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1. Introduction

Reinsurance is an effective risk-spreading approach, while investment is an increasingly im-

portant way of using insurers’ surplus, and both are popular in the insurance industry. In recent

years, the problem of optimal reinsurance-investment has attracted significant attention in the

literature. A number of scholars have considered the problem of maximizing the expected u-

tility of terminal wealth. For example, Yang & Zhang (2005) studies the optimal investment

problem for an insurer in a jump-diffusion risk model. Lin & Li (2011) discusses the optimal

reinsurance-investment problem in a jump-diffusion insurance risk model where the dynamics

of the risky asset are governed by a constant elasticity of variance (CEV) model. Liang & Yuen

(2016) derives the optimal reinsurance strategy for maximizing the expected exponential utility

of terminal wealth in a risk model with dependent risks. Likewise, other optimization objec-

tives are considered in the literature. We refer readers to Schmidli (2002) and Jang & Larsen

(2015) for the criterion of ruin probability minimization, and Pressacco et al. (2011) and Bi et

al. (2013) for the mean-variance criterion.

Although the problem of optimal reinsurance-investment has been widely investigated by

many scholars, two aspects merit further exploration. The majority of the above-mentioned

literature ignores ambiguity. However, it is a notorious fact that the return of risky assets is

difficult to estimate with precision. Thus, some scholars have advocated and investigated the

effect of ambiguity on portfolio selection, noting that in many cases, the parametric models

used in theory, such as the Black-Scholes model, contain significant uncertainties in parameter

estimates. Take drift parameter as an example. As the expected return of a risky asset is not

known in a priori with any adequate precision, the investor must typically account for a signifi-

cant level of error in drift parameter estimates. Compared with making ad-hoc decisions about

how much error are contained in the estimates for the parameters of risky assets, investors may

consider alternative models that are close to the estimated model. This method has been well

accepted in quantitative finance to deal with portfolio selection and asset pricing in case of am-

biguity or misspecification. For instance, Anderson et al. (1999) introduces ambiguity-aversion

into the Lucas model and formulates alternative models. Uppal & Wang (2003) extends the

model in Anderson et al. (1999) and develops a framework that allows investors to consider the

level of ambiguity. Anderson et al. (2003) studies the continuous-time asset pricing model in

which the investor takes the model misspecification into account. Maenhout (2004) optimizes
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an inter-temporal consumption problem with ambiguity, and derives the closed-form expres-

sions of the optimal strategies under “homothetic robustness”. Maenhout (2006) obtains the

optimal portfolio choice to maximize the expected power utility of the terminal wealth under

ambiguity and stochastic premium. Flor & Larsen (2014) considers an investor who is am-

biguous about the interest rate and stock returns models. For an insurer who manages her risk

by purchasing reinsurance and investing her surplus in a financial market, ambiguity situation

is identical to that of the above-mentioned investors. Moreover, the accurate estimation of an

insurer’s surplus process can also be called into question. An ambiguity-averse insurer (AAI)

would hope for a systematic and quantitative way to take ambiguity into account. For example,

Korn et al. (2012) investigates the optimal reinsurance problem and the optimal reinsurance-

investment problem with ambiguity by using the stochastic differential game approach. Yi et al.

(2013) studies the problem of robust optimal reinsurance-investment under the Heston model

for an AAI. Yi et al. (2015) obtains the robust optimal reinsurance-investment strategy under the

benchmark and mean-variance criteria. Pun & Wong (2015) considers the problem of robust

optimal reinsurance-investment with multi-scale stochastic volatility using a general concave

utility function.

Although research on the robust optimal investment problem has been rapidly increasing in

recent years, very few of these contributions deals with the problem in relation to ambiguity with

jumps, which has a significant effect on the optimal strategy. Branger & Larsen (2013) analyzes

the optimal portfolio selection problem for an ambiguity-averse investor who invests in a risky

asset following a jump-diffusion process using the criterion of maximizing the expected power

utility of the terminal wealth. Aı̈t-Sahalia & Matthys (2014) considers the optimal consumption-

portfolio selection problem in the presence of ambiguity where the price of the risky asset

satisfies a Lévy process. Both Branger & Larsen (2013) and Aı̈t-Sahalia & Matthys (2014)

point out that the risks related to the uncertainty of the drift and the probability of jumps are

fundamentally different in the portfolio selection problem, such that ignoring ambiguity with

respect to (w.r.t.) the jump risk may result in large losses in the financial market. For robust

optimal reinsurance-investment problem with jumps, Zeng et al. (2016) and Zheng et al. (2016)

study the optimal proportional reinsurance-investment problem with ambiguity under criteria of

mean-variance and expected utility maximization, respectively.

Unlike Yi et al. (2013), Yi et al. (2014), Pun & Wong (2015), Zeng et al. (2016) and

Zheng et al. (2016), we are interested in the excess-of-loss reinsurance, which is preferred than

proportional reinsurance in most situations (see Asmussen et al., 2000). Recently, more and
3



more scholars focus on the optimal excess-of-loss reinsurance-investment problems, such as

Gu et al. (2012), Zhao et al. (2013), and so on. To the best of our knowledge, this paper is a

prior research on the robust optimal excess-of-loss reinsurance-investment problem with jumps

for an AAI. In our model, the insurer’s surplus process is assumed to be a Brownian motion

with drift that can be considered as an approximation of the classical insurance risk models,

and the insurer is allowed to purchase excess-of-loss reinsurance and invest her surplus in a

risk-free asset and a risky asset whose price process is described by a jump-diffusion model.

Given that the market (true model) may deviate from the estimated model (reference model)

in reality, we incorporate ambiguity into our study, and assume that the insurer is ambiguity-

averse to diffusion and jump risks. Following Maenhout (2004, 2006), the ambiguity level is

chosen as inversely proportional to the optimal value function. Moreover, depending on the

available information, the AAI may exhibit different levels of ambiguity to diffusion and jump

risks. The infrequent nature of jumps in the price process for the risky asset makes it hard

to estimate the intensity of jump risk, which indicates that the AAI is more ambiguity averse

to the jump risk than to the diffusion risk, making it seem natural to have different levels of

ambiguity aversion to diffusion and jump risks. Based on the above setup, we formulate a robust

optimization problem with alternative models, and derive the explicit expressions of the robust

optimal excess-of-loss reinsurance-investment strategy to maximize the expected exponential

utility of terminal wealth. Some special cases of our model and results are provided, and the

economic implications of our findings and utility enhancements from considering ambiguity and

reinsurance are analyzed using numerical examples. The main contributions of this paper are

as follows: (i) Ambiguity with jumps is introduced into the optimal excess-of-loss reinsurance-

investment framework; (ii) utility enhancements from considering ambiguity and reinsurance

are presented, which reveals that ambiguity and reinsurance should not be ignored; and (iii)

some special cases of our model, such as the cases of investment-only, ambiguity-neutral insurer

(ANI) and no jump, are provided, which demonstrates that our model are more general and can

reduce to many special cases considered in the literature.

The remainder of this paper is organized as follows. Section 2 describes the formulation of the

model. Section 3 derives the explicit expressions of the robust optimal reinsurance-investment

strategy and the corresponding optimal value function. Section 4 provides some special cases

of our model. Section 5 presents some numerical examples and sensitivity analysis of utility

enhancements to illustrate our results. Section 6 concludes the paper.
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2. General formulation

Let (Ω,F , {Ft}t∈[0,T ],P) be a filtered complete probability space satisfying the usual condition,

where T > 0 is a finite constant representing the investment time horizon, Ft stands for the

information available until time t, and P is a reference probability.

Suppose that an insurer’s surplus process follows a diffusion model. To understand better

that the diffusion model can be considered as an approximation of the classical insurance risk

model, we start with the classical Cramér-Lundberg (C-L) model. In the C-L model, without

reinsurance and investment, the surplus process of an insurer is described by

R(t) = x0 + pt −
N1(t)∑
i=1

Zi,

where x0 > 0 is the initial surplus; p is the premium rate;
∑N1(t)

i=1 Zi is a compound Poisson

process, representing the cumulative claims up to time t; {N1(t)}t∈[0,T ] is a homogeneous Poisson

process with intensity λ1 > 0; and the claim sizes Z1, Z2,... are assumed to be independent

and identically distributed (i.i.d.) positive random variables with finite first moment E[Zi] = µZ

and second moment E[Z2
i ] = σ2

Z . Z1, Z2,... are further assumed to be independent of N1(t) with

common distribution F(z). Denote by D = sup{z : F(z) 6 1} < +∞, then F(0) = 0, 0 < F(z) < 1

for 0 < z < D and F(z) = 1 for z > D. Suppose that the premium rate p is calculated according

to the expected value principle, i.e., p = (1 + η)λ1µZ , where η > 0 is the safety loading of the

insurer.

To disperse the underlying insurance business risk, the insurer is allowed to purchase excess-

of-loss reinsurance. Let a be a (fixed) excess-of-loss retention level and Z(a)
i = min{Zi, a} denote

the part of the claims held by the insurer. Then, the surplus process of the insurer becomes

R̄(a)(t) = x0 + p(a)t −
N1(t)∑
i=1

Z(a)
i ,

where the premium rate

p(a) = (1 + η)λ1µZ − (1 + θ)λ1(µZ − E[Z(a)
i ]) = (η − θ)λ1µZ + λ1(1 + θ)E[Z(a)

i ],

in which θ denotes the safety loading of the reinsurer. Suppose that θ > η, which implies that

the reinsurance is not cheap. According to Grandell (1991), the surplus process R̄(a)(t) can be
5



approximated by the following diffusion model

dR̄(a)(t) = (p(a) − λ1E[Z(a)
i ])dt +

√
λ1E[(Z(a)

i )2]dB1(t)

= λ1[θµ̄(a) + (η − θ)µZ]dt +
√
λ1σ̄(a)dB1(t),

where {B1(t)}t∈[0,T ] is a standard Brownian motion and

µ̄(a) = E[Z(a)
i ] =

∫ a

0
(1 − F(s))ds =

∫ a

0
F̄(s)ds,

(σ̄(a))2 = E[(Z(a)
i )2] =

∫ a

0
2s(1 − F(s))ds =

∫ a

0
2sF̄(s)ds.

Moreover, we assume that the insurer is allowed to invest in a financial market comprising a

risk-free asset and a risky asset. The price process of the risk-free asset is described by

dS 0(t) = r0S 0(t)dt, (2.1)

where r0 > 0 represents the risk-free interest rate. The price process of the risky asset follows a

jump-diffusion process

dS (t) = S (t−)

µdt + σdB2(t) + d
N2(t)∑
i=1

Yi

 , (2.2)

where µ and σ are constant; {B2(t)}t∈[0,T ] is a standard Brownian motion; {N2(t)}t∈[0,T ], repre-

senting the number of the risky asset price’s jumps that occur during time interval [0, t], is a

homogeneous Poisson process with intensity λ2; Yi is the ith jump amplitude of the risky asset

price; and Yi, i = 1, 2, ... are i.i.d. random variables with distribution function G(y), finite first

moment E[Yi] = µY and second moment E[Y2
i ] = σ2

Y . Similar to Yi et al. (2013) and Pun &

Wong (2015), we assume that {B1(t)}t∈[0,T ], {B2(t)}t∈[0,T ] and
∑N2(t)

i=1 Yi are independent, and that

P{Yi > −1 for all i > 1} = 1 to ensure that the risky asset price remains positive. General-

ly, the expect return of the risky asset is larger than the risk-free interest rate, so we assume

that µ + λ2µY > r0. In Eq. (2.2), the diffusion term captures normal market movements, and

the jumps describe sudden and unusually disastrous events. Next, we use a Poisson random

measure N(·, ·) on Ω × [0,T ] × [−1,∞) to denote the compound Poisson process
∑N2(t)

i=1 Yi as

N2(t)∑
i=1

Yi =

∫ t

0

∫ ∞

−1
yN(ds, dy), ∀t ∈ [0,T ].

Denote by ν(dt, dy) = λ2dtdG(y), then

E

N2(t)∑
i=1

Yi

 = ∫ t

0

∫ ∞

−1
yν(ds, dy), ∀t ∈ [0, T ],
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where ν(·, ·) is the compensator of the random measure N(·, ·). Thus, the compensated measure

Ñ(·, ·) = N(·, ·) − ν(·, ·) is related to the compound Poisson process as follows∫ t

0

∫ ∞

−1
yÑ(ds, dy) =

N2(t)∑
i=1

Yi − E

N2(t)∑
i=1

Yi

 , ∀t ∈ [0, T ].

Let u := {u(t) := (a(t), π(t))}t∈[0,T ] be the reinsurance and investment strategy, π(t) is the

amount of money invested in the risky asset at time t, the remainder Xu(t) − π(t) is invested in

the risk-free asset, Xu(t) is the wealth at time t associated with strategy u. Then, the wealth

process {Xu(t)}t∈[0,T ] can be described by

dXu(t) = dR̄(a)(t) + (Xu(t) − π(t))
dS 0(t)
S 0(t)

+ π(t)
dS (t)
S (t−)

= {r0Xu(t) + λ1[θµ̄(a) + (η − θ)µZ] + π(t) (µ − r0)} dt

+
√
λ1σ̄(a)dB1(t) + π(t)σdB2(t) +

∫ ∞

−1
π(t)yN(dt, dy).

(2.3)

In the traditional reinsurance-investment model, the insurer is assumed to be ambiguity-

neutral with objective function, as follows

sup
u∈Π̃

Et,x[U(Xu(T ))] = sup
u∈Π̃

E[U(Xu(T ))|Xu(t) = x], (2.4)

where Π̃ is the set of all admissible strategies u in a given market. The utility function U(x)

is typically increasing and concave (U′′(x) < 0). However, it is reasonable to assume that the

insurer is ambiguity-averse and thus wants to guard herself against worst-case scenarios. We

assume that the knowledge about ambiguity for the AAI is described by probability P, namely,

the reference probability (or model). However, she is sceptical about this reference model, and

hopes to consider alternative models. Following Anderson et al. (1999), the AAI recognizes that

the model under probability P is an approximation of the true model, thus she notes alternative

models, broadly defined here as a class of probabilities that are equivalent to P as follows:

Q := {Q|Q ∼ P}.

Definition 2.1. (Admissible strategy) A strategy u = {u(t) := (a(t), π(t))}t∈[0,T ] is said to be

admissible if

(i) ∀t ∈ [0,T ], a(t) ∈ [0,D];

(ii) u is predictable w.r.t. {Ft}t∈[0,T ], and EQ
∗
[∫ T

0
(a(t))2 + (π(t))2dt

]
< ∞;

(iii) ∀(t, x) ∈ [0, T ]×R, Eq. (2.3) has a pathwise unique solution {Xu(t)}t∈[0,T ] with EQ
∗

t,x [U(Xu(T ))]

< +∞, where Q∗ is the chosen model to describe the worst case and will be shown later.
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Let Π be the set of all admissible strategies.

It is obvious that Π is not empty, since at least it contains deterministic controls. For such

a class of controls, existence and path uniqueness of the solution to Eq. (2.3) is proved in

Øksendal & Sulem (2007).

By Girsanov’s Theorem, ∀Q ∈ Q, there exists Φ := {ϕ(t) := (ϕ1(t), ϕ2(t), ϕ3(t))}t∈[0,T ]
1 such

that
dQ
dP
= ΛΦ(T ),

where

ΛΦ(t) = exp
{∫ t

0
ϕ1(s)dB1(s) − 1

2

∫ t

0
(ϕ1(s))2ds +

∫ t

0
ϕ2(s)dB2(s) − 1

2

∫ t

0
(ϕ2(s))2ds

+

∫ t

0

∫ ∞

−1
ln ϕ3(s)N(ds, dy) +

∫ t

0

∫ ∞

−1
(1 − ϕ3(s))ν(ds, dy)

}
(2.5)

is a P-martingale. Karatzas & Shreve (1988) can be consulted for this theorem. By Girsanov’s

theorem, under probability Q,

dBQ1 (t) = dB1(t) − ϕ1(t)dt,

and

dBQ2 (t) = dB2(t) − ϕ2(t)dt

are Brownian motions. Following Branger & Larsen (2013), for tractability and ease of interpre-

tation, the distribution of the claim Yi is assumed to be known and is restricted to be identical

under probabilities P and Q, i.e., EQ[h(y)]=EP[h(y)], where h(·) is a function of y. Under Q,

the random measure NQ(dt, dy) has compensator measure given by λ2ϕ3(t)G(dy)dt. Thus, the

dynamic of the wealth process under probability Q is

dXu(t) =
{
r0Xu(t) + λ1[θµ̄(a) + (η − θ)µZ] + π(t)(µ − r0) +

√
λ1σ̄(a)ϕ1(t) + π(t)σϕ2(t)

}
dt

+
√
λ1σ̄(a)dBQ1 (t) + π(t)σdBQ2 (t) +

∫ ∞

−1
π(t)yNQ(dt, dy).

(2.6)

1Φ := {ϕ(t) := (ϕ1(t), ϕ2(t), ϕ3(t))}t∈[0,T ] satisfies three conditions: (i) ϕ1 and ϕ2 are Ft-adapted, and ϕ3 is Ft-

predictable; (ii) ϕ3(t) > 0, for a.a. (t, ω) ∈ [0,T ]×Ω; and (iii) E
[

exp
{

1
2

∫ T
0 (ϕ2

1(t)+ ϕ2
2(t))dt + λ2

∫ T
0

(
ϕ3(t) ln ϕ3(t)−

ϕ3(t) + 1
)
dt

}]
< ∞. We denote Θ for the space of all such processes Φ. Condition (iii) can be referred to Branger

& Larsen (2013) and Zheng et al. (2016)
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Suppose that the insurer tries to seek a robust optimal control which is the best choice in some

worst-case models. Inspired by Maenhout (2004) and Branger & Larsen (2013), we formulate

a robust control problem to modify problem (2.4) as follows

sup
u∈Π

inf
Φ∈Θ

EQt,x

{∫ T

0
Ψ(s, Xu(s), ϕ(s))ds + U(Xu(T ))

}
, (2.7)

where

Ψ(t, Xu(t), ϕ(t)) =
(ϕ1(t))2

2φB1(t)
+

(ϕ2(t))2

2φB2(t)
+
λ2(ϕ3(t) ln ϕ3(t) − ϕ3(t) + 1)

φJ(t)
,

and the expectation is calculated under the alternative probability Q; φB1(t), φB2(t) and φJ(t) are

strictly positive deterministic functions and represent the preference parameters for ambiguity-

aversion, which measure the degree of confidence to the reference probability P at time t; and

deviations from the reference model are penalized by the first three terms in the expectation,

which depends on the relative entropy arising from the diffusion and jump risks. In Appendix

A, we show that the increase in relative entropy from t to t + dt equals[
1
2

(ϕ1(t))2 +
1
2

(ϕ2(t))2 + λ2(ϕ3(t) ln ϕ3(t) − ϕ3(t) + 1)
]

dt. (2.8)

According to Maenhout (2004), we know that the larger φB1(t), φB2(t) and φJ(t) are, the less

the deviations from the reference model are penalized. Furthermore, the AAI has less faith in

the reference model, and she is more likely to consider alternative models. Hence, the AAI’s

ambiguity aversion is increasing w.r.t. φB1(t), φB2(t) and φJ(t).

To solve problem (2.7), we define the optimal value function V(t, x) as

V(t, x) = sup
u∈Π

inf
Φ∈Θ

EQ
{∫ T

t
Ψ(s, Xu(s), ϕ(s))ds + U(Xu(T ))

∣∣∣∣∣Xu
t = x

}
. (2.9)

Let C1,2([0,T ] × R) denote a class of functions that are continuously differentiable w.r.t. t on

[0,T ], and twice continuously differentiable w.r.t. x on R. Similar to Maenhout (2006) and

Branger & Larsen (2013), for any V(t, x) ∈ C1,2([0,T ] × R), according to the principle of

dynamic programming, we can derive the HJB equation for problem (2.9):

sup
u∈[0,D]×R

inf
ϕ∈R×R×R+

{Aϕ,uV(t, x) + Ψ(t, x, ϕ)
}
= 0, (2.10)

with the boundary condition V(T, x) = U(x), where u = (a, π), ϕ = (ϕ1, ϕ2, ϕ3) denote the values

that u and Φ take, and

Aϕ,uV(t, x) = Vt + Vx

[
r0x + λ1(θµ̄(a) + (η − θ)µZ) + π(µ − r0) +

√
λ1σ̄(a)ϕ1 + πσϕ2

]
+

1
2

Vxx[λ1(σ̄(a))2 + π2σ2] + λ2ϕ3EQ[V(t, x + πy) − V(t, x)],

here, Vt, Vx and Vxx represent the partial derivatives of V(t, x) w.r.t. the corresponding variables.
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Proposition 2.2. If there exist a function W(t, x) ∈ C1,2([0,T ] × R) and a Markovian control

(Φ∗,u∗) ∈ Θ × Π, Φ∗(t) = Φ∗(t, Xu∗(t)), u∗(t) = u∗(t, Xu∗(t)) such that

(i) for any ϕ ∈ R × R × R+,Aϕ,u∗(t,x)W(t, x) + Ψ(t, x, ϕ) > 0;

(ii) for any u ∈ [0,D] × R,AΦ∗(t,x),uW(t, x) + Ψ(t, x, ϕ∗) 6 0;

(iii)AΦ∗(t,x),u∗(t,x)W(t, x) + Ψ(t, x, ϕ∗) = 0;

(iv) for all (Φ,u) ∈ Θ × Π, limt→T−W(t, Xu(t)) = U(Xu(T ));

(v) {W(τ, Xu(τ))}τ∈T and {Ψ(τ, Xu(τ), ϕ(τ))}τ∈T are uniformly integrable, where T denotes the set

of stopping times τ 6 T.

Then W(t, x) = V(t, x) and (Φ∗,u∗) is an optimal control.

Proof. The proof is similar to the proof of Theorem 3.2 in Mataramvura & Øksendal (2008). �

3. Explicit robust control: exponential utility

To derive explicit results, we need to make some assumptions regarding the AAI’s utility.

Suppose that the AAI has an exponential utility, i.e.,

U(x) = − 1
m

e−mx, (3.1)

where m > 0 is a constant representing the absolute risk aversion coefficient. As we know,

the exponential utility function plays an important role in insurance mathematics and actuarial

practice. It is the only utility function under the principle of ‘zero utility’ giving a fair premium

that is independent of the level of insurers’ wealth (see Gerber, 1979).

Following Maenhout (2004), we assume that φB1(t), φB2(t) and φJ(t) are state-dependent as

φB1(t) = − γ
B1

mV
, φB2(t) = − γ

B2

mV
, φJ(t) = − γ

J

mV
, (3.2)

where the ambiguity aversion coefficients γB1 , γB2 and γJ are nonnegative and describe the

insurer’s attitudes to the model uncertainty. From Eq. (3.2), we find that φB1(t), φB2(t) and φJ(t)

are increasing w.r.t. parameters γB1 , γB2 and γJ, respectively.

Then, the robust optimal reinsurance-investment strategy and the corresponding optimal val-

ue function can be derived and summarized in the following theorem.
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Theorem 3.1. For problem (2.7) with exponential utility function (3.1) and assumption (3.2),

the robust optimal reinsurance-investment strategy u∗ = {(a∗(t), π∗(t))}t∈[0,T ] is given by

a∗(t) =


θe−r0(T−t)

γB1 + m
· 1{

l
(
θe−r0(T−t)

γB1+m

)
>max{l(D),0}

} + D · 1{
l(D)>max

{
l
(
θe−r0(T−t)

γB1+m

)
,0
}}, θe−r0(T−t)

γB1 + m
∈ [0,D],

D · 1{l(D)>0},
θe−r0(T−t)

γB1 + m
∈ [D,+∞),

(3.3)

π∗(t) =
e−r0(T−t)

γB2 + m

µ − r0

σ2 +
λ2EQ[ye−mπ∗(t)yer0(T−t)

]
σ2 e

γJ
m EQ[e−mπ∗(t)yer0(T−t)−1]

 , (3.4)

and the optimal value function is given by

V(t, x) = − 1
m

e−m[er0(T−t) x− f̄ (t)], (3.5)

where

l(a) = −λ1θµ̄(a)Vmer0(T−t) +
1
2
λ1m(γB1 + m)(σ̄(a))2Ve2r0(T−t), (3.6)

f̄ (t) =
λ1(η − θ)µZ

r0
(1 − er0(T−t)) +

∫ T

t
l̄1(ω)dω −

∫ T

t
l̄2(ω)dω, (3.7)

l̄1(ω) = er0(T−ω)
∫ a∗(ω)

0
[λ1(γB1 + m)ser0(T−ω) − λ1θ]F̄(s)ds, (3.8)

l̄2(ω) = π∗(ω)(µ − r0)er0(T−ω) − 1
2

(γB2 + m)σ2(π∗(ω))2e2r0(T−ω)

+
λ2

γJ

(
1 − e

γJ
m EQ[e−mπ∗(ω)yer0(T−ω)−1]

)
. (3.9)

Proof. See Appendix B. �

Proposition 3.2. Eq. (3.4) has a unique positive root, i.e., there exists a unique π∗(t) ∈ [0,+∞)

that satisfies Eq. (3.4).

Proof. To proof the existence-uniqueness of π∗(t), Eq. (3.4) can be transformed into

(γB2 + m)π∗σ2er0(T−t) = µ − r0 + λ2EQ[ye−mπ∗yer0(T−t)
]e

γJ
m EQ[e−mπ∗yer0(T−t)−1].

Suppose that

h(π) = µ − r0 + λ2EQ[ye−mπyer0(T−t)
]e

γJ
m EQ[e−mπyer0(T−t)−1] − (γB2 + m)πσ2er0(T−t).
11



We obtain

h′(π) = −λ2mer0(T−t)EQ[y2e−mπyer0(T−t)
]e

γJ
m EQ[e−mπyer0(T−t)−1]

−λ2γ
Jer0(T−t)

(
EQ[ye−mπyer0(T−t)

]
)2

e
γJ
m EQ[e−mπyer0(T−t)−1] − (γB2 + m)σ2er0(T−t) < 0,

which implies that h(π) is a decreasing function w.r.t. π. Furthermore, we have h(0) = µ − r0 +

λ2EQ[y] > 0. Also, we can find that if π > µ−r0+λ2EQ[y]
(γB2+m)σ2er0(T−t) > 0, we have h(π) < 0. Therefore, Eq.

(3.4) has a unique positive root. �

Remark 3.3. If the distribution of claim size satisfies
θµ̄(D) − (γB1 + m)er0T (σ̄(D))2

2
> 0,

min {ψ(T ), ψ(0)} > 0,

(3.10)

where ψ(t) = θµ̄
(
θe−r0(T−t)

γB1+m

)
− (γB1+m)er0(T−t)

2

(
σ̄

(
θe−r0(T−t)

γB1+m

))2
− θµ̄(D) + (γB1+m)er0(T−t)(σ̄(D))2

2 , for exam-

ple, exponential distribution and uniform distribution with certain parameters, etc., the robust

optimal reinsurance-investment strategy becomes

(i) if D > θ
γB1+m , the robust optimal reinsurance-investment strategy is given by

a∗(t) =
θe−r0(T−t)

γB1 + m
, 0 6 t 6 T, (3.11)

π∗(t) =
e−r0(T−t)

γB2 + m

µ − r0

σ2 +
λ2EQ[ye−mπ∗(t)yer0(T−t)

]
σ2 e

γJ
m EQ[e−mπ∗(t)yer0(T−t)−1]

 , 0 6 t 6 T, (3.12)

and the optimal value function is given by

V(t, x) = − 1
m

e−m[er0(T−t) x− f1(t)], 0 6 t 6 T ; (3.13)

(ii) if D 6 θ
γB1+m , the robust optimal reinsurance-investment strategy is given by

a∗(t) =


θe−r0(T−t)

γB1 + m
, 0 6 t 6 T +

1
r0

ln
D(γB1 + m)

θ
,

D, T +
1
r0

ln
D(γB1 + m)

θ
< t 6 T,

(3.14)

π∗(t) =
e−r0(T−t)

γB2 + m

µ − r0

σ2 +
λ2EQ[ye−mπ∗(t)yer0(T−t)

]
σ2 e

γJ
m EQ[e−mπ∗(t)yer0(T−t)−1]

 , 0 6 t 6 T, (3.15)

and the optimal value function is given by

V(t, x) =


− 1

m
e−m[er0(T−t) x− f2(t)], 0 6 t 6 T +

1
r0

ln
D(γB1 + m)

θ
,

− 1
m

e−m[er0(T−t) x− f3(t)], T +
1
r0

ln
D(γB1 + m)

θ
< t 6 T,

(3.16)
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where

f1(t) =
λ1(η − θ)µZ

r0
(1 − er0(T−t)) +

∫ T

t
l1(ω)dω −

∫ T

t
l2(ω)dω, (3.17)

f2(t) =
λ1(η − θ)µZ

r0
(er0(T−k) − er0(T−t)) +

∫ k

t
l1(ω)dω −

∫ T

t
l2(ω)dω

+
λ1ηµZ

r0
(1 − er0(T−k)) −

λ1σ
2
Z(γB1 + m)

4r0
(1 − e2r0(T−k)), (3.18)

f3(t) =
λ1ηµZ

r0
(1 − er0(T−t)) −

λ1σ
2
Z(γB1 + m)

4r0
(1 − e2r0(T−t)) −

∫ T

t
l2(ω)dω, (3.19)

l1(ω) = er0(T−ω)
∫ θe−r0(T−ω)

γB1+m

0
[λ1(γB1 + m)ser0(T−ω) − λ1θ]F̄(s)ds, (3.20)

l2(ω) = π∗(ω)(µ − r0)er0(T−ω) − 1
2

(γB2 + m)σ2(π∗(ω))2e2r0(T−ω)

+
λ2

γJ

(
1 − e

γJ
m EQ[e−mπ∗(ω)yer0(T−ω)−1]

)
. (3.21)

Proof. See Appendix B. �

Remark 3.4. From Eq. (3.11), we find that the robust optimal reinsurance strategy decreases

w.r.t. the ambiguity aversion coefficient γB1 , which provides the same insight as the intuition

that an AAI with a higher ambiguity aversion level is prone to purchasing more reinsurance.

This property is also shown in Yi et al. (2013). Analogously, we can derive the effects of ambi-

guity aversion coefficients on the robust optimal investment strategy, and we further analyze the

effects using numerical examples. Eq. (3.12) illustrates that the first term of the robust optimal

investment strategy is the speculative demand, which depends on the expected excess return.

The second term arises from the jump risk in the risky asset price process, and it is not present

when the risky asset’s price process has a continuous sample paths. In addition, we find that

the robust optimal reinsurance strategy is a function of the current time t, and is independent of

the parameters of the risky asset, while the robust optimal investment strategy is independent of

parameters of the insurance business.

Special cases of our results in Theorem 3.1 can be found in the literature. If γB1 = γB2 = γJ =

0, problem (2.7) reduces to problem (2.4), and the optimal excess-of-loss reinsurance strategy

reduces to that in Bai & Guo (2010). If λ2 = 0, there is no jump in the price process of the risky
13



asset and the optimal investment strategy is similar to that in Maenhout (2004), which considers

the robust portfolio selection maximizing a power utility.

Remark 3.5. (Proportional reinsurance case). If the AAI can purchase proportional reinsur-

ance or acquire new business (by acting as a reinsurer for other insurers, for example) to

manage her insurance business risk, the reinsurance level at any time t is associated with the

value 1 − p(t), where p(t) ∈ [0,+∞) can be regarded as the value of the risk exposure. Then,

up := {(p(t), π(t))}t∈[0,T ] is the reinsurance-investment strategy, and the wealth process of the

AAI under probability Q is

dXup(t) =
{
r0Xup(t) + λ1(η − θ + θp(t))µZ + π(t)(µ − r0) +

√
λ1 p(t)σZϕ1(t) + π(t)σϕ2(t)

}
dt

+
√
λ1 p(t)σZdBQ1 (t) + π(t)σdBQ2 (t) +

∫ ∞

−1
π(t)yNQ(dt, dy).

(3.22)

Similarly, we can obtain the robust optimal proportional reinsurance-investment strategy u∗p :=

{(p∗(t), π∗(t))}t∈[0,T ] as

p∗(t) =
θµZe−r0(T−t)

(γB1 + m)σ2
Z

, 0 6 t 6 T, (3.23)

π∗(t) =
e−r0(T−t)

γB2 + m

µ − r0

σ2 +
λ2EQ[ye−mπ∗(t)yer0(T−t)

]
σ2 e

γJ
m EQ[e−mπ∗(t)yer0(T−t)−1]

 , 0 6 t 6 T, (3.24)

and the optimal value function V p(t, x) as

V p(t, x) = − 1
m

e−m[er0(T−t) x− f4(t)], 0 6 t 6 T, (3.25)

where

f4(t) =
λ1(η − θ)µZ

r0
(1 − er0(T−t)) −

λ1θ
2µ2

Z

2(γB1 + m)σ2
Z

(T − t) −
∫ T

t
l2(ω)dω (3.26)

with l2(ω) given by Eq. (3.21).

In addition, from Eqs. (3.23) and (3.24), we find that the effects of the model parameters

on the robust optimal proportional reinsurance-investment strategy are similar to those in an

excess-of-loss reinsurance case. However, according to the results of the optimal value func-

tions with excess-of-loss and proportional reinsurance given in Table 1 with the values of the

parameters given in Table 2, we find that V(t, x) > V p(t, x), which implies that excess-of-loss

reinsurance is preferred than proportional reinsurance in our model.
14



Table 1. Optimal value functions with excess-of-loss and proportional reinsurance.

t 0 1 2 3 4 5 6 7

V(t, x) -0.1488 -0.1754 -0.2066 -0.2431 -0.2857 -0.3353 -0.3932 -0.4606

V p(t, x) -0.1673 -0.1946 -0.2262 -0.2627 -0.3049 -0.3537 -0.4099 -0.4749

4. Special cases

This section provides some special cases of our model: investment-only, ambiguity-neutral

insurer (ANI) and no jump. We can derive the corresponding robust optimal strategies and

optimal value functions for these cases similar to the expression of Theorem 3.1, however, to

make the robust optimal strategies simple and intuitive, we consider these special cases under

condition (3.10).

4.1. Investment-only case. If there is no reinsurance in our model, i.e., a(t) ≡ D, the wealth

process of an AAI under the probability Q reduces to

dXu(t) =
{
r0Xu(t) + λ1ηµZ + π(t)(µ − r0) +

√
λ1σZϕ1(t) + π(t)σϕ2(t)

}
dt

+
√
λ1σZdBQ1 (t) + π(t)σdBQ2 (t) +

∫ ∞

−1
π(t)yNQ(dt, dy),

(4.1)

and the corresponding HJB equation becomes

sup
π∈R

inf
(ϕ1,ϕ2,ϕ3)∈R×R×R+

{
Ṽt + Ṽx

[
r0x + λ1ηµZ + π(µ − r0) +

√
λ1σZϕ1 + πσϕ2

]
+

1
2

Ṽxx[λ1σ
2
Z + π

2σ2] + λ2ϕ3EQ[Ṽ(t, x + πy) − Ṽ(t, x)]

+
ϕ2

1

2φB1(t)
+

ϕ2
2

2φB2(t)
+
λ2(ϕ3 ln ϕ3 − ϕ3 + 1)

φJ(t)

}
= 0,

(4.2)

where Ṽ is a short notation for Ṽ(t, x) representing the optimal value function of the investment-

only problem with the boundary condition Ṽ(T, x) = U(x). Similar to the derivations of the

reinsurance-investment case, we have the robust optimal investment strategy and the corre-

sponding optimal value function as follows.

Proposition 4.1. For the investment-only problem, i.e., a(t) ≡ D, under assumptions (3.1) and

(3.2), the robust optimal investment strategy is given by

π∗(t) =
e−r0(T−t)

γB2 + m

µ − r0

σ2 +
λ2EQ[ye−mπ∗(t)yer0(T−t)

]
σ2 e

γJ
m EQ[e−mπ∗(t)yer0(T−t)−1]

 , 0 6 t 6 T, (4.3)
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and the optimal value function is given by

Ṽ(t, x) = − 1
m

e−m[er0(T−t) x− f3(t)], 0 6 t 6 T, (4.4)

where f3(t) is given by Eq. (3.19).

In addition, if we do not consider the insurance business, i.e., λ1 = 0, then the robust optimal

investment strategy is given by Eq. (4.3), and the optimal value function is

V̆(t, x) = − 1
m

e−m[er0(T−t) x− f5(t)], 0 6 t 6 T, (4.5)

with

f5(t) = −
∫ T

t
l2(ω)dω, (4.6)

where l2(ω) is given by Eq. (3.21).

4.2. Ambiguity-neutral insurer (ANI) case. If all of the ambiguity aversion coefficients equal

0, i.e, γB1 = γB2 = γJ = 0, our model reduces to an optimization problem for an ANI. Then, the

ANI’s wealth process under probability P is described by Eq. (2.3) and the objective function

is given by Eq. (2.4). Denote the optimal value function by

V̂(t, x) = sup
û∈Π̃

E[U(Xû(T ))], (4.7)

where û = {(â(t), π̂(t))}t∈[0,T ]. The corresponding HJB equation is

sup
(â,π̂)∈[0,D]×R

{
V̂t + V̂x

[
r0x + λ1(θµ̄(â) + (η − θ)µZ) + π̂(µ − r0)

]
+

1
2

V̂xx[λ1(σ̄(â))2 + π̂2σ2] + λ2E[V̂(t, x + π̂y) − V̂(t, x)]
}
= 0,

(4.8)

where V̂ is a short notation for V̂(t, x) with V̂(T, x) = U(x).

Proposition 4.2. For problem (4.7) of an ANI who ignores ambiguity with utility (3.1), (i) if

D > θ
m , the optimal reinsurance-investment strategy is given by

â∗(t) =
θe−r0(T−t)

m
, 0 6 t 6 T, (4.9)

π̂∗(t) =
e−r0(T−t)

m

µ − r0

σ2 +
λ2E[ye−mπ̂∗(t)yer0(T−t)

]
σ2

 , 0 6 t 6 T, (4.10)

and the optimal value function V̂(t, x) is given by

V̂(t, x) = − 1
m

e−m[er0(T−t) x− f6(t)], 0 6 t 6 T ; (4.11)
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(ii) if D 6 θ
m , the optimal reinsurance-investment strategy is given by

â∗(t) =


θe−r0(T−t)

m
, 0 6 t 6 T +

1
r0

ln
Dm
θ
,

D, T +
1
r0

ln
Dm
θ

< t 6 T,

(4.12)

π̂∗(t) =
e−r0(T−t)

m

µ − r0

σ2 +
λ2E[ye−mπ̂∗(t)yer0(T−t)

]
σ2

 , 0 6 t 6 T, (4.13)

and the optimal value function V̂(t, x) is given by

V̂(t, x) =


− 1

m
e−m[er0(T−t) x− f7(t)], 0 6 t 6 T +

1
r0

ln
Dm
θ
,

− 1
m

e−m[er0(T−t) x− f8(t)], T +
1
r0

ln
Dm
θ

< t 6 T,
(4.14)

where

f6(t) =
λ1(η − θ)µZ

r0
(1 − er0(T−t)) +

∫ T

t
l3(ω)dω −

∫ T

t
l4(ω)dω, (4.15)

f7(t) =
λ1(η − θ)µZ

r0
(er0(T−k) − er0(T−t)) +

∫ k

t
l3(ω)dω −

∫ T

t
l4(ω)dω

+
λ1ηµZ

r0
(1 − er0(T−k)) −

λ1σ
2
Zm

4r0
(1 − e2r0(T−k)), (4.16)

f8(t) =
λ1ηµZ

r0
(1 − er0(T−t)) −

λ1σ
2
Zm

4r0
(1 − e2r0(T−t)) −

∫ T

t
l4(ω)dω, (4.17)

l3(ω) = er0(T−ω)
∫ θe−r0(T−ω)

m

0
[λ1mser0(T−ω) − λ1θ]F̄(s)ds, (4.18)

l4(ω) = π̂∗(ω)(µ − r0)er0(T−ω) − 1
2

mσ2(π̂∗(ω))2e2r0(T−ω)

−λ2

m
E[e−mπ̂∗(ω)yer0(T−ω) − 1]. (4.19)

Proposition 4.2 shows that the optimal reinsurance strategy in Eq. (4.9) becomes the result

in Bai & Guo (2010), i.e., our model extends the optimal excess-of-loss reinsurance strategy in

Bai & Guo (2010) to the case of robust optimal formulation.
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4.3. No jump case. If the intensity of the jump in the price process of the risky asset equals 0,

i.e., λ2 = 0, our model reduces to a case without jumps. Then, the wealth process of the AAI

under probability Q with the strategy ū = {(ā(t), π̄(t))}t∈[0,T ] is

dXū(t) =
{
r0Xū(t) + λ1[θµ̄(ā) + (η − θ)µZ] + π̄(t)(µ − r0) +

√
λ1σ̄(ā)ϕ1(t) + π̄(t)σϕ2(t)

}
dt

+
√
λ1σ̄(ā)dBQ1 (t) + π̄(t)σdBQ2 (t),

(4.20)

and the corresponding HJB equation is

sup
(ā,π̄)∈[0,D]×R

inf
(ϕ1,ϕ2)∈R×R

{
V̄t + V̄x

[
r0x + λ1(θµ̄(ā) + (η − θ)µZ) + π̄(µ − r0) +

√
λ1σ̄(ā)ϕ1 + π̄σϕ2

]
+

1
2

V̄xx[λ1(σ̄(ā))2 + π̄2σ2] +
ϕ2

1

2φB1(t)
+

ϕ2
2

2φB2(t)

}
= 0,

(4.21)

where V̄ is a short notation for V̄(t, x) representing the optimal value function of the no jump

case with the boundary condition V̄(T, x) = U(x). Similarly, we can derive the robust optimal

reinsurance-investment strategy and the corresponding optimal value function, explicitly.

Proposition 4.3. If the risky asset price does not have jumps, under assumptions (3.1) and (3.2),

the robust optimal reinsurance-investment strategy and the optimal value function reduce to the

follows: (1) if D > θ
γB1+m , the robust optimal reinsurance-investment strategy is given by

ā∗(t) =
θe−r0(T−t)

γB1 + m
, 0 6 t 6 T, (4.22)

π̄∗(t) =
(µ − r0)e−r0(T−t)

σ2(γB2 + m)
, 0 6 t 6 T, (4.23)

and the optimal value function is given by

V̄(t, x) = − 1
m

e−m[er0(T−t) x− f9(t)], 0 6 t 6 T ; (4.24)

(2) if D 6 θ
γB1+m , the robust optimal reinsurance-investment strategy is given by

ā∗(t) =


θe−r0(T−t)

γB1 + m
, 0 6 t 6 k,

D, k < t 6 T,

(4.25)

π̄∗(t) =
(µ − r0)e−r0(T−t)

σ2(γB2 + m)
, 0 6 t 6 T, (4.26)
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and the optimal value function is given by

V̄(t, x) =


− 1

m
e−m[er0(T−t) x− f10(t)], 0 6 t 6 k,

− 1
m

e−m[er0(T−t) x− f11(t)], k < t 6 T,
(4.27)

with

f9(t) =
λ1(η − θ)µZ

r0
(1 − er0(T−t)) +

∫ T

t
l1(ω)dω −

∫ T

t
l5(ω)dω, (4.28)

f10(t) =
λ1(η − θ)µZ

r0
(er0(T−k) − er0(T−t)) +

∫ k

t
l1(ω)dω −

∫ T

t
l5(ω)dω

+
λ1ηµZ

r0
(1 − er0(T−k)) −

λ1σ
2
Z(γB1 + m)

4r0
(1 − e2r0(T−k)), (4.29)

f11(t) =
λ1ηµZ

r0
(1 − er0(T−t)) −

λ1σ
2
Z(γB1 + m)

4r0
(1 − e2r0(T−t)) −

∫ T

t
l5(ω)dω, (4.30)

l5(ω) = π̄∗(ω)(µ − r0)er0(T−ω) − 1
2

(γB2 + m)σ2(π̄∗(ω))2e2r0(T−ω), (4.31)

where l1(ω) is given in Eq. (3.20).

Proposition 4.3 illustrates that if there is no jump in our model, the robust optimal investment

strategy is similar to that in Maenhout (2004), which considers the robust portfolio selection

maximizing a power utility. Furthermore, if we do not consider the insurance business and

jumps, i.e., λ1 = λ2 = 0, then the robust optimal investment strategy is given by Eq. (4.23), and

the optimal value function is given by

V́(t, x) = − 1
m

e−m[er0(T−t) x− f12(t)], 0 6 t 6 T, (4.32)

with

f12(t) = −
∫ T

t
l5(ω)dω (4.33)

where l5(ω) is given by Eq. (4.31).

5. Numerical examples and utility enhancements

This section provides some numerical examples to illustrate the effects of model parameters

on the robust optimal reinsurance-investment strategy and utility enhancements under condition

(3.10). We take the case D > θ
γB1+m as an example, and the analysis for the case of D 6

θ
γB1+m is similar. Moreover, suppose that both claim size Zi and jump size Yi follow exponential
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distributions with parameters λZ and λY , respectively, i.e., the density functions of claim size Zi

and jump size Yi are f (z) = λZe−λZz, z > 0 and g(y) = λYe−λY (y+1), y > −1. Throughout numerical

analysis, unless otherwise stated, the basic parameters are given in the following table.

Table 2. Parameters of model in numerical examples

r0 µ σ η θ m γB1 γB2 γJ λ1 λ2 λZ λY T t

0.03 0.08 0.25 0.10 0.30 0.2 0.2 0.5 0.7 1 2 2 2 10 0

5.1. Effects of model parameters on the robust optimal reinsurance-investment strategy.

From Eq. (3.11), we can obtain partial derivatives of the robust optimal reinsurance strategy

a∗(t) w.r.t. different parameters. Table 3 shows that: (i) a∗(t) increases as a function of t and the

reinsurer’s safety loading θ. As the remaining time decreases, the AAI becomes less risk averse

and undertakes more risks by herself, whereas when θ increases, to decrease the expensive

payment to reinsurance, the AAI prefers to take more insurance business and raise the retention

level of reinsurance; (ii) a∗(t) decreases w.r.t. the risk-free interest rate r0, the insurer’s risk

aversion coefficient m and the ambiguity aversion coefficient γB1 . The main reason for this is

that with the increase of r0, the risk-free asset is more attractive, so the AAI is more likely

to invest more wealth in the risk-free asset instead of purchasing more reinsurance. Note that

the larger m is, the more risk averse the AAI is, so she purchases more reinsurance to spread

risk. Moreover, an AAI with a higher ambiguity aversion level γB1 is prone to purchasing more

reinsurance to disperse the underlying insurance business risks.

Table 3. Partial derivatives of a∗(t) in the case of D > θ
γB1+m .

derivatives ∂a∗(t)
∂t

∂a∗(t)
∂r0

∂a∗(t)
∂m

∂a∗(t)
∂θ

∂a∗(t)
∂γB1

value > 0 < 0 < 0 > 0 < 0

Eq. (3.12) reveals that the robust optimal investment strategy π∗(t) is implicit and depends

on different parameters in a very complicated way. It is difficult to analyze the effects of dif-

ferent parameters on π∗(t) analytically through the partial derivatives of π∗(t). We perform the

sensitivity analysis of π∗(t) w.r.t. different parameters through numerical simulations.
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Figure 1. Effects of parameters γB2 , γJ, λ2 and λY on π∗(t).

Figure 1 shows the effects of the ambiguity aversion coefficients γB2 and γJ, the jump intensity

of the risky asset λ2 and the parameter λY of distribution function G(y) on the robust optimal

investment strategy π∗(t). We find that π∗(t) is a decreasing function of γB2 and γJ; that is,

the more ambiguity aversion the AAI is, the less risky asset she purchases. In addition, the

robust optimal investment strategy π∗(t) is more sensitive to γB2 and γJ when γB2 and γJ are

small than that when they are large, which means that the marginal effect of increasing the

amount invested in the risky asset is declining. The robust optimal investment strategy π∗(t)

also decreases w.r.t. λ2 and λY , because that as the jump intensity λ2 increases, the risky asset

becomes more risky and less attractive. Moreover, a larger λY implies that the expectation and

variance of Yi decrease, prompting the AAI to invest more wealth in the risky asset.

5.2. Effects of model parameters on the utility enhancements. This subsection discusses the

AAI’s utility enhancements by numerical illustration. Without loss of generality, we consider

the case of D > θ
m > θ

γB1+m , and the analyzes of other cases are similar.

First, we study the effect of ambiguity aversion on utility enhancement. We show that an

insurer who suffers from ambiguity aversion follows a suboptimal strategy. Suppose that an

AAI does not take the optimal strategy u∗ = {(a∗(t), π∗(t))}t∈[0,T ] given in Theorem 3.1, but

instead makes her decisions as if she were an ANI, i.e., the AAI follows the strategy û∗ =

{(â∗(t), π̂∗(t))}t∈[0,T ] given in Proposition 4.2. The optimal value function for the AAI following

strategy û∗ is defined by

V̌(t, x)

= inf
Φ∈Θ

EQ
{∫ T

t

[
(ϕ1(s))2

2φB1(s)
+

(ϕ2(s))2

2φB2(s)
+
λ2(ϕ3(s) ln ϕ3(s) − ϕ3(s) + 1)

φJ(s)

]
ds + U(Xû∗(T ))

}
.

(5.1)
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Note that ϕ1(t), ϕ2(t) and ϕ3(t), which describe the alternative model, are determined endoge-

nously and depend on the reinsurance-investment strategy. Unlike in the optimal case, the

reinsurance-investment strategy is now pre-specified. The functions φB1(t), φB2(t) and φJ(t) are

defined analogously to Eq. (3.2).

It is obvious that value function V̌(t, x) defined in Eq. (5.1) is smaller than V(t, x) in Eq. (2.9).

Bases on V̌(t, x), we define the utility enhancement from considering ambiguity as follows

UE1(t) := 1 − V(t, x)
V̌(t, x)

= 1 − em( f1(t)− f0(t)), (5.2)

where f1(t) and f0(t) are given by Eq. (3.17) and

f0(t) =
λ1(η − θ)µZ

r0
(1 − er0(T−t)) +

∫ T

t
l6(ω)dω −

∫ T

t
l7(ω)dω, (5.3)

l6(ω) = er0(T−ω)
∫ θe−r0(T−ω)

m

0
[λ1(γB1 + m)ser0(T−ω) − λ1θ]F̄(s)ds, (5.4)

l7(ω) = π̂∗(ω)(µ − r0)er0(T−ω) − 1
2

(γB2 + m)σ2(π̂∗(ω))2e2r0(T−ω)

+
λ2

γJ

(
1 − e

γJ
m EQ[e−mπ̂∗(ω)yer0(T−ω)−1]

)
. (5.5)

Derivation of suboptimal value function are given in Appendix C.

Table 4. Effects of γB2 and γJ on the utility enhancement UE1(t).

γB2�γJ 0 1 2 3 4 5 6 7

0 0.0775 0.1153 0.1932 0.2719 0.3370 0.3876 0.4262 0.4558

1 0.3028 0.3912 0.5021 0.5786 0.6312 0.6678 0.6941 0.7134

2 0.5289 0.6387 0.7199 0.7704 0.8030 0.8250 0.8404 0.8515

3 0.6867 0.7981 0.8484 0.8781 0.8967 0.9091 0.9176 0.9237

4 0.7928 0.8907 0.9196 0.9362 0.9464 0.9531 0.9577 0.9610

5 0.8633 0.9420 0.9579 0.9669 0.9724 0.9760 0.9784 0.9801

6 0.9099 0.9696 0.9782 0.9830 0.9859 0.9877 0.9890 0.9899

7 0.9407 0.9842 0.9888 0.9913 0.9928 0.9938 0.9944 0.9949

Table 4 shows the effects of ambiguity aversion coefficients for diffusion and jump risks on

the utility enhancement UE1(t). We find that UE1(t) increases w.r.t γB2 and γJ, and the change

trends are also clearly showed in Figure 2. Particularly, the first column (γJ = 0) is the case of
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ambiguity without jumps. We find that the value of UE1(t) with ambiguity for jump-diffusion

risks (γJ , 0) is much larger than that without jumps. Thus, the utility enhancement from

ambiguity for the jump risk cannot be ignored.

Figure 2 discloses the utility enhancement UE1(t) as an increasing function of γB1 , γB2 , γJ

and the remaining time T − t. UE1(t) is higher for the AAI with less information about the

model P (higher γB1 , γB2 and γJ) than that for the AAI with more information (smaller γB1 , γB2

and γJ). Moreover, UE1(t) has a remarkable upward trend as T − t increases. Figure 3 reveals

that UE1(t) increases w.r.t. λ2 and λY . A larger λ2 or λY implies more uncertainties for the

price of the risky asset, such that taking robust optimal strategy for an AAI brings larger utility

enhancement.
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Figure 2. Effects of T − t, γB1 , γB2 and γJ on the utility enhancement UE1(t).
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Figure 3. Effects of λ2 and λY on the utility enhancement UE1(t).

Next, we analyze the utility enhancement from considering reinsurance. As stated in some

researches about optimal reinsurance-investment problem, reinsurance can optimize the utili-

ty. This is also true in the optimal reinsurance-investment problem with ambiguity. Bases on

Ṽ(t, x) (the optimal value function without reinsurance), we define the utility enhancement from
23



considering reinsurance as follows

UE2(t) := 1 − V(t, x)
Ṽ(t, x)

= 1 − em( f1(t)− f3(t)), (5.6)

where f1(t) and f3(t) are given in Eqs. (3.17) and (3.19).

Figure 4 illustrates the effects of the remaining time T − t, the ambiguity aversion coefficient

γB1 , the reinsurer’s safety loading θ and the insurer’s risk aversion coefficient m on the utility

enhancement UE2(t). From Figure 4, we find that UE2(t) increases w.r.t. T − t. A reasonable

explanation is that the AAI faces more uncertainty when T−t is longer. In addition, UE2(t) is in-

creasing w.r.t. γB1 , which means that the AAI with a higher ambiguity aversion level is prone to

purchasing more reinsurance to disperse the insurance business risk. Then, the utility enhance-

ment from considering reinsurance increases. As shown in Figure 4, UE2(t) decreases w.r.t. θ,

which can be explained by the fact that a higher θ increases the cost of the AAI’s purchase of

reinsurance, so she cedes less risk to the reinsurer. Intuitively, an extremely high reinsurance

premium provides a favored position for acquiring business, causing utility enhancement if new

business acquisition is prohibited. Moreover, Figure 4 shows that UE2(t) increases w.r.t. m,

which indicates that the AAI with a higher risk aversion coefficient is more likely to purchase

more reinsurance for risk-spreading.
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Figure 4. Effects of T − t, γB1 , θ and m on the utility enhancement UE2(t).

As shown in Figure 5, the utility enhancement UE2(t) increases w.r.t. the jump intensity of

claim size λ1. A possible reason for this is that a higher λ1 results in a more severe fluctuation in

the AAI’s surplus process, making her more likely to cede more reinsurance to the reinsurer for

dispersing risks. Consequently, the utility enhancement from considering reinsurance increases.

In addition, from Figure 5, we find that the effect of λz on UE2(t) is small.
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Figure 5. Effects of λ1 and λZ on the utility enhancement UE2(t).

6. Conclusion

In this paper, we consider a robust optimal excess-of-loss reinsurance and investment prob-

lem with jumps for an AAI, who worries about ambiguity and aims to develop robust optimal

strategies. The insurer’s surplus is assumed to follow a Brownian motion with drift, and the

insurer is allowed to purchase excess-of-loss reinsurance and invest her surplus in a risk-free

asset and a risky asset whose price dynamics is described by a jump-diffusion model. Mean-

while, the insurer may lack full confidence on the model describing the economy, in which case

we formulate a systematic analysis of the robust reinsurance-investment problem. By apply-

ing the stochastic dynamic programming approach, explicit expressions for the robust optimal

reinsurance-investment strategy to maximize the expected exponential utility of terminal wealth

and the corresponding optimal value function are obtained. Some special cases of our model

and results are provided, and the economic implications of our findings and utility enhance-

ments from considering ambiguity and reinsurance are analyzed using numerical examples. We

find that (i) the effect of ambiguity by jump risk on the robust optimal investment strategy and

the optimal value function is significant, and utility enhancement from considering ambiguity in

the case of jump-diffusion risks is much larger than that without jumps; (ii) the robust optimal

reinsurance-investment strategy for the AAI is affected by the attitude towards ambiguity, so

the AAI facing model uncertainty has a smaller optimal strategy than an ANI; (iii) reinsurance

brings large utility enhancement for the AAI, which implies that reinsurance is very impor-

tant in risk management; and (iv) for the robust optimal reinsurance-investment problem, the

optimal value function with excess-of-loss reinsurance is preferred than that with proportional

reinsurance.
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In future research, more complicated models, such as stochastic volatility with jumps, can be

taken into account, although doing so may make it difficult to obtain the closed-form solution.

Thus, other methods, such as asymptotic, or other practical methods may be introduced to deal

with the robust optimal reinsurance-investment problem.

Appendix A.

Derivation of relative entropy.

The relative entropy is defined as the expectation under the alternative probability of the log

Radon-Nikodym derivative defined in Eq. (2.5). Using Itô’s formula, we have

d lnΛΦ = ϕ1(t)dB1(t) + ϕ2(t)dB2(t) + λ2(1 − ϕ3(t))dt

−1
2

(ϕ1(t))2dt − 1
2

(ϕ2(t))2dt +
∫ ∞
−1

ln ϕ3(t)N(dt, dy).
(A.1)

The relative entropy over the interval from t to t + ε is given by

EQ
[
ln
ΛΦ(t + ε)
ΛΦ(t)

]
= EQ

[∫ t+ε

t
ϕ1(s)(dBQ1 (s) + ϕ1(s)ds) +

∫ t+ε

t
ϕ2(s)(dBQ2 (s) + ϕ2(s)ds)

+

∫ t+ε

t
[λ2(1 − ϕ3(s)) − 1

2
(ϕ1(s))2 − 1

2
(ϕ2(s))2]ds

]
+

∫ t+ε

t

∫ ∞

−1
ln ϕ3(s)ν(ds, dy) +

∫ t+ε

t
λ2ϕ3(s) ln ϕ3(s)ds

= EQ
[∫ t+ε

t

(
1
2

(ϕ1(s))2 +
1
2

(ϕ2(s))2 + λ2(ϕ3(s) ln ϕ3(s) − ϕ3(s) + 1)
)]
.

(A.2)

Let ε→ 0 and we have the continuous-time limit of the relative entropy given by Eq. (2.8).

Appendix B.

Proof of Theorem 3.1 and Remark 3.3.

To solve Eq. (2.10), we conjecture that the optimal value function is

V(t, x) = − 1
m

e−m[er0(T−t) x− f̄ (t)] (B.1)
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with the boundary condition f1(T ) = 0. A direct calculation yields

Vt = −Vm[−r0xer0(T−t) − f̄t], Vx = −Vmer0(T−t), Vxx = Vm2e2r0(T−t),

V(t, x + πy) − V(t, x) = V(e−mπyer0(T−t) − 1),
(B.2)

where f̄ = f̄ (t) and f̄t stands for the partial derivative of f̄ (t) w.r.t. time t for short.

According to the first-order optimality conditions, the functions ϕ∗1(t), ϕ∗2(t) and ϕ∗3(t), which

realize the infimum part of Eq. (2.10) are given by

ϕ∗1(t) = −γB1
√
λ1σ̄(a)er0(T−t), (B.3)

ϕ∗2(t) = −γB2πσer0(T−t), (B.4)

ϕ∗3(t) = e
γJ
m EQ[e−mπyer0(T−t)−1]. (B.5)

Substituting Eqs. (B.2)-(B.5) into Eq. (2.10), we have

sup
(a,π)∈[0,D]×R

{
Vt + r0xVx + λ1(θµ̄(a) + (η − θ)µZ)Vx + π(µ − r0)Vx +

λ1(σ̄(a))2γB1V2
x

2mV
+
σ2π2γB2V2

x

2mV

+
1
2
λ1(σ̄(a))2Vxx +

1
2
π2σ2Vxx −

mVλ2

γJ

(
1 − e

γJ
m EQ[e−mπyer0(T−t)−1]

)}
= 0.

(B.6)

The first-order optimality condition gives the optimal reinsurance strategy

λ1θVx
dµ̄(a)

da
− λ1φ

B1(t)V2
x

2
· d(σ̄(a))2

da
+
λ1Vxx

2
· d(σ̄(a))2

da
= 0,

i.e.,

F̄(a∗0)(θVx − φB1(t)V2
x a∗0 + Vxxa∗0) = 0.

Since 0 < F̄(a∗0) 6 1, we have

a∗0(t) =
θVx

φB1(t)V2
x − Vxx

=
θe−r0(T−t)

γB1 + m
. (B.7)

Furthermore, differentiating Eq. (B.6) w.r.t. π(t) implies that a nonlinear equation for the robust

optimal investment strategy π∗(t) is

π∗(t) =
e−r0(T−t)

γB2 + m

µ − r0

σ2 +
λ2EQ[ye−mπ∗(t)yer0(T−t)

]
σ2 e

γJ
m EQ[e−mπ∗(t)yer0(T−t)−1]

 . (B.8)

We first justify that π∗ given in Eq. (B.8) derived by the first-order conditions is the optimal

investment strategy. Let

g(π) = π(µ − r0)Vx +
σ2π2γB2V2

x

2mV
+

1
2
π2σ2Vxx +

mVλ2

γJ e
γJ
m EQ[e−mπyer0(T−t)−1],
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which gather the term of π in the left side of Eq. (B.6). Furthermore,

gπ(π) = (µ − r0)Vx +
σ2πγB2V2

x

mV
+ πσ2Vxx − mVλ2er0(T−t)e

γJ
m EQ[e−mπyer0(T−t)−1]EQ[ye−mπyer0(T−t)

],

gππ(π) =
σ2γB2V2

x

mV
+ σ2Vxx + mγJVλ2e2r0(T−t)e

γJ
m EQ[e−mπyer0(T−t)−1]

(
EQ[ye−mπyer0(T−t)

]
)2

+m2Vλ2e2r0(T−t)e
γJ
m EQ[e−mπyer0(T−t)−1]EQ[ye−mπyer0(T−t)

].

Since V < 0, Vx > 0 and Vxx < 0, it is obvious that gππ(π) < 0 for any admissible π. Therefore,

the first-order optimality condition gives the optimal investment strategy.

Next, similarly, let

l(a) = λ1θµ̄(a)Vx +
λ1(σ̄(a))2γB1V2

x

2mV
+

1
2
λ1(σ̄(a))2Vxx,

which gathers the term of a in the left side of Eq. (B.6). Since l(a) is a continuous function

of a (a ∈ [0,D]), the optimal reinsurance strategy a∗ will appears at a∗0 =
θe−r0(T−t)

γB1+m such that

la( θe
−r0(T−t)

γB1+m ) = 0 or the two end points of the interval 0 and D. Therefore, the robust optimal

reinsurance strategy is given by

a∗(t) =


θe−r0(T−t)

γB1 + m
· 1{

l
(
θe−r0(T−t)

γB1+m

)
>max{l(D),0}

} + D · 1{
l(D)>max

{
l
(
θe−r0(T−t)

γB1+m

)
,0
}}, θe−r0(T−t)

γB1 + m
∈ [0,D],

D · 1{l(D)>0},
θe−r0(T−t)

γB1 + m
∈ [D,+∞),

and the optimal value function is given by

V(t, x) = − 1
m

e−m[er0(T−t) x− f̄ (t)];

where

f̄ (t) =
λ1(η − θ)µZ

r0
(1 − er0(T−t)) +

∫ T

t
l̄1(ω)dω −

∫ T

t
l̄2(ω)dω,

l̄1(ω) = er0(T−ω)
∫ a∗(ω)

0
[λ1(γB1 + m)ser0(T−ω) − λ1θ]F̄(s)ds,

l̄2(ω) = π∗(ω)(µ − r0)er0(T−ω) − 1
2

(γB2 + m)σ2(π∗(ω))2e2r0(T−ω)

+
λ2

γJ

(
1 − e

γJ
m EQ[e−mπ∗(ω)yer0(T−ω)−1]

)
.

In addition, if the distribution of claim size satisfies condition (3.10), we can derive l
(
θe−r0(T−t)

γB1+m

)
>

l(D) > l(0) = 0, ∀t ∈ [0,T ]. Eq. (B.7) shows that a∗(t) ∈ [0,D] when t 6 k := T + 1
r0

ln D(γB1+m)
θ

.

We try to find the solution to Eq. (B.6) in the following cases.
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(i) If D > θ
γB1+m , we have k > T . Then, 0 6 t 6 T < k, and the robust optimal reinsurance-

investment strategy is shown in Eqs. (B.7) and (B.8). Similarly, we assume that the optimal

value function is

V(t, x) = − 1
m

e−m[er0(T−t) x− f1(t)], 0 6 t 6 T.

Plugging Eqs. (B.7) and (B.8) into Eq. (B.6), we have

f1t − λ1(η − θ)µZer0(T−t) + er0(T−t)
∫ θe−r0(T−t)

γB1+m

0
[λ1(γB1 + m)ser0(T−t) − λ1θ]F̄(s)ds

−π∗(µ − r0)er0(T−t) +
1
2

(γB2 + m)σ2(π∗)2e2r0(T−t) − λ2

γJ

(
1 − e

γJ
m EQ[e−mπ∗yer0(T−t)−1]

)
= 0.

(B.9)

Considering the boundary condition f1(T ) = 0, the solution to Eq. (B.9) is

f1(t) =
λ1(η − θ)µZ

r0
(1 − er0(T−t)) +

∫ T

t
l1(ω)dω −

∫ T

t
l2(ω)dω, (B.10)

where

l1(ω) = er0(T−ω)
∫ θe−r0(T−ω)

γB1+m

0
[λ1(γB1 + m)ser0(T−ω) − λ1θ]F̄(s)ds, (B.11)

l2(ω) = π∗(ω)(µ − r0)er0(T−ω) − 1
2

(γB2 + m)σ2(π∗(ω))2e2r0(T−ω)

+
λ2

γJ

(
1 − e

γJ
m EQ[e−mπ∗(ω)yer0(T−ω)−1]

)
.

(B.12)

(ii) If D 6 θ
γB1+m , we have k 6 T . Thus, 0 6 t < k 6 T . In the case of 0 6 t 6 k, the

derivations of the solution to Eq. (B.6) are similar to those of case (i), and we assume that the

optimal value function is

V(t, x) = − 1
m

e−m[er0(T−t) x− f2(t)], 0 6 t 6 k,

where f2(t) needs to be determined.

In the case of k < t 6 T , choosing a∗(t) = D, and Eq. (B.6) becomes

Vt + r0xVx + λ1ηµZVx + π
∗(µ − r0)Vx +

λ1σ
2
Zγ

B1V2
x

2mV
+
σ2(π∗)2γB2V2

x

2mV
+

1
2
λ1σ

2
ZVxx

+
1
2

(π∗)2σ2Vxx −
mVλ2

γJ

(
1 − e

γJ
m EQ[e−mπ∗yer0(T−t)−1]

)
= 0.

(B.13)

Similarly, we have the solution to Eq. (B.13) as follows

V(t, x) = − 1
m

e−m[er0(T−t) x− f3(t)], k < t 6 T.
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Taking into account the boundary condition f3(T ) = 0 and the continuity of V(t, x) at time t = k,

we have

f2(t) =
λ1(η − θ)µZ

r0
(er0(T−k) − er0(T−t)) +

∫ k

t
l1(ω)dω −

∫ T

t
l2(ω)dω

+
λ1ηµZ

r0
(1 − er0(T−k)) −

λ1σ
2
Z(γB1 + m)

4r0
(1 − e2r0(T−k)),

(B.14)

f3(t) =
λ1ηµZ

r0
(1 − er0(T−t)) −

λ1σ
2
Z(γB1 + m)

4r0
(1 − e2r0(T−t)) −

∫ T

t
l2(ω)dω, (B.15)

where l1(ω) and l2(ω) are given in Eqs. (B.11) and (B.12).

Summarizing the above analysis, we can derive the robust optimal reinsurance-investment

strategy and the optimal value function explicitly.

Next, conditions (i)-(v) in Proposition 2.2 will be checked. We first give two lemmas.

Lemma B.1. The following expectation is finite

J(T ) := E
[
exp

{∫ T

0

(
(ϕ∗1(t))2

2
+

(ϕ∗2(t))2

2
+ λ2(ϕ∗3(t) ln ϕ3(t) − ϕ3(t) + 1)

)
dt

}]
. (B.16)

Proof. Substituting Eqs. (B.3)-(B.5) into Eq. (B.16), we have

E
[
exp

{∫ T

0

(
(ϕ∗1(t))2

2
+

(ϕ∗2(t))2

2
+ λ2(ϕ∗3(t) ln ϕ3(t) − ϕ3(t) + 1)

)
dt

}]
= E

[
exp

{∫ T

0

(
1
2
γ2

B1
λ1( ¯σ(a∗))2e2r0(T−t) +

1
2
γ2

B2
(π∗)2σ2e2r0(T−t)

λ2

(
e
γJ
m EQ[e−mπ∗yer0(T−t)−1] γJ

m EQ[e−mπ∗yer0(T−t) − 1] − e
γJ
m EQ[e−mπ∗yer0(T−t)−1] + 1

))
dt

}]
.

(B.17)

Since a∗ and π∗ are finite, the right side of Eq. (B.16) is finite. �

Lemma B.2. The optimal strategy u∗ and the corresponding function W(t, Xu∗(t)) have the fol-

lowing properties:

(a) u∗ is an admissible strategy;

(b) EQ
∗ (

supt∈[0,T ] |W(t, Xu∗(t))|4
)
< ∞;

(c)EQ
∗
(
supt∈[0,T ]

∣∣∣∣∣(ϕ∗1(t))2

2φB1(t)
+

(ϕ∗2(t))2

2φB2(t)
+
λ2(ϕ∗3(t) ln ϕ∗3(t) − ϕ∗3(t) + 1)

φJ(t)

∣∣∣∣∣2) < ∞.

Proof. (a). From the process of solving HJB equation, we know condition (i) in Definition 2.1

holds, and the optimal strategy u∗ is deterministic and state-independent, thus condition (ii) in

Definition 2.1 is satisfied. Condition (iii) in Definition 2.1 can be obtained by property (b).

(b). Substituting Eqs. (B.3)-(B.5), (B.7)-(B.8) into Eq. (2.6), we have

Xu∗(t) = x0er0t +

∫ t

0
Ads +

∫ t

0

√
λ1σ̄(a∗)dBQ

∗

1 (s) +
∫ t

0
π∗(s)σdBQ

∗

2 (s)

+

∫ t

0

∫ ∞

−1
π∗(s)yN(ds, dy),

(B.18)
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where A = λ1(θµ̄(a∗) + (η − θ)µZ) + (µ − r0)π∗(s) − γB1λ1(σ̄(a∗))2er0(T−t) − γB2σ2(π∗(s))2. Given

that u∗ is deterministic, A is bounded. Inserting Eq. (B.18) into candidate value function (3.13),

we obtain the following upper boundary with appropriate constants K > 0,

|W(t, Xu∗(t))4| =
∣∣∣∣∣ 1
m4 e−4m(er0(T−t)Xu∗ (t)− f (t))

∣∣∣∣∣ = ∣∣∣∣∣ 1
m4 e−4mer0(T−t)Xu∗ (t)+4m f (t)

∣∣∣∣∣
6 Ke−4mer0(T−t)Xu∗ (t)

= Ke−4mer0(T−t)(x0er0 t+
∫ t

0 Ads+
∫ t

0

√
λ1σ̄(a∗)dBQ∗

1 (s)+
∫ t

0 π
∗(s)σdBQ∗

2 (s)+
∫ t

0

∫ ∞
−1 π

∗(s)yN(ds,dy))

6 K̄e−4m(
∫ t

0

√
λ1σ̄(a∗)dBQ∗

1 (s)+
∫ t

0 π
∗(s)σdBQ∗

2 (s)),

(B.19)

where K̄ is a constant satisfying K̄ > Ke−4mer0(T−t)(x0er0 t+
∫ t

0 Ads+
∫ t

0

∫ ∞
−1 π

∗(s)yN(ds,dy)). The first inequality

in Eq. (B.19) is valid, because f (t) is deterministic and bounded, and the second inequality

follows from the fact that x0er0t, er0(T−t),
∫ t

0
Ads and

∫ t

0

∫ ∞
−1
π∗(s)yN(ds, dy) are deterministic and

bounded. Now, we consider the integral e
∫ t

0 −4m
√
λ1σ̄(a∗)dBQ∗

1 (s).

e
∫ t

0 −4m
√
λ1σ̄(a∗)dBQ∗

1 (s) = e
∫ t

0 8m2λ1(σ̄(a∗))2ds︸            ︷︷            ︸
const.

· e−
∫ t

0 8m2λ1(σ̄(a∗))2ds+
∫ t

0 −4m
√
λ1σ̄(a∗)dBQ∗

1 (s)︸                                       ︷︷                                       ︸
martingale

.

Thus,

EQ∗
[
e
∫ t

0 −4m
√
λ1σ̄(a∗)dBQ∗

1 (s)
]
< ∞.

Similarly, EQ∗
[
e
∫ t

0 −4mπ∗(s)σdBQ∗
2 (s)

]
< ∞. Consequently,

EQ∗
[

sup
t∈[0,T ]

|W(t, Xu∗(t))|4
]
< ∞.

(c). Let Γ(t) = (ϕ∗1(t))2m
2γB1

+
(ϕ∗2(t))2m

2γB2
+

λ2(ϕ∗3(t) ln ϕ∗3(t)−ϕ∗3(t)+1)m
γJ , which is obviously bounded, and

according to Eq. (3.2) with W instead of V , we have

EQ∗
(
supt∈[0,T ]

∣∣∣∣∣ (ϕ∗1(t))2

2φB1(t)
+

(ϕ∗2(t))2

2φB2(t)
+
λ2(ϕ∗3(t) ln ϕ∗3(t) − ϕ∗3(t) + 1)

φJ(t)

∣∣∣∣∣2)
6 EQ∗

(
supt∈[0,T ] |Γ(t)|2|W(t, Xu∗(t))|2

)
6

(
EQ∗ supt∈[0,T ] |Γ(t)|4

) 1
2
(
EQ∗ supt∈[0,T ] |W(t, Xu∗(t))|4

) 1
2
< ∞.

The first inequality follows from Cauchy-Schwarz inequality, and the second inequality follows

from property (b). �

From the above derivations, it is easy to check that conditions (i)-(iv) in Proposition 2.2

hold for W(t, x). By Lemma B.2, condition (v) in Proposition 2.2 also holds for W(t, x).

Then, W(t, x) is the optimal value function of problem (2.9), i.e., W(t, x) = V(t, x), and u∗ =

{(a∗(t), π∗(t))}t∈[0,T ] is the optimal strategy. The proof can also be referred to Corollary 1.2 in
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Kraft (2004), Theorem 3.1 in Øksendal & Sulem (2007) and Theorem 8.1 in Fleming & Soner

(2006). �

Appendix C.

Derivation of suboptimal value function.

The optimal value function V̌(t, x) associated with û∗ solves the infimum problem

inf
(ϕ1,ϕ2,ϕ3)∈R×R×R+

{
V̌t + V̌x

[
r0x + λ1(θµ̄(â∗) + (η − θ)µZ) + π̂∗(µ − r0) +

√
λ1σ̄(â∗)ϕ1 + π̂

∗σϕ2

]
+

1
2

V̌xx[λ1(σ̄(â∗))2 + (π̂∗)2σ2] + λ2ϕ3EQ[V̌(t, x + π̂∗y) − V̌(t, x)]

+
ϕ2

1

2φB1(t)
+

ϕ2
2

2φB2(t)
+
λ2(ϕ3 ln ϕ3 − ϕ3 + 1)

φJ(t)

}
= 0,

(C.1)

where V̌ is a short notation for V̌(t, x) with the boundary condition V̌(T, x) = U(x). The first-

order conditions w.r.t. ϕ1, ϕ2 and ϕ3 show that the alternative model is given by ϕ∗1, ϕ∗2 and

ϕ∗3 in Eqs. (B.3)-(B.5) with â∗ and π̂∗ substituted for a and π, respectively. By inserting Eqs.

(B.3)-(B.5) into Eq. (C.1), we have

V̌t + r0xV̌x + λ1(θµ̄(â∗) + (η − θ)µZ)V̌x + π̂
∗(µ − r0)V̌x +

λ1(σ̄(â∗))2γB1V̌2
x

2mV̌
+
σ2(π̂∗)2γB2V̌2

x

2mV̌

+
1
2
λ1(σ̄(â∗))2V̌xx +

1
2

(π̂∗)2σ2V̌xx −
mV̌λ2

γJ

(
1 − e

γJ
m EQ[e−mπ̂∗yer0(T−t)−1]

)
= 0.

(C.2)

We try to find the solution to Eq. (C.2) in the following way

V̌(t, x) = − 1
m

e−m[er0(T−t) x− f0(t)]. (C.3)

Plugging the relevant derivatives into Eq. (C.2), we derive

f0(t) =
λ1(η − θ)µZ

r0
(1 − er0(T−t)) +

∫ T

t
l6(ω)dω −

∫ T

t
l7(ω)dω, (C.4)

where

l6(ω) = er0(T−ω)
∫ θe−r0(T−ω)

m

0
[λ1(γB1 + m)ser0(T−ω) − λ1θ]F̄(s)ds, (C.5)

l7(ω) = π̂∗(ω)(µ − r0)er0(T−ω) − 1
2

(γB2 + m)σ2(π̂∗(ω))2e2r0(T−ω)

+
λ2

γJ

(
1 − e

γJ
m EQ[e−mπ̂∗(ω)yer0(T−ω)−1]

)
.

(C.6)

Then we have the expressions V̌(t, x).
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