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Abstract: 

Although continuum dislocation models can describe dislocation cores, they are generally 

incapable of describing the Peierls stress, due to the invariance of the misfit energy and a lack of means 

to trigger configurational changes in the dislocation core as the dislocation moves. In this work, a 

dislocation-density dynamics framework for modeling dislocations at an “intensive” resolution scale finer 

than the dislocation core is established. In this approach, the inter-dislocation elastic interaction is 

accounted for via Mura’s formula after singularity removal, and the interaction within the dislocation core 

is modelled by introducing a phenomenological formalism of the lattice misfit stress to balance the elastic 

interaction between dislocation contents, leading to not only a stable width of the dislocation as it travels, 

but also the expected Peierls stress. This framework is implemented numerically by using a divergence-

preserving finite-volume method for curved dislocations gliding on 2D slip planes in general. Simulation 

examples of various dislocation mechanisms, including shrinkage and expansion of dislocation loops, the 

Frank-Read source, and Orowan looping, are given. The simulated results exhibit excellent preservation 

of continuity of dislocation densities during their evolution, while the detailed core structures and Peierls 

stress are clearly elucidated. 
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1. Introduction 

Although glissile dislocations are associated with the collective displacements of atoms 

corresponding to the relative slip of crystallographic planes, they are often described as topological defects 

under different levels of coarse graining (LeSar, 2014). Dislocation models may focus on three increasing 

levels of resolution that are more coarse-grained than atomic (i.e. molecular dynamics), namely, (i) 

extensive, (ii) discrete, and (iii) intensive (Ngan, 2017). As shown in Fig. 1, “extensive” dislocation 

models are highly coarse-grained models based on a pixel length scale that is significantly larger than the 

mean spacing between dislocations, so that individual dislocations are not resolved, but are represented as 

a smeared out dislocation density. On the next level, “discrete” dislocation models treat dislocations as 

individual curvilinear objects without elucidation of their cores, which may nevertheless control the glide, 

cross-slip or climb mobility of the dislocation. On a finer level, “intensive” models are based on a length 

scale which, although is still larger than atomic, is smaller than the dislocation core width, so that core 

phenomena such as dissociation into partial dislocations or non-planar spreading can be modeled. In both 

extensive and intensive models, dislocation contents are depicted as a spatial density function that evolves 

temporally (Acharya et al., 2006; Acharya and Roy, 2006; Arsenlis et al., 2004; Arsenlis and Parks, 2002; 

Engels et al., 2012; Gbemou et al., 2016; Groma et al., 2016, 2003, Hochrainer et al., 2014, 2007; Leung 

et al., 2015; Leung and Ngan, 2016; Li et al., 2014; Roy and Acharya, 2005; Sandfeld et al., 2015; 

Varadhan et al., 2006), albeit on very different space-resolution scales as mentioned above, and it may 
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also be argued that in discrete models, the curvilinear representation may still be regarded as a delta-

function dislocation density that does not change shape as the dislocation moves. 

 

Fig. 1 The “intensive”, “discrete” and “extensive” representations of dislocation microstructures. 

 

As has been pointed out recently (Ngan, 2017), the three levels of representation of dislocations 

depicted in Fig. 1 require distinctive modeling strategies, from the representation of the dislocation density 

itself, to kinematics and dynamics. For a specific slip system, dislocation density can in general be 

represented as a field over spatial points r in two ways, namely, (i) a vector field 𝛒(𝐫) for the net or 

geometrically-necessary-dislocation (GND) density, with the line length and direction of the net GND 

over a volume 𝑑𝑉(𝐫) at r given as 𝛒(𝐫)𝑑𝑉(𝐫), and (ii) a scalar field 𝜚(𝐫, 𝜃) for the density of all the 

dislocations over both space r and dislocation character 𝜃, so that 𝜚(𝐫, 𝜃)𝑑𝑉(𝐫)𝑑𝜃 gives the line length 

of dislocations with character from 𝜃 to 𝜃 + 𝑑𝜃 within a volume 𝑑𝑉 at r. The well-known Nye tensor 𝛂 =

𝐛⊗ 𝛒 is based on the vector representation 𝛒 with information about the Burgers vector 𝐛 incorporated 

(Nye, 1953), but for a specific slip system with a given 𝐛, it suffices only to consider 𝛒. In the “extensive” 

representation of dislocation microstructures, the GND density 𝛒 obeys (Acharya et al., 2006; Acharya 
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and Roy, 2006; Gbemou et al., 2016; Hochrainer et al., 2014, 2007; Roy and Acharya, 2005; Varadhan et 

al., 2006): 

 𝛒̇ = −𝛁 × (𝛒 × 𝐯)  (1) 

which is, in fact, a conservation law for general 3D curves moving in a 3D space with a velocity field v 

(Acharya et al., 2006; Acharya and Roy, 2006; Kröner, 1958; Mura, 2013; Roy and Acharya, 2005; 

Sandfeld et al., 2015; Varadhan et al., 2006). To incorporate the effects of the statistically stored 

dislocations (SSDs) which are not embodied in 𝛒, Acharya and Roy (Acharya et al., 2006; Acharya and 

Roy, 2006) introduced a flux of the SSDs into eqn. (1) but the evolution law for this SSD flux is not 

exactly known and can only be modelled phenomenologically. A continuum dislocation-density model 

for straight, parallel dislocations was also proposed (Groma et al., 2016, 2003), but curvilinear 

characteristics are missing in such a description. To completely specify the dislocation microstructure in 

the “extensive” picture, the “all-density” representation 𝜚(𝐫, 𝜃) mentioned above would be needed, and a 

simple kinematic law has recently been derived as (Ngan, 2017): 

 𝜚̇(𝐫, 𝜃) = −𝛁(𝜚𝑣) ∙ 𝛉̂ −
𝜕(𝜚𝜔)

𝜕𝜃
 (2) 

where 𝛁 is the gradient operator in the 2-D r-space of the slip plane, 𝑣 and 𝜔 are the linear and rotational 

speed of the dislocations respectively, 𝛉̂  is the positive circumferential direction of the dislocation 

character 𝜃 on the slip plane The two terms in eqn. (2) correspond to the approach of dislocations towards 

r, and tilting of the dislocations already situated at r, respectively. Hochrainer and co-workers (Hochrainer 

et al., 2014, 2007) have in fact proposed earlier on an alternative evolution law for 𝜚 which was shown to 

be equivalent to eqn. (2) (Ngan, 2017), but this involves the dislocation curvature as a second variable 

which has to be solved from another governing equation (Hochrainer et al., 2014, 2007; Sandfeld et al., 

2015). 
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In the “discrete” picture of dislocation microstructure, the shape of the dislocation core does not 

change as the dislocation moves. Thus, instead of a general vector field 𝛒(𝐫) for use in eqn. (1), a “discrete” 

dislocation I gliding on a slip plane is represented by the following density fields (Ngan, 2017): 

 {
𝛒𝐼(𝐫) =

δ𝑟(𝑟
′𝐼)

b
 𝛏̂𝐼

𝜚𝐼(𝐫, 𝜃) =
δ𝑟(𝑟

′𝐼)

b
 
δ𝜃(𝜃

′𝐼)

2π

 (3) 

where 𝑟′𝐼(𝐫) is the shortest distance from a given field point r to the dislocation curve, 𝛏̂𝐼 and 𝜃𝐼 are, 

respectively, the unit line direction and angular character of the dislocation at the point closest to r, 𝜃′𝐼 =

𝜃 − 𝜃𝐼 , b is the atomic thickness of the slip plane, and δ𝑟  and δ𝜃  are delta-like functions satisfying 

∫ δ𝑟(𝑟)𝑑𝑟
+∞

−∞
= 1, ∫ δ𝜃(𝜃)𝑑𝜃

2π

0
= 2𝜋. The kinematic laws for 𝛒𝐼 and 𝜚𝐼(𝐫, 𝜃) were shown to be (Ngan, 

2017): 

 {
𝛒̇𝐼 = −

𝜕𝜌𝐼

𝜕𝑟′𝐼
𝑣𝐼 𝛏̂𝑰 + 𝜌𝐼 𝛏̇̂𝐼

𝜚̇𝐼(𝐫, 𝜃) = −𝑣𝐼  
∂𝜚𝐼

𝜕𝑟′𝐼
− 𝜔𝐼  

∂δ𝜚𝐼

𝜕𝜃′𝐼

  (4) 

where 𝑣𝐼  is the speed of approach of the dislocation I towards r, 𝜔𝐼  is the rotational speed of the 

dislocation, and the two terms in each of the two equations above also correspond to the “approach” and 

“tilting” of the dislocation respectively. It should be noted that eqn. (2) for the overall “extensive” density 

𝜚𝐼(𝐫, 𝜃) is derivable from eqns. (4) by summing up the effects of the densities 𝛒𝐼  or 𝜚𝐼(𝐫, 𝜃) for all 

individual dislocations I that make up the overall density 𝜚 (Ngan, 2017). 

For “intensive” dislocations gliding on their slip planes, eqn. (1) can be used to deduce a suitable 

kinematic law (Varadhan et al., 2006), subjected to certain caution which will be discussed in Section 2.1 

below. In terms of dynamics, in the “extensive” picture mutual interactions of dislocations have to be 

modelled phenomenologically, such as using the Taylor hardening law of (density)1/2, and the lattice 
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resistance to dislocation motion is modelled as a constant friction (Arsenlis et al., 2004; Arsenlis and Parks, 

2002; Engels et al., 2012; Leung et al., 2015; Leung and Ngan, 2016; Li et al., 2014). In “discrete” or 

“intensive” models, however, the Taylor law of (density)1/2 is no longer valid as the spatial resolution of 

the density is on individual dislocation level or below, and specific strategies have to be developed to care 

for dislocation intersections (Bulatov et al., 2006). In “discrete” models, lattice friction is still treated as 

constant, but in “intensive” models, lattice friction should arise from a detailed consideration of the lattice 

disregistry in the dislocation core (Banerjee et al., 2007; Gbemou et al., 2016; Koslowski et al., 2002; 

Martínez et al., 2008; Wang et al., 2001; Xiang et al., 2008, 2003), as was done in the classical Peierls-

Nabarro model for straight dislocations (Hirth and Lothe, 1982; Peierls, 1940). 

The above summary shows that there can be no unified framework for density-field modeling of 

dislocations that can fit all levels of spatial resolution that are pertinent to dislocation plasticity. Most of 

the previous work on dislocation-density modeling focused on the “extensive” scale (Acharya et al., 2006; 

Acharya and Roy, 2006; Hochrainer et al., 2014, 2007; Roy and Acharya, 2005), and the “discrete” level 

is currently mainly handled by Discrete Dislocation Dynamics (DDD) which focuses on the evolution of 

nodal points on dislocations in a Lagrangian framework. Although the cores of dislocations control their 

glide, cross-slip or climb mobility, much less attention has been paid to develop dislocation-density 

models on this length scale, except the classical Peierls-Nabarro model which was in fact the first 

dislocation-density model, albeit for straight dislocations only. A group of previous work has attempted 

to model single dislocations using dislocation density (Gbemou et al., 2016; Leung and Ngan, 2016; 

Varadhan et al., 2006), but the treatment ignored dislocation interactions or dynamics (Varadhan et al., 

2006), or was confined to one dimensional, straight dislocation cores (Gbemou et al., 2016), or the 

consideration of dislocation core lacks details of the lattice disregistry which is the very nature of lattice 

friction (Leung and Ngan, 2016). Previous bona fide “intensive” models for curved dislocations include 
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phase-field type models that involve plastic slip (Banerjee et al., 2007; Koslowski et al., 2002; Wang et 

al., 2001) or “level sets” (Xiang et al., 2008, 2003; Zhu et al., 2014) as variables, but their connection with 

the laws governing dislocation density is not completely transparent (Roy and Acharya, 2005), and lattice 

friction is again not described by these models. We also note in passing that specific partial dislocation 

dissociation dislocation has also been modeled within the framework of DDD (Martínez et al., 2008). 

In the present study, we propose a new dislocation-density framework for the “intensive” 

description of dislocations. Compared with earlier phase-field models (Banerjee et al., 2007; Koslowski 

et al., 2002; Wang et al., 2001; Xiang et al., 2008, 2003), this framework makes use of the dislocation 

density as a variable which will connect it to previous literatures on dislocation-density approaches. To 

handle “intensive” dislocation cores, we aim at tackling two major problems: one is to incorporate core 

interactions that will allow the Peierls stress to naturally arise, and the other is to adapt a divergence-

preserving numerical method to solve the evolution law for the dislocation density in order to ensure 

dislocation continuity. Numerical simulations of the glide motion of single dislocations on their 2D slip 

planes are presented. 

 

2. Theory 

2.1 Dynamics law for density of glissile, “intensive” dislocations on a specific slip system 

For a given slip system with a specific Burgers vector, eqn. (1) implies that at any point r in space 

(or on the slip plane in the context of glissile dislocations), the dislocation content is represented 

completely by only one vector quantity 𝛒. While we have seen that this is problematic for the “extensive” 

picture, we argue here that eqn. (1) is a good assumption in the “intensive” picture, provided that we ignore 

intersection points or nodes between dislocations. As mentioned in Section 1 above, since the pixel 
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resolution in the “intensive” picture is sub-dislocation, at any point r on the slip plane the dislocation 

content is either zero if no dislocation passes through that point, or that due to one particular dislocation 

if that point falls within the core of a given dislocation. For the latter case the line orientation of the passing 

dislocation can form the required direction of the vector 𝛒 implied in eqn. (1), and so the vector field 𝛒(𝐫) 

implied in eqn. (1) should be a meaningful quantity in the “intensive” picture. Here, we ignore dislocation 

nodes where more than one dislocation meet – such nodes are either immobile or the locations where 

dislocation reactions occur which would need special considerations, as in the case of discrete dislocation 

dynamics (Bulatov et al., 2006). Varadhan et al. (Varadhan et al., 2006) have indeed made use of eqn. (1) 

to model single dislocations on a slip plane without intersections. 

Let us define formally the 𝛒 in eqn. (1) for use in the “intensive” picture. Consider the parallel 

content in the core of a given dislocation with line direction 𝛏̂ on the slip plane, as shown in Fig. 2. The 

area density of dislocations is defined as 𝜌 = 𝑑𝑁 𝑑𝐴⁄  where 𝑑𝑁 is the dislocation content threading a 

cross-sectional area 𝑑𝐴 of the slip plane perpendicular to 𝛏̂, as shown in Fig. 2. For cross-sectional areas 

𝑑𝐴𝑒 = 𝑑𝐴 𝜉𝑒⁄  and 𝑑𝐴𝑠 = 𝑑𝐴 𝜉𝑠⁄  perpendicular to the edge and screw directions 𝐱̂𝑒 and 𝐱̂𝑠 respectively, 

the same dislocation content 𝑑𝑁  correspond to area densities 𝜌𝑒 = 𝑑𝑁 𝑑𝐴𝑒⁄ = 𝜌𝜉𝑒 = 𝛒 ∙ 𝐱̂𝑒  and 𝜌𝑠 =

𝑑𝑁 𝑑𝐴𝑠⁄ = 𝛒 ∙ 𝐱̂𝑠, so that we can write 

 𝛒 =
𝑑𝑁

𝑑𝐴
𝛏̂ = 𝛒𝑒 + 𝛒𝑠 = 𝜌𝑒𝐱̂𝑒 + 𝜌𝑠𝐱̂𝑠 (5) 

where 𝛒 = 𝜌𝛏̂ is the dislocation density vector and 𝜌 = ‖𝛒‖ = √𝜌𝑒2 + 𝜌𝑠2 is the magnitude of 𝛒. 
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Fig. 2 Definition of dislocation density on a slip plane. 𝑑𝐴 is a small cross-sectional area of the slip plane 

(of thickness b) perpendicular to the dislocation line 𝛏̂. 

 

The evolution law of 𝛒 can now be obtained from eqn. (1), together with the condition that the 

velocity v for glissile dislocation contents must be lying on the slip plane in an orthogonal direction to the 

dislocation line 𝛏̂, i.e. 𝐯 = 𝑣(𝐧̂ × 𝛏̂) where 𝐧̂ is the slip plane normal. Eqn. (1) then gives (Ngan, 2017; 

Varadhan et al., 2006): 

 𝛒̇ = 𝜌̇𝑒𝐱̂𝑒 + 𝜌̇𝑠𝐱̂𝑠 = −
∂(𝜌𝑣)

∂𝐱𝑒
𝐱̂𝑠 +

∂(𝜌𝑣)

∂𝐱𝑠
𝐱̂𝑒  (6) 

As in previous work (Engels et al., 2012; Leung and Ngan, 2016), in the rest of this paper, the velocity 

magnitude 𝑣 is assumed to be governed by a power law of the effective glide stress 𝜏eff: 

 𝑣 = sgn(𝜏eff)𝑣0|𝜏
eff 𝜏0⁄ |

𝑚
  (7) 

where 𝑣0, 𝜏0 and m are constants. The effective glide stress 𝜏eff is given by 

 𝜏eff(𝐱) = 𝜏ext(𝐱) + 𝜏dis(𝐱) (8) 
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where 𝜏extis the stress from external loading and interaction with other microstructures such as second-

phase precipitates, and 𝜏dis is the resolved shear stress due to mutual-dislocation interactions, arising from 

elastic interaction with other unit dislocations, and “self interactions” within the core of the same 

dislocation. In the following section, the interactive stresses will be discussed in detail. 

 

2.2 Mutual dislocation interactions 

2.2.1 Adapting Mura’s formula for dislocation densities 

 Mura’s formula (Mura, 2013) gives the stress field 𝜎𝑖𝑗
𝐼  induced by a dislocation loop 𝐿𝐼 as: 

 𝜎𝑖𝑗
𝐼 (𝐱) = 𝐶𝑖𝑗𝑘𝑙𝜖𝑙𝑛ℎ𝐶𝑝𝑞𝑚𝑛𝑏𝑚

𝐼 ∫ 𝐺𝑘𝑝,𝑞(𝐱 − 𝐱
′)𝜉ℎ(𝐱

′)𝑑𝑙(𝐱′)
𝐿𝐼

 (9) 

where 𝐶𝑖𝑗𝑘𝑙  is the elastic modulus, 𝜖𝑙𝑛ℎ  is the permutation tensor, 𝐺𝑘𝑝  are the Green’s functions and 

𝐺𝑘𝑝,𝑞 = 𝜕𝐺𝑘𝑝/𝜕𝑥𝑞, 𝑥𝑞 are coordinates of 𝐱, 𝑏𝑚
𝐼  is the Burger’s vector  and 𝜉ℎ is the unit tangent vector on 

𝐿𝐼. For an isotropic material, the elastic modulus and Green’s functions are 

 𝐶𝑖𝑗𝑘𝑙 = λ𝛿𝑖𝑗𝛿𝑘𝑙 + μ(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑘𝑗)  (10) 

 𝐺𝑖𝑗(𝐱 − 𝐱
′) =

1

8πμ
[𝛿𝑖𝑗𝜕𝑝𝜕𝑝𝑅 −

1

2(1−ν)
𝜕𝑖𝜕𝑗𝑅]  (11) 

where λ is Lame’s constant, μ is the shear modulus, ν is Poisson’s ratio, 𝛿𝑖𝑗 is the Kronecker delta, 𝑅 =

‖𝐱 − 𝐱′‖ is the Euclidean distance function, and 𝜕𝑝 = 𝜕/𝜕𝑥𝑝. Substituting eqns. (10) and (11) into (9) 

gives 

𝜎𝑖𝑗
𝐼 (𝐱) =

μ𝑏𝑚
𝐼

8π
∫ 𝜕𝑛𝜕𝑝𝜕𝑝𝑅(𝜖𝑛𝑚𝑖𝜉𝑗 + 𝜖𝑛𝑚𝑗𝜉𝑖)𝑑𝑙(𝐱

′)
𝐿𝐼

+
𝜇𝑏𝑚

𝐼

4(1−ν)
∫ 𝜉𝑘𝜖𝑛𝑚𝑘(𝜕𝑛𝜕𝑖𝜕𝑗 − 𝛿𝑖𝑗𝜕𝑛𝜕𝑝𝜕𝑝)𝑅𝑑𝑙(𝐱

′)
𝐿𝐼

  

 (12) 
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Eqn. (12) gives the stress field due to a discrete dislocation loop. For multiple dislocations I = 1, 2, …, etc. 

distributing in the general 3D space, by the principle of elastic superposition, we have their total stress 

field given as 

 𝜎𝑖𝑗(𝐱) = ∑ 𝜎𝑖𝑗
𝐼 (𝐱)𝐼 = ∑

[
 
 
 
 

μ𝑏𝑚
𝐼

8π
∫ 𝜕𝑛𝜕𝑝𝜕𝑝𝑅(𝜖𝑛𝑚𝑖𝜉𝑗 + 𝜖𝑛𝑚𝑗𝜉𝑖)𝑑𝑙(𝐱

′)
𝐿𝐼

+
μ𝑏𝑚

𝐼

4(1−ν)
∫ 𝜉𝑘𝜖𝑛𝑚𝑘(𝜕𝑛𝜕𝑖𝜕𝑗 − 𝛿𝑖𝑗𝜕𝑛𝜕𝑝𝜕𝑝)𝑅𝑑𝑙(𝐱

′)
𝐿𝐼 ]

 
 
 
 

𝐼   (13) 

In the “intensive” description of a dislocation microstructure, dislocation contents are represented 

by the dislocation density function 𝛒(𝐱′) defined in eqn. (5). Thus, by the principle of elastic superposition, 

the stress field due to the dislocation content represented by 𝛒(𝐱′) is obtainable from eqn. (13) by the 

substitution: ∑ 𝑏𝑖
𝐼𝜉𝑗
𝐼(𝐱′)𝑑𝑙𝐼 = 𝛼𝑖𝑗(𝐱

′)𝑑𝐴𝑑𝑙 = 𝛼𝑖𝑗(𝐱
′)𝑑𝑉, where 𝛂 is the Nye tensor (Nye, 1953) 𝛼𝑖𝑗 =

∑ 𝑏𝑖
𝐼𝜉𝑗
𝐼

𝐼 /𝑑𝐴 , 𝑑𝐴 is defined in Fig. 2, and 𝑑𝑉 = 𝑑𝐴 𝑑𝑙  is an infinitesimal volume. The stress field is 

therefore: 

                                𝜎𝑖𝑗(𝐱) =
μ

8π
∭𝜕𝑛𝜕𝑝𝜕𝑝𝑅(𝛼𝑚𝑗𝜖𝑛𝑚𝑖 + 𝛼𝑚𝑖𝜖𝑛𝑚𝑗)𝑑𝑉(𝐱

′) +  

 
μ

4(1−ν)
∭𝛼𝑚𝑘𝜖𝑛𝑚𝑘(𝜕𝑛𝜕𝑖𝜕𝑗 − 𝛿𝑖𝑗𝜕𝑛𝜕𝑝𝜕𝑝)𝑅𝑑𝑉(𝐱′) (14) 

 

2.2.2 Removing singularity in Mura’s formula for “intensive” dislocation representation 

Mura’s formula breaks down when describing the elastic interaction between neighboring points, 

as some components of the stress field diverge as 𝑅 → 0 . However, in the “intensive” dislocation 

description here, as mentioned in the Introduction, the pixel resolution should still be larger than the atomic 

size a. Thus, the 𝑅 → 0 condition is not allowed in the “intensive” picture and to ensure this, we adopt a 

strategy proposed by Cai and co-workers, albeit for DDD (Cai et al., 2006; Jamond et al., 2016; Po et al., 
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2017), in which the 𝑅 in eqn. (14) is replaced by another quantity 𝑅𝑎 so that as 𝑅 → 0, 𝑅𝑎 → 𝑎 where 𝑎 

is a small length of atomic dimension. Formally, the following mapping is used between 𝑅 and 𝑅𝑎 (Cai et 

al., 2006): 

 𝑅𝑎(𝐱) = √𝑅(𝐱)2 + 𝑎2 (15) 

With 𝑅 replaced by 𝑅𝑎, eqn. (14) becomes  

 𝜎𝑖𝑗(𝐱) =∭𝐾𝑖𝑗
3D(𝐱, 𝐱′, 𝛂(𝐱′)) 𝑑𝑉(𝐱′)  (16) 

with 

𝐾𝑖𝑗
3D(𝐱, 𝐱′, 𝛂(𝐱′)) =

μ

8π
(𝛼𝑚𝑗𝜖𝑛𝑚𝑖 + 𝛼𝑚𝑖𝜖𝑛𝑚𝑗)𝜕𝑛𝜕𝑝𝜕𝑝𝑅𝑎 +

μ

4(1 − ν)
𝛼𝑚𝑘𝜖𝑛𝑚𝑘(𝜕𝑛𝜕𝑖𝜕𝑗 − 𝛿𝑖𝑗𝜕𝑛𝜕𝑝𝜕𝑝)𝑅𝑎 

where 

𝜕𝑛𝜕𝑝𝜕𝑝𝑅𝑎 = −
2(𝑥𝑛 − 𝑥𝑛

′ )

𝑅𝑎
3 (1 +

3𝑎2

2𝑅𝑎
2) 

and 

 𝜕𝑛𝜕𝑖𝜕𝑗𝑅𝑎 = −
𝛿𝑖𝑗(𝑥𝑛−𝑥𝑛

′ )+𝛿𝑖𝑛(𝑥𝑗−𝑥𝑗
′)+𝛿𝑗𝑛(𝑥𝑖−𝑥𝑖

′)

𝑅𝑎
3 +

3(𝑥𝑛−𝑥𝑛
′ )(𝑥𝑗−𝑥𝑗

′)(𝑥𝑖−𝑥𝑖
′)

𝑅𝑎
5   (17) 

 

2.2.3 Elastic interaction between dislocation densities on single slip plane 

For the specific case where all the dislocation contents have the same Burgers vector b and reside 

on a given slip plane 𝑆 of thickness b, the stress field in eqn. (14) can be reduced to 

 𝜎𝑖𝑗(𝐱) = ∬ 𝛫𝑖𝑗(𝐱, 𝐱
′, 𝛒(𝐱′)) 𝑑𝑆(𝐱′)

𝑆
 (18) 
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where 

𝛫𝑖𝑗(𝐱, 𝐱
′, 𝛒(𝐱′)) =

μb𝑏𝑚
8π

(𝜖𝑛𝑚𝑖𝜌𝑗 + 𝜖𝑛𝑚𝑗𝜌𝑖)𝜕𝑛𝜕𝑝𝜕𝑝𝑅𝑎 +
μb𝑏𝑚
4(1 − ν)

𝜌𝑘𝜖𝑛𝑚𝑘(𝜕𝑛𝜕𝑖𝜕𝑗 − 𝛿𝑖𝑗𝜕𝑛𝜕𝑝𝜕𝑝)𝑅𝑎 

b is the slip plane thickness and the 𝜕𝑛𝜕𝑖𝜕𝑗𝑅𝑎 terms are still those given in eqn. (17). Eqn. (18) will be 

useful in the following discussion on dislocation core interactions. 

 

2.2.4 Glide stress 𝜏dis for dislocation dynamics 

Next, we proceed to work out the glide stress 𝜏dis(𝐱)  in eqn. (8) due to mutual-dislocation 

interactions. Since the glide stress in eqn. (8) is used for the dislocation velocity in eqn. (7), in the 

following, the field point 𝐱 is understood to be a location where some dislocation contents would reside. 

In the “intensive” picture, 𝐱 would then be a point inside the core of a unit dislocation, and 𝜏dis would 

then be made up of a component 𝜏unit due to elastic interactions from all other unit-dislocation contents 

outside the core of the dislocation where 𝐱 is situated, and a component 𝜏core due to interactions (both 

elastic and misfit; see later) with dislocation contents inside the dislocation core where 𝐱 resides, i.e. 

 𝜏dis(𝐱) = 𝜏unit(𝐱) + 𝜏core(𝐱) (19) 

 

2.2.4.1 Glide stress 𝜏unit due to elastic interactions from outside core 

𝜏unit is given as the resolved shear stress of the stress tensor 𝜎𝑖𝑗 due to elastic interactions with all 

other unit-dislocation contents, i.e. 

 𝜏unit(𝐱) = 𝑛𝑖𝜎𝑖𝑗(𝐱)𝑏𝑗 (20) 
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where {𝑏𝑗 , 𝑛𝑖} specifies the slip system under consideration, and the stress tensor 𝜎𝑖𝑗 is given by either eqn. 

(16) if the interacting dislocation contents reside on a 3D space (i.e. multiple slip), or eqn. (18) if they are 

on the same (2D) slip plane as the dislocation density at the field point 𝐱. Thus, writing out formally, the 

𝜎𝑖𝑗 in eqn. (20) is: 

 𝜎𝑖𝑗(𝐱) =∭ 𝐾𝑖𝑗
3D(𝐱, 𝐱′, 𝛂(𝐱′)) 𝑑𝑉(𝐱′)

𝑉−core
  or   ∬ 𝛫𝑖𝑗(𝐱, 𝐱

′, 𝛒(𝐱′)) 𝑑𝑆(𝐱′)
𝑆−core

 (21) 

where integration is over domain (3D or 2D) excluding the dislocation core, in which the interactions will 

be considered separately. The 𝐾𝑖𝑗
3D or 𝛫𝑖𝑗 here is that given by eqns. (16) and (18) respectively. 

 

2.2.4.2 Glide stress 𝜏core due to interactions inside core 

As mentioned in Section 1, the “intensive” representation of dislocations serves to model the 

interactions within the dislocation core, for which “extensive” and “discrete” representations fail to 

provide a description (Leung and Ngan, 2016). Within the dislocation core the dislocation contents are 

subjected to not only their mutual elastic interaction, but also a lattice mismatch force arising from 

interaction with the crystal lattice (Peierls, 1940), so that 𝜏core may be written as: 

 𝜏core(𝐱) =  𝑛𝑖𝑏𝑗∬ 𝐾𝑖𝑗(𝐱, 𝐱
′, 𝛒(𝐱′))  𝑑𝑆(𝐱′)

core
 +  𝜏misfit(𝐱) (22) 

where the first term is due to elastic interaction within the core, with 𝐾𝑖𝑗(𝐱, 𝐱
′, 𝛂(𝐱′)) given by eqn. (18), 

and 𝜏misfit is the glide stress due to lattice misfit. Within the concept of the generalized stacking-fault-

energy surface 𝛾(𝐮) (Christian and Vítek, 1970; Vítek and Kroupa, 1969), the restoring shear stress due 

to a disregistry displacement 𝐮 on the slip plane is −𝛁𝐮𝛾, and this will produce a glide stress of 

 𝜏misfit(𝐱) = −𝐛̂ ∙ 𝛁𝐮𝛾|𝐮(𝐱) (23) 
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on the slip system {𝐛, 𝐧̂}. For general curved dislocations, evaluation of 𝜏misfit using eqn. (23) would 

require first solving the plastic displacement vector field 𝐮(𝐱) from the Nye tensor 𝛂(𝐱) via the following 

equation (see Appendix A): 

 𝛁 × [𝛁⨂𝐮(𝐱)] = −𝛂(𝐱) (24) 

where ⨂  is the tensor product operator. Unfortunately, solution of eqn. (24) from known boundary 

conditions is too computationally expensive (Gbemou et al., 2016; Roy and Acharya, 2005). 

Thus, instead of starting from the 𝛾(𝐮) surface and working out 𝜏misfit from eqn. (23), we devise 

a more efficient method here. Recall that within the dislocation core, the misfit interaction counterbalances 

the elastic interaction to result in a stable shape of the core. Thus, in eqn. (22), 𝜏misfit is proposed to take 

the form: 

 𝜏misfit(𝐱) = −𝑛𝑖𝑏𝑗∬ 𝐾𝑖𝑗(𝐱, 𝐱
′, 𝛒(𝐱′)) 𝑓(𝑑(𝐱, 𝐱′)) 𝑑𝑆(𝐱′)

core
 (25) 

where 𝑑(𝐱, 𝐱′) = ‖(𝐱 − 𝐱′) ∙ (𝐧̂ × 𝛏̂)‖  is the spacing between the field point 𝐱  and source point 𝐱′ 

projected along the width direction 𝐧̂ × 𝛏̂ of the dislocation core. Compare with the first term in eqn. (22), 

the 𝜏misfit in eqn. (25) is essentially the elastic interaction scaled by a factor 𝑓(𝑑), and eqn. (22) now reads: 

 𝜏core(𝐱) =  𝑛𝑖𝑏𝑗∬ 𝐾𝑖𝑗(𝐱, 𝐱
′, 𝛒(𝐱′)) [1 − 𝑓(𝑑(𝐱, 𝐱′))] 𝑑𝑆(𝐱′)

core
 (26) 

The factor 𝑓(𝑑) in eqn. (26) serves two important roles: (i) it stabilizes the core into a given shape, and 

(ii) by doing so in a dynamic fashion, it also gives rise to a minimum applied stress required to move the 

dislocation, i.e. a stress that mimics the so-called lattice friction or Peierls stress. 

Let ℎ(𝛏̂) be the steady-state half core width corresponding to a given dislocation character 𝛏̂, to 

play a stabilizer role 𝑓(𝑑) may have the following characteristics: 
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 𝑓(𝑑) {

> 1         if   𝑑 > ℎ(𝛏̂)

< 1        if   𝑑 < ℎ(𝛏̂)

= 1        if   𝑑 = ℎ(𝛏̂)

 (27) 

so that if the source and field points are separated farther than half the core width, then a net attractive 

force (𝑓 > 1) exists to pull the densities back together, but if they are too close together, a net repulsive 

force (𝑓 < 1) acts to push the densities apart, and the self interaction at a given point is according to 𝐾𝑖𝑗, 

which is already non-singular due to eqn. (15), without additional opposing force (𝑓 = 1). The core shape 

dictated by such a form of 𝑓(𝑑) would then have a stable width but tend to dissociate into partials – a 

possible form for 𝑓(𝑑) which would result in these will be suggested later in Section 4. It may be criticized 

that this method of modeling the core shape is less rigorous than the γ-surface approach mentioned above, 

but it must also be remembered that the 𝛾(𝐮) surface is itself a concept that is only approximately valid. 

In particular, previous criticisms of the γ-surface concept include the ignorance of the effects of the high 

gradients in 𝐮(𝐱) in the dislocation core (Bullough and Tewary, 1979) and, more importantly, the fact that 

the 𝛾(𝐮) surface cannot be unambiguously defined or computed with high accuracy, due to the constraints 

needed to maintain the crystal configuration at a general disregistry 𝐮 that does not correspond to a ground 

state (Ngan, 1995). In fact, the form of the interaction in eqn. (25) is not mathematically inconsistent with 

the γ-surface concept, because 𝑓(𝑑) in eqn. (25) may be regarded as a function that best fits eqn. (25) to 

eqn. (23). For example, 𝑓(𝑑) may be represented as a power series in 𝑑: 

 𝑓(𝑑) = ∑ 𝑎𝑛[𝑑/ℎ(𝛏̂)]
𝑛

𝑛  (28) 

with ∑ 𝑎𝑛𝑛 = 1 which guarantees 𝑓 (𝑑 = ℎ(𝛏̂)) = 1. The coefficients 𝑎𝑛 may then be chosen to result in 

a suitable structure of the dislocation core in a given material. 
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2.3 Summary 

 To summarize, the following equations close the problem of the dynamics of “intensive” 

dislocations gliding on their slip planes: 

(i) Dynamics equation for dislocation density: 

 𝛒̇ = 𝜌̇𝑒𝐱̂𝑒 + 𝜌̇𝑠𝐱̂𝑠 = −
∂(𝜌𝑣)

∂𝐱𝑒
𝐱̂𝑠 +

∂(𝜌𝑣)

∂𝐱𝑠
𝐱̂𝑒 (6) 

(ii) Dislocation velocity: 

 𝑣 = sgn(𝜏eff)𝑣0|𝜏
eff 𝜏0⁄ |

𝑚
 (7) 

(iii) Effective glide stress: 

 𝜏eff(𝐱) = 𝜏ext(𝐱) + 𝜏unit(𝐱) + 𝜏core(𝐱) (8, 19) 

(iv) Glide stress due to elastic interactions from outside core: 

𝜏unit(𝐱) = 𝑛𝑖𝑏𝑗∭ 𝐾𝑖𝑗
3𝐷(𝐱, 𝐱′, 𝛂(𝐱′)) 𝑑𝑉(𝐱′)

𝑉−core
  or   𝑛𝑖𝑏𝑗∬ 𝛫𝑖𝑗(𝐱, 𝐱

′, 𝛒(𝐱′)) 𝑑𝑆(𝐱′)
𝑆−core

,     (20, 21) 

depending on whether the problem is 3D or 2D for a single slip plane, respectively. Here, 

𝐾𝑖𝑗
3𝐷(𝐱, 𝐱′, 𝛂(𝐱′)) =

μ

8π
(𝛼𝑚𝑗𝜖𝑛𝑚𝑖 + 𝛼𝑚𝑖𝜖𝑛𝑚𝑗)𝜕𝑛𝜕𝑝𝜕𝑝𝑅𝑎 +

μ

4(1−ν)
𝛼𝑚𝑘𝜖𝑛𝑚𝑘(𝜕𝑛𝜕𝑖𝜕𝑗 − 𝛿𝑖𝑗𝜕𝑛𝜕𝑝𝜕𝑝)𝑅𝑎  

𝛫𝑖𝑗(𝐱, 𝐱
′, 𝛒(𝐱′)) =

μb𝑏𝑚

8π
(𝜖𝑛𝑚𝑖𝜌𝑗 + 𝜖𝑛𝑚𝑗𝜌𝑖)𝜕𝑛𝜕𝑝𝜕𝑝𝑅𝑎 +

μb𝑏𝑚

4(1−ν)
𝜌𝑘𝜖𝑛𝑚𝑘(𝜕𝑛𝜕𝑖𝜕𝑗 − 𝛿𝑖𝑗𝜕𝑛𝜕𝑝𝜕𝑝)𝑅𝑎   

𝜕𝑛𝜕𝑝𝜕𝑝𝑅𝑎 = −
2(𝑥𝑛−𝑥𝑛

′ )

𝑅𝑎
3 (1 +

3𝑎2

2𝑅𝑎
2),  

𝜕𝑛𝜕𝑖𝜕𝑗𝑅𝑎 = −
𝛿𝑖𝑗(𝑥𝑛−𝑥𝑛

′ )+𝛿𝑖𝑙(𝑥𝑗−𝑥𝑗
′)+𝛿𝑗𝑙(𝑥𝑖−𝑥𝑖

′)

𝑅𝑎
3 +

3(𝑥𝑛−𝑥𝑛
′ )(𝑥𝑗−𝑥𝑗

′)(𝑥𝑖−𝑥𝑖
′)

𝑅𝑎
5           (16, 17, 18) 

(v) Glide stress due to interactions inside core: 
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 𝜏core(𝐱) =  𝑛𝑖𝑏𝑗∬ 𝐾𝑖𝑗(𝐱, 𝐱
′, 𝛒(𝐱′)) [1 − 𝑓(𝑑(𝐱, 𝐱′))] 𝑑𝑆(𝐱′)

core
 (26) 

where 𝑓(𝑑) is a function that meets the characteristics in eqn. (27) or similar. 

 

3 Numerical implementation for single slip plane 

Here, we employ the framework outlined in Section 2.3 above to simulate 2D cases where 

dislocation contents of the same Burgers vector b reside on a given slip plane. In such a case, the 2D 

version of eqn. (21) is used for the elastic interaction between dislocation contents outside dislocation 

cores: 

 𝜏unit(𝐱) = 𝑛𝑖𝑏𝑗∬ 𝛫𝑖𝑗(𝐱, 𝐱
′, 𝛒(𝐱′)) 𝑑𝑆(𝐱′)

𝑆−core
 (29) 

In addition, computation of stress vis eqn. (29) can be further simplified by decoupling 𝛒  into two 

components 𝛒𝑒 and 𝛒𝑠 as per eqn. (5), since edge and screw contents do not interact (Leung et al., 2015). 

In eqn. (26), the following 𝑓(𝑑) function that satisfies eqn. (27) is employed: 

 𝑓(𝑑) = (𝑑/ℎ)𝑛 (30) 

where ℎ is set to be dependent of dislocation character, and 𝑛 = 2 unless otherwise stated. Eqn. (30) is in 

fact a special case of the power series in eqn. (28). Further details in methodology are explained below. 

 

3.1 Method to determine inner or outer core interaction 

Referring to eqn. (19) in Section 2.3, for a general field point 𝐱 and a source point 𝐱′ on the slip 

plane, a method needs to be devised to distinguish whether they belong to the same dislocation core or 

not, for which 𝜏core or 𝜏unit would apply respectively. Dislocation densities in the same core should have 
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the same direction, i.e. 𝛒(𝐱) ∙ 𝛒(𝐱′) > 0 and is continuous with respect to space. Since the dislocation 

density vector is decomposed into edge and screw parts, the determination method here ought to be able 

to distinguish the core according to its edge and screw densities as well. For a given field point x with a 

non-zero dislocation density shown as the orange pixel in Fig. 3, if |𝜌𝑒 𝜌𝑠⁄ | ≤ 1 there, we then decide 

whether 𝛒𝑠(𝐱′) at pixels 𝐱′ around a mid-axis (the red dash-dot axis) passing through x along the screw 

direction is in the same dislocation core as 𝛒𝑠(𝐱). Moving out from the mid-axis in a perpendicular 

direction, if 𝜌𝑠(𝐱) 𝜌𝑠(𝐱′) ≤ 0 is first satisfied we meet and mark the periphery of the dislocation core zone 

for the screw contents. Otherwise if |𝜌𝑒 𝜌𝑠⁄ | ≥ 1 at point x, we begin with a mid-axis along 𝛒𝑒(𝐱) and 

determine the periphery of the core zone for the edge contents. The dislocation densities in the same core 

zone are set to interact via 𝜏core in eqn. (26); otherwise they interact via 𝜏unit in eqn. (20, 21). 

 

Fig. 3. Schematic for identifying dislocation core according to screw dislocation contents. The orange cell 

is the center point x, the red dash-dot line is the mid-axis which is parallel to the Burgers vector, and the 

orange contour shows the periphery of the dislocation core according to its screw contents. 

 

3.2 Divergence-preserving finite volume method 
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It is important to choose a desirable numerical implement to solve divergence preserving equations 

because traditional finite-element or finite-volume methods, while conserving mass, introduce large 

divergence errors. Much efforts have been made in the past to solve divergence preserving equations 

numerically (Artebrant and Torrilhon, 2008; Torrilhon, 2005) and here, we adopt the potential-based 

approach finite volume method (Mishra and Tadmor, 2010) for solving eqn. (6). The two-dimensional 

form of the curl advection as in eqn. (6) can be written as 

 {

𝑑

𝑑𝑡
𝜌𝑥 + 𝑓𝑦 = 0

𝑑

𝑑𝑡
𝜌𝑦 − 𝑓𝑥 = 0

 (31) 

where flux 𝒇 = 𝛒 × 𝐯 with 𝑓𝑥 , 𝑓𝑦  being its components in the x and y direction respectively. For the 

discretization, we adopt a uniform Cartesian mesh with sizes ∆𝑥  and ∆𝑦 . The discrete cell 𝐶𝑖,𝑗 =

[𝑥
𝑖−
1

2

, 𝑥
𝑖+
1

2

) × [𝑦
𝑗−

1

2

, 𝑦
𝑗+

1

2

) centers at the mesh point (𝑥𝑖 , 𝑦𝑖) = (𝑖∆𝑥, 𝑗∆𝑦). A potential based semi-discrete 

finite-volume scheme for eqn. (31) is 

 {

𝑑

𝑑𝑡
(𝜌𝑥)𝑖,𝑗 = −

1

4∆𝑦
(𝜇𝑥𝐹𝑖,𝑗+1

𝑥 − 𝜇𝑥𝐹𝑖,𝑗−1
𝑥 ) −

1

4∆𝑦
[𝛿𝑦 (𝜇𝑥𝐹𝑖+1

2
,𝑗

𝑦
+ 𝜇𝑥𝐹𝑖−1

2
,𝑗

𝑦
)]

𝑑

𝑑𝑡
(𝜌𝑦)𝑖,𝑗 =

1

4∆𝑥
(𝜇𝑦𝐹𝑖+1,𝑗

𝑦
− 𝜇𝑦𝐹𝑖−1,𝑗

𝑦
) +

1

4∆𝑥
[𝛿𝑥 (𝜇𝑦𝐹𝑖,𝑗+1

2

𝑥 + 𝜇𝑦𝐹𝑖,𝑗−1
2

𝑥 )]   
  (32) 

Here, 𝜇𝑥 , 𝜇𝑦 , 𝛿𝑥  and 𝛿𝑦  are standard discrete averaging and difference operators in the finite-volume 

method given as 

 {
𝜇𝑥𝑎𝐼,𝐽 ≔

𝑎
𝐼+
1
2
,𝐽
+𝑎

𝐼−
1
2
,𝐽

2
,           𝜇𝑦𝑎𝐼,𝐽 ≔

𝑎
𝐼,𝐽+

1
2
+𝑎

𝐼,𝐽−
1
2

2
          

𝛿𝑥𝑎𝐼,𝐽 ≔ 𝑎
𝐼+

1

2
,𝐽
− 𝑎

𝐼−
1

2
,𝐽
,      𝛿𝑦𝑎𝐼,𝐽 ≔ 𝑎

𝐼,𝐽+
1

2

− 𝑎
𝐼,𝐽−

1

2

    
 (33) 

where a represents an arbitrary variable and the indexes I and J are at the center I=i, J=j or at the edge 

𝐼 = 𝑖 ±
1

2
, 𝐽 = 𝑗 ±

1

2
. 𝐹

𝑖+
1

2
,𝑗

𝑥  and 𝐹
𝑖,𝑗+

1

2

𝑦
 are edge centered numerical fluxes: 
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 {

𝐹
𝑖+

1

2
,𝑗

𝑥 = 𝜇𝑥𝑓𝑖+1
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 (34) 

We adopt the first-order Rusanov flux for 𝑄𝑥 and 𝑄𝑦 in eqn. (34): 
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  (35) 

The time integration is performed by the Runge–Kutta method and the following time step is chosen to 

ensure convergence of the simulation 

 𝑑𝑡 =
𝑑𝑥

1.25max(max(|𝑣𝑥|),max(|𝑣𝑦|))
 (36) 

 

3.3 Simulation details 

We used the MATLAB language to develop the model and the parameters, which correspond to 

aluminum, are shown in Tables 1 and 2.  

 

Table 1. Parameters in the simulation 

Parameters values 

Shear modulus  26 GPa 

Poisson’s ratio  0.3 

Burgers vector b 2.863×10-10 m 

m for dislocation velocity 1 

v0 for dislocation velocity v* 

0 for dislocation velocity 1.9231×10-4 

Slip plane dimensions (with periodic boundary condition) 300 b×300 b 

Number of cells (nx×ny) 300×300 

Unit cell dimension (dx×dy) 1 b×1 b 
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Cut-off radius for elastic interaction 300 b 

a for non-singularity improvement 1.25 dx (1.25 b) 

Equilibrium half-width of the dislocation h 
3dx for edge dislocation 

3(1-)dx for screw dislocation 

Unit dislocation density s 1/dx (1/b) 

Truncation value of dislocation density s ×10-6~s ×10-4 

 

Table 2. Characteristic scales for normalization of parameters 

Quantities Characteristic scales for normalization 

Length l* b 

Time t* 1×10-9 s 

Velocity v* v*=l*/t* 

Stress 𝜏* 𝜏*= 

 

4. Simulation results 

4.1 Equilibrium density distribution of dislocation cores and Peierls stress 

4.1.1 Equilibrium core shape and γ-surface  

To demonstrate the validity of our core interaction method, we obtain the equilibrium distributions 

of straight dislocation cores without external stress. Such states were produced by running the simulation 

according to the dynamic scheme in Section 2.3 albeit for straight dislocations under no external stress, 

until dynamic equilibrium was observed for the shape of the dislocation core. Instead of using eqn. (22, 

23) and the condition 𝜌𝑖 = 𝜕𝑢𝑖/𝜕𝑥𝑖  to solve the equilibrium distribution for straight dislocations, we 

employed the following equations from the classical Peierls model (Peierls, 1940) which are valid for 

straight dislocations. At equilibrium under zero external stress, the γ-surface is related to the equilibrium 

density distribution by 

 𝐴∫
𝜌(𝑥′)

𝑥−𝑥′

+∞

−∞
𝑑𝑥′ = −

𝑑𝛾

𝑑𝑢
 (37) 
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where 𝐴 = μb/[2π(1 − ν)] for edge or μb/(2π) for screw character, respectively, 𝑥 is the coordinate 

along the width direction of the dislocation, and u is the disregistry along the edge or screw direction given 

by 

 𝑢(𝑥) = ∫ 𝜌(𝑥′)𝑑𝑥′
𝑥

−∞
 (38) 

From eqns. (37) and (38), given the equilibrium density distribution 𝜌(𝑥) from the simulation, we can 

obtain the corresponding disregistry function 𝑢(𝑥) and the γ-surface 𝛾(𝑢) numerically. 

To see how the 𝑓(𝑑) function affects the equilibrium distribution of dislocation density inside the 

core, we employ eqn. (30) for 𝑓(𝑑) and examine how 𝑛 and ℎ influence the equilibrium shape of the 

dislocation core. Fig. (4) shows the core structure at different values of 𝑛 for edge dislocations, when ℎ =

10 𝑏. It can be seen that the 𝑛 value determines the sharpness of the two dissociated partials: the 𝑛 = 2 

case exhibits two overlapping partials, while the 𝑛 = 15  case exhibits clear dissociation of the unit 

dislocation into two narrow partials. Fig. (5) shows the core distribution of edge dislocations of different 

equilibrium half width ℎ and suitable 𝑛 value that would allow more distinctive dissociation, as well as 

the corresponding sections of the -surface calculated via eqns. (37) and (38). The results shows that a 

larger ℎ in 𝑓(𝑑) corresponds to a large width in the dislocation core and the local minimum in the γ-

surface, and yet the peak energy in the -surface is also lowered. 
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Fig 4. Dislocation density distributions for edge dislocations at different n. 

 

Fig 5. Dislocation density and disregistry (slip distance) distributions, and -surfaces for edge dislocations 

at different equilibrium half width ℎ. 
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In order to investigate dislocations in aluminum, parameters 𝑎 =  1.25 𝑏 , 𝑛 = 2  and ℎ = 3 𝑏 

were adopted for edge dislocation and 𝑎 =  1.25 𝑏, 𝑛 = 2 and ℎ = 3(1 − ν) 𝑏 for screw dislocation via 

the equations in Section 2.3. As shown in Fig. 6, the edge dislocation core has a wider distribution and 

tends to dissociate into two partials (Woodward et al., 2008) while no apparent dissociation occurs in the 

screw dislocation core (Lu et al., 2000). The spacing between the two partials in the edge dislocation is 

around 3b (8.05 Å) which is close to the experimental value of  8 Å (Höllerbauer and Karnthaler, 1981) 

and density-functional theory (DFT) prediction of 7.0-9.5 Å (Woodward et al., 2008) or 20.4 Å (Shin and 

Carter, 2013). For the screw dislocation core with no obvious dissociation, the half width, which is defined 

as the distance where the atomic disregistry changes from 1/4 b to 3/4 b (Lu et al., 2000), is predicted to 

be 2.4 b (6.8712 Å), which is reasonable in comparison with the literature value of 2.1 Å (Lu et al., 2000) 

(no dissociation predicted) and 5-7.5 Å (Woodward et al., 2008) (dissociation predicted) from DFT studies. 

The γ-surface plots in Fig. 6 exhibit maximum energy of 187 mJ/m3 in the [1 1 2̅] direction and 172 mJ/m3 

in the [1 1̅ 0] direction. Two minor peaks are observed in the [1 1 2̅] direction and they are responsible for 

the splitting of the edge dislocation into two partials. 
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Fig 6. Dislocation density and disregistry (slip distance) distributions, and -surfaces for edge and screw 

straight dislocations. 

 

4.1.2 Stress distribution within dislocation core  

The stress field in the present model may also be compared with other dislocation models. Here, 

we take the edge dislocation and consider the stress field on the slip plane as an example. In the singular 

Volterra model, the density distribution of an edge dislocation is a delta function, and the stress field on 

the slip plane 𝑦 = 0 is 

 𝜎𝑥𝑦(𝑥, 𝑦 = 0) =
μb

2π(1−𝜈)

1

𝑥
 (39) 

In the Peierls-Nabarro (P-N) model, the stress field for an edge dislocation with half width ℎ is 

 𝜎𝑥𝑦(𝑥, 𝑦 = 0) =
μb

2π(1−ν)

𝑥

𝑥2+ℎ2
  (40) 
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In the present model, by virtue of Cai’s non-singular improvement in eqn. (15), the elastic stress field 

outside the core is given by 

 𝜎𝑥𝑦(𝑥, 𝑦 = 0) =
μb

2π(1−ν)

𝑥

𝑥2+𝑎2
  (41) 

while that inside the core is 

 𝜎𝑥𝑦(𝑥, 𝑦 = 0) = ∫ 𝜌(𝑥′)
μb(𝑥−𝑥′)

2π(1−ν)[(𝑥−𝑥′)2+𝑎2]
𝑑𝑥′

+ℎ

−ℎ
 (42) 

Fig. 7 shows the elastic stress calculated according to eqn. (42) for one dynamic equilibrium state 

simulated with 𝑎 =  1.25 𝑏, 𝑛 = 2 and ℎ = 3 𝑏, in comparison with the Volterra model from eqn. (39) 

and the P-N model from eqn. (40). It can be seen that the stress field predicted by the present model does 

not exhibit a singularity in the dislocation core as in the Volterra model, and since the core width is more 

well-defined than the P-N model, the stress field agrees more with the Volterra model outside the core 

region. However, it must also be noted that in the present model, the core distribution is adjustable by the 

simulation parameters as in Figs. 4-6, and hence other stress profiles are possible. Also shown in Fig. 7 is 

the total stress in the core region which is given as 

 𝜎𝑥𝑦
total(𝑥, 𝑦 = 0) = ∫ 𝜌(𝑥′)

μb(𝑥−𝑥′)

2π(1−ν)[(𝑥−𝑥′)2+𝑎2]
(1 − 𝑓(𝑑(𝑥, 𝑥′)))𝑑𝑥′

+ℎ

−ℎ
 (43) 

where the 𝑓(𝑑) term represents the lattice misfit interaction. It can be seen that although the net stress is 

very small everywhere within the core, indicating that the core is approximately at equilibrium. 
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Fig. 7. Comparison of elastic stress on slip plane between the present model, the Volterra model, and the 

Peierls-Nabarro (P-N) model for an edge dislocation with dislocation half width ℎ = 3 𝑏, 𝑎 =  1.25 𝑏 

and 𝑛 = 2. The jumps in the total stress show the boundaries of the dislocation core. 

 

4.1.3 Peierls stress  

 As mentioned above, an important difference between the “discrete” and “intensive” descriptions 

of dislocations is that the “discrete” picture fails to give intrinsic information about the Peierls stress, while 

in the “intensive” picture, since the core of the dislocation is modeled, so can be the Peierls stress. In the 

classical P-N model, as the dislocation traverses both the strain energy and the misfit energy would remain 

constant if they are calculated by continuous integration over the slip plane (Hirth and Lothe, 1982), and 

hence no Peierls stress would be predicted. This is because in the P-N model, there is no provision for the 

core to change shape as it traverses. Peierl and Nabarro managed to obtain a non-zero lattice friction only 

by replacing the continuous integration by discrete summation over lattice sites in the calculation of the 
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misfit energy, but this approach was challenged (Hirth and Lothe, 1982.). Indeed, in continuum models, 

the Peierls-Nabarro way of discrete summation would be an incompatible approach, and unless the 

dislocation core is made to change shape as it traverses, no Peierls stress could be predicted. 

As mentioned in Section 2.2.4.2, the 𝑓(𝑑) factor in eqn. (26) serves not only to preserve the width 

of the dislocation, but also to cause a critical stress that mimics the Peierls stress to move the dislocation. 

Fig. 8 shows that, because of the width-stabilizing role of the 𝑓(𝑑) factor, as a stress of increasing 

magnitude is applied onto the crystal, the dislocation core first changes its shape but without moving, and 

only when a critical stress is applied then the dislocation starts to move. In the set of results in Fig. 6, the 

Peierls stress was obtained by finding the lower and upper bounds of the critical shear stress needed to 

move the dislocation. The interval is found for edge and screw dislocations to be 1.75×10-3-2.2×10-3 , 

lying in the range of 10-5-10-2  (Shin and Carter, 2013) reported from simulations, larger than the 10-5-

10-4  (Seeger et al., 1966) from mechanical tests, and agreeing with 10-3-10-2  (Benoit et al., 1987; 

Nabarro, 1997) from typical Bordoni peaks in internal friction measurements.  

In eqn. (30), the value of 𝑓(𝑑) = [𝑑 ℎ⁄ ]𝑛 increases as 𝑛 increases or ℎ decreases. The 𝑓(𝑑) factor 

not only decides the configuration of the core, but also influences the Peierls stress. Fig. 9 shows the 

Peierls stress simulated for edge dislocations with different 𝑛 and ℎ, and it can be seen that the Peierls 

stress increases as 𝑛 increases or ℎ decreases. The reduction of the Peierls stress as ℎ decreases is in good 

agreement with conventional physical understanding – as the dislocation width increases, the strain of the 

dislocation is more spread out and hence fluctuations in core shape and energy would be less as a stress is 

applied or as the dislocation moves. Fig. 9 shows that, with suitable choice of the parameters 𝑛 and ℎ, a 

desired lattice friction can be simulated in the present scheme, and this has not been made possible before 

in any purely continuum framework for dislocation dynamics. 
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Fig. 8. Equilibrium dislocation density profiles for edge dislocation at different external resolved shear 

stress 𝜏 before reaching the critical Peierls stress (red curves). The dislocation half width ℎ = 3 𝑏, 𝑎 =

 1.25 𝑏 and 𝑛 = 2. The black dashed curves show the density distribution at zero external stress for 

comparison.  
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Fig. 9. Simulated Peierls stress for edge dislocation, (a) with different dislocation half width ℎ at 𝑛 = 2, 

and (b) different 𝑛 values at ℎ = 3 b. 

 

4.2 Simulation of dislocation mechanisms 

Next, we study how well the present modeling framework applies to expansion and shrinkage of 

loops, Frank-Read source and Orowan looping. 

4.2.1 Loop expansion and shrinkage 

Testing the new model by loop shrinkage and expansion is crucial as this will reveal whether the 

self stress, which drives shrinkage and opposes expansion, and the continuity of the dislocation density 

are properly depicted. Fig. 10(a) shows the simulated shrinkage of a dislocation loop under the sole 

influence of its self stress without externally applied stress, and Fig. 10(b) shows the expansion of the 

same loop under an applied shear stress. The initial loop for both cases is the same, and beginning from 

such a state, in both the shrinkage and expansion cases, the loop evolves into an elliptical shape because 

with the Poisson ratio ν  of 0.3 used in the simulations, the interaction between the screw character 
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(horizontal in Fig. 10) is larger than that between the edge character (vertical in Fig. 10). In either cases, 

it can be seen that the continuity of the dislocation density along the loop is well maintained, and the fact 

that the loop shrinks smoothly indicates that the self stress is depicted satisfactorily. 

 

Fig. 10. (a) Shrinkage of a single loop under self stress, and (b) expansion of a loop under an applied shear 

stress 0.0308 𝜇. The initial loop for both situations is the same which is the largest one in the shrinkage 

case and the smallest one in the expansion case. Screw direction is horizontal in both cases. 

 

4.2.2 Frank-Read source 

In the second example of simulating a Frank-Read source, in addition to self stress and continuity, 

whether annihilation can be correctly modeled can also be tested. In the simulation, as shown in Fig. 11, 

the Frank-Read source is initially a short screw dislocation segment pinned at both ends on the slip plane, 

and the periodic boundary conditions are applied in two dimensions. As can be seen from Fig. 11, the 

initial screw segment bows out on the slip plane as a shear stress is applied. In the initial condition, the 
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divergence of every point on the continuous dislocation line is zero, except at two end-points where the 

divergence is non-zero. As the simulation runs, the special FVM employed preserves the divergence as in 

the initial condition, so that as the dislocation bows out, the two pins stay without having to apply extra 

stress or reset the velocity there. On increasing applied stress, the dislocation expands and loops around, 

and then annihilation takes place when the segments with opposite signs meet each other, in exactly the 

way as a Frank-Read source would do. 

Simulations of loop shrinkage/expansion and Frank-Read source operation were also performed 

using a Discrete Dislocation Dynamics solver, and comparison of the results with the present modeling 

framework is made in Appendix B. 

 

Fig. 11. The evolution of the Frank-Read source under applied shear stress 0.016 𝜇. 

 

4.2.3 Orowan looping 
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In the last example, we apply the model to simulate Orowan looping as happening in precipitation 

hardening by non-shearable particles. Fig. 12(a) shows a single, straight dislocation bypassing two 

identical spherical obstacles in a periodic simulation cell, exhibiting the classical phenomenon of bow out, 

annihilation, pinch off, and finally leaving two dislocation loops surrounding the particles. Fig. 12(b) 

shows three straight dislocations moving in a precipitate field of 16 random obstacles. The dislocations 

bow out on meeting the obstacles and in this case, since the applied stress is not large enough, the 

dislocations stop moving in their bowed out configurations without by-passing. Fig. 12(c) shows another 

case of 9 random obstacles with dislocations bypassing them. 
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Fig. 12. (a) A single, initially straight dislocation bypassing two identical spherical obstacles in a periodic 

simulation cell, and leaving behind two dislocation loops around the particles at applied shear stress 0.031 

𝜇. (b) Three initially straight dislocations moving in a precipitate field comprising 16 random obstacles, 

at applied shear stress 0.031 𝜇, getting immobilized eventually. (c) Three initially straight dislocations 

bypassing a precipitate field comprising 9 random obstacle, at applied shear stress 0.031 𝜇. The obstacles 

are drawn as red dot lines. 

 

5. Discussion 

5.1 Novelty statement 

In the present work, a new framework is developed for modeling the dynamics of “intensive” 

dislocations. The main novelty of this framework lies on the consideration of dynamics to an extent not 

available before. First, elastic interactions are fully taken into account using the Mura formula. In 

particular, a special strategy for removing the singularity involved in Mura’s integration kernel is used, to 

address the fact that the singularity is indeed forbidden in the “intensive” picture, in which any two spatial 

points on which the dislocation density can be defined meaningfully cannot be closer than the atomic 

resolution.   

Secondly, a novel core-interaction function 𝑓(𝑑) is used to model the elastic and lattice-misfit 

interactions within the dislocation core. The traditional way to introduce a misfit stress from the γ-surface 

is not only computationally intractable in large systems, but also would not automatically give rise to a 

Peierls stress, which is a key aim of an “intensive” model of dislocations. The Peierls stress arises from 

fluctuations of the energy of the dislocation with respect to its position, and for a core description based 

on the γ-surface, the dislocation energy is the sum of the strain energy 𝐸strain and the misfit energy 𝐸misfit. 
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For a dislocation core at equilibrium, the Foreman-Nabarro theorem (Nabarro, 1947) states that the misfit 

energy, if calculated in a continuum manner as 

 𝐸misfit = ∬ 𝛾(𝐮(𝐱))𝑑2𝑥
slip plane

, (44) 

would always be an invariant quantity of μb2/(4π), regardless of the position of the dislocation (Hirth 

and Lothe, 1982) or its core shape (Ngan, 1997). In such a picture involving the γ-surface, the Peierls 

stress can therefore arise only from the fluctuations in the strain energy. For dislocations with a non-planar 

core, such fluctuations would arise from the required change in the core shape to a planar configuration 

as the dislocation begins to move (Ngan, 1997), but for dislocations with a planar core, there would be no 

provision for such a change in the core shape as the dislocation begins to move in the continuum γ-surface 

picture. One way to generate a non-zero Peierls stress from this continuum γ-surface picture would be to 

follow Peierls and Nabarro’s approach to replace the integration in eqn. (44) by a summation over discrete 

lattice points on the slip plane (Hirth and Lothe, 1982), but this would be an extra, artificial step in a 

modelling strategy that is purely continuum. Another way to obtain a reasonable Peierls stress is to include 

an extra energy term that describes the interaction of the applied stress and discrete displacement in a 

semi-discrete variational approach (Bulatov and Kaxiras, 1997; Wei and Xiang, 2009). The present 

simulation strategy avoids using the γ-surface directly, which is computationally intractable anyway, and 

applies the factor 𝑓(𝑑) to mediate the elastic interaction within the core (eqns. (25) and (26)), which is 

what the γ-surface would serve to do. This achieves the two important functions of stabilizing the width 

of the dislocation as it moves, as well as automatically generating a resistance stress that mimics the Peierls 

stress. As is shown in Fig. 8, the core-width stabilizing function of the 𝑓(𝑑) factor results in a change in 

core shape as an external stress is applied and a critical stress needed to move the core, and neither of both 

would be achievable in a modeling strategy that is based on the continuum γ-surface picture; in that case 
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the core would simply move rigidly without any resistance, unless one is applied artificially to the 

simulation. Both the core width and the Peierls stress can be adjusted by the function 𝑓(𝑑), and so although 

this method is phenomenological, it is connectable to lower-level models such as molecular dynamics 

models that may provide core characteristics and Peierls stress directly. As mentioned, this method is 

computationally much more efficient than that involving the γ-surface directly, and if it is desirable to see 

what γ-surface a given 𝑓(𝑑) function would correspond to, we have shown in Section 4.1 that this can be 

done, by calculating the equilibrium density distribution for straight dislocations. In the example given in 

Section 4.1, the dislocation characters of purely edge and screw were simulated, giving the cross sections 

of the γ-surface along these two orientations, and the same process can be repeated for any dislocation 

character to give enough cross sections to generate the entire γ-surface. This way, our proposed method 

can be brought into full consistency with γ-surface approaches; for example, if the γ-surface of a given 

material is available from atomistic simulations, then the above strategy can be used to identify the best 

𝑓(𝑑) function that would yield the closest γ-surface. 

Finally, in this work, we demonstrate that a divergence-free numerical method is an effective tool 

to implement the evolution law of the dislocation density that can preserve the continuity from the initial 

condition well. Usual discrete numerical methods such as finite volume or finite element can normally 

conserve mass but divergence, and so if these methods are used to model dislocation density evolution, 

special strategies need to be devised in order to preserve the divergence (Varadhan et al., 2006). 

 

5.2 Comparison with other approaches  

It is worthwhile to compare the present model with others. First, although the classical Peierls-

Nabarro model (Hirth and Lothe, 1982; Peierls, 1940) deals only with straight dislocations, Schoeck 
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generalized it for circular dislocation loops with a core shape that is independent of the circumferential 

location on the loop (Schoeck, 1995). Our approach, however, is capable of modeling 2D dislocation 

curves of any shape. Secondly, a number of authors have incorporated the γ-surface into phase field 

methods for modeling dislocation cores (Lee et al., 2011). The γ-surface is in the form of energy which is 

easily implemented in phase-field models that are energy-driven methods cast in the domain of lattice 

disregistry. As mentioned above, in this work we aim at developing a force-driven model making use of 

dislocation density as variable, and a lot of computation would be needed to convert dislocation density 

into disregistry (Roy and Acharya, 2005). Despite that the γ-surface is not directly used here, the core 

structures and properties shown in the present simulation results demonstrate that our model is capable of 

describing the dislocation interaction in a rather straightforward way. Also, these phase-field methods fail 

to model the Peierls stress. “Intensive” descriptions of dislocations have also been made via 

atomistic/continuum coupling models such as the bridging domain method with extended finite element 

method (XFEM-BDM) (Gracie and Belytschko, 2011, 2009), coupled atomistic and discrete dislocation 

plasticity (CADD) (Curtin and Miller, 2003; Shilkrot et al., 2002) and the concurrent atomistic–continuum 

(CAC) methodology (Xiong et al., 2015, 2012). Although these directly coupled multi-scale models are 

elegant, their complexity are much higher than the present framework and the coupling process may 

induce numerically instability while this is not a problem in the present approach based on continuum 

mechanics.  

 

5.3 Limitations and future work 

In the present model, the density distribution for a given slip system is assumed to have the same 

Burgers vector. While this has to be the case in the “extensive” and “discrete” representations, in the 

“intensive” representation this would forbid core dissociation into partials with slightly different partial 
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Burgers vectors. For instance, the classical Escaig constriction phenomenon (Liu et al., 2017) relies on the 

partial dislocations exhibiting a small dipole character, so that a given resolved shear stress can constrict 

the dislocation core to assist cross-slip or climb. In the present model, the external stress has no effect on 

the core width all the dislocation densities in the core possess the same Burgers vector. To solve this 

problem, a formalism based on the Nye tensor 𝛂 instead of the dislocation density vector 𝛒 with constant 

Burgers vector 𝐛 would allow the Burgers vector to be represented as a variable 𝐛(𝐱). The major problem 

to implement the Nye tensor, however, concerns the velocity law (Acharya et al., 2006). The velocity field 

is a function of the Peach-Koehler force 𝐅PK = 𝛔 ∙ 𝐛 × 𝛒/‖𝛒‖, and so without detailed information on 

𝛒(𝐱) and 𝐛(𝐱), simply knowing the Nye tensor 𝛂(𝐱) alone would not allow the Peach-Koehler force or 

the velocity to be uniquely obtained. Instead, a better approach would be to use a separate density function 

𝛒𝒊 for each specific Burgers vector 𝐛𝒊 allowable in the system. The problem becomes solving a system of 

simultaneous equations, one for each 𝛒𝒊, but since the number of the allowable 𝐛𝒊 is not large, this will 

not be a serious problem. There will be interactions between the different 𝛒𝒊 but these, such as the elastic 

interactions, can still be handled using the present framework. Future work may focus on such an approach. 

Secondly, it would not be feasible to scale up directly from the present framework of slip on a 

plane to treat multiple slips on intersecting systems. To do this, the framework would need to include 

consideration of cross-slip, climb and dislocation junctions. Modifying the velocity law to include thermal 

activation effects can handle climb and cross-slip, but modeling dislocation junctions in the “intensive” 

picture would need a very special core interaction function. Even if models for all these mechanisms are 

available, the computational time for a 3-D calculation of a large system in the “intensive” representation 

would be enormous. Therefore, although it is possible to improve the present framework for large 3-D 

systems, developing better “extensive” models would be the more realistic way forward.  
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6. Conclusions 

In the present study, a novel dislocation-density based framework for the “intensive” 

representation of dislocations is proposed. To handle dislocation cores at such a resolution scale, both 

inter-dislocation elastic interaction and interactions within dislocation cores are modeled. For core 

interactions, a special representation of the lattice misfit interaction is proposed to counteract the elastic 

interaction, which serves not only to maintain the width of the dislocation as it glides, but also to generate 

a Peierls stress. A divergence preserving numerical method is used to solve the dynamics evolution law 

for the dislocation densities. Simulation examples including loop shrinkage and expansion, the Frank-

Read sources, and Orowan looping demonstrate excellent preservation of the continuity of the dislocation 

density, as well as clear elucidation of the details of the core structure as the dislocations glide. 
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Appendix 

A. Solving displacement field from Nye tensor 

 Let 𝐮(𝐱) be the displacement field of the crystal as the dislocation densities under consideration 

are introduced into it, and 𝐱 denotes the coordinates in the initial crystal. Under the displacement field 

described by 𝐮(𝐱), an infinitesimally short vector 𝑑𝐱 starting from point 𝐱 in the initial state is mapped 

into the vector 𝑑𝐱′ in the deformed state which is given by: 

 𝑑𝐱′ = (𝐱 + 𝑑𝐱 + 𝐮 + 𝑑𝐮) − (𝐱 + 𝐮) = 𝑑𝐱 + 𝑑𝐮 (A1.1) 

However, 𝑑𝑢𝑖 = (𝑢𝑖,𝑗𝑑𝑥𝑗), in a vector form 𝑑𝐮 = 𝑑𝐱 ∙ (𝛁⨂𝐮) and so (A1) becomes 𝑑𝐱′ = 𝑑𝐱 ∙ 𝐆, where 

 𝐆 = (𝐈 + (𝛁⨂𝐮)) (A1.2) 

is the deformation tensor linking the initial vector 𝑑𝐱 to the deformed vector 𝑑𝐱′, and 𝐈 is the identity 

tensor. The Nye tensor is defined in terms of 𝐆 by 𝛂 = −𝛁 × 𝐆 (Dai and Zhang, 2015; Kröner, 1958), and 

hence 

 𝛂 = −𝛁 × (𝐈 + (𝛁⨂𝐮)) = −𝛁 × (𝛁⨂𝐮) (A1.3) 

 



50 

 

B.  Comparison with Discrete Dislocation Dynamics (DDD) simulations 

DDD simulations were performed using the ParaDis code  (Bulatov et al., 2004). It should be noted 

that in the present ParaDis code, there is no description of the core interaction other than the removal of 

the elastic stress singularity via eqn. (15), and the line discretization method used is quite different from 

the present spatial discretization of dislocation density; there is therefore no good reason to expect full 

agreement between the DDD predictions and those from the present model. Fig. 13 shows the DDD 

prediction of loop expansion and shrinkage from an initial circular loop, and the results here match rather 

well with Fig. 10 from the present model. Since the Peierls stress is not used in the DDD method, we used 

different mobility for screw and edge dislocations in a ratio of 2:3. Fig. 14 shows the DDD prediction of 

the operation of a Frank-Read source under an applied shear stress of 0.048 𝜇, which is higher than the 

0.016 𝜇 in Fig. 11. The operating stress of a Frank-Read source is expected to be 𝜇𝑏/𝐿 where 𝐿 is the 

length of the source, which is set to be 100 𝑏. Therefore, the source is expected to operate at 0.01𝜇, which 

is close to the stress in Fig. 11. In the DDD simulation shown in Fig. 14, the initial dislocation segment 

does begin to move at 0.01𝜇 but it fails to evolve further to achieve a pinch-off configuration. The much 

higher stress needed to fully operate the source in the DDD is due to a very low rotational ability of the 

free ends, which may be caused by the rather long discretization length of the dislocation in the range of 

3.5-10 b, while the simulation pixel is much smaller at 1 b ×1 b in our density framework in Fig. 11. The 

long discretized length in the DDD may not be accurate enough for the high curvature of the dislocation 

at the two free ends.  
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Fig. 13. Results from DDD solver. (a) Shrinkage of a single loop under self stress, and (b) expansion of a 

loop under an applied shear stress 0.0308 𝜇. The initial loop for both situations is the same which is the 

largest one in the shrinkage case and the smallest one in the expansion case. Screw direction is horizontal 

in both cases. 

 



52 

 

 

Fig. 14. Evolution of Frank-Read source under applied shear stress 0.048 𝜇 as predicted by DDD solver. 


