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Abstract 

Recent observations on strength and deformation of small metals containing 

microstructures including dislocation patterns, grain boundaries and second-phase precipitates 

are reviewed. These microstructures impose an internal length scale that may interplay with 

the extrinsic length scale due to the specimen size to affect strength and deformation in an 

intricate manner. For micro-crystals containing pre-existing dislocations, Taylor work-

hardening may dictate the dependence of strength on specimen size. The presence of grain 

boundaries in a small specimen may lead to effects far from the conventional Hall-Petch 

behavior. Precipitate-dislocation interactions in a small specimen may lead to an interesting 

weakest-size behavior.   
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1. Introduction 

The last decade has seen a surge of research efforts on the effects of specimen size on the 

strength and deformation of single-crystal, monolithic metals in the micron size regime. 

Notable observations include the power-law dependence of yield strength on size [1, 2], with 

a great deal of insights gained into the nucleation of dislocations from a hitherto dislocation-

free state [3, 4], deformation under a continuous dislocation-starved state [5-7], stochastic 

deformation [8-11], and so on. It is by now well known that for crystal sizes ranging from about 

1 micron to tens of microns, the yield strength 𝜎𝑦 roughly obeys a power-law variation with 

respect to specimen size 𝐷: 

𝜎𝑦 ~ 𝐷−𝑚     (1) 

where m typically varies between 0.5 and 1 [1, 2]. Thanks to efforts on discrete dislocation 

dynamics (DDD) simulations [8, 12-17], the decreasing trend of 𝜎𝑦 with 𝐷 in this regime 

has now been shown to be due to the group interactions of dislocations in a limited crystal 

volume, and specifically, the operation of half Frank-Read sources [8, 12, 13], which are Frank-

Read sources truncated by the free surface of the specimen. A decreasing trend of 𝜎𝑦 with 𝐷 

can be understood as the consequence of a scaling between the length of such half Frank-Read 

sources and the specimen size [8, 12, 13]. 

In the size regime of less than a fraction of a micron or so, tremendous efforts of in situ 

electron microscopy have been made to understand the strength and deformation of various 

materials [7, 18, 19]. For FCC metals, the results generally point to the difficulty in storing 

dislocations, i.e. the so-called dislocation starvation condition, in this size regime [5, 6]. 

Strength in this regime is therefore controlled by the continuous need to nucleate new 

dislocations, while old ones zip out of the small crystal volume without encountering much 

difficulty. In this regime, the strength data usually scatter significantly, making it difficult to 

draw clear-cut conclusions on whether strength varies with size [20, 21], although theoretically, 

it has been predicted that a weak size effect should exist, due to the expectation that a smaller 

specimen should contain fewer potential sites for dislocation nucleation [3, 4]. For pristine 

BCC crystals with a low dislocation content, strength in this regime often approaches the ideal 

strength limit of about 10% of the elastic modulus, but flow instability in the form of sudden 

plastic collapse occurs immediately after the onset of yielding [22]. Mechanistically, molecular 

dynamics have shown that a dislocation starved state is not achieved in submicron BCC crystals 

due to the frequent cross-slip, or pencil glide, of screw segments of dislocations in this crystal 

structure, making dislocations difficult to zip out of the crystal volume [23]. 

From the quick survey above, tremendous progress has been made in the past decade, on 

the understanding of small-scale plasticity. However, the knowledge database gathered so far 

has been limited to metals with a monolithic, single crystalline microstructure. Materials for 

real applications often contain more complex microstructures including dislocation networks 

or patterns (e.g. subcells), grain boundaries, precipitates, and so on. These microstructures are 
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often associated with their own characteristic length scales, such as the spacing between 

dislocations or precipitates, grain or dislocation subcell size, etc. For bulk pieces of specimens 

with dimensions much larger than the microstructural length scale, strength and deformation 

will be governed by the microstructural length scale alone, according to well established laws 

such as Taylor work hardening, where flow stress is inversely proportional to dislocation 

spacing, the Orowan looping mechanism where precipitation hardening varies inversely with 

the precipitate spacing, the Hall-Petch relation where strength varies with the inverse of the 

square-root of grain size, or inverse Hall-Petch behavior for nanocrystalline materials where 

strength decreases with decreasing grain size in the nanometric range. However, when the 

specimen size is also in the micron regime, the internal (microstructural) length scale also be 

in the same size regime as the external (specimen size) length scale, and then the two length 

scales (external and internal) may couple together [24] to result in interesting effects on strength 

and deformation unseen before. While this would seem obvious, the literature is still critically 

short of such information and knowledge. The present authors have recently studied such 

coupled effects of external and internal lengths scales for some representative types of 

microstructures, and it is the aim of the present article to summarize the relevant findings, in 

order to show the magnitude of the problem.   

 

2. Dislocation Microstructures 

The first type of microstructure discussed is that due to the pre-existing dislocations 

themselves. For this, we limit ourselves to situations where dislocation storage can occur 

effectively, and, as mentioned above, this would be the case for specimen sizes typically larger 

than ~ 1 micron. In this case, eqn. (1) generally holds, but recent experiments and DDD 

simulations have shown that the stress exponent m is quite sensitive to the initial dislocation 

content in the crystal [25-30]. 

To explain why the size dependence has to follow the very simple power law in eqn. (1), 

and what governs the value of m, we proposed a simple, analytical theory [25, 26]. The starting 

premise is that, in a situation where dislocation storage and hence mutual interactions are 

possible, strength is controlled by Taylor hardening. Experimental support for this is provided 

by residual dislocation-density measurement from deformed micro-pillars, as shown in Fig. 1. 

Here, means including coating and pre-straining of the micro-pillars were used to mediate the 

initial dislocation contents and their escape from the crystal volume during compressive 

deformation [31]. For a larger size (5.6 m) of micro-pillars (Fig. 1(a)), the proof strength of 

the pillars exhibited excellent scaling with the square-root of the measured density of the 

residual dislocations in the pillars, indicating that strength of this pillar size is dominated by 

the Taylor interaction mechanism. However, for a smaller pillar size of ~ 1 m (Fig. 1(b)), there 

is no clear trend between proof strength and residual dislocation density, and in fact, the 

residual dislocation density remained at a lower level not significantly changeable by the means 

of pre-straining or pillar coating. 
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Thus, for the case when dislocation storage happens and strength is dominated by Taylor 

hardening, we are compelled by experimental evidence to consider a dislocation network in 

which dislocation segments become mobile if the applied stress  is larger than the segment 

mobile stress 𝜎𝑠~ 𝜇𝑏/𝐿, where 𝐿 is the segment length and other terms have their usual 

meanings. Out of such a “master” dislocation microstructure (say, a given one in Fig. 2), 

specimens of different micro-volumes are cropped, and since the specimen size is comparable 

to the internal length scale 𝐿 which itself is non-uniform in the master microstructure, the 

micro-specimens exhibit different strength. In addition to such an assumed picture, we make 

two further, soft assumptions: (1) the dislocation network of the master microstructure is a 

fractal of dimension q, so that the dislocation mesh length 𝐿 is statistically distributed as ~ 

1/𝐿𝑞 (Fig. 3(a)); (2) the dislocation velocity obeys a simple, empirical law 𝑣 ~ 𝜎𝑛. 

Thus, for a volume ~ 𝐷3 harvested from the master microstructure, the number of mobile 

dislocation segments under a current applied stress  would be ∝ 𝐷3 × ∫ 𝑝(𝜎𝑠)𝑑𝜎𝑠
𝜎

0
∝

𝐷3𝜎𝑞−1/(𝑞 − 1), where 𝑝(𝜎𝑠) is the probability distribution function of the mobilization 

stress 𝜎𝑠 of dislocation segments given by 𝑝(𝜎𝑠) ~ |𝑑𝐿/𝑑𝜎𝑠|/𝐿𝑞 ~ 𝜎𝑠
𝑞−2

, due to the Taylor 

hardening law as well as assumption (1) above. Then, for a large ensemble of micro-specimens 

of the same volume 𝐷3 subject to loading at a constant stress rate 𝜎̇, the ensemble yielding 

rate (i.e. the fraction of specimens yielded per unit time) is  

𝑁̇ ~ 𝑣 ×
𝐷3𝜎𝑞−1

(𝑞−1)
=  𝛼 

𝐷3𝜎𝑞+𝑛−1

(𝑞−1)
    (2) 

where 𝑣  is dislocation velocity and 𝛼  is a constant. At a current stress level 𝜎 , the 

survivability (without yielding) of the specimens in the ensemble is therefore 

𝐹(𝜎) = exp [−
1

𝜎̇
∫ 𝑁̇

𝜎

0
(𝜎′)𝑑𝜎′] =  exp [−

𝛼

𝜎̇(𝑞+𝑛)(𝑞−1)
 𝐷3𝜎𝑞+𝑛]   (3) 

At a given F (say, 50%), eqn. (3) requires 𝐷3𝜎𝑞+𝑛 to be constant, thus giving 

𝜎 ~ 𝐷−𝑚 where  𝑚 = 3/(𝑞 + 𝑛)    (4) 

Eqn. (1) is now proven, and the size exponent m is now understood to be inversely related to 

the fractal dimension q of the master dislocation microstructure, as well as the stress exponent 

n of the dislocation velocity. Interestingly, for 3D fractals, 2 < 𝑞 < 3, and since 0 < 𝑛 < ∞, 

𝑚 is bounded as 0 < 𝑚 < 1.5. This tallies with the fact that so far, no experimental report 

has concluded an 𝑚 value higher than 1.5. 

Eqn. (4) indicates that, unlike what is commonly assumed in the literature, the size exponent 

𝑚 is not a material parameter, but instead, it depends on the initial dislocation structure of the 

master microstructure from which the micro-specimens are harvested. Further evidence for eqn. 

(4) was provided by the pre-straining experiments shown in Figs. 2 and 3 [26]. Here, 

micropillars were focused-ion-beam milled on a large aluminum grain, and after compression 

testing and recording the proof strength, the entire specimen with the micropillars were cold-
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rolled to a higher pre-strain, and then pillar milling and compression testing were repeated. 

This sequence was repeated twice for different pre-strains of 7% and 15% shown in Fig. 2, and 

Fig. 3(b) shows the size dependence of strength measured from the micro-pillars. It can be seen 

that the size exponent 𝑚 decreases from 0.98 for no pre-strain, to 0.62 for 7% pre-strain, and 

then to 0.51 for 15% pre-strain. At each pre-strain, the dislocation microstructure in the master 

microstructure was imaged by transmission electron microscopy and was digitized, and was 

then analyzed by the box-counting method as shown in Fig. 3(a). Here, the box-counting 

dimension Λ𝐵 is for a 2D projection (the TEM image) of a 3D microstructure, and hence it is 

bounded by 1 < Λ𝐵 < 2, instead of the [2,3] bounds for q mentioned above. Nevertheless, it 

can be seen that as the pre-strain increases from 0% to 7% and then to 15%, Λ𝐵 increases from 

1.52 to 1.62 to 1.78. Thus, on increasing pre-strain, m decreases while the fractal dimension 

Λ𝐵 (or q) increases. The inverse relation between m and q in eqn. (4) is thus verified, at least 

in a qualitative way. The most important conclusion is that the size exponent m in eqn. (4) is 

not a material constant, because for the same material (e.g. Al in Figs. 2 and 3), different m 

values can be obtained, depending on the pre-strain and hence the initial dislocation 

configuration of the master microstructure.    

 

3. Polycrystalline Microstructures 

We discuss next the role of polycrystalline microstructures in affecting strength and 

deformation of micro-scaled specimens [34]. To illustrate what could be of interest, we 

consider the issue of whether the Hall-Petch relation would hold for micron-sized specimens 

with a few grains across the specimen thickness. Fig. 4 shows examples of this category. In this 

experiment, Ag micro-wires with an initial thickness of ~ 50m (Fig. 4(a)) were heat treated 

to obtain different grain sizes, and these wires were then etched by acid to thinner thickness, 

followed by tensile testing to determine their strength [32]. Fig. 4(a,b) shows two examples of 

the polycrystalline microstructure, and Fig. 5(a) shows the Hall-Petch plots, i.e. strength vs 

(grain size)-1/2, of such micro-wires. As a comparison, the Hall-Petch plots of bulk nickel foils 

with thickness in the millimeter scale are also shown in Fig. 5(b). In both cases of micro- and 

bulk specimens, the strength deviates from the Hall-Petch trend for the polycrystalline state 

where there three or fewer grains across the specimen thickness, i.e. when the specimen 

thickness-to-grain size ratio 𝑡/𝑑 <̃  3. For bulk-scale specimens in Fig. 5(b), the deviation is 

a negative one, which has been understood to be due to the fact that grains that are exposed to 

the specimen free surfaces are softer, and when 𝑡/𝑑 is small, such soft surface grains are 

present in large quantities, so that the overall strength becomes lower [33]. However, for 

specimens with thickness t in the micro-scale (Fig. 5(a)), the deviation from the Hall-Petch 

trend for 𝑡/𝑑 <̃  3 becomes positive. In this case, the surface grains that are present in large 

quantities for 𝑡/𝑑 <̃  3 are stronger, not softer, than the interior grains.  

Dislocation-density measurements in fact showed that dislocations in such micron-wires 

do not accumulate when the 𝑡/𝑑 ratio is low [35]. Fig. 6(a,b) show the deformed dislocation 



6 

 

microstructures of two Ag micro-wires with 𝑡/𝑑  ratio of 1.2 and 7.8, respectively, at 

comparable tensile elongations and initial dislocation contents. It can be seen that for the case 

of 𝑡/𝑑 ≈ 1.2 (Fig. 6(a)), the deformed dislocation density remains at a low value of ~ 3 ×

1014m-2 compared to the initial dislocation density of ~ 2 × 1014m-2, but for the high 𝑡/𝑑 

ratio case of 7.8 (Fig. 6(b)), the dislocation density increased significantly to ~ 1 × 1016m-2 

after deformation. Micro-samples with low 𝑡/𝑑  ratios approaching unity are obviously 

similar to single-crystalline micro-pillars for which the size effect in eqn. (1) is valid, where 

dislocations can easily zip out of the free surfaces during deformation instead of accumulate. 

Hence, in a micro-wire with a low 𝑡/𝑑 ratio, grains that are exposed to free surfaces should 

be in a dislocation starved state and so they are stronger than any interior grains present. 

DDD simulations have been proven useful in providing conceptual understanding of the 

grain-boundary effects discussed above. Fig. 7(a) shows Hall-Petch plots simulated using 2D 

DDD for different specimen thickness t in the micron range, and different 𝑡/𝑑 ratios, with the 

initial dislocation density at ~1013 m-2 which is a realistic value [36]. In such 2D DDD models, 

grains are assumed to occupy a rectangular grid structure with periodic boundary conditions 

along the tensile direction (the direction perpendicular to the specimen thickness direction) as 

shown in the selected cases in Fig. 7(b-e). In general, in Fig. 7(a), the positive deviation from 

the polycrystalline Hall-Petch behavior for small 𝑡/𝑑 ratios as seen in Fig. 5(a) is successfully 

predicted. Fig. 5(a) in fact also indicates that, in the regime when strength exhibits positive 

deviation from the polycrystalline Hall-Petch behavior, a “smaller being stronger” size effect 

occurs, namely, the smaller the specimen size t the larger is the strength. This size effect is of 

a similar genre as that depicted by eqn. (1), and is also predicted by the simulations in Fig. 7(a). 

Figs. 7(b-e) show selected cases of different values of t and 𝑡/𝑑 ratio. It can be seen that for 

𝑡/𝑑 >̃ 3 (Fig. 7(b)), surface grains are subjected to lower stress and are therefore softer than 

interior ones, because of less dislocation pile-up and lower dislocation density there. Since 

smaller samples have relatively more surface grains, they are therefore weaker. For 𝑡/𝑑 <̃ 1 

(Figs. 7(c-e)), since grain boundaries are scarce, dislocation pile-up is less which leads to a 

reduced Hall-Petch slope. Also, as can be seen by comparing Figs. 7(d,e), a smaller sample 

(Fig. 7(e)) contains fewer dislocations due to the ease of zipping out, and so it is stronger. The 

simulations here therefore also confirm the experimental observation in Fig. 6(a) where 

dislocations do not accumulate when 𝑡/𝑑 is small. 

This phenomenon of Hall-Petch deviation illustrates the intricate coupling effects of the 

internal length scale (the grain size) and the external specimen size in affecting strength. 

 

4. Precipitate Microstructures   

As the last microstructure to illustrate, we consider precipitates. A classical precipitated 

alloy is duralumin which is essentially an Al-Cu-Mg-Mn alloy. Fig. 8 shows the master 

microstructures of duralumin at two aged conditions, namely, naturally (room-temperature) 

aged and peak-aged conditions. Precipitated phases including T-phase Al20Cu2Mn3 and S-phase 
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Al2CuMg can be seen. Fig. 9(a) shows the 2% proof strength of duralumin micro-pillars under 

compression [37, 38]. Remarkably, duralumin exhibits a non-monotonic size effect, in which 

strength first decreases and then increases on increasing size. The size dependence of strength 

of precipitated alloys is more complex than the common “smaller-being-stronger” size effect 

in eqn. (1). 

The behavior in Fig. 9(a) can be understood by considering the mean free path  of 

dislocations, which is defined as the mean distance traversed by dislocations, before they 

become trapped by precipitates or annihilated at the free surfaces of the specimen. In a 

precipitated micro-specimen of size D, if a dislocation can escape trapping by precipitates glide 

through the specimen thickness, then its free path will be D. If a dislocation is pinned by some 

precipitates, its free path will be some d which will scale with the precipitate spacing. Let 𝐹(𝑥) 

be the probability that a dislocation is not pinned by precipitates when it has glided a distance 

𝑥, the mean free path of all mobile dislocations in the specimen will be     

Λ = 𝐹(𝐷) ⋅ 𝐷 + [1 − 𝐹(𝐷)] ⋅ 𝑑    (5)     

𝐹(𝑥) is obviously a decreasing function of 𝑥, since the longer a dislocation has traveled in a 

precipitate field, the smaller is the chance that it is not pinned. A simple, convenient form can 

be 𝐹(𝑥) = exp(−𝛼𝑥𝛽), where 𝛼 and 𝛽 are empirical, positive parameters, and Fig. 9(b) 

shows the variation of the mean free path with specimen size D for different precipitate spacing 

d, for the case of 𝛼 = 0.001725 and 𝛽 = 3.325. It can be seen that for specimen size D 

smaller than the size corresponding to the smallest strength in Fig. 9(a), Λ is close to D itself 

which means that most dislocations are not pinned by the precipitates and can glide through 

the thickness of the specimen. For D larger than the size corresponding to the smallest strength, 

Λ drops on increasing D towards a steady value that is simply d; in this case, dislocations are 

increasingly trapped by precipitates. At the size corresponding to the smallest strength, Λ 

exhibits a maximum, meaning that dislocations can traverse the farthest, corresponding to 

minimum resistance to deformation. The non-monotonic size effect of strength in Fig. 9(a) is 

therefore the result of two strengthening mechanisms at play. In the small-size regime, there 

are not enough precipitates within the specimen thickness to effectively trap dislocations, so 

the latter glide through the specimen, leaving the specimen in a continuous dislocation-starved 

state. Strength is high due to the need to nucleate or mobilize dislocations to sustain 

deformation. On increasing D, more and more precipitates are present which can now trap 

dislocations; the strengthening mechanism here is the conventional precipitation hardening. At 

the size at which strength is minimum, both strengthening mechanisms are ineffective – this 

size is too large for dislocation starvation to be effective, and too small to contain enough 

precipitates to strengthen the specimen. Fig. 10 shows the microstructure of a deformed 

duralumin micro-pillar close to the size at which strength reaches minimum. It can be seen that 

across the specimen thickness, there are only a few (~ ten) large, T-phase precipitates, which 

should not be effective in offering high precipitation hardening. The residual dislocation 

density is high at ~ 1015 m-2, which indicates that dislocation starvation does not happen.   
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Notwithstanding the above, in the small-size regime when strength is controlled by the 

dislocation starved condition, the “smaller-being-stronger” size effect is significantly milder 

than that in pristine Al without precipitates. When the strength vs size relation in this regime is 

fitted by eqn. (1), the m value is found to be ~0.51 as shown in Fig. 11, compared with the 

value of ~0.98 for pristine Al without precipitates or pre-straining (Fig. 3(b)). The m value for 

duralumin is in fact close to pre-strained Al containing a high density of initial dislocations 

(Fig. 3(b)). In either a precipitated or dense-dislocation microstructure, the small internal 

microstructural length scale evidently reduce the dependence of strength on specimen size. 

DDD simulations again can provide useful insights into the effects of precipitates on size 

effect of strength. Fig. 12 shows 2D DDD simulation results on the precipitate effects on 

strength and dislocation storage [39]. Here, the 2D simulation region is rectangular with an 

aspect ratio of 1:3, with periodic boundary conditions applied along the long axis which is also 

the tensile axis, and free surfaces are assumed along the short axis. Dislocation velocity is 

assumed to be proportional to the effective stress comprising the applied stress, elastic 

interaction between dislocations and resistance due to Taylor hardening. Dislocation nucleation 

is modeled by dipole sources which operate at critical stresses 𝜎𝑛𝑢𝑐 that follow a Gaussian 

distribution of mean 15 MPa and standard deviation 6 MPa. Dislocation annihilation is 

modeled by deleting dipoles less than 1b wide from the system. Precipitates are positioned 

according to a Gaussian distribution with average spacing 𝑙𝑎𝑣𝑒  and standard deviation 

0.3𝑙𝑎𝑣𝑒 . Dislocation-precipitate interactions in reality are 3D events and in the 2D simulation 

here, they are modeled as three possible scenarios as a dislocation meets a precipitate: (1) If 

the glide stress is larger than a critical stress  𝜎𝑐, then the dislocation overcomes the precipitate 

and moves at a slower speed with the effective stress reduced by 𝜎𝑐. (2) Else, if the stress 

normal to the slip plane is larger than a critical stress set to be 3𝜎𝑐, then the dislocation has 

10% chance to cross slip over the particle. (3) Else, the dislocation is pinned by the precipitate. 

Fig. 12(a) shows that for specimen sizes ranging from 1.5m to 6.5m, a “smaller-being-

stronger” size effect is predicted, which is more prominent for larger precipitate spacing 𝑙𝑎𝑣𝑒. 

Two sets of simulated size effect are shown in Fig. 11, and it can be seen that one of these 

matches the experimental results for duralumin well. Fig. 12(b) shows that, when compared 

with the pure Al case without precipitates, dislocation accumulation is enhanced by the 

presence of precipitates, even in the regime where strength is governed by the dislocation 

starvation mechanism. 

 

5. Perspectives and Conclusion 

The above examples all show that, when dense microstructures exist in micro-specimens, 

the simple “smaller-being-stronger” picture as represented by the power law in eqn. (1) is far 

from complete. The microstructures may correspond to an internal length scale that may 

dominate over, or at least couple with, the external specimen-size length scale to control 

strength and deformation. In such cases, conventional wisdom often becomes invalid. For 
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example, in the case of polycrystalline, micro-samples of a given specimen thickness t in the 

micro scale, the Hall-Petch relation may break down in the regime 𝑡/𝑑 <̃  3, when loss of 

dislocations to free surfaces becomes significant leading to low dislocation accumulation. 

Precipitation hardening is another example – in the alloy example in Section 4, when the 

specimen size is not large compared with the spacing of precipitates, the latter may no longer 

be effective in blocking dislocations, leading to a much lower strength than the bulk value. 

Even in the simpler example of the specimen just containing an initial amount of dislocations, 

the exponent m in eqn. (1) may be affected by the initial dislocation network according to eqn. 

(4). Other microstructures will most likely produce other unusual effects but the literature is 

critically short of such information and knowledge. 

Modeling of size effects when microstructures dominate is another interesting area 

requiring challenging developments. The DDD simulations shown in Figs. 7, 10 and 11 are 

sometimes referred to as “2.5D” simulations which are really 2D simulations for infinitely 

straight dislocations with certain 3D events, such as interactions with precipitates, dislocation 

generation and cross slip, modeled in ad hoc manners in 2D. Currently, 3-dimensional DDD 

simulations are often used as a convenient tool to model micro-pillar plasticity, since the slow 

accumulation of dislocations due to the constant loss at free surfaces, especially for very small 

crystals with low initial dislocation contents [30, 40], is ideal for 3D DDD which cannot handle 

large quantities of dislocation segments. The incorporation of microstructures will meet two 

key challenges for the 3D DDD method: (i) the need to model dislocation-microstructure 

interactions in the simulation, and (ii) enhanced dislocation accumulation which means more 

efficient simulation codes will need to be developed. 
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Figure Captions 

FIG. 1 – 2% proof strength vs residual dislocation density in aluminum micro-pillars of two 

sizes (a) 5.6 m and (b) 1.2 m. Adapted with permission form Ref. [31], Elsevier, 2012. 

FIG. 2 – Dislocation structures of aluminum at different pre-strain levels (a) 0%, (b) 7% and 

(c) 15% (top panels real, lower panels digitized bitmaps). Adapted with permission form Ref. 

[26], Elsevier, 2013.  

FIG. 3 – (a) “Box-counting” fractal analysis of the dislocation networks in the different pre-

strained master microstructures corresponding to Fig. 2. (b) Size dependence of proof strength 

of aluminum micro-pillars milled from different pre-strained master microstructures in FIG. 2. 

Adapted with permission form Ref. [26], Elsevier, 2013.  

FIG. 4 – Silver micro-wires containing a few grains across their thickness: (a) a wire with 

thickness 𝑡 ≈ 50 m and internal grain size 𝑑 ≈ 21 m, (b) another wire with thickness 𝑡 ≈

40 m and internal grain size 𝑑 ≈ 40 m, exhibiting a “bamboo” grain structure. Adapted 

with permission form Refs. [32, 35], Elsevier, 2011.  

FIG. 5 – Hall-Petch plots of strength vs (grain size)-1/2 for (a) silver polycrystalline micro-wires 

with specimen thickness t = 20 to 50 m (reproduced with permission form Ref. [32], Elsevier, 

2011), (b) bulk nickel polycrystalline foils with specimen thickness t = 0.5 mm (adapted with 

permission form Ref. [33], Elsevier, 2011). In both cases, deviation from the Hall-Petch trend 

for the mean-field behavior occurs when 𝑡/𝑑 <̃  3 (d = grain size), i.e. when there are fewer 

than about three grains across the thickness of the specimen. In the case of bulk specimens (b), 

the deviation is a reduction compared to Hall-Petch, while for micro-specimens (a), the 

deviation is an increment.  

FIG. 6 – Large-area TEM montages of deformed microstructures in Ag micro-wires. Individual 

dislocations can be seen at edges of diffraction bend contours. (a) Wire thickness 𝑡 ≈ 50 m 

and internal grain size 𝑑 ≈ 40.6 m (𝑡/𝑑 ≈ 1.2), with residual dislocation density estimated 

at ~ 3 × 1014 m-2 at 12% elongation. (b) Wire thickness 𝑡 ≈ 40 m and internal grain size 

𝑑 ≈ 5.1 m (𝑡/𝑑 ≈ 7.8), with residual dislocation density estimated at ~ 1 × 1016 m-2 at 14% 

elongation. In both cases, the initial dislocation density of the undeformed samples was ~ 2 ×

1014 m-2. Adapted with permission form Ref. [35], Elsevier, 2012.  

FIG. 7 – 2-dimensional DDD simulations of grain-boundary induced strengthening in micron-

sized polycrystals. (a) Simulated proof stress vs (grain size)-1/2 plots for different specimen 

thicknesses t and grain size d, with 𝑡/𝑑 ratios shown in brackets. (b-e) Simulated stress fields 

(upper panels) and dislocation plots (lower panels) for selected cases of different specimen 

thickness t (shown in terms of b underneath each case) and 𝑡/𝑑 ratio. Rectangular grids (if 

any) show simulated grain boundaries. Color bar on right of (e) shows relative scale for stress 

applicable to all cases in (b-e). Adapted with permission form Ref. [36], Elsevier, 2013.   
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FIG. 8 – Precipitated microstructures in duralumin at (a) naturally (room-temperature) aged 

and (b) peak-aged conditions. Rod-shaped T-phase Al20Cu2Mn3 precipitates are present in (a,b), 

while (b) also exhibits needle-shaped S-phase Al2CuMg precipitates.  

FIG. 9 – (a) 2% proof stress of duralumin micro-pillars vs pillar diameter D. (b) Model mean 

free path of dislocations in a precipitated micro-specimen [38]. 

FIG. 10 – TEM microstructure of deformed duralumin pillar close to the size at which strength 

reaches minimum. (a) Longitudinal microstructure of pillar where large T-phase precipitates 

are seen as dark spots. (b) Close-up of a typical location in the specimen showing high density 

of residual dislocations. Adapted with permission form Ref. [37], Elsevier, 2013. 

FIG. 11 – Smaller-being-stronger size dependence in duralumin in the regime of small 

specimen size. Beyond this regime, strength increases with size as shown in FIG. 9(a). 

Reproduced with permission form Ref. [39], Elsevier, 2014.    

FIG. 12 – 2D DDD simulation results of precipitate effects on (a) strength and (b) dislocation 

storage. Reproduced with permission form Ref. [39], Elsevier, 2014. 
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FIG. 1 – 2% proof strength vs residual dislocation density in aluminum micro-pillars of two 

sizes (a) 5.6 m and (b) 1.2 m. Adapted with permission form Ref. [31], Elsevier, 2012. 

 

 

 

FIG. 2 – Dislocation structures of aluminum at different pre-strain levels (a) 0%, (b) 7% and 

(c) 15% (top panels real, lower panels digitized bitmaps). Adapted with permission form Ref. 

[26], Elsevier, 2013.  
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FIG. 3 – (a) “Box-counting” fractal analysis of the dislocation networks in the different pre-

strained master microstructures corresponding to Fig. 2. (b) Size dependence of proof strength 

of aluminum micro-pillars milled from different pre-strained master microstructures in FIG. 2. 

Adapted with permission form Ref. [26], Elsevier, 2013.  
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FIG. 4 – Silver micro-wires containing a few grains across their thickness: (a) a wire with 

thickness 𝑡 ≈ 50 m and internal grain size 𝑑 ≈ 21 m, (b) another wire with thickness 𝑡 ≈

40 m and internal grain size 𝑑 ≈ 40 m, exhibiting a “bamboo” grain structure. Adapted 

with permission form Refs. [32, 35], Elsevier, 2011.  
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FIG. 5 – Hall-Petch plots of strength vs (grain size)-1/2 for (a) silver polycrystalline micro-wires 

with specimen thickness t = 20 to 50 m (reproduced with permission form Ref. [32], Elsevier, 

2011), (b) bulk nickel polycrystalline foils with specimen thickness t = 0.5 mm (adapted with 

permission form Ref. [33], Elsevier, 2011). In both cases, deviation from the Hall-Petch trend 

for the mean-field behavior occurs when 𝑡/𝑑 <̃  3 (d = grain size), i.e. when there are fewer 

than about three grains across the thickness of the specimen. In the case of bulk specimens (b), 

the deviation is a reduction compared to Hall-Petch, while for micro-specimens (a), the 

deviation is an increment.  
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FIG. 6 – Large-area TEM montages of deformed microstructures in Ag micro-wires. Individual 

dislocations can be seen at edges of diffraction bend contours. (a) Wire thickness 𝑡 ≈ 50 m 

and internal grain size 𝑑 ≈ 40.6 m (𝑡/𝑑 ≈ 1.2), with residual dislocation density estimated 

at ~ 3 × 1014 m-2 at 12% elongation. (b) Wire thickness 𝑡 ≈ 40 m and internal grain size 

𝑑 ≈ 5.1 m (𝑡/𝑑 ≈ 7.8), with residual dislocation density estimated at ~ 1 × 1016 m-2 at 14% 

elongation. In both cases, the initial dislocation density of the undeformed samples was ~ 2 ×

1014 m-2. Adapted with permission form Ref. [35], Elsevier, 2012.  
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FIG. 7 – 2-dimensional DDD simulations of grain-boundary induced strengthening in micron-

sized polycrystals. (a) Simulated proof stress vs (grain size)-1/2 plots for different specimen 

thicknesses t and grain size d, with 𝑡/𝑑 ratios shown in brackets. (b-e) Simulated stress fields 

(upper panels) and dislocation plots (lower panels) for selected cases of different specimen 

thickness t (shown in terms of b underneath each case) and 𝑡/𝑑 ratio. Rectangular grids (if 

any) show simulated grain boundaries. Color bar on right of (e) shows relative scale for stress 

applicable to all cases in (b-e). Adapted with permission form Ref. [36], Elsevier, 2013.    

 

 
           

 
             

FIG. 8 – Precipitated microstructures in duralumin at (a) naturally (room-temperature) aged 

and (b) peak-aged conditions. Rod-shaped T-phase Al20Cu2Mn3 precipitates are present in (a,b), 

while (b) also exhibits needle-shaped S-phase Al2CuMg precipitates.  
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FIG. 9 – (a) 2% proof stress of duralumin micro-pillars vs pillar diameter D. (b) Model mean 

free path of dislocations in a precipitated micro-specimen [38]. 

 

 

 

FIG. 10 – TEM microstructure of deformed duralumin pillar close to the size at which strength 

reaches minimum. (a) Longitudinal microstructure of pillar where large T-phase precipitates 

are seen as dark spots. (b) Close-up of a typical location in the specimen showing high density 

of residual dislocations. Adapted with permission form Ref. [37], Elsevier, 2013. 
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FIG. 11 – Smaller-being-stronger size dependence in duralumin in the regime of small 

specimen size. Beyond this regime, strength increases with size as shown in FIG. 9(a). 

Reproduced with permission form Ref. [39], Elsevier, 2014.    

 

 

 
 

 

 

FIG. 12 – 2D DDD simulation results of precipitate effects on (a) strength and (b) dislocation 

storage. Reproduced with permission form Ref. [39], Elsevier, 2014. 
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