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COMPUTING EFFECTIVE DIFFUSIVITY OF CHAOTIC AND
STOCHASTIC FLOWS USING STRUCTURE-PRESERVING

SCHEMES∗
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Abstract. In this paper, we study the problem of computing the effective diffusivity for a
particle moving in chaotic and stochastic flows. In addition, we numerically investigate the residual
diffusion phenomenon in chaotic advection. The residual diffusion refers to the nonzero effective
(homogenized) diffusion in the limit of zero molecular diffusion as a result of chaotic mixing of
the streamlines. In this limit, traditional numerical methods typically fail since the solutions of the
advection-diffusion equations develop sharp gradients. Instead of solving the Fokker–Planck equation
in the Eulerian formulation, we compute the motion of particles in the Lagrangian formulation, which
is modeled by stochastic differential equations (SDEs). We propose an effective numerical integrator
based on a splitting method to solve the corresponding SDEs in which the deterministic subproblem
is symplectic preserving while the random subproblem can be viewed as a perturbation. We provide
rigorous error analysis for the new numerical integrator using the backward error analysis technique
and show that our method outperforms standard Euler-based integrators. Numerical results are
presented to demonstrate the accuracy and efficiency of the proposed method for several typical
chaotic and stochastic flow problems of physical interest. The existence of residual diffusivity for
these flow problems is also investigated.
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1. Introduction. Diffusion enhancement in fluid advection is a fundamental
problem to characterize and quantify the large-scale effective diffusion in fluid flows
containing complex and turbulent streamlines, which is of great theoretical and prac-
tical importance; see [6, 7, 2, 16, 20, 21, 22, 23, 14, 31] and references therein. Its
applications can be found in many physical and engineering sciences, including atmo-
sphere/ocean science, chemical engineering, and combustion. In this paper, we study
a passive tracer model, which describes particle motion with zero inertia

Ẋ(t) = v(X, t) + σξ(t), X ∈ Rd,(1)

where X is the position of the particle, σ ≥ 0 is the molecular diffusion coefficient,
and ξ(t) ∈ Rd is a white noise or colored noise. The velocity v(x, t) satisfies either
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COMPUTING EFFECTIVE DIFFUSIVITY 2323

the Euler or the Navier–Stokes equation. We point out that in practice, v(x, t) can
be modeled by a random field which mimics energy spectra of the velocity fields. We
set v(x, t) = ∇⊥φ(x, t) and the streamline function φ satisfies φt = Aφ +

√
Qζ(x, t),

which is a random field generated by appropriately choosing operators A and Q and
ζ(x, t) is a space-time white noise independent of ξ(t).

For spatial-temporal periodic velocity fields and random velocity fields with short-
range correlations, the homogenization theory [1, 8, 11, 24] says that the long-time
large-scale behavior of the particles is governed by a Brownian motion. More precisely,
let DE ∈ Rd×d denote the effective diffusivity matrix and Xε(t) ≡ εX(t/ε2). Then,
Xε(t) converges in distribution to a Brownian motion W (t) with covariance matrix

DE , i.e., Xε(t)
d−→
√

2DEW (t). The effective diffusivity matrixDE can be expressed in
terms of particle ensemble average (Lagrangian framework) or integration of solutions
to cell problems (Eulerian framework). The dependence of DE on the velocity field of
the problem is highly nontrivial. For a time-independent Taylor–Green velocity field,
the authors of [23] proposed a stochastic splitting method and calculated the effective
diffusivity in the limit of vanishing molecular diffusion. For random velocity fields with
long-range correlations, various forms of anomalous diffusion, such as super-diffusion
and sub-diffusion, can be obtained for some exactly solvable models. (See [16] for a
review.) However, long-time, large-scale behavior of the particle motion is in general
difficult to study analytically.

This motivates us to study numerically the dependence of DE on complicated
incompressible, time-dependent velocity fields in this paper. We are also interested
in investigating the existence of residual diffusivity for the passive tracer model (1)
for several different velocity fields. The residual diffusivity refers to the nonzero
effective diffusivity in the limit of zero molecular diffusion as a result of a fully chaotic
mixing of the streamlines. It is expected that the corresponding long-time, large-
scale behavior will follow a different law and sensitively depend on the velocity fields.
In [15], the authors computed the cell problem of the advection-diffusion type and
observed the residual diffusion phenomenon. This approach allows adaptive basis
learning for parameterized flows. However, the solutions of the advection-diffusion
equation develop sharp gradients as molecular diffusion approaches zero and demand
a large amount of computational costs in standard Fourier basis. To overcome this
difficulty, we shall adopt the Lagrangian framework and compute an ensemble of
particles governed by (1) directly.

In this paper, we shall compute the effective diffusivity of chaotic and stochas-
tic flows using structure-preserving schemes and investigate the existence of residual
diffusivity for several prototype velocity fields. First, we propose a new numerical
integrator based on a stochastic splitting method to solve the SDEs (1), where the
deterministic subproblem is symplectic preserving while the random subproblem can
be viewed as a perturbation. Then using the backward error analysis (BEA) [25], we
prove that our numerical integrator preserves the invariant measure on torus space
(the original space moduled by its space-time period), while the standard Euler-based
integrator does not have this property. Thus, our method is capable of computing
long-time behaviors of the passive tracer model. Finally, we present several numerical
experiments to demonstrate the accuracy and efficiency of the proposed method for
several typical chaotic and stochastic flow problems of physical interest.

Though there are several prior works on structure-preserving schemes for ODEs
and SDEs, the novelty of our paper is the rigorous theory in the numerical error anal-
ysis in computing the effective diffusivity and investigation of nonlinear/random phe-
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2324 ZHONGJIAN WANG, JACK XIN, AND ZHIWEN ZHANG

nomena, such as resonance dependence of residual diffusivity in deterministic chaotic
flow on the flow parameters, and lack of it in stochastic flow.

Moreover, the structure-preserving schemes enable us to obtain an improved un-
derstanding of the Hamiltonian system with additive noise. Intuitively, when one adds
noise to a Hamiltonian system without additional friction, the accumulated thermal
energy eventually wipes out detailed dynamics and diffusion becomes dominant on a
long-time scale. To investigate the long-time behavior of this new system, one has to
make sure that the numerical integration of the dynamics does not artificially inject
(or remove) energy into (or from) the system. We find that in this new system, there
is still some structure that is nicely preserved, i.e., the invariant measures on the
torus. We prove that our structure-preserving scheme follows a first order asymp-
totic Hamiltonian, which preserves the invariant measures, so that we can accurately
compute the effective diffusivity.

The rest of the paper is organized as follows. In section 2, we review the back-
ground of the passive tracer model and derivation of the effective diffusivity tensor
using multiscale technique. In section 3, we propose our new method for computing
the passive tracer model. Error estimate of the proposed method will be discussed in
section 4. We use the BEA technique and find that for a class of flows with separable
Hamiltonian our method preserves the structure and achieves a linear convergence in
computing effective diffusivity. In section 5, we present numerical results to demon-
strate the accuracy and efficiency of our method. We also investigate the existence
of residual diffusivity for several chaotic and stochastic velocity fields. Concluding
remarks are made in section 6.

2. Effective diffusivity and multiscale technique. We first introduce the
effective diffusivity for chaotic and stochastic flows. The motion of a particle in a
velocity field can be described by the following SDE,

Ẋ(t) = v(X, t) + σξ(t), X ∈ Rd,(2)

where σ > 0 is the molecular diffusion, X is the position of the particle, v(X, t) is
the Eulerian velocity field at position X, and time t, ξ(t) is a Gaussian white noise
with zero mean and correlation function 〈ξi(t)ξj(t′)〉 = δijδ(t − t′). Here 〈·〉 denotes
ensemble average over all randomness.

Given any initial density u0(x), the particle X(t) of (2) has a density u(x, t) that
satisfies the Fokker–Planck equation,

ut +∇ · (vu) = D0∆u, u(x, 0) = u0(x), x ∈ Rd,(3)

where D0 = σ2/2 is the diffusion coefficient. When v(x, t) is incompressible (i.e.,
∇x · v(x, t) = 0 ∀t), deterministic, and space-time periodic in O(1) scale, where we
assume the period of v(x, t) is 1 in space and Tper in time, the formula for the effective
diffusivity tensor is [1, 2]

DE
ij = D0

(
δij + 〈∇wi · ∇wj〉p

)
,(4)

where w(x, t) ∈ Rd is the periodic solution of the cell problem

wt − v · ∇w −D04w = −v, (x, t) ∈ Td × [0, Tper](5)

and 〈·〉p denotes space-time average over Td×[0, Tper]. As v is incompressible, solution
w(x, t) of the cell problem (5) is unique up to an additive constant by the Fredholm
alternative. The correction to D0 is positive definite in (4).
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In practice, the cell problem (5) can be solved using numerical methods, such as
spectral methods. In [15], a small set of adaptive basis functions were constructed
from fully resolved spectral solutions to reduce the computation cost. However, when
D0 becomes extremely small, the solutions of the advection-diffusion equation (5)
develop sharp gradients and demand a large number of Fourier modes to resolve,
which makes the Eulerian framework computationally expensive and unstable.

In this paper, we shall investigate the Lagrangian approach to compute the ef-
fective diffusivity tensor, which is defined by (equivalent to (4) via homogenization
theory)

DE
ij = lim

t→∞

〈(
xi(t)− xi(0))(xj(t)− xj(0)

)〉
r

2t
, 1 ≤ i, j ≤ d,(6)

where X(t) = (x1(t), . . . , xd(t))
T is the position of a particle tracer at time t and

the average 〈·〉r is taken over an ensemble of test particles. If the above limit exists,
that means the transport of the particle is a standard diffusion process, at least on
a long-time scale. This is the typical situation, i.e., the spreading of the particle
〈(xi(t) − xi(0))(xj(t) − xj(0))〉r grows linearly with respect to time t, for example,
when the velocity field is given by the Taylor–Green velocity field [23]. However, there
are also cases showing that the spreading of particles does not grow linearly with time
but has a power law tγ , where γ > 1 and γ < 1 correspond to superdiffusive and
subdiffusive behaviors, respectively [2, 16].

The major difficulty in solving (2) comes from the fact that the computational
time should be long enough to approach the diffusion time scale. To address this chal-
lenge, we shall develop robust numerical integrators, which are structure-preserving
and accurate for long-time integration. In addition, we shall investigate the relation-
ship between several typical time-dependent velocity fields v(x, t) (including chaotic
flows and stochastic flows) and the corresponding effective diffusivity in this paper.

3. New stochastic integrators. In this section, we construct the new stochas-
tic integrators for the passive tracer model, which is based on the operator splitting
methods [27, 17]. We consider the following two-dimensional model problems to il-
lustrate the main idea,{

dx1 = v1(x1, x2, t)dt+ σ1dW1, x1(0) = x10,

dx2 = v2(x1, x2, t)dt+ σ2dW2, x2(0) = x20.
(7)

Furthermore, we assume that there exists a Hamiltonian function H(x1, x2, t) such
that

v1(x1, x2, t) = −∂H(x1, x2, t)

∂x2
, v2(x1, x2, t) =

∂H(x1, x2, t)

∂x1
.(8)

In this paper we assume that the Hamiltonian H(x1, x2, t) is sufficiently smooth and
that first order derivatives of vi(x1, x2, t), i = 1, 2 are bounded. These conditions are
necessary to guarantee the existence and uniqueness of solutions of the SDE (7); see
[19]. Moreover, the boundedness of some higher order derivatives of vi(x1, x2, t) is
required when we prove the convergence analysis in section 4.

We first formally rewrite the particle tracer model (7) into an abstract form
dX = LX, where X = (x1, x2)T . We then split the operator L into two operators Li,
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2326 ZHONGJIAN WANG, JACK XIN, AND ZHIWEN ZHANG

i = 1, 2, where

L1 : dx1 = v1(x1, x2, t)dt, dx2 = v2(x1, x2, t)dt,(9)

L2 : dx1 = σ1dW1, dx2 = σ2dW2,(10)

corresponding to the deterministic part and the stochastic part, respectively. Fi-
nally, we apply the operator splitting method [17] to approximate the integrator
ϕ(τ) = exp(τ(L1 + L2)) generated from (7). The operator splitting methods have
been successfully applied to various problems, although there is limited work on solv-
ing SDEs and SPDEs. We refer to [18, 3, 28, 30] for recent works on Hamiltonian
systems with additive noise.

We approximate the integrator ϕ(τ) by the Lie–Trotter splitting method and get

ϕ(τ) = exp(τ(L1 + L2)) ≈ exp(τL1)exp(τL2).(11)

Now we discuss how to discretize the numerical integrator (11). From time t = tk
to time t = tk+1, where tk+1 = tk + τ , t0 = 0, assuming the solution (xk1 , x

k
2)T ≡

(x1(tk), x2(tk))T is given, one solves the subproblems corresponding to L1 and L2 in a
small time step τ to obtain (xk+1

1 , xk+1
2 )T . In our numerical method, we discretize the

operator L1 by numerical schemes that preserve symplectic structure and the operator
L2 by the Euler–Maruyama scheme [19], so we obtain the new stochastic integrators
for (7) as follows,{

x∗1 = xk1 + τv1

(
αx∗1 + (1− α)xk1 , (1− α)x∗2 + αxk2 , tk + βτ

)
,

x∗2 = xk2 + τv2

(
αx∗1 + (1− α)xk1 , (1− α)x∗2 + αxk2 , tk + βτ

)
,

(12)

where the parameters α, β ∈ [0, 1] and{
xk+1

1 = x∗1 + σ1∆kW1(τ),

xk+1
2 = x∗2 + σ2∆kW2(τ)

(13)

with ∆kWi(τ) = Wi(tk + τ) − Wi(tk), i = 1, 2. In practice, each ∆kWi(τ) is an
independent random variable of the form

√
τN (0, 1).

The symplectic-preserving schemes (12) are implicit in general. Compared with
explicit schemes, however, they allow us to choose a relatively larger time step to
compute. In practice, we find that few steps of Newton iterations are enough to
maintain accurate results. Therefore, the computational cost is controllable. To
design an adaptive time-stepping method for (7) is an interesting issue, which will be
studied in our future work.

We should point out that when the Hamiltonian function is separable, which is
true in many physics problems, we can choose α = 0 or α = 1 so that one component of
(12) becomes explicit. Investigations for the problems with nonseparable Hamiltonian
can be more difficult, which will be our future work. The interested reader is referred
to [28] for a recent work on the explicit symplectic approximation of nonseparable
Hamiltonians.

In general, the second order Strang splitting [27] is more frequently adopted in
application, for which the integrator ϕ(τ) is approximated by

ϕ(τ) = exp(τ(L1 + L2)) ≈ exp
(τ

2
L2

)
exp (τL1) exp

(τ
2
L2

)
.(14)
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In fact, the only difference between the Strang splitting method and the Lie–Trotter
splitting method is that the first and last steps are half of the normal step τ . Thus a
more accurate method can be implemented in a very simple way. We skip the details
in implementing the Strang splitting scheme here as it is straightforward.

We remark that our new stochastic integrators provide an efficient way to inves-
tigate the residual diffusivity, because we do not need to solve the advection-diffusion
equation (5), which becomes extremely challenging when D0 is small. Most impor-
tantly, symplectic-preserving schemes provide a robust and accurate numerical inte-
grator for long-time integrations. We shall theoretically and numerically study their
performance over existing numerical integrators, such as Euler schemes, in sections 4
and 5.

4. Convergence analysis. In this section, we shall provide some convergence
results. We prove that a linear growth of the global error can be obtained if we apply
our numerical methods to compute a class of flows with a separable Hamiltonian. In
addition, we shall estimate the numerical error in computing the effective diffusivity.
Our analysis is based on the BEA technique [25], which is a powerful tool to study
the long-time behaviors of numerical integrators.

4.1. Weak Taylor expansion. In our derivation, we use (p, q) to denote the
position of a particle interchangeably with (x1, x2). In addition, we assume σ1 = σ2 =
σ. Thus, the Hamiltonian system defined by (7) is rewritten as{

dp = −Hqdt+ σdW1,

dq = Hpdt+ σdW2,
(15)

where H ≡ H(p, q, t) is the Hamiltonian and dWi, i = 1, 2 are two independent
Brownian motion processes. We assume the Hamiltonian H has a separable form [10]

H(p, q, t) = F (p, t) +G(q, t)(16)

with g ≡ Hq = g(q, t) and f ≡ Hp = f(q, t).

Remark 4.1. The separable Hamiltonian is quite a natural assumption and has
many applications in physical and engineering sciences. For instance, H(p, q) =
1
2p
T p + U(q), where the first term is the kinetic energy and the second one is the

potential energy.

One natural way to study the expectations of the paths for the SDE given by
(15) is to consider its associated backward Kolmogorov equation [26]. Specifically, we
associate the SDE with a partial differential operator L0, which is called the generator
of the SDE, also known as the flow operator. For the Hamiltonian system (15), the
corresponding backward Kolmogorov equation is given by{

∂
∂tφ = L0φ,

φ(x, 0) = φ0(x),
(17)

where the operator L0 is given by

L0 = −g∂p + f∂q +
1

2
σ2∂2

p +
1

2
σ2∂2

q .(18)

A probabilistic interpretation of (17) is that given initial data φ0(x), the solution
of (17), φ(x, t) satisfies φ(x, t) = E(φ0(Xt)|X0 = x), where Xt = (p(t), q(t)) is the
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solution to (15). We integrate (17) from t = 0 to t = ∆t and obtain

φ(x,∆t) = φ(x, 0) + L0

∫ ∆t

0

φ(x, s)ds.(19)

Under certain regularity assumptions on the drift terms g and f , the solution φ(x, t)
is N+1 time differentiable with respect to time t. Thus, when ∆t is sufficiently small,
we have the Taylor expansion

φ(x, s) = φ(x, 0) + s
∂

∂s
φ(x, 0) + · · ·+ sN

N !

∂N

∂sN
φ(x, 0) +RN (x, s), s ∈ (0,∆t),

(20)

where RN (x, s) is the remainder term in the Taylor expansion and RN (x, s) → 0 as
∆t → 0 ∀x. This local Taylor expansion result plays an important role in our BEA.
We substitute the Taylor expansion (20) into (19) and get

φ(x,∆t) = φ(x, 0) + ∆tL0φ(x, 0) +

N∑
k=1

∆tk+1

(k + 1)!
L0

∂k

∂sk
φ(x, 0) +O(∆tN+2).(21)

Recalling that φ(x, 0) = φ0(x) and ∂k

∂sk
φ(x, 0) = Lk0φ0(x), we finally obtain

φ(x,∆t) = φ0(x) +

N∑
k=0

∆tk+1

(k + 1)!
Lk+1

0 φ0(x) +O(∆tN+2).(22)

The operator Lk+1
0 can be computed systematically. For instance, L0 defined in (18)

has 4 terms, then L2
0 should have at most 42 = 16 terms. In this paper, we find

that the first order modified equation has already indicated the advantage of the
structure-preserving scheme.

Remark 4.2. Equation (22) provides a general framework for us to analyze the
truncation error by numerical methods. Namely, the numerical flow φnum(x,∆t) =

E[φ0(Xnum,k
∆t )|X0 = x] generated by a kth order weak method should satisfy (22) up

to terms of order O(∆tk).

4.2. First order modified equation. In this section, we shall analyze the
numerical errors obtained by our symplectic splitting scheme and Euler–Maruyama
scheme [12], respectively. We find that the solution obtained by the symplectic split-
ting scheme follows an asymptotic Hamiltonian while the solution obtained by the
Euler–Maruyama scheme does not. With our new method, we can achieve a lin-
ear growth (instead of an exponential growth) of the global error when we compute
effective diffusivity.

After numerical discretization, we find the following expansion using a first order
weak method at t = ∆t,

φnum(x,∆t) = φ0(x) + ∆tL0φ0(x) + ∆t2A1φ0(x) +O(∆t3),(23)

where A1 is a partial differential operator acting on φ0(x) that depends on the choice
of the numerical method used to solve (15). If we choose a convergent method to
discretize the operator L0 in (23) and (21), then the local truncation error is O(∆t2)
and the numerical scheme is of weak order one. We refer to [12] for the definition and
discussion of the weak convergence and strong convergence.
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Specifically, let Xnum(∆t) = (p(∆t), q(∆t)) denote the numerical solution ob-
tained by one specific choice of the numerical method in solving (15). For instance,
if we choose the symplectic splitting method stated in (12), (13) and set α = 0 and
β = 1

2 , we get {
p(∆t) = p0 −∆tg(q0,

∆t
2 ) + σ∆W1,

q(∆t) = q0 + ∆tf(p0 −∆tg(∆t
2 , q0), ∆t

2 ) + σ∆W2.
(24)

Now ∆W1, ∆W2 are two independent random variables of the form
√

∆tN (0, 1).
To get A1, we only need to expand E(φ0(p(∆t), q(∆t))) around point φ0(p0, q0) with
respect to the time variable ∆t. Since we are dealing with a separable Hamiltonian H,
the operator splitting scheme helps us obtain a straightforward adaptive interpolation
of (24) for t ∈ [0,∆t], saying Xnum

t . We then have the form [32]

φnum(x, t) = E[φ0(Xnum
t )|X0 = (p0, q0)](25)

= φ0(x) + ∆tL0φ0(x) + ∆t2A1φ0(x) +O(∆t3).(26)

In the BEA [25], we aim to find the generator Lnum of this process and the associated
backward Kolmogorov equation,{

∂
∂tφ

num = Lnumφnum,
φnum(x, 0) = φ0(x).

(27)

We now denote the generator of this modified equation in an asymptotic form in terms
of ∆t,

Lnum ≡ L0 + ∆tL1 + ∆t2L2 + · · · .(28)

Recall that the operator L0 is defined in (18) and the definition of operators Li, i ≥ 1,
depends on the choice of the numerical method in solving (15). We substitute (28)
into (22) then compare with (26) and get

L1 = A1 −
1

2
L2

0.(29)

Now let us denote the truncated generator by

L∆t,k ≡ L0 + ∆tL1 + · · ·+ ∆tkLk(30)

and define the corresponding modified flow (if it exists) as{
∂
∂tφ

∆t = L∆t,kφ∆t,

φ∆t(x, 0) = φ0(x).
(31)

Inspired by the weak convergence proof in [12], we shall focus on estimating the upper
bound of the uniform numerical error for the perturbed flows.

Lemma 4.1. Let φnum and φ∆t be defined in (27) and (31), respectively. We
assume that φ0 ∈ C∞ and its Ito–Taylor expansion coefficients in the hierarchy set
Γk+1

⋃
B(Γk+1) are Lipschitz and have at most linear growth. If the solution to the

first order modified flow φ∆t converges to φ as ∆t → 0, then we have the following
error estimate:

||φnum(x, t)− φ∆t(x, t)|| ≤ C(T )∆tk+1.(32)
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2330 ZHONGJIAN WANG, JACK XIN, AND ZHIWEN ZHANG

Proof. Equation (23) shows that the operator L∆t approximates the operator
L∆t,k locally in the time interval [0,∆t] with the truncation error O(∆tk+2). This

implies that X∆t
t is a k+ 1th order weak approximation to the SDE related to X∆t,k

t

locally, i.e.,
(33)

φ0(Xnum
∆t )− φ0(X∆t,k

∆t ) = φ0(Xnum
0 )− φ0(X∆t,k

0 ) +
∑

α∈B(Γk+1)

Iα[φ0,α(X∆t,k
(·) )]0,∆t.

Here we refer to Chapter 5.5 in [12] for a more detailed definition of multi-index
stochastic Ito integration notation Iα. Proposition 5.11.1 in [12] gives an estimate for
the Iα,

(34)

∣∣∣∣∣∣E
∑

α∈B(Γk+1)

Iα[φ0,α(X∆t,k
(·) )]0,∆t

∣∣∣∣∣∣ ≤ C(L∆t,k)∆tk+2.

Since the operator L∆t,k approximates L0 and lim∆t→0 C(L∆t,k) = C(L), combining
with Lipschitz and linear growth condition, the final weak convergence order should
be C(T )∆tk+1 when ∆t is small enough.

Remark 4.3. Figure 1 shows the general procedure of our convergence analysis.
Our goal is to develop efficient numerical methods so that we can reduce the numerical
error in computing effective diffusivity |DE − DE,num|, which is the dashed line on
the left. Recall that DE is the exact effective diffusivity defined by the (6) and
DE,num is the numerical result obtained using our method. It is however difficult to
estimate the error |DE −DE,num|. The BEA (shown in the middle row) provides a
general framework that allows us to calculate modified equations induced by different
numerical methods and estimate the errors between the numerical solutions (shown
in the upper row) and the analytic ones (shown in the bottom row). This framework
clearly reveals the main sources of error (i.e., |DE,∆t − DE |). The notation (e.g.,

DE,∆t, X∆t,k
t (or X∆t

t ), L∆t,k : φ∆t) is introduced from the BEA and is frequently
used in section 4.

DE,num Xnum
t Lnum : φnum

DE,∆t X∆t,k
t (or X∆t

t ) L∆t,k : φ∆t

DE Xt

Weak Taylor Exp

at t = ∆t

Comparing in cell
T-invariant, O(∆tk)
(Thm.4.6)

∃ path

Truncated operator
C(T )O(∆tk+1)

(Lem.4.1)

Final Error
O(∆tk)

Calculate from
Monte-Carlo path

Homogenization
Approach

Particle Definition

Homogenization Approach

Both Hamiltonian flow
(Thm.4.2)

Fig. 1. Illustration of BEA for kth order weak scheme.
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The foregoing derivation shows that modified flows allow us to approximate the
interpolation of a numerical solution with a higher order accuracy. Hence the modified
flows dominate the error in the numerical result. Now we intend to study the behavior
of the modified flows.

Theorem 4.2. For the stochastic differential equation system (15) with a time-
independent and separable Hamiltonian H(p, q) (16), the numerical solution obtained
using the symplectic splitting scheme follows an asymptotic Hamiltonian H∆t(p, q),
or equivalently, the first order modified equation (density function) of the solution is
divergence-free. The invariant measure on torus (defined by Rd/Zd, when period is
1) remains uniform, which is also known as the Haar measure, while the numerical
solution obtained using the Euler–Maruyama scheme does not have these properties.

Proof. We shall compare the generators of modified equations obtained by using
the symplectic splitting scheme and Euler–Maruyama scheme, respectively. More
specifically, we compare the operator L1 in (28) obtained from different methods.
In the symplectic splitting scheme, we compute the weak Taylor expansion at time
t = ∆t and get

L1φ =

(
A1 −

1

2
L2

0

)
φ(35)

=

(
1

2
fg′ +

σ2

4
g′′
)
φp +

(
− 1

2
f ′g − σ2

4
f ′′
)
φq +

(
− σ2

2
f ′ +

σ2

2
g′
)
φpq.

Hence, the modified flow of X∆t,k can be written as{
dp = (−g + ( 1

2fg
′ + σ2

4 g
′′)∆t)dt+ σdW1 + ∆tσ2 g

′dW2,

dq = (f − ( 1
2f
′g + σ2

4 f
′′)∆t)dt+ σdW2 −∆tσ2 f

′dW1.
(36)

Similarly, in the Euler–Maruyama scheme, we get that

L1φ =

(
A1 −

1

2
L2

0

)
φ(37)

=

(
1

2
fg′ +

σ2

4
g′′
)
φp +

(
1

2
f ′g − σ2

4
f ′′
)
φq +

(
− σ2

2
f ′ +

σ2

2
g′
)
φpq.

And the associated modified flow can be written as{
dp = (−g + ( 1

2fg
′ + σ2

4 g
′′)∆t)dt+ σdW1 + ∆tσ2 g

′dW2,

dq = (f − (− 1
2f
′g + σ2

4 f
′′)∆t)dt+ σdW2 −∆tσ2 f

′dW1.
(38)

Comparing the results from (36) and (38), we can easily find that (36) follows an
asymptotic Hamiltonian,

H∆t ≡ H −∆t

(
1

2
fg +

σ2

4
(f ′ + g′)

)
,(39)

where we mainly focus on the first order approximation so we remove the high order
terms. In contrast, the flow (38) obtained from the Euler–Maruyama scheme does not
have this structure. Furthermore, we introduce notation v1 and d1 to denote extra
terms in the modified flow (36), which are defined as

(40) v1 =

(
1
2fg

′ + σ2

4 g
′′

− 1
2f
′g − σ2

4 f
′′

)
, and d1 =

(
0 1

2g
′

− 1
2f
′ 0

)
.
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2332 ZHONGJIAN WANG, JACK XIN, AND ZHIWEN ZHANG

Since our numerical method solves an SDE determined by a modified flow (36), the
density function of particles u(x, t) obtained using our method satisfies a modified
Fokker–Planck equation given by

(41) ut = −(v + ∆tv1)∇u+D0∇∇ : (Id + ∆tD1)u,

where Id is a d-dimensional identity matrix and

D1 =
1

∆t

(
(Id + ∆td1)(Id + ∆td1)T − Id

)
=

(
∆t
4 (g′)2 1

2 (g′ − f ′)
1
2 (g′ − f ′) ∆t

4 (f ′)2

)
.

We have used the condition ∇ · v1 = 0 to get ∇
(
(v + ∆tv1)u

)
= (v + ∆tv1)∇u. The

inner product between matrices is denoted by A : B = tr(ATB) =
∑
i,j aijbij . It

follows that ∇∇ : I = ∆ and ∇∇ : D1 are defined accordingly. Finally, we can find
that (41) admits trivial invariant measure u(x, t) ≡ 1.

We can repeat a similar calculation and generalize the results of Theorem 4.2 to a
general time-dependant and separable Hamiltonian. Therefore, we obtain the results
as follows.

Corollary 4.3. For the stochastic differential equation system (15) with a time-
dependent and separable Hamiltonian H (16), the numerical solution obtained using
the symplectic splitting scheme follows an asymptotic Hamiltonian H∆t, or equiva-
lently, the first order modified equation (density function) of the solution is divergence-
free. The invariant measure on torus (defined by Rd/Zd, when period is 1) remains
uniform, which is also known as the Haar measure, while the numerical solution ob-
tained using the Euler–Maruyama scheme does not have these properties.

Proof. We repeat the same computation as we did in proving the Theorem 4.2.
In the symplectic splitting scheme, we find that the corresponding modified flow can
be written as{

dp =
(
− g + ( 1

2fg
′ + σ2

4 g
′′ + 1

2gt)∆t
)
dt+ σdW1 + ∆tσ2 g

′dW2,

dq =
(
f − ( 1

2f
′g + σ2

4 f
′′ + 1

2ft)∆t
)
dt+ σdW2 −∆tσ2 f

′dW1.
(42)

The rest part of the proof is similar to Theorem 4.2 so we skip the details.

Before we end this subsection, we use an example to demonstrate our main idea.
We consider the flow driven by the Taylor–Green velocity field,

(43)

{
dp = − cos(q) sin(p)dt+ σdW1,

dq = sin(q) cos(p)dt+ σdW2.

By introducing two variables P = p+ q and Q = p− q, we know the dynamic system
(43) possesses a separable Hamiltonian H = − cosP − cosQ and the system can be
expressed as

(44)

{
dP = − sinQdt+

√
2σdη1,

dQ = sinPdt+
√

2σdη2,

where η1 and η2 are two independent Brownian motions that are linear combinations
of W1 and W2. With simple calculations according to (36) and (39), we get

(45)

{
dP = −∂H

∆t

∂Q dt+
√

2σdη1 + ∆t σ√
2

cosQdη2,

dQ = ∂H∆t

∂P dt+
√

2σdη2 + ∆t σ√
2

cosPdη1,
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and

H∆t = H −∆t

(
1

2
sinP sinQ+

σ2

2
(cosP + cosQ)

)
.(46)

Up to now, the new integrator (7) is shown to preserve the structure of original
Hamiltonian system (15) asymptotically at O(∆t). In the next subsection, we shall
show that the new integrator leads to an efficient method in computing effective
diffusivity due to its structure-preserving property.

4.3. Error analysis in computing effective diffusivity. Notice that in (6)
only distribution of the process is needed, so the Eulerian framework is sufficient to
get an error estimate. For the sake of comparison, we rewrite the effective diffusivity
formula (4) for (7) as

DE = D0

〈
(Id +∇w)(Id +∇w)T

〉
p
,(47)

where D0 = σ2/2 and cell problem w satisfies

(48) wt − (v · ∇w)−D0∆w = −v

with the velocity filed v = (−g, f)T . To study the effective diffusivity defined in (41),
we turn to [1, section 3.10], where an exact formula for DE in a nonconstant diffusion
case is provided. Let w∆t ≡ w∆t(t, x) denote the periodic solution of the modified
cell problem that is corresponding to the modified Fokker–Planck equation (41), i.e.,
w∆t satisfies the following equation:

(49) w∆t
t = (v + ∆tv1) · ∇w∆t +D0∇∇ : (I + ∆tD1)w∆t − (v + ∆tv1).

We introduce two operators defined as P0w
∆t ≡ v∇w∆t + D0∆w∆t and P1w

∆t ≡
v1∇w∆t +D0∇∇ : D1w

∆t so we simplify (49) as

(50) w∆t
t = (P0 + ∆tP1)w∆t − (v + ∆tv1).

Now by Theorem 4.2 and Corollary 4.3, we know that (36) admits a trivial invariant
measure, so the formula for the effective diffusivity tensor reads

(51) DE,∆t = D0

〈
(Id +∇w∆t)(Id + ∆tD1)(Id +∇w∆t)T

〉
p
.

The modified cell problem (49) and the corresponding effective diffusivity tensor (51)
enable us to analyze the numerical error in our new method.

Lemma 4.4. Equation (49) has a unique solution if the condition
∫
UT

w∆tdxdt =

0 holds, where UT = [0, T ]× U is the space-time domain for the periodic function w.

Proof. We first notice that when ∆t� D0, the operator (P0 +∆tP1) is uniformly
elliptic. The space average of the source term −(v+∆tv1) vanishes. By the Fredholm
alternative, (50) has nontrivial solutions if−(v+∆tv1) 6≡ 0. Then, using the maximum
principle, we get the conclusion that the solution w∆t to (49) is unique if the condition∫
UT

w∆tdxdt = 0 is satisfied.

Now we derive a regularity estimate in this Poincaré map problem (49).
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Theorem 4.5. Suppose w = w(t, x) is a space-time periodic solution over the
domain UT = [0, T ]× U , which satisfies

(52) wt − (v · ∇w)−D : ∇∇w = S, (t, x) ∈ UT = [0, T ]× U,

where ∇ · v = 0, D is a symmetric positive-definite matrix and its eigenvalues have
positive lower and upper bounds, i.e., there exist D+ > D− > 0 so that eigenvalues
of D are in [D−, D+] ∀(x, t), and S = S(t, x) is the source term, which vanishes in
average at any time t. Then, we have the regularity estimate for w as |∇w|L2(UT ) ≤
C|S|L2(UT ), where the constant C depends only on the length of the physical domain
U and the eigenvalues of D.

Proof. We multiply (52) by wT , integrate over U , and get

(53)

∫
U

(wTwt − wT v∇w − wTD : ∇∇w)dx =

∫
U

wTSdx.

We notice that ∫
U

wTwtdx =
d

dt

∫
U

|w|2dx,∫
U

wT v∇wdx = −
∫
U

wT v∇wdx = 0,∫
U

−wTD : ∇∇wdx =

∫
U

∇wTD∇wdx,

where we have used the condition ∇ · v = 0. Then, we integrate (53) over the time
period [0, T ] and the periodic condition of w implies

(54)

∫
UT

∇wTD∇wdx =

∫
UT

wTSdxdt.

Let w̄(t) denote the space average of w at time t. Since S vanishes in space average
at any time t, we have

(55)

∫
UT

w̄TSdxdt = 0.

In addition, we get the equality

(56)

(∫
UT

∇wTD∇wdx
)2

=

(∫
UT

(wT − w̄T )Sdxdt

)2

.

Applying the Poincaré inequality on the right-hand side and the Cauchy–Schwartz
inequality on the left, we obtain the estimate
(57)∫
UT

∇wTD∇wdx ≥ D−
∫
UT

|∇w|2dxdt ≥
∫

[0,T ]

CU

∫
U

|w−w̄|2dxdt =

∫
UT

|w−w̄|2dxdt,

(58)

(∫
UT

(wT − w̄T )Sdxdt

)2

≤
∫
UT

|S|2dxdt
∫
UT

|w − w̄|2dxdt.

Finally combining the inequalities (57) and (58), we get the regularity estimate in L2

norm.

(59) |∇w|L2(UT ) ≤
C(U)

D−
|S|L2(UT ).
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Given the regularity estimate derived in Theorem 4.5, we can easily get an esti-
mate for the error between solutions to (48) and (49). We summarize the main result
into the following theorem.

Theorem 4.6. Let w(x, t) and w∆t(x, t) be the solution to the (48) and (49),
respectively. We have the estimate |∇w − ∇w∆t|L2(UT ) ≤ CU

∆t
D0
|Se|L2(UT ), where

Se = P1w
∆t − v1 is the source term.

Proof. Let e ≡ e(x, t) = w(x, t)− w∆t(x, t) denote the error. One can easily find
that e(x, t) is a space-time periodic function over UT = [0, T ] × U and satisfies the
equation

(60) et − (v · ∇e)−D0∆e = (∆t)Se.

where the source term Se = P1w
∆t− v1. So we directly apply the regularity estimate

obtained in Theorem 4.5 for the (60) and obtain

(61) |∇e|L2(UT ) ≤ C(U)
∆t

D0
|P1w

∆t − v1|L2(UT ).

Again when ∆t� D0, the operator ∂
∂t + (P0 + ∆tP1) is uniformly parabolic and the

diffusion coefficients D = D0 + ∆tD1 is positive and uniformly bounded below (i.e.,
D → D0) for ∆t small enough. By a regularity estimate of the parabolic equation (see
[5]), we can get that w∆t, ∇w∆t, and ∇∇ : w∆t are uniformly bounded in L2(UT ) for
∆t small enough. Hence, we obtain

|P1w
∆t − v1|L2(UT ) = |(v1∇+D0∇∇ : D1)w∆t − v1|L2(UT ) ≤ C,(62)

where the constant C is independent of ∆t.

Remark 4.4. From the estimate (61), we know that a proper setting for the time
step in calculating effective diffusivity should be

(63) ∆t ∼ D0 =
σ2

2
.

Finally, based on the error estimate for the solutions to the cell problems (48) and
(49), we are able to get the error analysis for the effective diffusivity in our method.

Theorem 4.7. Let DE and DE,∆t denote the effective diffusivity tensor computed
by (47) and (51). Then, the error of the effective diffusivity tensor can be bounded by

|DE,∆t −DE | ≤ C∆t,(64)

where the constant C does not depend on time T .

Proof. Recall (51), DE,∆t = D0

〈
(Id +∇w∆t)(Id + ∆tD1)(Id +∇w∆t)T

〉
p
, where

D1 =

(
∆t
4 (g′)2 1

2 (g′ − f ′)
1
2 (g′ − f ′) ∆t

4 (f ′)2

)
.

Notice the facts that 〈 12 (g′ − f ′)〉p = 0 and 〈∇w∆t〉p = 0. Therefore, we obtain

DE,∆t −DE = D0(〈∇w∆t∇w∆t,T −∇w∇wT 〉p +O(∆t2))

= D0

(
(∇w∆t −∇w)∇wT +∇w(∇w∆t −∇w)T

+ (∇w∆t −∇w)(∇w∆t −∇w)T +O(∆t2)
)
.(65)

Using the results obtained in the Theorem 4.6, we can get that the order of the error
in (65) is O(∆t).
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Theorem 4.8. Let Xt denote the solution of (15) and Xnum
t denote the adaptive

interpolated process of (12). To calculate the effective diffusivity of Xnum
t , we define

D̃E,num(x, t) = E
[ (Xnum

t −X0)⊗(Xnum
t −X0)

2t |X0 = x
]
, 0 < t ≤ T . T is greater than the

diffusion time, which is at most O(σ−1). Then, we have the estimate as follows,

sup
x
|D̃E,num(x, t)−DE | ≤ C∆t+ C(T )∆t2.(66)

Proof. Let D̃E,∆t(x, t) = E
[ (X∆t

t −X
∆t
0 )⊗(X∆t

t −X
∆t
0 )

2t |X∆t
0 = x

]
. If we define φ0(x) =

(x−X0)T (x−X0), then Lemma 4.1 implies |D̃E,num(x, t)− D̃E,∆t(x, t)| ≤ C(T )∆t2.
Applying the homogenization theory (see [1, 24]), when t is large enough, D̃E,∆t(x, t)→
DE,∆t, exponetially fast. Finally, Theorem 4.7 implies |DE,∆t −DE | ≤ C∆t. Thus,
the estimate (66) is obtained by using the triangle inequality.

If a long-time behavior of a flow (e.g., effective diffusivity) can be approximated
by a truncated flow of the numerical method, the error in quantifying such behavior
may be dominated by the truncated flow that can be studied analytically. In the case
of Theorem 4.8, general error analysis (see [12]) will state that |D̃E,num(x, t)−DE | ≤
C(T )∆t, where C(T ) depends on T . We obtain an improved estimate using the BEA
technique. More in-depth studies on this issue will be carried out in our future work.

In our numerical experiment, we shall approximate DE by D̃E,num. Namely, we
use the Monte Carlo method to compute the expectation in calculating the effective
diffusivity. Considering that the diffusion time may depend on the molecular diffusion
σ, our computational time T should depend on σ and can be bounded when calculating
for a fixed σ. Thus, we can gradually decrease ∆t and obtain accurate numerical
results.

5. Numerical results. In this section, we shall apply our methods to investi-
gate the behaviors of several time-dependent chaotic and stochastic flows. We are
interested in understanding the mechanisms of the diffusion enhancement and the
existence of residual diffusivity, highlighting the influence of Lagrangian chaos on flow
transport, and comparing long-time performance of different numerical methods.

5.1. Chaotic cellular flow with oscillating vortices. We consider the pas-
sive tracer model where the velocity field is given by a chaotic cellular flow with
oscillating vortices. Specifically, the flow is generated by a Hamiltonian defined as
H(t, p, q) = − 1

k cos(kp + B sin(ωt)) sin(kq), where k, B, and ω are parameters. The
motion of a particle moving in this chaotic cellular flow is described by the SDE,

(67)

{
dp = sin(kp+B sin(ωt)) cos(kq)dt+ σdW1,

dq = − cos(kp+B sin(ωt)) sin(kq)dt+ σdW2

with initial data (p0, q0). When σ = 0 the behavior of (67) was intensively studied in
[4], which is a two-dimensional incompressible flow representing a lattice of oscillating
vortices or roll cells. Moreover, when B = 0 the flow in (67) turns into the Taylor–
Green velocity field. In this setting real fluid elements follow trajectories that are
level curves of its Hamiltonian. When B 6= 0, the trajectories of the passive tracers
differ from the streamlines, due to the oscillating vortex in the flow. When σ > 0
the dynamics of the (67) will exhibit more structures, which is an interesting model
problem to test the performance of our method.

We point out that when B = 0 and σ > 0, the long-time, large-scale behavior
of the particle model of (67) has been studied by many researchers, for example, in
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Fig. 2. Numerical results of DE
11 for different σ.

[6, 23]. It shows that the asymptotic behavior of effective diffusivity DE ∼ σI2 (or
equivalently DE ∼

√
2D0I2), which means that for this type of flow there does not

exist residual diffusivity. We intend to study whether the residual diffusivity exists
when B 6= 0 and σ → 0.

In our numerical experiments, we choose k = 2π, ω = π, (p0, q0) = (0, 0) in
the SDE (67). The time step is ∆t = 10−2 and the final computational time is
T = 104. We consider different B to study the behaviors of effective diffusivity in
vanishing viscosity (i.e., σ → 0). We compare the numerical results obtained using
the symplectic splitting scheme and Euler–Maruyama scheme. In our comparison,
we use Monte Carlo samples to discretize the Brownian motions dW1 and dW2. The
sample number is Nmc = 5000. It takes about 40 seconds to compute the effective
diffusivity on a desktop with a 4-core 4.2GHz CPU (Intel Core i7-7700K). Since we
only need the final state of the process to calculate DE , memory cost only depends
on the Monte Carlo sample number, which is insubstantial in our study.

In Figure 2, we show the numerical results of effective diffusivity DE
11 obtained

using different methods and parameters. The left part of the figure shows the results
for Taylor–Green velocity field (B = 0). One can see that the Euler–Maruyama
scheme fails to achieve the theoretical analysis for DE , i.e., DE ∼ σI2, while the
result obtained using our symplectic splitting scheme agrees with the theory well.
The right part of the figure shows the results for B = 2.72. One again finds that the
behaviors of the Euler–Maruyama scheme and our scheme are different.

To further compare the performance of the Euler–Maruyama scheme and our
method, we repeat the same experiment with k = 2π, ω = π, (p0, q0) = (0, 0),
and σ = 10−2 in (67), but try a different time step ∆t with B = 0 and B = 2.72
correspondingly. In Figure 3, we find that the symplectic scheme can achieve very
accurate results even using the relatively larger time step, while the Euler–Maruyama
scheme cannot give the right answer even using the very smallest time step. As a
result of Theorem 4.7, we can say that the numerical results for DE

11 have converged
to the analytical result. Therefore, we conjecture that for the time-dependent cellular
flow we studied in (67) with B = 2.72, we still have DE ∼ σI2. In other words, for
this type of flow there does not exist residual diffusivity. More theoretical analysis of
this flow will be reported in our future work.

Remark 5.1. We also test a time-dependent Taylor–Green velocity field, which is
generated by the Hamiltonian defined as H(t, p, q) = 1

k

(
1+B sin(ωt)

)
cos(kp) sin(kq),

where k, B, and ω are parameters. This field can be used to model particle motion in
the ocean and in the atmosphere since it contains both vortices (convection cells) and
linear uprising/sinking regions [4]. Our numerical results (not shown here) indicate
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Fig. 3. Numerical result of DE
11 for different ∆t.

that the asymptotic behaviors of effective diffusivity DE ∼ σI2. Namely, there does
not exist residual diffusivity for this time-dependent Taylor–Green velocity field.

5.2. Investigating residual diffusivity. We now turn to another chaotic cel-
lular flow that is generated from a Hamiltonian defined as H(t, p, q) =

(
sin(p) −

sin(q)
)

+ θ cos(t)
(

cos(q) − cos(p)
)
, where θ is a parameter. Then the particle path

satisfies the following SDE,

(68)

{
dp =

(
cos(q) + θ cos(t) sin(q)

)
dt+ σdW1,

dq =
(

cos(p) + θ cos(t) sin(p)
)
dt+ σdW2.

The flow in (68) is fully chaotic (well-mixed at θ = 1). The first term of the velocity
field

(
cos(q), cos(p)

)
is a steady cellular flow, but the second term of the velocity field

θ cos(t)
(

sin(q), sin(p)
)

is a time-periodic perturbation that introduces an increasing
amount of disorder in the flow trajectories as θ increases.

The flow in (68) has served as a model of chaotic advection for the Rayleigh–
Bénard experiment [9]. This type of flow has been investigated numerically in [15]
by solving the cell problem (48). To make the result comparable, we use D0 as the

parameter for diffusion, which is equivalent to σ2

2 . It was found that DE
11 = O(1) as

D0 ↓ 0, which implies the existence of the residual diffusivity. However, the solution of
the advection-diffusion equation (48) develops sharp gradients as D0 ↓ 0 and demands
a large amount of computational costs. We shall show that our numerical method
gives comparable results that were tested in [15] with far less computational costs.

In our numerical experiments, we choose time step ∆t = 5× 10−2 and final time
T = 5× 103 in our symplectic scheme as smaller values of ∆t and larger values of T
do not alter the results significantly. We use Nmc = 5000 independent Monte Carlo
sample paths to discretize the Brownian motions dW1 and dW2.

In Table 1, we show the numerical results of DE
11 for different D0 and θ. We

also show the results in Figure 4. It takes about 20 seconds to compute one effective
diffusivity for each result. We observed a nonmonotone dependence of DE

11 vs. θ in
the small D0 regime, consistent with the computation from solving cell problems in
[15], though the overall trend is that DE

11 increases with the amount of chaos in the
flows. Our numerical results again imply the existence of residual diffusivity for this
type of chaotic flow. As suggested in our previous numerical investigation, the Euler–
Maruyama scheme needs a much finer time step to compute the residual diffusivity
and the numerical results are polluted by the diffusion of the scheme. Therefore, we
do not test the Euler–Maruyama scheme in this experiment.
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Table 1
Numerical results of DE

11 by the symplectic splitting scheme. The flow is defined by a chaotic
cellular flow.

θ D0 = 10−6 D0 = 10−5 D0 = 10−4 D0 = 10−3 D0 = 10−2 D0 = 10−1

0.1 0.111547 0.084047 0.068833 0.072755 0.157947 0.504085
0.2 0.176780 0.161091 0.159181 0.169005 0.213418 0.547745
0.3 1.187858 0.901204 0.521761 0.356920 0.314840 0.550539
0.4 0.457187 0.453117 0.368187 0.385328 0.422116 0.538405
0.5 0.339372 0.352455 0.326034 0.361473 0.424855 0.645214
0.6 0.268441 0.246738 0.236696 0.256992 0.394480 0.704883
0.7 0.174016 0.169134 0.176643 0.215472 0.413941 0.754199
0.8 0.677995 0.605287 0.606582 0.516210 0.533211 0.796788
0.9 1.357033 1.363832 1.373394 1.084116 0.913423 0.908773
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Fig. 4. The residual diffusivity results. DE
11 vs. θ for the fully chaotic flow defined in (68).

5.3. Investigating stochastic flows. We are also interested in investigating
the existence of the residual diffusivity for stochastic flows. The homogenization of
time-dependent stochastic flows has been studied in the literature. Under a certain
integrability condition, it is proved that the effective diffusivity exists for the long-
time, large-scale behavior of the solutions [7, 13]. However, there are few numerical
experiments to investigate effective diffusivity quantitatively. We shall use our sym-
plectic splitting scheme to compute the effective diffusivity for stochastic flows. More
theoretical study will be reported in our subsequent paper.

The stochastic flow is constructed from the fully chaotic flow in (68), where the
time-periodic function cos(t) is replaced by an Ornstein–Uhlenbeck (OU) process ηt
[29]. The OU process satisfies

(69) dηt = θou(µou − ηt)dt+ σoudW
0
t ,

where θou > 0, µou, and σou > 0 are parameters and dW 0
t denotes a Brownian motion.

Specifically, θou controls the speed of reversion, µou is the long term mean level, and
σou is the volatility or diffusion strength. In our numerical experiments, we choose
µou = 0, θou = 1, and σou = 1, so that the OU process has zero mean and the

stationary variance is
σ2
ou

2θou
= 1

2 . We choose the parameters in the OU process in such
a way that its qualitative behavior is similar as cos(t). The particle path satisfies the
following SDE,

(70)

{
dp = (cos(q) + θ ηt sin(q))dt+ σdW 1

t ,

dq = (cos(p) + θ ηt sin(p))dt+ σdW 2
t ,

D
ow

nl
oa

de
d 

06
/0

3/
19

 to
 1

47
.8

.3
1.

43
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2340 ZHONGJIAN WANG, JACK XIN, AND ZHIWEN ZHANG

Table 2
Numerical results of DE

11 by the symplectic splitting scheme. The flow is defined by an OU
process.

θ D0 = 10−6 D0 = 10−5 D0 = 10−4 D0 = 10−3 D0 = 10−2 D0 = 10−1

0.1 0.036442 0.037821 0.042649 0.064412 0.156084 0.485647
0.2 0.070701 0.074095 0.075525 0.094416 0.172281 0.491868
0.3 0.106238 0.104986 0.112149 0.123868 0.195421 0.496326
0.4 0.137335 0.141704 0.145786 0.154876 0.221186 0.513384
0.5 0.171326 0.173708 0.176357 0.187868 0.252861 0.522133
0.6 0.197188 0.200511 0.205098 0.220810 0.272689 0.539465
0.7 0.232775 0.231468 0.240672 0.248353 0.314599 0.563992
0.8 0.259921 0.255478 0.268048 0.280238 0.332105 0.589805
0.9 0.286707 0.291560 0.290207 0.294778 0.365502 0.605338
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Fig. 5. The residual diffusivity results. DE
11 vs. θ for the stochastic flow driven by an OU

process defined in (70).

where the Brownian motions dW 1
t and dW 2

t are independent from the one used in the
definition of the OU process (69).

Since the OU process has an ergodic property, we choose a small amount of
sample paths, say, nou = 100, and final computational time T = 5× 103 to compute
the effective diffusivity. In Table 2, we show the numerical results of DE

11 for different
D0 and θ, where each DE

11 is the average values obtained from the nou paths. In Figure
5, we show the results corresponding to Table 2. It takes about 20 seconds to compute
one effective diffusivity result for each OU path. The total computational time can
be estimated accordingly. We observed a monotone dependence of DE

11 vs. θ in this
example. Our numerical results again imply the existence of residual diffusivity for
this type of stochastic flow. We observe however that the nonmonotonic dependence
in θ disappears. Namely, the residual diffusivity is an increasing function of θ. Such
a phenomenon a is due to the absence of resonance in stochastic flows.

Furthermore, we show the ergodicity results of the effective diffusivity in Figure
6. In this test, we choose the parameters θ = 0.1, D0 = 10−2 and compute the
effective diffusivity along 100 OU paths. We show the histogram of DE(ωOU ) at
T = 100, T = 200, T = 500, T = 5000, and T = 20000, respectively. Notice that
for each OU path (i.e., one realization of ηt defined in (69)), we use Nmc = 1000
independent Monte Carlo sample paths to discretize the Brownian motions dW 1

t and
dW 2

t defined in (70). The Figure 6 shows two facts: first, as the computational
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Fig. 6. Histogram of the residual diffusivity results. DE
11 for the stochastic flow driven by an

OU process defined in (70) that are computed at different final times.
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Fig. 7. Behavior of
〈(x1(t)−x1(0))2〉

2t
as a function of time for two different methods.

time becomes long enough the histogram appears to converge to a limit distribution.
The limit distribution has much smaller variance and is centered closer to 0.156084.
Second, in Table 1 we show the residual diffusivity obtained from the fully chaotic
(well-mixed) flow. When the parameters θ = 0.1, D0 = 10−2, the corresponding
residual diffusivity is DE

11 = 0.157947. Thus, the chaotic and stochastic flows may
share some similar mechanism in their long-time behaviors. More theoretical and
numerical investigations will be studied in our future work.

5.4. Behaviors of the long-time integration. Theorem 4.2 proves that the
symplectic splitting scheme preserves the asymptotic Hamiltonian structure that en-
ables us to compute the stable long-time behavior of the effective diffusivity of chaotic
and stochastic flows. We now keep using the flow (68) and compute a much longer
time solution with final time T = 5× 105.

In Figure 7, we plot the calculated effective diffusivity DE
11 as a function of time

obtained using different methods and parameters. The two lines on the top are cor-
responding to the Euler–Maruyama method for D0 = 10−5 and D0 = 10−6, while the
two lines on the bottom are corresponding to the symplectic splitting method. It is
clear that results obtained from the symplectic splitting method converge to a more
stable value. A probable explanation is that the solution obtained using the symplec-
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Fig. 8. Phase plane for the two different methods.
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Fig. 9. Behavior of
〈(x1(t)−x1(0))2〉+〈(x2(t)−x2(0))2〉

t
for two different methods with θ = 0.3 and

D0 = 10−5.

tic splitting scheme follows an asymptotic Hamiltonian, while the solution obtained
using Euler method does not, which has been proved in the Theorem 4.2.

Additional evidence comes from Figure 8, where we plot the phase plane for
two different numerical methods. The realization of the noise is the same and we
integrated up to time T = 103 with time step ∆t = 0.05. We choose the parameters
θ = 0.1 and D0 = 10−5. From these results, we find that the paths oscillate near a
line with slope 1. It is clear that the behaviors of two methods are different. In the
case of the Euler–Maruyama method, the particle appears to be more diffusive than
that in the symplectic splitting scheme.

In Figure 9, we show how the modified equation approximates the original prob-
lem, where we consider the chaotic cellular flow (68). More specifically, we plot the
effective diffusivity 2(DE

11+DE
22) as a function of time obtained using different methods

and we choose the parameter θ = 0.3 and D0 = 10−5. From our numerical results, we
find that the effective diffusivity obtained using our method with time step ∆t = 0.05
agrees very well with the one obtained by solving the modified equation using the
Euler–Maruyama method with time step ∆t = 0.002. Namely, we approximately
achieve a 25X speedup over the Euler–Maruyama method. The Euler–Maruyama
method with ∆t = 0.05 also generates results that agrees with its corresponding
modified equation with a finer time step. But the effective diffusivity converges to a
wrong result.

6. Conclusions. Quantifying diffusion enhancement in fluid advection is a fun-
damental problem that has many applications in physical and engineering sciences.
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We proposed an effective structure-preserving scheme that can efficiently compute
the effective diffusivity of chaotic and stochastic flows containing complex stream-
lines. In addition, we investigate the existence of the residual diffusion phenomenon
in chaotic and stochastic advection, which is an interesting problem by itself. The
effective diffusivity as well as the residual diffusivity can be computed by solving the
Fokker–Planck equation in the Eulerian formulation. However, when the molecular
diffusion parameter becomes small, the solutions of the advection-diffusion equation
develop sharp gradients and thus demand a large amount of computational costs.

We compute the effective diffusivity in the Lagrangian formulation, i.e., solving
SDEs. We split the original problem into a deterministic subproblem and a random
perturbation, where the former is discretized using a symplectic preserving scheme
while the later is solved using the Euler–Maruyama scheme. We provide rigorous
error analysis for our new numerical integrator using the BEA technique and show
that our method outperformed standard Euler-based integrators. Numerical results
are presented to demonstrate the accuracy and efficiency of the proposed method for
several typical chaotic and stochastic flows problem of physical interest. We find that
the residual diffusivity exists in some time periodic and stochastic cellular flows.

There are two directions we want to explore in our future work. First, we shall
investigate the existence of the residual diffusivity for other stochastic flows and de-
velop convergence analysis for the corresponding numerical methods. In addition, we
shall study other issues to improve the efficiency of our methods, such as developing
an adaptive time-stepping method and using the multilevel Monte Carlo method to
reduce the sample number in our method.
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