F1д is also finite (since kh(·) is twice-differentiable).
Therefore, limдh↑∞(F1д/(2

√
∆τ1kh1) = 0 and

lim
дh↑∞

[(
1

2
√
∆τ1kh1

− 1
2
√
∆τ2kh2

)
F1д +

kh1
Ûkh1τ1

F2д

]
< lim

дh↑∞

F1д

2
√
∆τ1kh1

= 0.

This proves that in this upper limit, τ2 is increasing with дh.
Finally, consider the limit of дh ↓ д̂h. As дh ↓ д̂h, clearly F1д and F2д are finite. However,

µ1 ↓ 0, ∆τ1 ↓ 0, and the first term of equation (B.11) approaches +∞. The sum of numerators above
therefore has a positive sign. Given the negative sign of the denominator, it can be concluded that
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∂τ2/∂дh < 0 in the limit of дh ↓ д̂h. □

Proposition 7

Proof. To prove the proposition, it is equivalent to sign the difference between the partial derivatives
of ∆τ1 and of ∆τt with respect to the two technology дt and дh. For example, if ∆τ1 increases faster
than ∆τ2, then it follows that the speed of price discovery is increasing; and vice versa. This proof
proceeds with the two types of technology shocks separately.
Shocking the speed technology дt . From the proof of Proposition 6, it can be seen that the
equilibrium is characterized by the vector function F (∆τ1,∆τ2;дt ,дh) = 0 (equation B.10). The
partial derivatives of F with respect to the speed technology дt are F1д = 1/д2

t and F2д = 0. As in
the proof of Proposition 6, by Cramer’s rule,

sign
(
∂∆τ1
∂дt

)
= −sign(−F1дF22 + F12F2д) = sign

(
F22

д2
t

)
> 0,

sign
(
∂∆τ2
∂дt

)
= −sign(−F11F2д + F1дF21) = −sign

(
F21

д2
t

)
< 0.

Therefore, ∂∆τ1/∂дt − ∂∆τ2/∂дt > 0, implying that ∆τ1 is increasing in the speed technology дt ,
while ∆τ2 is decreasing. The speed of price discovery thus increases with the speed technology.
Shocking the information technology дh. The objective is to sign the difference of ∂∆τ1/∂дh −
∂∆τ2/∂дh under the limits of дh ↓ д̂h and дh ↑ ∞ respectively. Using the expressions derived
from the proof of proposition 6, the sign of the above difference is the same as the sign of
(F21 + F22)F1д − (F11 + F12)F2д .

Consider the limit of дh ↓ д̂h first. Clearly, in this limit, F11, F12, F22, F1д, and F2д are all finite.
(In particular, ∂mt/∂дh is finite following the expression B.7 and the upper bound of mt ≤ 1/(2γ )
established in the proof of Proposition 5.) However, Corollary 1 establishes that µ1 ↓ 0 and there
is no price discovery in the short-run, i.e., ∆τ1 ↓ 0. Thus, the first term in F21 approaches positive
infinity, driving the above difference expression also to positive infinity. In this limit, therefore, ∆τ1

increases faster than ∆τ2 and the speed of price discovery is increasing in дh.
Consider next the limit of дh ↑ ∞. Observe that because F21 > 0, F22 > 0, and F1д > 0, the fol-

lowing inequality always holds: (F21+F22)F1д−(F11+F12)F2д < (F11+F12)F2д =
(
− kh1

Ûkh1τ1
+

2kh2
Ûkh2τ2

)
F2д,

where the last equality simply uses the expressions for F11 and F22. Recall thatmt is bounded from
above by 1/(2γ ), hence, F2д is always finite and so are kht and Ûkht . Yet, τt ↑ ∞ in the limit of дh ↑ ∞.
Therefore, limдh↑∞

(
(F21 + F22)F1д − (F11 + F12)F2д

)
< limдh↑∞

(
− kh1

Ûkh1τ1
+

2kh2
Ûkh2τ2

)
F2д = 0. That is, in

this upper limit of дh, ∆τ1 is growing slower than ∆τ2, or the speed of price discovery becomes
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decreasing with the information technology дh. This completes the proof. □

Corollary 1

Proof. Consider the threshold д̂t , at which the benefit of investing in speed to trade at t = 1 is just
small enough, so that the marginal investor is just willing to stay slow. Therefore, at this threshold
µ1 = 0 and µ2 = 1, implying π1 =

1
2γ ln

(
1 + дhkh (m1)

τ0

)
−m1 − 1

д̂t
and π2 =

1
2γ ln

(
1 + дhkh (m2)

τ2

)
−m2,

where τ2 = τ0 +τUд
2
h
kh(m2)2/γ 2. In equilibrium, it has to be such that π1 = π2 = π ∗, which implies

τ2/(τ2+дhkh(m2)) > τ0/(τ0+дhkh(m1)) becausem1+1/д̂t > m1 > m2. Subtract by 1 on both sides
and rearrange to get kh(m2)/(τ2 + дhkh(m2)) < kh(m1)/(τ0 + дhkh(m1)).

Next, from the expression of π1, by envelope theorem, ∂π ∗

∂дh
= 1

2γ
kh (m1)

τ0+дhkh (m1) +
1
д̂2
t

∂д̂t
∂дh
. Simi-

larly, from the expression of π2, ∂π ∗

∂дh
= 1

2γ
1

τ2+дhkh (m2)

(
1 − 2hд2

hkh (m2)2
γ 2τ2

)
kh(m2) < 1

2γ
kh (m2)

τ2+дhkh (m2) <

1
2γ

kh (m1)
τ0+дhkh (m1) =

∂π ∗

∂дh
− 1

д̂2
t

∂д̂t
∂дh
. Therefore, ∂д̂t/∂дh < 0.

Further, consider the extremes of дh ↓ 0 and дh ↑ ∞. Toward the lower bound 0, from the
expression of π1 it can be seen that the first term in π1 drops down to zero. Since an investor
always has the option not to trade, π1 is bounded below by zero. This leads tom1 ↓ 0 and 1/д̂t ↓ 0,
implying limдh↓0 д̂t = ∞. On the other hand, the first-order condition (6) applied to π1 implies 0 =
Ûkh (m1)

2γ −kh(m1)− τ0
дh
<

(
1
2γ −m1

)
Ûkh(m1),where the inequality follows becauseτ0/дh > 0 and because

kh(m) ≥ Ûkh(m)m by concavity. Hence,m1 is always bounded from above by 1/(2γ ). From the first-
order condition, with τ1 fixed at τ0, it follows the concavity of kh(·) that m1 monotone increases in
дh, and so does kh(m1). Taken together, limдh↑∞ π1 >

1
2γ limдh↑∞ ln

(
1 + дhkh (m1)

τ0

)
− 1

2γ − limдh↑∞
1
д̂t
.

If limдh↑∞ д̂t > 0, then the above limit of π1 shoots to infinity. In that case, the assumed equilibrium
will not hold, however, because all slow investors will have incentive to acquire speed by paying 1/д̂t
to earn infinite profit. Therefore, it has to be the case that limдh↑∞ д̂t = 0.

Finally, the above concludes that д̂t is a strictly decreasing function in дh, with д̂t (0) → ∞ and
д̂t (∞) → 0. As the strict monotonicity implies invertibility, there exists д̂h(дt ) for all дt ∈ (0,∞)
such that the equilibrium is interior if and only if дh ≥ д̂h(дt ). □
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