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We propose a risk-neutral forward density model using Gaussian random fields to capture
different aspects of market information from European options and volatility deriva-

tives of a market index. The well-structured model is built in the framework of the

Heath- Jarrow-Morton philosophy and the Musiela parametrization with a user-friendly
arbitrage-free condition. It reduces to the popular geometric Brownian motion model for

the spot price of the market index and can be intuitively visualized to have a better view

of the market trend. In addition, we develop theorems to show how the model drives local
volatility and variance swap rates. Hence, volatility futures and options can be priced

taking the forward density implied by European options as the initialization input. The
model can be accordingly calibrated to the market prices of these volatility derivatives.

An efficient algorithm is developed for both simulating and pricing, and a simulation

study is conducted using market data.

Keywords: risk-neutral forward density; Heath-Jarrow-Morton (HJM) framework; Gaus-
sian random field; market index; European options; volatility futures; volatility options.

1. Introduction

In an arbitrage-free market, actively traded standard European options provide in-

teresting and valuable information about the trend and dispersion of the underlying

asset in the future. The information reflects the expectations that market partici-

pants hold concerning the underlying asset as that of the market in general. And it

may dramatically change as new releases come and unseen events happen over time.
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One fairly common way to summarize the information is to construct option-implied

risk-neutral forward densities. In the literature, they were also termed risk-neutral

densities (RNDs), e.g. in Liu et al. (2007), Brunner & Hafner (2003), Bondarenko

(2003) and Jackwerth (1999), state price densities (SPDs), e.g. in Yuan (2009),

Zhang et al. (2009), Yatchew & Härdle (2006) and Aı̈t-Sahalia & Lo (1998), or

conditional densities in Filipović et al. (2012). At a certain time, the risk-neutral

forward densities, from options of different strikes and maturities, exhibit the well-

structured likelihood of where the underlying price may reach at a range of future

times, visually forming a two-dimensional surface of strikes and future times as

shown in Figure 1. In this paper, we focus on modelling of the surface in order to

produce its time evolutions over time, which is particularly useful for joint calibra-

tion and pricing.

The financial community has had an extensive discussion on aspects of risk-

neutral forward densities during the last three decades, including empirical proper-

ties, estimation, modelling, applications and so forth. Particularly the usefulness of

risk-neutral forward densities have been well studied and verified. See, e.g., Härdle

et al. (2015), Birru & Figlewski (2012), Kim & Kim (2003), Nikkinen (2003) and

Dennis & Mayhew (2002) for related reference. Thus risk-neutral forward densities

have been widely used in finance. Applications include testing market rationality

(see Bondarenko 1997), measuring market participants’ risk preference (see Aıt &

Lo 2000), assessing market attitude towards coming events (see Söderlin 2000),

estimating parameters of underlying stochastic models (see Bates 1996), guiding

monetary policies (see Jondeau & Rockinger 2000), etc. Besides, the most impor-

tant application is pricing complex exotic derivatives in order to be consistent with

exchanged-traded options. Most of the research efforts in the field of risk-neutral for-

ward densities are contributed to estimation techniques. We go through the major

representatives to give a quick review. The first attempts of using European option

prices to recover risk-neutral forward densities were shown in Ross (1976), Breeden

& Litzenberger (1978) and Banz & Miller (1978), though pricing theory of contin-

gent claims is the core part of them. Risk-neutral forward densities are demonstrated

to have a proportional relationship with the second derivatives of option prices with

respect to strikes. However, simply applying the finite difference method usually

generates numerically unstable and inadequate results and as a result, the revealed

relationship calls for more robust and powerful estimation methodologies. There are

hundreds of research papers and a number of surveys emerged in this specific direc-

tion. Most of them could be classified into two categories according to a classic stan-

dard, i.e. parametric methods and non-parametric methods. To develop parametric

methods, some interesting ideas come forward such as arbitrage-free interpolation

of option prices, see Orosi (2015), cubic spline interpolation of implied volatilities,

see Malz (2014), maximum entropy principle, see Rompolis (2010), wavelet method,

see Haven et al. (2009), generalized gamma distribution based method, see Fabozzi

& Albota (2009), C-type Gram-Charlier series expansion, see Rompolis & Tzavalis

(2008) and cubic spline interpolation of option prices, see Monteiro et al. (2008).
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Some classic techniques include spline and hyper-geometric functions based method,

see Bu & Hadri (2007), generalized Student t-distribution, see Lim et al. (2005),

GARCH-based estimation, see Fornari & Mele (2001), mixture density networks,

see Schittenkopf & Dorffner (2001), flexible NLS pricing, see Rosenberg (1998) and

stochastic model based method, see Heston (1993). Non-parametric methods also

attract researchers’ attention due to their model-free characteristics. For example,

Yuan (2009) chooses the best pricing function from an admissible set whose risk-

neutral forward densities were non-parametric mixtures of log-normals according to

the least squares criterion, in order to fit risk-neutral forward densities. Yatchew &

Härdle (2006) develops a nonparametric estimator of option pricing models via the

least squares procedure to estimate risk-neutral forward densities. In Aı̈t-Sahalia

& Lo (1998), nonparametric kernel regression was employed to fit historical op-

tion prices and yielded estimations of risk-neutral forward densities. All of those

estimation techniques boil down to pursue estimations that are non-negative, inte-

grate to one and are guaranteed to be martingales. We call those the three essential

requirements for estimation.

To our knowledge, little attention has been paid to modelling, though there have

been a plenty of research achievements in estimation methods. Besides the three

essential requirements for estimation, we further need to ensure that risk-neutral

forward density dynamics converge to certain Dirac delta functions in some sense

as time to expiration (maturity) shortens. Together we call them the four essential

requirements for modelling. Even if challenging, a good risk-neutral forward density

model is appealing in three perspectives. First, by estimating from historic data,

we obtain a one-time risk-neutral forward density for a range of strikes and a range

of future times. With this static surface, we are only able to price European style

exotic derivatives and cannot cope with early exercises of derivatives. To be able to

handle complicated contingent claims, dynamic information of risk-neutral forward

densities is necessary. Second, a static risk-neutral forward density surface does not

allow us to price volatility derivatives. Only with time evolutions of the surface, we

are able to measure and assess the underlying’s volatility in the future. Last but not

least, a dynamic risk-neutral forward density model enables us to jointly consider

index option prices and volatility option prices, and therefore accurately estimate

prices of illiquid over-the-counter (OTC) derivative contracts. Since index options

and volatility options have been actively traded in large volumes in exchanges, a

model that is jointly calibrated to them may generate more adequate prices of OTC

derivatives. This is because this model contains more information than models that

are only calibrated to index options. To sum up, modelling risk-neutral forward den-

sities is an important way to jointly model index options and volatility options. In

Filipović et al. (2012), the authors propose a master equation to generally describe

risk-neutral forward density dynamics and solve it using some various designs of

volatility structure, yielding positive time evolutions that are martingales and in-

tegrate to unity. The idea is a partial success in that the model only depicts the

risk-neutral forward densities at a specific time in the future. In other words, the
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Fig. 1: Risk-neutral forward density surface implied by the SPX call options on 4

May 2017. The surface is calculated by firstly linearly interpolating option prices

and then the finite difference method. The density will be used as the initial surface

of our model in the simulation study in Section 6.

model could only price a part of exotic derivatives embedded with early exercise

rights and could not price volatility derivatives (thus could not be calibrated to

volatility derivatives). Furthermore, thir model is not clearly demonstrated to con-

verge to a Dirac delta function in a certain sense and thus does not necessarily

satisfy the last one of the four essential requirements for modelling.

To fill this gap, we propose a new model driven by Gaussian random fields,

designed under the Heath-Jarrow-Morton (HJM) framework and constructed using

the Musiela parametrization, in order to dynamically describe the time evolution

of the whole risk-neutral forward density surface at a range of strikes and future

times obtained from a cross-section of European options. Our model clearly satisfies

the four essential requirements for modelling and most importantly, it enables us

to price exotic derivatives with early exercise clauses and volatility derivatives. Our

model also has a close relationship with the classic geometric Brownian motion

models, which further shows its validity and rationality.

The HJM framework has received a large amount of attention in the field of in-
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terest rate curve modelling and has started to show advantages in modelling other

financial instruments. The framework was firstly developed in the celebrated work of

Heath et al. (1992). After that, it has been applied to evaluate stock options, e.g. see

Schweizer & Wissel (2008) and Cont et al. (2002), variance swaps, e.g. see Buehler

(2006), and credit derivatives, e.g. see Sidenius et al. (2008). A comprehensive sur-

vey of the applications of HJM framework is given in Carmona (2007). Furthermore,

the framework is combined with Gaussian random fields, e.g. see Collin & Gold-

stein (2003), Goldstein (2000) and Pang (1998). Goldstein (2000) and Kennedy

(1997) have extensive discussions on Gaussian random fields and their correlation

structures in financial modelling.

The HJM framework and Gaussian random fields are the key foundations of our

risk-neutral forward density model. The former enables us to construct models of

what is unknown given what is known in the market information and the latter

allows us to construct model surfaces rather than processes. Our model takes full

advantage of the risk-neutral forward density from options, e.g. SPX options listed

in Chicago Board Options Exchange, by treating it as the initial surface, which

is an important condition that guarantees the convergence to Dirac delta func-

tions as time to expiration goes to zero. To better incorporate the convergence, we

adopt the Musiela parametrization when setting up our model in that the Musiela

parametrization effectively put together different parts in the model and greatly sim-

plifies the theoretical proofs. To ensure the model admits no arbitrage, we transform

our model back to the normal parametrization and derive a complicated integral

equation as the arbitrage-free condition. Then we identify a set of solutions to the

integral equation. With one of the solutions, the dynamics of our model is a martin-

gale and possesses a concise and compact representation. Based on this result, we

link our model with the local volatility of the underlying asset, thus obtain the local

volatility’s dynamics. Finally, the local volatility’s dynamics leads us to the dynam-

ics of the instantaneous variance swap rates and the forward variance swap rates.

Either of them may help us price volatility derivatives, e.g. VIX options traded in

Chicago Board Options Exchange, via Monte Carlo simulations. The whole pric-

ing procedure of VIX options encounters two computationally expensive steps. i.e.

solving the martingale condition and calculating the increments in the dynamics of

variance swap rates. To boost the simulation speed, we adopt graphic processing

unit (GPU) acceleration, the most popular technology for parallel computing, and

achieve acceptable running speed using two graphic cards in the simulation. After

calibration, our model fits the market price data very well.

Besides the four essential requirements for modelling. Our model also enjoys

the following advantages. First of all, the model takes risk-free rates and dividend

rates as input and implies a time evolution for the spot price of the underlying

asset. The time evolution has the drift of the difference between risk-free rates

and dividend rates, which is consistent with existing models heavily used in the

market. This property may increase the chance that our model fits market prices

accurately after being calibrated. In addition, the model simultaneously describes
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the dynamics of the whole risk-neutral forward density and thus makes it possible

for parameters to have term structures, i.e. to be time-varying in a deterministic

manner. With this feature, it is feasible to calibrate our model to VIX options

of different maturities simultaneously, and therefore it is able to capture a large

amount of market information.

The paper is organized in the following way. In Section 2, we formally and

mathematically give the definition of valid risk-neutral forward density models.

The conditions in the definition can be viewed as the minimal requirements for a

stochastic model to depict the dynamics of risk-neutral forward densities. After the

definition, we introduce notations and build our model in the first half of Section 3.

With the model, some assumptions are given to it in order to satisfy the definition

of valid models in Section 2 as proved in the lemmas in this section. Focusing on

volatility derivatives in the paper, we then connect risk-neutral forward densities

to local volatility in Section 4, and present the dynamics of local volatility under

our model. In Section 5, the dynamics of risk-neutral forward densities and local

volatility are combined to obtain the dynamics of variance swap rates. To facilitate

programming, we summarize the entire model by Algorithm 1 in Section 6 and give a

convenient matrix representation to the increments of forward variance swap rates.

The last part of this section shows a simulation study conducted on the market

data on 4 May 2017. Finally Section 7 concludes the paper.

2. Valid Forward Density Models

In the beginning, we make a fundamental assumption about the market and the risk

factors driving it. We consider the modeling in the probability space (Ω,F ,Q). In

the following, R>0 and R≥0 represent the whole collection of positive real numbers

and the whole collection of non-negative real numbers.

Assumption 2.1. There are an infinite number of risk factors in the market and

can be classified into two groups. One group consists of correlated factors following a

centered Gaussian random field {W (t,K) : (t,K) ∈ R≥0⊗R≥0}, in which K ∈ R≥0
represents the market index level, and the other group consists of a single factor

independent of the previous group, following a Brownian motion {B(t) : t ∈ R≥0}.

Note that the independence of the groups is made to simplify the analysis there-

after. Based on the risk factors, we define their generated information flow, i.e. the

filtration {Ft : t ∈ R≥0}, as

Ft , σ
(( ⋃

s≤t

⋃
k∈R≥0

σ(W (s,K))
)⋃(⋃

s≤t

σ(B(s))
))
, (2.1)

where σ(·) represents the generated sigma algebra of a random variable. Under the

risk-neutral probability measure Q, the risk-neutral forward density of an underlying

asset, S(t) for t ∈ R≥0, expressed in units of a base numeraire is defined as

p(t, τ,K) , EQ [δ (S(t+ τ)−K) | Ft] (2.2)
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for t ∈ R≥0 representing time, where τ ∈ R≥0 and K ∈ R≥0 are differences in time,

i.e. time lengths to expiration (maturity), and stock price levels. Let {r(t) : t ∈ R≥0}
denote a nonrandom risk-free interest rate process, D(t, τ) = exp(−

∫ t+τ
t

r(s)ds) the

associated discounting factor, C(t, τ,K) the price of a European call option with

maturity t+τ and strike K and P (t, τ,K) the price of a European put option. Thus

we have

C(t, τ,K) = D(t, τ)

∫
R≥0

(x−K)+p(t, τ, x)dx (2.3)

and

P (t, τ,K) = D(t, τ)

∫
R≥0

(K − x)+p(t, τ, x)dx, (2.4)

where τ ∈ R≥0.

A key motivation behind such a risk-neutral forward density model is the joint

modeling of index options and index volatility options, e.g. SPX options and VIX

options. The risk-neutral forward density obtained from index options is fed into

the model as the initial condition p(0, τ,K) for τ ∈ R≥0 and K ∈ R≥0. And the

volatility of the forward density dynamics can be calibrated using volatility options

because it must be reflected in the volatility of the index volatility.

To have a valid and arbitrage-free market model, we give the following defi-

nition. It summarizes the four essential requirements that feasible models should

incorporate to describe the time evolution of risk-neutral forward densities.

Definition 2.1. A random surface {p(t, τ,K) ≥ 0 : (t, τ,K) ∈ R≥0 ⊗ R>0 ⊗ R≥0}
must satisfy the following conditions to be a valid risk-neutral forward density model:

(1)
∫
R≥0

p(t, τ,K)dK = 1 for all (t, τ) ∈ R≥0 ⊗ R>0;

(2) the density process reduces to a Dirac delta function at the current underlying

price, i.e.

lim
τ→0

p(t, τ,K) = δ(K − S(t)) (2.5)

for (t,K) ∈ R2
≥0 in a certain mode of convergence, where S(t) represents the

spot price of the underlying asset; and

(3) the stochastic process {p(t, T − t,K) : 0 ≤ t < T}, according to Equation (2.2),

itself is a martingale under Q for all T ∈ R>0 and K ∈ R≥0.

Note that the definition only contains the minimal requirements. In face, the real

risk-neutral forward densities may be skewed to reflect skewed implied volatility.

And there could be a significant difference between the characteristics of the risk-

neutral forward densities of stock indices and the ones of individual stocks. It is not

possible to put together all these details in a single model, so we focus on the most

important four requirements to construct the modelling.
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3. Random Field Forward Density Model

3.1. Model Setting-up

In this section, we construct a model to describe risk-neutral forward densities on

R>0 ⊗ R≥0. Using the Musiela parametrization, we set up the model as

q(t, τ,K) = q(0, τ,Kk(t, τ))f(t, τ,K), (3.1)

where t ∈ R≥0 for all (τ,K) ∈ R>0 ⊗ R≥0. The infinite-dimensional stochastic

process {k(t, τ) : (t, τ) ∈ R≥0 ⊗ R>0} that drives the surface in the direction of K

is defined as

dk(t, τ) = (σ2
k(t, τ)− µk(t, τ))k(t, τ)dt− σk(t, τ)k(t, τ)dB(t) (3.2)

with the initial condition k(0, τ) = 1 for τ ∈ R>0, and the two-dimensional random

field {f(t, τ,K) : (t, τ,K) ∈ R≥0⊗R>0⊗R≥0} that causes shocks to the magnitude

of densities follows

df(t, τ,K) = µf (t, τ,K)f(t, τ,K)dt+ σf (t, τ,K)f(t, τ,K)dW (t,K) (3.3)

with the initial surface f(0, τ,K) = 1 for (τ,K) ∈ R>0 ⊗ R≥0. The initial surface

q(0, τ,K), where (τ,K) ∈ R2
≥0, represents the initial risk-neutral forward density at

time 0 and has two roles. The first one is to enable the calibration to the index option

market as mentioned previously. And the second one is to serve as a media to pass

the shocks generated by k(t, τ) in the direction of K to the whole density surface. In

the above setting, µk(t, τ) > 0, σk(t, τ) > 0, µf (t, τ,K) > 0 and σf (t, τ,K) > 0 are

infinite-dimensional Ft-adapted processes indexed by τ and K, where (t, τ,K) ∈
R≥0⊗R>0⊗R≥0. Among them, σk(t, τ) and σf (t, τ,K) are deterministic and serve

as parameters of our model. The correlation structure of W (t,K) is assumed to be

dW (t,K1)dW (t,K2) = cW (t,K1,K2)dt = cW (t,K2,K1)dt (3.4)

for (K1,K2) ∈ R2
≥0. Particularly, cW (t,K1,K2) is a continuous function satisfying

the condition

cW (t,K,K) = 1 (3.5)

for K ∈ R≥0. Until now, q(t, τ,K) is not guaranteed to meet the condition∫
R≥0

q(t, τ,K)dK = 1 (3.6)

in Definition 2.1. So we apply the methodology in Cheung & Wei (2016), and further

introduce a normalizing process

a(t, τ) =

∫
R≥0

q(t, τ,K)dK (3.7)

and accordingly define a normalized process

p(t, τ,K) =
q(t, τ,K)

a(t, τ)
. (3.8)
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The normalized process clearly satisfies the integration condition. Based on it, we

add constraints to the model so that it is a valid risk-neutral forward density model

according to Definition 2.1. To simplify the analysis and the presentation thereafter,

defining

D(t, τ,K,L) ,
(
σ2
f (t, τ,K)− 2cW (t,K,L)σf (t, τ,K)σf (t, τ, L) + σ2

f (t, τ, L)
) 1

2

,

(3.9)

we introduce another random field {Y (t, τ,K,L) : t ∈ R≥0} as

Y (t, τ,K,L) ,


σf (t, τ,K)W (t,K)− σf (t, τ, L)W (t, L)

D(t, τ,K,L)
K 6= L

0 K = L
(3.10)

for (τ,K,L) ∈ R3
≥0. When K 6= L and M 6= J , the correlation structure is given by

dY (t, τ,K,L)dY (t, τ,M, J) =
σf (t, τ,K)σf (t, τ,M)cW (t,K,M)

D(t, τ,K,L)D(t, τ,M, J)
dt

− σf (t, τ,K)σf (t, τ, J)cW (t,K, J)

D(t, τ,K,L)D(t, τ,M, J)
dt

− σf (t, τ, L)σf (t, τ,M)cW (t, L,M)

D(t, τ,K,L)D(t, τ,M, J)
dt

+
σf (t, τ, L)σf (t, τ, J)cW (t, L, J)

D(t, τ,K,L)E(t, τ,M, J)
dt

, cY (t, τ,K,L,M, J)dt

(3.11)

for (K,L,M, J) ∈ R4
≥0, otherwise the correlation is 0. Also note that Y (t, τ,K,L) =

−Y (t, τ, L,K).

3.2. Model Assumptions

We start with a discussion on the initial risk-neutral forward density q(0, τ,K) for

(τ,K) ∈ R2
≥0. Note that q(0, τ,K) has a definition at τ = 0. Knowing either all call

or all put options traded on all maturities and strikes plus the current price of the

underlying, the initial density can be completely determined. However, in practice,

only a few number of options are traded at the same time and we need to apply a

method shown in Section 1 to obtain q(0, τ,K). What we have for sure is that at

τ = 0

q(0, 0,K) = δ(K − S(0)), (3.12)

where S(0) represents the underlying price at time 0. Therefore we make the fol-

lowing assumption of the initial density surface.

Assumption 3.1. The initial surface q(0, τ,K) for (τ,K) ∈ R2
≥0 is assumed

(1) to be continuous with respect to τ on R≥0 for all K ∈ R≥0 and
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(2) to be thrice continuously differentiable with respect to τ and K on R>0 ⊗ R≥0.

The first condition of Assumption 3.1 and Equation (3.12) guarantee

lim
τ→0

q(0, τ,K) = δ(K − S(0)) (3.13)

for K ∈ R≥0, which is essential in developing Lemma 3.1. The model has four

processes µk(t, τ), σk(t, τ), µf (t, τ,K) and σf (t, τ,K) involved. Since the derivation

of dynamics in the rest of the paper requires Itó Lemma and the Leibniz rule of

differentiation, it is also necessary to add assumptions to them so that Itó Lemma

and Leibniz rule can be applied. In addition, we are modelling using the Musiela

parametrization and thus hope that there are not any movements of the density

surface in the vertical direction when τ = 0, i.e. f(t, τ,K) treated as a stochastic

process of t slows down its volatility as τ decreases and stops moving when τ = 0.

To sum up, we make the following assumptions of µk(t, τ), σk(t, τ), µf (t, τ,K) and

σf (t, τ,K).

Assumption 3.2. The drift {µk(t, τ) > 0 : (t, τ) ∈ R≥0 ⊗ R>0} and volatility

{σk(t, τ) > 0 : (t, τ) ∈ R≥0 ⊗ R>0} of k(t, τ) are assumed

(1) to be thrice continuously differentiable with respect to τ on R>0 for all t ∈ R≥0;

(2) to satisfy the existence of lim
τ→0

µk(t, τ) , µk(t, 0) and lim
τ→0

σk(t, τ) , σk(t, 0) for

all t ∈ R≥0 and

(3) to be Borel-measurable and continuous as functions of t on R≥0 for all τ ∈ R>0.

The drift {µf (t, τ,K) > 0 : (t, τ,K) ∈ R≥0 ⊗ R>0 ⊗ R≥0} and volatility

{σf (t, τ,K) > 0 : (t, τ,K) ∈ R≥0 ⊗ R>0 ⊗ R≥0} of f(t, τ,K) are assumed

(1) to be thrice continuously differentiable with respect to τ on R>0 for all (t,K) ∈
R2
≥0;

(2) to satisfy the existence of lim
τ→0

µf (t, τ,K) , µk(t, 0,K) for all (t,K) ∈ R2
≥0 and

lim
τ→0

σf (t, τ,K) = 0 (3.14)

for all (t,K) ∈ R2
≥0 and

(3) to be Borel-measurable and continuous as a function of t on R≥0 for all (τ,K) ∈
R>0 ⊗ R≥0.

Assumption 3.1 and Assumption 3.2 plus Equation (3.12) guarantee that the

model reduces to a Dirac delta function as τ goes to 0 for all (t,K) ∈ R2
≥0, which

is described in Lemma 3.1 below. And, as a special case, the result particularly

indicates that

lim
τ→0

(
lim
t→0

p(t, τ,K)
)

= δ(K − S(0)), (3.15)

which is consistent with Equation (3.12). Also we use k(t, 0) to denote exp
( ∫ t

0

(
−

µk(s, 0) + 1
2σ

2
k(s, 0)

)
ds−

∫ t
0
σk(s, 0)dB(s)

)
in Lemma 3.1.
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Lemma 3.1. When Assumption 3.1 and Assumption 3.2 holds and we assume

a(t, 0) , lim
τ→0

a(t, τ) = 1 (3.16)

almost surely, it follows that

(1) f(t, τ,K) converges to exp(
∫ t
0
µf (s, 0,K)ds) in probability under Q as τ → 0

for all (t,K) ∈ R2
≥0;

(2) k(t, τ) converges to k(t, 0) in probability under Q as τ → 0 for all t ∈ R≥0;

(3) q(0, τ,
S(0)

k(t, 0)
k(t, τ)) converges to infinity as τ → 0 in probability under Q for

all t ∈ R≥0; and

(4) we have

lim
τ→0

q(t, τ,K) = δ(K − S(0)

k(t, 0)
) (3.17)

for all (t,K) ∈ R2
≥0 in probability under Q.

Proof.

(1) When t = 0, it is trivial to see the result. Then we consider the case where

t > 0. From Equation (3.3), it simply shows that

f(t, τ,K) = exp
(∫ t

0

µf (s, τ,K)ds− 1

2

∫ t

0

σ2
f (s, τ,K)ds

+

∫ t

0

σf (s, τ,K)dW (s,K)
)
.

(3.18)

According to Assumption 3.2, µf (s, τ,K) and σf (s, τ,K) are bounded as τ

varies on (0, τ0] for any (s,K) ∈ [0, t] ⊗ R≥0, where τ0 > 0 is an arbitrary

quantity. Thus there exists a finite function of K, denoted M(K), such that

max
(s,τ)∈[0,t]⊗(0,τ0]

µf (s, τ,K) ∨ σf (s, τ,K)

= max
s∈[0,t]

(
max

τ∈(0,τ0]
µf (s, τ,K) ∨ σf (s, τ,K)

)
,M(K),

(3.19)

where K ∈ R≥0. Thus by dominated convergence theorem, the first two deter-

ministic terms in the exponent of Equation (3.18) follow

lim
τ→0

∫ t

0

µf (s, τ,K)ds =

∫ t

0

µf (s, 0,K)ds (3.20)

and

lim
τ→0

∫ t

0

σ2
f (s, τ,K)ds = 0 (3.21)

for all K ∈ R≥0, which also holds in the sense of L2(Q). And according to

Corollary 3.1.8 of Øksendal (2003), the second random term in the exponent of
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Equation (3.18) satisfies

lim
τ→0

∫ t

0

σf (s, τ,K)dW (s,K) = 0 (3.22)

in L2(Q) for all K ∈ R≥0. Since(
− 1

2

∫ t

0

σ2
f (s, τ,K)ds+

∫ t

0

σf (s, τ,K)dW (s,K)
)2

≤ 1

2

( ∫ t

0

σ2
f (s, τ,K)ds

)2
+ 2
( ∫ t

0

σf (s, τ,K)dW (s,K)
)2
,

(3.23)

we have that −1

2

∫ t
0
σ2
f (s, τ,K)ds +

∫ t
0
σf (s, τ,K)dW (s,K) converges to 0 in

L2(Q). Hence the convergence holds in probability under Q, and leads to the

result that

lim
τ→0

f(t, τ,K) = exp(

∫ t

0

µf (s, 0,K)ds) (3.24)

for all (t,K) ∈ R>0 ⊗ R≥0 in probability under Q according to continuous

mapping theorem. Therefore the conclusion holds for (t,K) ∈ R2
≥0.

(2) Similar to f(t, τ,K), we also have

lim
τ→0

k(t, τ) = k(t, 0) (3.25)

for all t ∈ R≥0 in probability under Q according to the existence of limits in

Assumption 3.2.

(3) We seek to find a ετ > 0 such that

P
[
q(0, τ,

S(0)

k(t, 0)
k(t, τ)) > ζ

]
> 1− ε, (3.26)

when 0 < τ < ετ , where ζ > 0 is arbitrarily large and ε > 0 is arbitrarily small.

For an arbitrarily small δ > 0, according to Equation (3.12) and Assumption

3.1, there exists an ε′τ > 0 such that

q(0, τ) > ζ + δ (3.27)

if 0 < τ < ε′τ . Fixing a τ ∈ (0, ε′τ ), according to Assumption 3.1, there exists

an εk > 0 such that

| q(0, τ)− q(0, τ, S(0)

k(t, 0)
x) |< δ (3.28)

if | x− k(t, 0) |< εk. Thus, given τ ∈ (0, ε′τ ) and x ∈ (k(t, 0)− εk, k(t, 0) + εk),

we have

q(0, τ,
S(0)

k(t, 0)
x) > ζ. (3.29)

Furthermore we find out the following probability:

P
[
q(0, τ,

S(0)

k(t, 0)
k(t, τ)) > ζ

∣∣∣∣| k(t, τ)− k(t, 0) |< εk

]
= 1 (3.30)
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when τ ∈ (0, ε′τ ). In addition, the probability of our interest has the relationship

P
[
q(0, τ,

S(0)

k(t, 0)
k(t, τ)) > ζ

]
≥ P

[
q(0, τ,

S(0)

k(t, 0)
k(t, τ)) > ζ

∣∣∣∣| k(t, τ)− k(t, 0) |< εk

]
P [| k(t, τ)− k(t, 0) |< εk]

= P [| k(t, τ)− k(t, 0) |< εk] .

(3.31)

Knowing Equation (3.25), there exists an ε′′τ > 0 such that

P [| k(t, τ)− k(t, 0) |< εk] > 1− ε (3.32)

when 0 < τ < ε′′τ . We take ετ = min(ε′τ , ε
′′
τ ) and finally reach Equation (3.26).

(4) We note that q(0, τ,K) is continuous on R2
≥0 \{(0, S(0))} from Assumption 3.1.

Again by continuous mapping theorem, it follows that

lim
τ→0

q(0, τ,Kk(t, τ)) = 0 (3.33)

for all K ∈ R≥0\{S(0))/k(t, 0)} in probability under Q for t ∈ R≥0. Considering

the first three conclusions and

q(t, τ,K) = q(0, τ,Kk(t, τ))f(t, τ,K), (3.34)

we therefore have

lim
τ→0

q(t, τ,K) = δ(K − S(0)

k(t, 0)
) (3.35)

for all (t,K) ∈ R2
≥0 in probability under Q. With the assumption that

lim
τ→0

a(t, τ) = 1, the conclusion is proved.

The Dirac delta function obtained in Lemma 3.1 therefore determines the spot

process of the underlying asset S(t) for t ∈ R≥0 in our model. In other words, the

model reduces to

S(t) =
S(0)

k(t, 0)
(3.36)

for t ∈ R≥0 in probability under Q as τ goes to 0. The related process k(t, τ) has

the form

k(t, τ) = exp
(∫ t

0

(
− µk(s, τ) +

1

2
σ2
k(s, τ)

)
ds−

∫ t

0

σk(s, τ)dB(s)
)

(3.37)

for (t, τ) ∈ R≥0 ⊗ R>0, which converges to

k(t, 0) = exp
(∫ t

0

(
− µk(s, 0) +

1

2
σ2
k(s, 0)

)
ds−

∫ t

0

σk(s, 0)dB(s)
)

(3.38)
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in probability under Q as τ → 0 according to Lemma 3.1. Since the dynamics of the

spot process is completely driven by k(t, 0). It is easy to see that our model reduces

to the Geometric Brownian Motion model

dS(t)

S(t)
= µk(t, 0)dt+ σk(t, 0)dB(t), (3.39)

where t ∈ R≥0 and the initial condition is given by S(0), in probability under

Q. Since we are modelling risk-neutral forward densities under the risk-neutral

probability measure Q, the spot process determined by our model should have the

drift of the risk-free rate r(t) for t ∈ R≥0. This tell us that

lim
τ→0

µk(t, τ) = r(t) (3.40)

for t ∈ R≥0. Note that, in practice, r(t) may be replaced by the difference between

the risk-free rate and the dividend rate of the underlying asset. Hence we not only

need the existence of the limit of µk(t, τ) when τ → 0 but also give the following

assumption to it.

Assumption 3.3. The drift µk(t, τ) of k(t, τ) is assumed to satisfy

lim
τ→0

µk(t, τ) = r(t). (3.41)

Furthermore, reducing to the GBM as τ goes to 0 indicates another useful con-

nection, which is

σk(t, 0) =
√
v(t) = σ(t, 0, S(t)), (3.42)

where {v(t) : t ∈ R≥0} is the instantaneous variance swap rate and {σ2(t, τ,K) :

(t, τ,K) ∈ R3
≥0} is the local volatility of the underlying asset. We will cover this

part in details in Section 4.

It is not enough to have a constraint on the limit of µk(t, τ) as τ goes to 0, we

further need an assumption of µf (t, τ,K) such that {p(t, T − t,K) : 0 ≤ t < T} is

a martingale for each T ∈ R>0 and K ∈ R≥0.
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Assumption 3.4. The drift {µf (t, τ,K) : t ∈ R≥0} is assumed to satisfy∫
R≥0

p(t, τ, L)µf (t, τ, L)dL− µf (t, τ,K)

=− (ln q)′2(0, τ,Kk(t, τ))

+K(ln q)′3(0, τ,Kk(t, τ))σ2
k(t, τ)k(t, τ)

−K(ln q)′3(0, τ,Kk(t, τ))µk(t, τ)k(t, τ)

−K(ln q)′3(0, τ,Kk(t, τ))k′2(t, τ)

+
1

2
K2
(
(ln q)′′33 + ((ln q)′3)2

)
(0, τ,Kk(t, τ))σ2

k(t, τ)k2(t, τ)

− (ln f)′2(t, τ,K)

+

∫
R≥0

(ln q)′2(0, τ, Lk(t, τ))p(t, τ, L)dL

− σ2
k(s, τ)k(t, τ)

∫
R≥0

L(ln q)′3(0, τ, Lk(t, τ))p(t, τ, L)dL

+ µk(t, τ)k(t, τ)

∫
R≥0

L(ln q)′3(0, τ, Lk(t, τ))p(t, τ, L)dL

+ k′2(t, τ)

∫
R≥0

L(ln q)′3(0, τ, Lk(t, τ))p(t, τ, L)dL

− 1

2
σ2
k(t, τ)k2(t, τ)

∫
R≥0

L2
(
(ln q)′′33 + ((ln q)′3)2

)
(0, τ, Lk(t, τ))p(t, τ, L)dL

+

∫
R≥0

p(t, τ, L)(ln f)′2(t, τ, L)dL

+ σ2
k(t, τ)k2(t, τ)

(∫
R≥0

L(ln q)′3(0, τ, Lk(t, τ))p(t, τ, L)dL
)2

+

∫
R2

≥0

p(t, τ, L)p(t, τ, J)σf (t, τ, L)σf (t, τ, J)cW (t, L, J)dLdJ

−K(ln q)′3(0, τ,Kk(t, τ))σ2
k(t, τ)k2(t, τ)

∫
R≥0

L(ln q)′3(0, τ, Lk(t, τ))p(t, τ, L)dL

− σf (t, τ,K)

∫
R≥0

p(t, τ, L)σf (t, τ, L)cW (t, L,K)dL

(3.43)

for each (τ,K) ∈ R>0 ⊗ R≥0.

Though Assumption 3.4 looks complicated, it has an infinite number of solutions

and we indeed find some. How to solve it will be discussed in Section 6.1. Now, with

this assumption, we proceed to prove that {p(t, T−t,K) : t ∈ [0, T )} is a martingale

when T ∈ R>0 and K ∈ R≥0 are fixed. To find out the dynamics of p(t, T−t,K), we

need to know the dynamics of k(t, T − t) and f(t, T − t,K). Note that the dynamics

of k(t, τ) and f(t, τ,K) with τ fixed are different from the dynamics of k(t, T − t)
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and f(t, T − t,K) with T fixed. Indeed, Equation (3.37) indicates that

k(t, T − t) = exp
(∫ t

0

(
− µk(s, T − t) +

1

2
σ2
k(s, T − t)

)
ds−

∫ t

0

σk(s, T − t)dB(s)
)
,

(3.44)

where t ∈ [0, T ) and T ∈ R>0 is fixed. Thus, with Assumption 3.2, we have

dk(t, T − t)

= k(t, T − t)
(
σ2
k(s, T − t)− µk(t, T − t)

)
dt

+ k(t, T − t)
∫ t

0

µ′k2(s, T − t)− σk(s, T − t)σ′k2(s, T − t)ds dt

+ k(t, T − t)
∫ t

0

σ′k2(s, T − t)dB(s) dt

− k(t, T − t)σk(t, T − t)dB(t)

= k(t, T − t)
(
σ2
k(s, T − t)− µk(t, T − t)

)
dt

− k′2(t, T − t)dt− k(t, T − t)σk(t, T − t)dB(t).

(3.45)

Similarly the dynamics of f(t, T − t,K) is

df(t, T − t,K)

= f(t, T − t,K)µf (t, T − t,K)dt

+ f(t, T − t,K)

∫ t

0

σf (s, T − t,K)σ′f2(s, T − t,K)

− µ′f2(t, T − t,K)ds dt

− f(t, T − t,K)

∫ t

0

σ′f2(s, T − t,K)dW (s,K) dt

+ f(t, T − t,K)σf (t, T − t,K)dW (t,K)

= µf (t, T − t,K)f(t, T − t,K)dt− f ′2(t, T − t,K)dt

+ σf (t, T − t,K)f(t, T − t,K)dW (t,K).

(3.46)

With the help of the above dynamics, we show that our model with Assumption 3.2

and Assumption 3.4 satisfies the martingale condition in Definition 2.1. To further

simplify the notations, we define

E(t, T − t,K,L)

,
(
K(ln q)′3(0, T − t,Kk(t, T − t))− L(ln q)′3(0, T − t, Lk(t, T − t))

)
σk(t, T − t)k(t, T − t).

(3.47)

Note that E(t, T − t,K,L) = −E(t, T − t, L,K).
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Lemma 3.2. With Assumptions 3.2 and 3.4, the stochastic process {p(t, T − t,K) :

t ∈ [0, T )} is a martingale for all T ∈ R>0 and K ∈ R≥0 with the dynamics

dp(t, T − t,K)

p(t, T − t,K)

=−
∫
R≥0

p(t, T − t, L)E(t, T − t,K,L)dL dB(t)

+

∫
R≥0

p(t, T − t, L)D(t, T − t,K,L)dY (t, T − t,K,L) dL.

(3.48)

Proof. Clearly, we know τ = T − t for each fixed T ∈ R>0 and t ∈ [0, T ), and

insert it into q(t, τ,K). This gives us

q(t, T − t,K) = q(0, T − t,Kk(t, T − t))f(t, T − t,K). (3.49)

Then, considering the independence between W (t,K) and B(t), we find out the

dynamics of q(t, T − t,K) as

dq(t, T − t,K)

=− q′2(0, T − t,Kk(t, T − t))f(t, T − t,K)dt

+Kq′3(0, T − t,Kk(t, T − t))dk(t, T − t)f(t, T − t,K)

+
1

2
K2q′′33(0, T − t,Kk(t, T − t))

dk(t, T − t)dk(t, T − t)f(t, T − t,K)

+ q(0, T − t,Kk(t, T − t))df(t, T − t,K)

=− q′2(0, T − t,Kk(t, T − t))f(t, T − t,K)dt

+Kq′3(0, T − t,Kk(t, T − t))
f(t, T − t,K)σ2

k(t, T − t)k(t, T − t)dt
−Kq′3(0, T − t,Kk(t, T − t))
f(t, T − t,K)µk(t, T − t)k(t, T − t)dt

−Kq′3(0, T − t,Kk(t, T − t))f(t, T − t,K)k′2(t, T − t)dt

+
1

2
K2q′′33(0, T − t,Kk(t, T − t))f(t, T − t,K)

σ2
k(t, T − t)k2(t, T − t)dt

+ q(t, T − t,K)µf (t, T − t,K)dt

− q(0, T − t,Kk(t, T − t))f ′2(t, T − t,K)dt

−Kq′3(0, T − t,Kk(t, T − t))f(t, T − t,K)

σk(t, T − t)k(t, T − t)dB(t)

+ q(t, T − t,K)σf (t, T − t,K)dW (t,K).

(3.50)
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Similarly, the normalizing process has the dynamics

da(t, T − t)

=−
∫
R≥0

q′2(0, T − t, Lk(t, T − t))f(t, T − t, L)dL dt

+ σ2
k(s, T − t)k(t, T − t)

∫
R≥0

Lq′3(0, T − t, Lk(t, T − t))f(t, T − t, L)dL dt

− µk(t, T − t)k(t, T − t)
∫
R≥0

Lq′3(0, T − t, Lk(t, T − t))f(t, T − t, L)dL dt

− k′2(t, T − t)
∫
R≥0

Lq′3(0, T − t, Lk(t, T − t))f(t, T − t, L)dL dt

+
1

2
σ2
k(t, T − t)k2(t, T − t)

∫
R≥0

L2q′′33(0, T − t, Lk(t, T − t))f(t, T − t, L)dL dt

+

∫
R≥0

q(t, T − t, L)µf (t, T − t, L)dL dt

−
∫
R≥0

q(0, T − t, Lk(t, T − t))f ′2(t, T − t, L)dL dt

− σk(t, T − t)k(t, T − t)
∫
R≥0

Lq′3(0, T − t, Lk(t, T − t))f(t, T − t, L)dL dB(t)

+

∫
R≥0

q(t, T − t, L)σf (t, T − t, L)dW (t, L) dL.

(3.51)

To facilitate the development of the dynamics of dp(t, T − t,K), we note that

da(t, T − t)da(t, T − t)
= σ2

k(t, T − t)k2(t, T − t)(∫
R≥0

Lq′3(0, T − t, Lk(t, T − t))f(t, T − t, L)dL
)2

dt

+

∫
R2

≥0

q(t, T − t, L)q(t, T − t, J)

σf (t, T − t, L)σf (t, T − t, J)cW (t, L, J)dLdJ dt

(3.52)

and

dq(t, T − t,K)da(t, T − t)
= Kq′3(0, T − t,Kk(t, T − t))f(t, T − t,K)σ2

k(t, T − t)k2(t, T − t)∫
R≥0

Lq′3(0, T − t, Lk(t, T − t))f(t, T − t, L)dL dt

+ q(t, T − t,K)σf (t, T − t,K)∫
R2

≥0

q(t, T − t, L)σf (t, T − t, L)cW (t, L,K)dL dt.

(3.53)
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Finally, the dynamics of p(t, T − t,K) follows

dp(t, T − t,K)

=
dq(t, T − t,K)

a(t, T − t)
+ q(t, T − t,K)

(
− da(t, T − t)
a2(t, T − t)

+
da(t, T − t)da(t, T − t)

a3(t, T − t)

)
+ dq(t, T − t,K)

(
− da(t, T − t)
a2(t, T − t)

+
da(t, T − t)da(t, T − t)

a3(t, T − t)

)
=
dq(t, T − t,K)

a(t, T − t)
+ q(t, T − t,K)

(
− da(t, T − t)
a2(t, T − t)

+
da(t, T − t)da(t, T − t)

a3(t, T − t)

)
− dq(t, T − t,K)da(t, T − t)

a2(t, T − t)
.

(3.54)

In details, its dynamics is given by

dp(t, T − t,K) = Driftp(t, T − t,K) + Diffusionp(t, T − t,K), (3.55)

where the diffusion terms are given by

Diffusionp(t, T − t,K)

=−K(ln q)′3(0, T − t,Kk(t, T − t))
p(t, T − t,K)σk(t, T − t)k(t, T − t)dB(t)

+ p(t, T − t,K)σf (t, T − t,K)dW (t,K)

+ p(t, T − t,K)σk(t, T − t)k(t, T − t)∫
R≥0

L(ln q)′3(0, T − t, Lk(t, T − t))p(t, T − t, L)dL dB(t)

− p(t, T − t,K)

∫
R≥0

p(t, T − t, L)σf (t, T − t, L)dW (t, L) dL

(3.56)
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and the drift terms are given by

Driftp(t, T − t,K)

=− (ln q)′2(0, T − t,Kk(t, T − t))p(t, T − t,K)dt

+K(ln q)′3(0, T − t,Kk(t, T − t))p(t, T − t,K)σ2
k(t, T − t)k(t, T − t)dt

−K(ln q)′3(0, T − t,Kk(t, T − t))p(t, T − t,K)µk(t, T − t)k(t, T − t)dt
−K(ln q)′3(0, T − t,Kk(t, T − t))p(t, T − t,K)k′2(t, T − t)dt

+
1

2
K2
(
(ln q)′′33 + ((ln q)′3)2

)
(0, T − t,Kk(t, T − t))

p(t, T − t,K)σ2
k(t, T − t)k2(t, T − t)dt

+ p(t, T − t,K)µf (t, T − t,K)dt

− p(t, T − t,K)(ln f)′2(t, T − t,K)dt

+ p(t, T − t,K)

∫
R≥0

(ln q)′2(0, T − t, Lk(t, T − t))p(t, T − t, L)dL dt

− p(t, T − t,K)σ2
k(s, T − t)k(t, T − t)∫

R≥0

L(ln q)′3(0, T − t, Lk(t, T − t))p(t, T − t, L)dL dt

+ p(t, T − t,K)µk(t, T − t)k(t, T − t)∫
R≥0

L(ln q)′3(0, T − t, Lk(t, T − t))p(t, T − t, L)dL dt

+ p(t, T − t,K)k′2(t, T − t)
∫
R≥0

L(ln q)′3(0, T − t, Lk(t, T − t))p(t, T − t, L)dL dt

− 1

2
p(t, T − t,K)σ2

k(t, T − t)k2(t, T − t)∫
R≥0

L2
(
(ln q)′′33 + ((ln q)′3)2

)
(0, T − t, Lk(t, T − t))p(t, T − t, L)dL dt

− p(t, T − t,K)

∫
R≥0

p(t, T − t, L)µf (t, T − t, L)dL dt

+ p(t, T − t,K)

∫
R≥0

p(t, T − t, L)(ln f)′2(t, T − t, L)dL dt

+ p(t, T − t,K)σ2
k(t, T − t)k2(t, T − t)(∫

R≥0

L(ln q)′3(0, T − t, Lk(t, T − t))p(t, T − t, L)dL
)2

dt

+ p(t, T − t,K)

∫
R2

≥0

p(t, T − t, L)p(t, T − t, J)

σf (t, T − t, L)σf (t, T − t, J)cW (t, L, J)dLdJ dt

−K(ln q)′3(0, T − t,Kk(t, T − t))p(t, T − t,K)σ2
k(t, T − t)k2(t, T − t)∫

R≥0

L(ln q)′3(0, T − t, Lk(t, T − t))p(t, T − t, L)dL dt

− p(t, T − t,K)σf (t, T − t,K)∫
R≥0

p(t, T − t, L)σf (t, T − t, L)cW (t, L,K)dL dt.

(3.57)
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Therefore, with Assumption 3.2, the above dynamics reduces to

dp(t, T − t,K)

=−K(ln q)′3(0, T − t,Kk(t, T − t))p(t, T − t,K)

σk(t, T − t)k(t, T − t)dB(t)

+ p(t, T − t,K)σf (t, T − t,K)dW (t,K)

+ p(t, T − t,K)σk(t, T − t)k(t, T − t)∫
R≥0

L(ln q)′3(0, T − t, Lk(t, T − t))p(t, T − t, L)dL dB(t)

− p(t, T − t,K)

∫
R≥0

p(t, T − t, L)σf (t, T − t, L)dW (t, L) dL.

(3.58)

With this, the conclusion of the lemma is clear.

Another thing that is easy to verify is whether or not p(t, T − t,K) always has

the integration of 1. This should hold because we have normalized q(t, T − t,K)

to obtain p(t, T − t,K). Since we have proved Lemma 3.2, we may check the proof

by studying the dynamics of
∫
R≥0

p(t, T − t,K)dK. Considering Equation (3.58), it

follows

d

∫
R≥0

p(t, T − t,K)dK = 0 (3.59)

for T ∈ R>0 and t ∈ [0, T )]. It tells us that∫
R≥0

p(t, T − t,K)dK =

∫
R≥0

p(0, T,K)dK

=

∫
R≥0

q(0, T,K)dK

= 1,

(3.60)

which is what we expect.

4. From Risk-Neutral Forward Density to Local Volatility

According to Definition 2.2, the martingale property of the discounted price of

the underlying S(t) is natural in that we are modeling under Q. By martingale

representation theorem and the definition of {Ft : t ∈ R≥0} in Section 2, there

exists at least one Brownian motion {Z(t) : t ∈ R≥0} adapted to {Ft} such that

dS(t)

S(t)
= r(t)dt+

√
v(t)dZ(t), (4.1)

where v(t) is a Ft-adapted process and is usually termed as instantaneous vari-

ance swap rate. Indeed, such a Brownian motion does exist and is not unique. As

discussed in Section 3.2, we may let {B(t) : t ∈ R≥0} and {Z(t) : t ∈ R≥0} be

the same Brownian motion. To gain a closer look at v(t), we first consider variance
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swap rates. The variance swap rate V (t, T − t) observed at t for the maturity T is

defined in Broadie & Jain (2008) as

V (t, T − t) , 1

T − t
EQ [[lnS] (T )− [lnS] (t) | Ft] . (4.2)

Then the instantaneous variance rate v(t) at t is connected to the variance swap

rate V (t, T − t) at t via

v(t) = lim
T→t

V (t, T − t). (4.3)

Following the classic work in Derman & Kani (1994), for each future time T ≥ t

and each market level K ∈ R≥0, the local volatility σ(t, T − t,K) at t ∈ R≥0 is

defined as

σ2(t, T − t,K) , EQ [v(T ) | Ft, S(T ) = K] . (4.4)

Therefore it is trivial to see

v(t) = σ2(t, 0, S(t)) (4.5)

and

dS(t)

S(t)
= r(t)dt+ σ(t, 0, S(t))dZ(t). (4.6)

As demonstrated in Dupire (1994) and Derman & Kani (1994), the relationship

between the local volatility σ(t, T−t,K) and call options (2.3) of different maturities

and strikes is given by the foward partial differential equation

C ′2(t, T,K) + r(T )KC ′3(t, T,K)− 1

2
σ2(t, T − t,K)K2C ′′33(t, T,K) = 0 (4.7)

for T ≥ t ≥ 0 and K ∈ R≥0 with the initial condition C(t, 0,K) = (S(t)−K)+. We,

however, are more interested in the Fokker-Planck equation indicated of Equation

(4.6), which is

∂

∂T
p(t, T − t,K) + r(T )

∂

∂K

(
Kp(t, T − t,K)

)
− 1

2

∂2

∂K2

(
σ2(t, T − t,K)K2p(t, T − t,K)

)
= 0,

(4.8)

and is used in the procedure of deriving Dupire’s formula (Equation (4.7)), where

T ≥ t ≥ 0 and K ∈ R≥0 and the initial condition follows p(t, 0,K) = δ(K − S(t)).

Integrating on both sides of Equation (4.8) twice gives us

σ2(t, τ,K) = 2

∫∞
K

∫∞
y
p′2(t, τ, x)dxdy

K2p(t, τ,K)
+ 2r(t+ τ)

∫∞
K
yp(t, τ, y)dy

K2p(t, τ,K)
(4.9)
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for t ∈ R≥0 and τ ∈ R>0. To facilitate the presentation of the following theorem,

we introduce the following notations

H(t, τ,K,M)

, p(t, τ,K)p(t, τ,M)

∫
R2

≥0

p(t, τ, L)p(t, τ, J)(
E(t, τ,K,L)E(t, τ,M, J)

+D(t, τ,K,L)D(t, τ,M, J)cY (t, τ,K,L,M, J)
)
dLdJ,

(4.10)

where (t, τ,K,M) ∈ R≥0⊗R>0⊗R≥0⊗R≥0. Given the definition of H(t, τ,K,M),

we further define

I(t, τ,K) ,− 2

K2p2(t, τ,K)

∫ ∞
K

∫ ∞
y

p′′22(t, τ, x)

p′2(t, τ, x)
H(t, τ, x,K)dxdy

+
σ2(t, τ,K)

p2(t, τ,K)
H(t, τ,K,K)

− 2r(T )

K2p2(t, τ,K)

∫ ∞
K

yH(t, τ, y,K)dy,

(4.11)

N(t, τ,K)

,
1

K2p(t, τ,K)

∫ ∞
K

∫ ∞
y

p′′′222(t, τ, x)p′2(t, τ, x)− (p′′22(t, τ, x))2

(p′2(t, τ, x))3
H(t, τ, x, x)dxdy

+ I(t, τ,K),

(4.12)

O(t, τ,K)

, σ2(t, τ,K)

∫
R≥0

p(t, τ, L)E(t, τ,K,L)dL

− 2r(T )

K2p(t, τ,K)

∫ ∞
K

∫
R≥0

yp(t, τ, y)p(t, τ, L)E(t, τ, y, L)dLdy

− 2

K2p(t, τ,K)

∫ ∞
K

∫ ∞
y

∫
R≥0

p′′22(t, τ, x)

p′2(t, τ, x)
p(t, τ, x)p(t, τ, L)E(t, τ, x, L)dLdxdy

(4.13)

and

R(t, τ,M,L) , p(t, τ,M)p(t, τ, L)D(t, τ,M,L). (4.14)
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Theorem 4.1. Assume Assumption 3.1 and Assumption 3.2, the dynamics of

σ2(t, T − t,K) is given by

dσ2(t, T − t,K)

= N(t, T − t,K)dt+O(t, T − t,K)dB(t)

− σ2(t, T − t,K)

p(t, T − t,K)

∫
R≥0

R(t, T − t,K,L)dY (t, T − t,K,L) dL

+
2r(T )

K2p(t, T − t,K)

∫ ∞
K

∫
R≥0

yR(t, T − t, y, L)dY (t, T − t, y, L) dLdy

+
2

K2p(t, T − t,K)

∫ ∞
K

∫ ∞
y

∫
R≥0

p′′22(t, T − t, x)

p′2(t, T − t, x)
R(t, T − t, x, L)

dY (t, T − t, x, L) dLdxdy,

(4.15)

where t ∈ [0, T ], (T,K) ∈ R>0 ⊗ R≥0. And the initial condition is σ2(0, T,K).

Proof. Applying Itô Lemma to Equation (4.9), we have

dσ2(t, T − t,K)

=
2

K2p(t, T − t,K)

∫ ∞
K

∫ ∞
y

dp′2(t, T − t, x)dxdy

+
2r(T )

K2p(t, T − t,K)

∫ ∞
K

ydp(t, T − t, y)dy

− 2

K2p2(t, T − t,K)

∫ ∞
K

∫ ∞
y

dp′2(t, T − t, x)dp(t, T − t,K)dxdy

− 2r(T )

K2p2(t, T − t,K)

∫ ∞
K

ydp(t, T − t, y)dp(t, T − t,K)dy

− σ2(t, T − t,K)

p(t, T − t,K)
dp(t, T − t,K)

+
σ2(t, T − t,K)

p2(t, T − t,K)
dp(t, T − t,K)dp(t, T − t,K).

(4.16)

The only thing unknown to us in the above equation is the dynamics of p′2(t, T −
t,K), which follows

dp′2(t, T − t,K)

=
p′′22(t, T − t,K)

p′2(t, T − t,K)
dp(t, T − t,K)

+
1

2

p′′′222(t, T − t,K)p′2(t, T − t,K)− (p′′22(t, T − t,K))2

(p′2(t, T − t,K))3

dp(t, T − t,K)dp(t, T − t,K),

(4.17)

as

d

dp
p′2(t, T − t,K) =

p′′22(t, T − t,K)

p′2(t, T − t,K)
(4.18)
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and

d2

dp2
p′2(t, T − t,K) =

p′′′222(t, T − t,K)p′2(t, T − t,K)− (p′′22(t, T − t,K))2

(p′2(t, T − t,K))3
. (4.19)

Hence we may simplify Equation (4.16) to have

dσ2(t, T − t,K)

=
2

K2p(t, T − t,K)

∫ ∞
K

∫ ∞
y

p′′22(t, T − t, x)

p′2(t, T − t, x)
dp(t, T − t, x)dxdy

+
1

K2p(t, T − t,K)

∫ ∞
K

∫ ∞
y

p′′′222(t, T − t, x)p′2(t, T − t, x)− (p′′22(t, T − t, x))2

(p′2(t, T − t, x))3

dp(t, T − t, x)dp(t, T − t, x)dxdy

+
2r(T )

K2p(t, T − t,K)

∫ ∞
K

ydp(t, T − t, y)dy

− 2

K2p2(t, T − t,K)

∫ ∞
K

∫ ∞
y

p′′22(t, T − t, x)

p′2(t, T − t, x)
dp(t, T − t, x)dp(t, T − t,K)dxdy

− 2r(T )

K2p2(t, T − t,K)

∫ ∞
K

ydp(t, T − t, y)dp(t, T − t,K)dy

− σ2(t, T − t,K)

p(t, T − t,K)
dp(t, T − t,K)

+
σ2(t, T − t,K)

p2(t, T − t,K)
dp(t, T − t,K)dp(t, T − t,K).

(4.20)

From Lemma 3.2, we may obtain the interactions

dp(t, T − t,K)dp(t, T − t,K)

= p2(t, T − t,K)
(∫

R≥0

p(t, T − t, L)E(t, T − t,K,L)dL
)2

dt

+ p2(t, T − t,K)

∫
R2

≥0

p(t, T − t, L)p(t, T − t, J)

D(t, T − t,K,L)D(t, T − t,K, J)cY (t, T − t,K,L,K, J)dLdJ dt.

= H(t, T − t,K,K) dt

(4.21)

and

dp(t, T − t,K)dp(t, T − t,M) = H(t, T − t,K,M) dt, (4.22)

where (K,M) ∈ R≥0. Thus we finally obtain the result shown in the theorem.
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5. Pricing of Volatility Options

Variance swap rates are closely connected with European options. Following the

approach in Carr & Madan (1998) and Demeterfi et al. (1999), we have

V (t, τ) =
2

τ
EQ

[∫ T

t

dS(t)

S(t)
− ln(

S(T )

S(t)
)
∣∣∣Ft

]

=
2

τ
D−1(t, τ)

[ ∫ F (t,τ)

0

1

K2
P (t, τ,K)dK +

∫ +∞

F (t,τ)

1

K2
C(t, τ,K)dK

]
,

(5.1)

where F (t, τ) , E [S(t+ τ) | Ft] represents the forward price of the underlying

asset. Since {p(t, T − t,K) : t ∈ [0, T ]} is a martingale for any fixed T ∈ R>0

and K ∈ R≥0, the discounted process of C(t, T − t,K) also trivially satisfies the

martingale property because

EQ [D(0, t)C(t, T − t,K) | Fs]

= D(0, T )

∫
R≥0

(x−K)+EQ [p(t, T − t, x) | Fs] dx

= D(0, T )

∫
R≥0

(x−K)+p(s, T − s,K)dx

= D(0, s)C(s, T − s,K),

(5.2)

where 0 < s ≤ t. Another way to verify this fact uses the classic result from Derman

& Kani (1994), Dupire (1994) and Dupire (1997):

p(t, T − t,K) = D(t, T − t)−1 ∂
2

∂k2
C(t, T − t,K). (5.3)

However, to price volatility options using Equation (5.1), we need to find the dynam-

ics of F (t, τ), C(t, τ,K) and P (t, τ,K). To do so, we have to derive their dynamics

from the dynamics of p(t, τ,K). This procedure could be very complicated and we

show the following way instead.

Similar to the definition of variance swap rate (4.2), the forward variance swap

rate observed at t for the period from T1 to T2 is defined as

V (t, T1 − t, T2 − t) ,
1

T2 − T1
EQ [[lnS] (T2)− [lnS] (T1) | Ft]

=
(T2 − t)V (t, T2 − t)− (T1 − t)V (t, T1 − t)

T2 − T1
.

(5.4)

There is a close relationship between the forward variance swap rate and the local

volatility defined by Equation (4.4) according to Cheung et al. (2016), which is

V (t, T1 − t, T2 − t) =
1

T2 − T1

∫ T2

T1

∫ ∞
0

σ2(t, s− t,K)p(t, s− t,K)dKds. (5.5)

As a special case, it also indicates

V (t, τ) =
1

τ

∫ t+τ

t

∫ ∞
0

σ2(t, s− t,K)p(t, s− t,K)dKds. (5.6)
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To evaluate volatility options, we need to know the dynamics of V (t, T −t, τ+T −t)
or V (t, τ) for T ≥ t ≥ 0 and τ > 0. Both of them represent the volatility of the

underlying asset from T to T + τ when t = T . Then, with the dyamics developed

in Lemma 3.2 and Theorem 4.1, we have the following.

Theorem 5.1. Assume Assumptions 3.1 and 3.2 and the initial conditions

V (0, T, T + τ) and V (0, τ),

(1) the dynamics of V (t, T − t, τ + T − t) follows

dV (t, T − t, T + τ − t)

=
1

τ

∫ ∞
0

∫ T+τ

T

(
N(t, s− t,K)p(t, s− t,K)− I(t, s− t,K)

)
dsdK dt

+
1

τ

∫ ∞
0

∫ T+τ

T

O(t, s− t,K)p(t, s− t,K)dsdK dB(t)

− 1

τ

∫ ∞
0

∫ T+τ

T

∫
R≥0

σ2(t, s− t,K)p(t, s− t,K)p(t, s− t, L)

E(t, s− t,K,L)dLdsdK dB(t)

+
2

τ

∫ ∞
0

∫ T+τ

T

∫ ∞
K

∫
R≥0

r(s)y

K2
R(t, s− t, y, L)

dY (t, s− t, y, L) dLdydsdK

+
2

τ

∫ ∞
0

∫ T+τ

T

∫ ∞
K

∫ ∞
y

∫
R≥0

p′′22(t, s− t, x)

K2p′2(t, s− t, x)
R(t, s− t, x, L)

dY (t, s− t, x, L) dLdxdydsdK,

(5.7)

where T ≥ t ≥ 0 and τ ∈ R>0.

(2) the dynamics of V (t, τ) follows

dV (t, τ) = dV (t, 0, τ) +
1

τ

∫ ∞
0

σ2(t, τ,K)p(t, τ,K)dK dt

− 1

τ

∫ ∞
0

σ2(t, 0,K)p(t, 0,K)dK dt,

(5.8)

where (t, τ) ∈ R≥0 ⊗ R>0.

Proof.

(1) Since the definition of forward variance swap rate gives us

V (t, T − t, T + τ − t) =
1

τ

∫ ∞
0

∫ T+τ

T

σ2(t, s− t,K)p(t, s− t,K)dsdK, (5.9)
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by Itô Lemma, we know

dV (t, T − t, T + τ − t)

=
1

τ

∫ ∞
0

∫ T+τ

T

dσ2(t, s− t,K)p(t, s− t,K)dsdK

+
1

τ

∫ ∞
0

∫ T+τ

T

σ2(t, s− t,K)dp(t, s− t,K)dsdK

+
1

τ

∫ ∞
0

∫ T+τ

T

dσ2(t, s− t,K)dp(t, s− t,K)dsdK.

(5.10)

Thus the dynamics is obtained according to Theorem 4.1.

(2) Equation (5.6) tells us that

V (t, τ) =
1

τ

∫ τ

0

∫ ∞
0

σ2(t, s,K)p(t, s,K)dKds. (5.11)

Using Itô Lemma, we have

dV (t, τ) = dV (t, 0, τ) +
1

τ

∫ ∞
0

σ2(t, τ,K)p(t, τ,K)dK dt

− 1

τ

∫ ∞
0

σ2(t, 0,K)p(t, 0,K)dK dt.

(5.12)

The result in Theorem 5.1 can be verified by inserting Equation (4.20) into

Equation (5.10) as well. By doing so, it gives us

dV (t, T − t, T + τ − t)

=
2

τ

∫ ∞
0

1

K2

∫ T+τ

T

∫ ∞
K

∫ ∞
y

p′′22(t, s− t, x)

p′2(t, s− t, x)
dp(t, s− t, x)dxdydsdK

+
1

τ

∫ ∞
0

1

K2

∫ T+τ

T

∫ ∞
K

∫ ∞
y

p′′′222(t, s− t, x)p′2(t, s− t, x)− (p′′22(t, s− t, x))2

(p′2(t, s− t, x))3

dp(t, s− t, x)dp(t, s− t, x)dxdydsdK

+
2

τ

∫ ∞
0

1

K2

∫ T+τ

T

r(s)

∫ ∞
K

ydp(t, s− t, y)dydsdK.

(5.13)

The equation builds a connection between the dynamics of forward variance swap

rates and the dynamics of the risk-neutral forward density, which simplifies calcula-

tion a lot and benefits the simulation of variance swap rates greatly. Furthermore,

inserting the dynamics of p(t, T − t,K) from Lemma 3.2 also leads to the result in
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Theorem 5.1 using the relationship

O(t, s− t,K)p(t, s− t,K)− σ2(t, s− t,K)p(t, s− t,K)∫
R≥0

p(t, s− t, L)E(t, s− t,K,L)dL

=− 2r(s)

K2

∫ ∞
K

∫
R≥0

yp(t, s− t, y)p(t, s− t, L)E(t, s− t, y, L)dLdy

− 2

K2

∫ ∞
K

∫ ∞
y

∫
R≥0

p′′22(t, s− t, x)

p′2(t, s− t, x)

p(t, s− t, x)p(t, s− t, L)E(t, s− t, x, L)dLdxdy.

(5.14)

Then we proceed to the valuation of volatility derivatives. The VIX call and put

options can be priced by

V C(t, T − t, T + τ − t,KV IX)

, D(t, T − t)EQ
[(
V (T, τ)

1
2 −KV IX

)+ ∣∣Ft

]
(5.15)

and

V P (t, T − t, T + τ − t,KV IX)

, D(t, T − t)EQ
[(
KV IX − V (T, τ)

1
2

)+ ∣∣Ft

]
,

(5.16)

where T ≥ t ≥ 0, τ ∈ R>0 and KV IX ∈ R≥0. In this way of pricing VIX options,

we basically consider the dynamics of the volatility from t to t+τ as time t evolves.

In other words, the window, of which the volatility is considered, moves as time

passes by and finally the left boundary of the window, t, approaches T . We should

consider the underlying dynamics in this moving window. Another way to look at

VIX options could be

V C(t, T − t, T + τ − t,KV IX)

= D(t, T − t)EQ
[(
V (T, 0, τ)

1
2 −KV IX

)+ ∣∣Ft

]
(5.17)

and

V P (t, T − t, T + τ − t,KV IX)

= D(t, T − t)EQ
[(
KV IX − V (T, 0, τ)

1
2

)+ ∣∣Ft

]
,

(5.18)

which is different from the first way in that the window [T, T + τ ] does not move

and we should consider the dynamics of the forward variance swap rate in a fixed

window as time t approaches T . Similar to the pricing of volatility options, we still

have two ways to price volatility futures. The most often used pricing formula of

VIX futures is

V F (t, T − t, T + τ − t) , EQ
[
V (T, τ)

1
2 | Ft

]
, (5.19)
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where T ≥ t and τ ∈ R>0. However, since we have a simpler dynamics of the forward

variance swap rate shown in Equation (5.13), we prefer to use

V F (t, T − t, T + τ − t) = EQ
[
V (T, 0, τ)

1
2 | Ft

]
. (5.20)

Thus, we are able to obtain V C(t, T−t, T+τ−t,KV IX), V P (t, T−t, T+τ−t,KV IX)

and V F (t, T − t, T + τ − t) numerically by simulating either V (t, T − t, T + τ − t)
or V (t, τ) and following the Monte Carlo philosophy.

6. Simulation

6.1. Algorithm

To do the simulation for our model, the most important thing is to keep the mar-

tingale condition shown in Assumption 3.4. Since we could give further functional

assumptions about the shape of µk(t, τ,K) and obtain σk(t, τ) and σf (t, τ,K) by cal-

ibrating our model to the market prices of volatility options, we assume µk(t, τ,K),

σk(t, τ) and σf (t, τ,K) are known in this subsection. Therefore Assumption 3.4

becomes ∫
R≥0

p(t, T − t, L)µf (t, T − t, L)dL− µf (t, T − t,K)

= F (t, T − t,K) +G(t, T − t),
(6.1)

where

F (t, T − t,K)

,− (ln q)′2(0, T − t,Kk(t, T − t))
+K(ln q)′3(0, T − t,Kk(t, T − t))σ2

k(t, T − t)k(t, T − t)
−K(ln q)′3(0, T − t,Kk(t, T − t))µk(t, T − t)k(t, T − t)
−K(ln q)′3(0, T − t,Kk(t, T − t))k′2(t, T − t)

+
1

2
K2
(
(ln q)′′33 + ((ln q)′3)2

)
(0, T − t,Kk(t, T − t))

σ2
k(t, T − t)k2(t, T − t)

− (ln f)′2(t, T − t,K)

−K(ln q)′3(0, T − t,Kk(t, T − t))σ2
k(t, T − t)k2(t, T − t)∫

R≥0

L(ln q)′3(0, T − t, Lk(t, T − t))p(t, T − t, L)dL

− σf (t, T − t,K)

∫
R≥0

p(t, T − t, L)σf (t, T − t, L)cW (t, L,K)dL

(6.2)
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and

G(t, T − t)

,
∫
R≥0

(ln q)′2(0, T − t, Lk(t, T − t))p(t, T − t, L)dL

− σ2
k(s, T − t)k(t, T − t)

∫
R≥0

L(ln q)′3(0, T − t, Lk(t, T − t))p(t, T − t, L)dL

+ µk(t, T − t)k(t, T − t)
∫
R≥0

L(ln q)′3(0, T − t, Lk(t, T − t))p(t, T − t, L)dL

+ k′2(t, T − t)
∫
R≥0

L(ln q)′3(0, T − t, Lk(t, T − t))p(t, T − t, L)dL

− 1

2
σ2
k(t, T − t)k2(t, T − t)∫

R≥0

L2
(
(ln q)′′33 + ((ln q)′3)2

)
(0, T − t, Lk(t, T − t))p(t, T − t, L)dL

+

∫
R≥0

p(t, T − t, L)(ln f)′2(t, T − t, L)dL

+ σ2
k(t, T − t)k2(t, T − t)

(∫
R≥0

L(ln q)′3(0, T − t, Lk(t, T − t))p(t, T − t, L)dL
)2

+

∫
R2

≥0

p(t, T − t, L)p(t, T − t, J)σf (t, T − t, L)σf (t, T − t, J)cW (t, L, J)dLdJ.

(6.3)

Noting
∫
≥0 F (t, T − t, L)p(t, T − t, L)dL = −G(t, T − t), it can be found that

−F (t, T − t,K) simply is a solution to Equation (6.1). In addition, Equation (6.1)

definitely have numerous solutions, for example −F (t, T − t,K) +C, where C ∈ R.

In general, C may affect the overall drifting rate of the surface f . According to our

experience in simulation, C does not affect the result much if it is not really large.

So we simply use −F (t, T − t,K) in the simulation. Applying the solution discussed

above, we derive the following simulation algorithm for the discretized version of

our model. Fixing a T ∈ R>0, we assume there are n + 1 points between 0 and T

denoted as

0 = t0 < t1 < t2 < · · · < tn−1 < tn = T (6.4)

with the distance between adjacent points being a fixed value ∆t , ti+1 − ti. And

fixing a Kmax ∈ R>0, we assume there are m+ 1 points denoted as

0 = K0 < K1 < K2 < · · · < Km−1 < Km = Kmax. (6.5)

Therefore, at t0, we can obtain µf (t0, T −t0,Ki) for i = 0, 1, 2, . . . ,m by −F (t0, T −
t0,Ki) +C because k(t0, T − t0), f(t0, T − t0,Ki) and p(t0, T − t0,Ki) are given by

initial conditions and µk(t0, T − t0), σk(t0, T − t0) and σf (t0, T − t0,Ki) are known

as parameters. After µf (t0, T − t0,Ki) is obtained, the drift of the dynamics of
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p(t, T−t,Ki) at t0 becomes 0. We do the sampling for B(t1)−B(t0) and W (t1,Ki)−
W (t0,Ki) for i = 0, 1, . . . ,m. Then, by applying Equation (3.58), we may find out

p(t1, T − t1,Ki) − p(t0, T − t0,Ki) for i = 0, 1, 2, . . . ,m and thus p(t1, T − t1,Ki)

using k(t0, T − t0), f(t0, T − t0,Ki), σk(t0, T − t0) and σf (t0, T − t0,Ki). Another

way is to use Equations (3.1) and (3.8) to directly obtain p(t1, T − t1,Ki), which

uses f(t1, T − t1,Ki) calculated by µf (t0, T − t0,Ki). We adopt the latter one in our

algorithm. With the input parameters, it is straightforward to calculate k(t1, T−t1).

With k(t1, T − t1), f(t1, T − t1,Ki) and p(t1, T − t1,Ki), we proceed to do the

simulation at time t1. For the rest of time points, repeating the above procedure

gives us the wanted result.

With Algorithm 1, we can simulate the processes {p(ti, T − ti,Kj) : j =

0, 1, 2, . . . ,m} for each i = 1, 2, 3, . . . , n. To have a view of the entire surface and

how it changes over time, we use the discretization of [0,Γ]:

0 = τ0 < τ1 < τ2 < · · · < τl−1 < τl = Γ (6.6)

with the distance between adjacent points being ∆t defined above and we are sup-

posed to construct a sequence of surfaces {{p(ti, τk,Kj) : j = 0, 1, 2, . . . ,m, k =

0, 1, 2, . . . , l} : i = 0, 1, 2, . . . , n}. This can be done by using the initial surface and

Algorithm 1 to simulate

{p(ti, th − ti,Kj) : i = 0, 1, 2, . . . , h, j = 0, 1, 2, . . . ,m} (6.7)

for h = 0, 1, 2, . . . , n, and by setting

p(ti, τk,Kj) =

{
p(ti, tk+i − ti,Kj) if k + i ≤ n
0 otherwise

(6.8)

for i = 0, 1, 2, . . . , n, j = 0, 1, 2, . . . ,m and k = 0, 1, 2, . . . , l. In the above equation,

we set the density at the points of maturities beyond T to 0.

With the densities at different time points simulated by Algorithm 1, the local

volatility at those time points can be simply derived via Equation (4.9). Since it

involves the first-order partial derivative p′2(t, T−t,K), we adopt the centered finite

differences defined by

p′2(ti, T − ti,Kj) ≈
p(ti+1, T − ti+1,Kj)− p(ti−1, T − ti−1,Kj)

2∆t
(6.9)

for the points that are not on the boundaries and the finite differences defined by

p′2(t0, T − t0,Kj) ≈
p(t1, T − t1,Kj)− p(t0, T − t0,Kj)

∆t
(6.10)

and

p′2(tn, T − tn,Kj) ≈
p(tn, T − tn,Kj)− p(tn−1, T − tn−1,Kj)

∆t
(6.11)

for the points on the boundaries. Therefore we obtain a sequence of local volatility

surfaces {σ2(ti, τk,Kj) : j = 0, 1, 2, . . . ,m, k = 0, 1, 2, . . . , l} for i = 0, 1, 2, . . . , n.
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Algorithm 1: Algorithm of Simulating the risk-neutral forward density model

(3.8)

input : C, p(t0, ti,Kj), k(t0, ti) = 1, f(t0, ti,Kj) = 1, µk(ti, tl), σk(ti, tl)

and σf (ti, tl,Kj) for i = 0, 1, 2, . . . , n, l = 0, 1, 2, . . . , n and

j = 0, 1, 2, . . . ,m

output: p(ti, th − ti,Kj) and ∆p(ti, th − ti,Kj) for i = 0, 1, 2, 3, . . . , h,

h = 0, 1, 2, 3, . . . , n and j = 0, 1, 2, . . . ,m

1 for h ∈ {0, 1, 2, . . . , n} do

2 for j ∈ {0, 1, 2, . . . ,m} do

3 µf (t0, th − t0,Kj)← −F (t0, th − t0,Kj) + C

4 end

5 for i ∈ {0, 1, 2, . . . , h− 1} do

6 Sample ∆B(ti)← B(ti+1)−B(ti)

7 k(ti+1, th − ti+1)← k(t0, th − ti+1)

8

i∏
l=0

exp
((1

2
σ2
k(tl, th− ti+1)−µk(tl, th− ti+1)

)
∆t

9 −σk(tl, th − ti+1)∆B(tl)
)

10 for j ∈ {0, 1, 2, . . . ,m} do

11 Sample ∆W (ti,Kj)←W (ti+1,Kj)−W (ti,Kj)

12 f(ti+1, th − ti+1,Kj)← f(t0, th − ti+1,Kj)

13

i∏
l=0

exp
((
µf (tl, th − ti+1,Kj)

14 −1

2
σ2
f (tl, th − ti+1,Kj)

)
∆t

15 +σf (tl, th − ti+1,Kj)∆W (tl,Kj)
)

16 p(ti+1, th − ti+1,Kj)←
q(0, th − ti+1,Kjk(ti+1, th − ti+1))f(ti+1, th − ti+1,Kj)

17 µf (ti+1, th − ti+1,Kj)← −F (ti+1, th − ti+1,Kj) + C

18 end

19 p(ti+1, th − ti+1,Kj)←
p(ti+1, th − ti+1,Kj)
m∑
j=0

p(ti+1, th − ti+1,Kj)

20 end

21 end

Then we proceed to the simulation of forward variance swap rates defined by

Equation (5.4) and instantaneous variance swap rates defined by Equation (4.2). As
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shown in Theorem 5.1, the dynamics of V (t, τ) can be obtained from the dynamics of

V (t, T − t, T + τ − t) with T = t and the dynamics of the local volatility σ2(t, 0,K)

and σ2(t, τ,K). Thus we focus on the simulation of {V (ti, T − ti, T + τ − ti) :

i = 0, 1, 2, . . . , n}, where T is the maturity and τ is the time duration. To do so,

we apply Equation (5.13) instead of the result in Theorem 5.1 because Equation

(5.13) enables us to directly use the dynamics of the risk-neutral forward density

surfaces. Equation (5.13) has second-order and third-order partial derivatives in it.

We approximate second-order and third-order derivatives by running the the finite

difference method of first-order derivatives for corresponding times.

In simulation of variance swap rates, we follow the discretization schemes of

[0, T ] in Equation (6.4) for [0,Kmax], Equation (6.5) and [0,Γ] shown in Equation

(6.6), but suppose τ = Γ and l < n, which is not set in the simulation of p(t, τ,K).

With l < n, we only need the discretized density values and their derivatives with

maturities from tn−l to tn for simulating the dynamics of the forward variance swap

rate with the maturity at tn−l and of the time duration Γ for the time from t0 to

tn−l−1. To facilitate the presentation and the simulation, we define the following

functions

αi(x, y) ,
p′′22(ti, x− ti, y)

p′2(ti, x− ti, y)
∆p(ti, x− ti, y)), (6.12)

βi(x, y) ,
p′′′222(ti, x− ti, y)p′2(ti, x− ti, y)− (p′′22(ti, x− ti, y))2

(p′2(ti, x− ti, y))3

dp(ti, x− ti, y)dp(ti, x− ti, y)

(6.13)

and

γi(x, y) , r(x)ydp(ti, x− ti, y) (6.14)

for the integrands in Equation (5.13), where i = 0, 1, 2, . . . , n− l−1. Then we define

a functional Θ(·) : RR2
≥0 → R(l+1)×m by

Θ(f) =


f(tn−l,K0) f(tn−l,K1) · · · f(tn−l,Km)

f(tn−l+1,K0) f(tn−l+1,K1) · · · f(tn−l+1,Km)
...

...
. . .

...

f(tn,K0) f(tn,K1) · · · f(tn,Km)


(l+1)×m

, (6.15)

where f ∈ RR2
≥0 , a function Π(·) : R>0 → Rm×m>0 by

Π(x) =


x 0 · · · 0 0

x x · · · 0 0
...

...
. . .

...
...

x x · · · x 0

x x · · · x x


m×m

(6.16)
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and a function µ(·) : R>0 → R(l+1)×1
>0 by

µ(x) =
[
x x · · · x

]T
1×(l+1)

. (6.17)

where x ∈ R>0. Note that the square of Π(x) follows a useful and compact form

Π2(x) =



x2 0 0 · · · 0 0

2x2 x2 0 · · · 0 0

3x2 2x2 x2 · · · 0 0
...

...
...

. . .
...

...

(m− 1)x2 (m− 2)x2 (m− 3)x2 · · · x2 0

mx2 (m− 1)x2 (m− 2)x2 · · · 2x2 x2


m×m

. (6.18)

Last but not least, a m× 1 vectors is introduced as

λ =

[
1

K2
0

1

K2
1

· · · 1

K2
m

]T
1×m

(6.19)

With the above defined notations, we rewrite Equation (5.13) to a much more user-

friendly form

∆V (ti, tn−l − ti, tn − ti) (6.20)

=
1

Γ
µ(∆t)T

((
2Θ(αi) + Θ(βi)

)
Π2(1) + 2Θ(γi)Π(1)

)
λ (6.21)

for i = 0, 1, 2, . . . , n− l−1, with which we can simulate V (tn−l, 0, tn−tn−l) as many

times as we need.

6.2. Calibration

With the algorithm described in the previous section, we are able to simulate vari-

ance swap rates as many times as we want. With simulated variance swap rates

and by Monte-Carlo method, the price of a volatility derivative can be determined,

which is called the model price. By comparing the model price with the market

price, we determine the parameters in pre-specified parameter structures of the

drift and volatility terms in our model. To facilitate the simulation and simplify the

model, we apply the following parameter structures:

µk(t, τ) = ψst+ r(τ), (6.22)

σk(t, τ) = πsτ + πi, (6.23)

σf (t, τ) = ωsτ, (6.24)

and

cW (t,K1,K2) = exp(ρ | K1 −K2 |). (6.25)
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In these parameter structures, σk(t, τ), σf (t, τ) and cW (t,K1,K2) are not depen-

dent on t. In practice, r(τ) represents the difference between the risk-free rate and

the dividend rate implied by index futures. We apply a Gaussian random field for

{W (t,K)}, and thus the structure for cW (t,K1,K2) is from Kennedy (1997), which

gives the necessary conditions of a random field to be Markovian, stationary and

Gaussian. We summarize the parameters to be calibrated in Table 1.

Parameter Notation Parameter Meaning

ψs the slope of the drift term µk(t, τ) in k(t, τ)

πs the slope of the volatility term σk(t, τ) in k(t, τ)

πi the intercept of the volatility term σk(t, τ) in k(t, τ)

ωs the slope of the volatility term σf (t, τ) in f(t, τ)

ρ the coefficient in the correlation structure cW (t,K1,K2)

of the Gaussian random field {W (t,K)}

Table 1: Summary of the Parameters for Calibration

In the simulation and calibration, we apply the data extracted from a Bloomberg

terminal on 4 May 2017. The data include prices of 13 S&P 500 index call options

(Ticker: SPX) with strikes uniformly distributed from 2250 to 2550 and with ma-

turities being 19 May 2017, 16 Jun 2017, 21 Jul 2017, 18 Aug 2017, 15 Sep 2017

and 15 Dec 2017. These option prices give us the initial risk-neutral forward density

surface. In addition, the risk-free rates and futures-implied dividend rates are from

5 May 2017 to 15 Dec 2017. We mainly focus on the VIX call options (Ticker: VIX)

that expire on 21 Jun 2017 and 19 Jul 2017. For each maturity, we extract the data

for five strikes. We downloaded the data of forward variance swap rates with the

duration of 30 days from 4 Jun 2017 to 4 Dec 2017. To facilitate the calibration,

middle prices are derived from the ask and bid prices. The above data is discrete.

Between data points, we employ linear interpolation.

In the calibration, we apply the philosophy of grid-search to select optimal pa-

rameters. Starting with initial values, the model prices of all combinations of param-

eter values are calculated and the best one is chosen using the middle prices of the

ten VIX call options of two maturities according to the mean squared percentage

error

MSPE ,

n∑
i=1

10
(pricemodel

i − pricemiddle
i

pricemiddle
i

)2
n

. (6.26)

Then we set up a finer and smaller grid centered at this best combination of pa-

rameter values and proceed to find the best one in the new grid. After repeating

the whole procedure for several times, we stop and achieve a fairly optimal set of

parameter values. In calibration, the number of Monte Carlo evaluations used is set
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Fig. 2: Model prices versus market prices of VIX call options on 4 May 2017. In the

left panel, we compare the model prices and the market prices that matures on 21

Jun 2017. In the right panel, the maturity is on 19 Jul 2017. The confidence interval

has the radius of two standard deviations. The model prices and corresponding

standard deviations are obtained from 6000 Monte Carlo evaluations.

to 3000.

Parameter ψs πs πi ωs ρ MSPE

Value 0.009750 0.041 0.000833 0.102900 -0.013407 0.003540

Table 2: Calibrated Parameter Values

Our model involves the complicated calculation steps shown in Algorithm 1. To

accelerate the simulation, we take advantage of the GPU acceleration by CUDA

C/C++ and apply cuBLAS to further boost the speed of matrix operations. In

the simulation, we apply OpenMP to use multiple CPU threads to operate two

graphic cards. In Figure 2, a comparison between the model prices calculated by

the calibrated model and the market prices is shown. To gain a clearer view on how

the density surface evolves, we show four snapshots in Figure 3. The whole video

can be found at https://youtu.be/NtGM hMiNKs.

7. Conclusions

In this paper, we developed a new model to dynamically describe the time evolution

of risk-neutral forward densities. Since it took risk-neutral forward densities derived

from European options as inputs, our model was naturally calibrated to European

options. Also, the model was able to price many various kinds of financial derivatives

and we took VIX options as examples. Therefore, we illustrated how to price VIX

options by our model and jointly calibrated it to SPX options and VIX options.

https://youtu.be/NtGM_hMiNKs
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Fig. 3: Time evolution of the risk-neutral forward density using our model. The

evolution is simulated using the parameter values shown in Table 2. We show four

snapshots of a single simulation above and a video of fifteen times of simulation can

be found at https://youtu.be/NtGM hMiNKs.

After calibration, the model fitted the market prices of VIX options very well,

demonstrating its capability to capture market information.

The model has many advantages as shown in Section 1. On the other hand,

it has some disadvantages as well. The model is fairly complicated in terms of its

structure and therefore leads to complex formulas for simulation and calibration. To

mitigate this negative effect, we adopt several assumptions, e.g. the independence

assumption between {W (t,K) : (t,K) ∈ R≥0 ⊗R≥0} and {B(t) : t ∈ R≥0}, to sim-

plify the model. However, it still has a complex martingale condition, though the

condition luckily admits friendly and explicit solutions. The complex structure of

our model also complicates the model assumptions. Besides the assumptions aimed

at simplifying the model, we also make many other assumptions in Section 3.2 to

guarantee and satisfy, for example, the existence of partial derivatives, the con-

vergence to Dirac delta functions and conditions of referred theorems. In addition

to complicated theoretical analysis, the complicated model structure slows simula-

tions. Though this can be solved by the fast development of computer technologies,

it still calls for more efforts to pursue a better formulation of risk-neutral forward

https://youtu.be/NtGM_hMiNKs
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density models.

Another challenge is the numerical instability of finite difference methods when

approximating partial derivatives. Our model involves partial derivatives in many

places. In simulations, finite difference methods significantly lower the stability of

our model and have to be taken care of very carefully. In Figure 3 and the video

we show at the end of Section 6.2, the surfaces converge to Dirac delta functions

too fast and violates empirical observations more or less. This is because the partial

derivatives obtained by finite different methods are very large in scales when time

to expiration is close to zero.

To sum up, our model makes a good start for modelling the surfaces of risk-

neutral forward densities. It puts together some elements, including the HJM frame-

work, Gaussian random fields, and the Musiela parametrization, that are highly

useful for developing better models of risk-neutral forward densities. The model

achieves satisfactory performance in terms of theoretical properties and capabili-

ties of fitting market prices and has the potential of being improved with better

formulations in the future.

Acknowledgments

The authors are grateful to anonymous referees for the valuable comments. This re-

search is partially supported by Research Grants Council of the Hong Kong Special

Administrative Region (project No. HKU 17324016), and a CRCG grant from the

University of Hong Kong.

References

Y. Aıt & W. Lo. Nonparametric risk management and implied risk aversion. Journal of
econometrics, 94(1):9–51, 2000.

Y. Aı̈t-Sahalia & W. Lo. Nonparametric estimation of state-price densities implicit in
financial asset prices. The Journal of Finance, 53(2):499–547, 1998.

W. Banz & H. Miller. Prices for state-contingent claims: Some estimates and applications.
journal of Business, pages 653–672, 1978.

S. Bates. Jumps and stochastic volatility: Exchange rate processes implicit in deutsche
mark options. Review of financial studies, 9(1):69–107, 1996.

J. Birru & S Figlewski. Anatomy of a meltdown: The risk neutral density for the s&p 500
in the fall of 2008. Journal of Financial Markets, 15(2):151–180, 2012.

O. Bondarenko. Testing rationality of financial markets: An application to s&p 500 index
options. Working Paper, Caltech, 1997.

O. Bondarenko. Estimation of risk-neutral densities using positive convolution approxi-
mation. Journal of Econometrics, 116(1):85–112, 2003.

T. Breeden & H. Litzenberger. Prices of state-contingent claims implicit in option prices.
Journal of business, pages 621–651, 1978.

M. Broadie & A. Jain. The effect of jumps & discrete sampling on volatility & variance
swaps. International Journal of Theoretical and Applied Finance, 11(08):761–797,
2008.



March 4, 2018 7:40 WSPC/INSTRUCTION FILE output

40 X. Han & B. Wei & H. Yang

B. Brunner & R. Hafner. Arbitrage-free estimation of the risk-neutral density from the
implied volatility smile. Journal of Computational Finance, 7(1):75–106, 2003.

R. Bu & K. Hadri. Estimating option implied risk-neutral densities using spline and
hypergeometric functions. The Econometrics Journal, 10(2):216–244, 2007.

H. Buehler. Consistent variance curve models. Finance & Stochastics, 10(2):178, 2006.
ISSN 1432-1122. doi: 10.1007/s00780-006-0008-2. URL http://dx.doi.org/10.

1007/s00780-006-0008-2.
R. Carmona. Hjm: A unified approach to dynamic models for fixed income, credit & equity

markets. Springer Lecture Notes in Mathematics, 1919(1):1, 2007.
P. Carr & D. Madan. Towards a theory of volatility trading. Volatility: New estimation

techniques for pricing derivatives, (29):417–427, 1998.
K. Cheung & B. Wei. A random field density model for contagion credit risk. submitted

to International Journal of Theoretical and Applied Finance, 2016.
K. Cheung, B. Wei, & X. Han. Consistent modelling of index & volatility derivatives

with a random field local volatility model. submitted to International Journal of
Theoretical and Applied Finance, 2016.

P. Collin & S. Goldstein. Generalizing the affine framework to hjm and random field
models. Technical report, Columbia Business School, 2003.

R. Cont, J. Fonseca, & V. Durrleman. Stochastic models of implied volatility surfaces.
Economic Notes, 31(2):361–377, 2002. ISSN 1468-0300. doi: 10.1111/1468-0300.
00090. URL http://dx.doi.org/10.1111/1468-0300.00090.

K. Demeterfi, E. Derman, M. Kamal, & J. Zou. More than you ever wanted to know about
volatility swaps. Goldman Sachs quantitative strategies research notes, 41, 1999.

P. Dennis & S. Mayhew. Risk-neutral skewness: Evidence from stock options. Journal of
Financial & Quantitative Analysis, 37(03):471–493, 2002.

E. Derman & I. Kani. Riding on a smile. Risk, 7(1):32–39, 1994.
B. Dupire. Pricing with a smile. Risk, 7(1):18–20, 1994.
B. Dupire. Pricing & hedging with smiles. Cambridge Uni. Press., 1997.
Tunaru R. Fabozzi, J. & G. Albota. Estimating risk-neutral density with parametric

models in interest rate markets. Quantitative Finance, 9(1):55–70, 2009.
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