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Integrating road carrying capacity and traffic congestion 
into the excess commuting framework: the case of Los 
Angeles  
 
Abstract: The excess commuting (EC) framework has advanced a series of metrics through 
which a city or a region’s jobs-housing balance and commuting efficiency can be measured. 
This study seeks to add to the conceptual development and extension of the EC framework. 
Specifically, it considers the carrying capacity (of links) and related congestion issues in the 
EC framework and demonstrates that by overlooking these characteristics has important 
implications for EC metrics. Drawing on an empirical case study, it shows that when carrying 
capacity and traffic congestion are accounted for, the actual commute is longer than 
otherwise. EC tends to be higher than its counterparts in previous excess commuting studies. 
The findings suggest that future EC studies should take account of the carrying capacity and 
congestion in determining EC metrics. Moreover, high-quality connections (preferably via 
public transport) between jobs and housing allied with sufficient carrying capacity of popular 
links/routes for commuters are crucial preconditions for cities and regions to harvest the full 
benefits of jobs-housing balance policies targeted at the reduction of the average commute 
distance and vehicle miles travelled. 
 
Keywords: Excess commuting; Jobs-housing balance; Los Angeles; Assignment modelling; 
Traffic Congestion 
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1. Introduction  
 
Since the publication of Hamilton’s (1982) seminal work, the excess commuting (EC) 
framework has received much scholarly attention. The EC has been utilised to derive a suite 
of benchmarks and indices for the analyses of the, jobs-housing balance, spatial mismatch, 
and commuting efficiency in urban regions (see for example, Giuliano and Small, 1993; 
Horner, 2007; Horner and Mefford, 2007; Kanaroglou et al., 2015; Scott et al., 1997; Small 
and Song, 1992). Within the EC framework, urban form is typically considered to be a 
pattern of disaggregated spatial units/zones each containing a fixed number of jobs and/or 
residences.  Trips between zones are associated with a cost which can be measured either in 
terms of travel time, distance, or even some form of monetary cost. Assuming all commuters 
are homogeneous in their skills and preferences and all jobs and residences are exchangeable 
and offer the same utility to commuters, the minimum commute (Tmin) -- that is necessitated 
by the fixed distribution of jobs and housing -- in a city or region occurs when commuters 
collectively coordinate their housing and job choices in a manner which minimises 
commuting cost; the result being that commuters will, on average, live to their closest 
possible workplace (Murphy, 2016; Zhou and Long, 2015).  The extent to which the observed 
commute (Tact) exceeds Tmin is considered to be EC (White, 1988).  It is, of course, unrealistic 
for any city-region to have Tact equivalent to Tmin; nevertheless, comparing Tact and Tmin can 
be an important benchmark for measuring the balance/imbalance of jobs and housing in the 
region or the efficiency of commuting more generally. It is from this conceptual base that the 
EC framework has been extended to include four benchmarks including Tmin, Tact, random 
(Trand) and maximum (Tmax) commutes as well as four indices – EC, capacity utilisation (Cu,), 
commuting economy (Ce), and normalised commuting economy (NCe) (Kanaroglou et al., 
2015). These benchmarks and indices are discussed in detail in the next section.   

This study seeks to add to the conceptual development and extension of the EC 
framework. Specifically, it proposes a way to account for the carrying capacity of links and 
link congestion as an integral component of estimating the EC benchmarks. Further, we 
demonstrated through an empirical case study that overlooking road carrying capacity and 
traffic congestion can introduce bias and inaccuracies in EC indices which have the potential 
to negatively influence policy decisions. Drawing on the six-county Los Angeles region as 
the case study context, this paper demonstrates that ignoring carrying capacity and traffic 
congestion in assignment methods (such as the transportation problem of linear programming) 
leads to: (1) distorted estimates of EC indices and benchmarks; and (2) underestimates of the 
average minimum commute distance (Tmin). In addition, it shows that when optimising the 
jobs-housing balance and corresponding commuting flows, decision-makers should ensure 
that popular and/or shortest-distance corridors/routes between locales where both jobs and 
housing units are in high density should be provisioned with sufficient carrying capacity. If 
the issue of carrying capacity is ignored, commuting efficiency will be substantially worse 
than is estimated using the traditional transportation problem of linear programming (TPLP) 
approach where the road carrying capacity is assumed to be unlimited. 

Bearing the issues of road carrying capacity and traffic congestion in mind, this study 
makes two contributions to existing literature: First, it shows both theoretically and 
empirically that carrying capacity of alternative routes between worksites and residences 
should be considered in both jobs-housing balance studies and policies based on the EC 
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framework, and; second, it quantitatively demonstrates (via a study of a region known to be 
notorious for traffic congestion) the extent of bias that can result in EC benchmarks and 
indices when the carrying capacity and congestion of a link or route are ignored. In this study, 
we focus on the carrying capacity impacts on the results emerging from EC studies. Thus, it 
is possible to reflect upon, and indeed reconsider, the results from existing studies within this 
context. 

 

Related literature 

The EC framework: an overview 

Following Kanaroglou et al. (2015), four EC benchmarks and four EC indices that are 
derived from the benchmarks together make up the EC framework. Contemporary EC studies 
typically utilise the TPLP for the calculation of Tmin. TPLP was not proposed by EC scholars 
rather it was first introduced into EC studies by White (1988). 

Once Tmin is calculated, it can be compared with Tact to determine the level of commuting that 
is excessive (EC). EC is a measure of the deviation of an urban area’s observed average 
travel cost from a theoretical minimum average travel cost as follows: 

EC = 𝑇𝑎𝑐𝑡−𝑇𝑚𝑖𝑛
𝑇𝑎𝑐𝑡

                                                                                                      (1) 

Within the EC framework, Horner (2002) determined that Tmax is the upper limit of a city’s 
commuting range and which can be used to measure jobs-housing imbalance within cities. 
Tmax is calculated using the inverse of the objective function of the TPLP in (1) where the 
objective is to maximise rather than minimise the average commuting costs between 
residences and workplaces.  

Tmax also allows for an additional way to measure commuting efficiency -- Cu -- 
which provides a gauge of how much of a city’s available commuting range has been 
consumed (Horner, 2002). If we consider Tmax – Tmin as a finite scale determined by the 
distribution of jobs and housing, then the relative location of the observed average travel cost, 
Tact, on the scale indicates the amount of available travel resources being used by collective 
urban commuting. Specifically, Cu is calculated as: 

 
𝐶𝑢 = 𝑇𝑎𝑐𝑡−𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
                  (2) 

When taken together, Cu and EC provide dual measurements of the city’s commuting 
efficiency.  
 

In further developments, Murphy and Killen (2011) argue that Trand is a better 
benchmark of the upper boundary of commuting possibilities than Tmax given that it is a more 
realistic gauge of commuting behaviour where commuting cost is considered irrelevant to the 
physical separation of jobs and housing.  Similar to Murphy and Killen (2011), Yang and 
Ferreira (2008) also questioned the appropriateness of using Tmax to measure the upper limit 
of a city’s commuting range and to represent jobs-housing possibilities. Both studies 
recommended the use of proportionally matched commuting (PMC) as an alternative to Tmax 
to measure the upper limit of a city’s commuting range and represent jobs-housing 
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possibilities. Kanaroglou et al. (2015) recently demonstrated that PMC is mathematically 
equivalent to Trand and note that the two can be used interchangeably.  

In a 2011 study, Murphy and Killen (2011) utilised Trand to propose two additional 
measures of commuting efficiency: Ce and NCe given by the following equations: 
 
     𝐶𝑒 = (1 − 𝑇𝑎𝑐𝑡

𝑇𝑟𝑎𝑛𝑑
)*100                                                                                                    (3)                                                                                                                                                                                                                             

   𝑁𝐶𝑒 = � 𝑇𝑟𝑎𝑛𝑑−𝑇𝑎𝑐𝑡
𝑇𝑟𝑎𝑛𝑑−𝑇𝑚𝑖𝑛

�*100                                                                                                (4)                                                                       

Ce gives the extent to which Tact is positive or negative Trand i.e. the degree to which 
behaviour as expressed by Tact is becoming either more or less random. This represents the 
extent to which individuals are economising on commuting costs. NCe represents the extent 
to which Tact is below Trand relative to the theoretical extent to which this could happen as 
determined by the geography of land-use i.e. Tmin. Thus, this is considered to be a normalised 
commuting economy indicator. These metrics collectively represent the key conceptual 
advancements in the development of the EC framework.  
 

Conceptual development: traffic congestion and the EC framework 

Several studies have comprehensively reviewed existing scholarship within the EC 
framework (see for example, Ma and Banister, 2006; Layman and Horner, 2010; Barr et al., 
2010; Kanaroglou et al., 2015). However, there has been no study which has explicitly 
considered carrying capacity of alternative routes/links and resulting congestion within the 
EC framework.  

 

Table 1: EC studies where carrying capacity/congestion issues are considered 

Study Cost 
measurement 

Traffic 
congestion 

considered? Specific implications for this study 

Tact Tmin 
White, 1998 Reported time Yes No Represents the first study to employ 

the transportation problem method. 
Small and 
Song, 1992 

Peak-hour time 
and network 
distance based on 
local travel 
demand models 

Yes No Comparable EC of L.A. for this study  

Giuliano and 
Small, 1993 

Merriman, et 
al., 1995 

Estimated time 
based on transit 
schedules plus 
reported time 

Yes No Complexity in constructing a 
commuting time matrix  

Scott et al., 
1997 

Peak-hour time 
based on local 
travel demand 
models 

Yes Yes  Tmin measured by time can be shorter 
when traffic congestion is considered  
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Manning, 2003 Reported distance 
from census 

Yes No How a worker classification influences 
EC  

Ma and 
Banister, 
2006b 

Reported time and 
network-based 
distance 

Yes No  Qualitative and quantitative jobs-
housing balance concepts and how 
they are related to EC  

Horner, 2010 Variable travel 
times 

Yes Yes Tact is more likely to be affected by 
variable travel times.  

Murphy, 2009  Peak-hour time 
based and distance 
on local travel 
demand models 

Yes No EC by mode of travel 
Monte Carlo method to derive Trand; 
Ce; NCe 

Murphy and 
Killen, 2011 

Hu and Wang., 
2015 

Estimated distance 
and time based on 
surveys 

Yes No Reporting errors in travel time from 
surveys; How to mitigate the 
miscalculation of EC  

 

To avoid repeating reviews from other scholars, here we review and summarise 
existing studies with specific attention to whether or not they accounted for traffic congestion 
when estimating EC benchmarks (Table 1). An exhaustive search revealed 11 studies that 
indirectly dealt with congestion and one piece of work (Scott el al., 1997) that explicitly 
considered the impacts of traffic congestion on Tmin and Tact.  Scott and colleagues showed 
that when traffic congestion is considered for both Tmin and Tact measured in terms of journey 
time, the EC for their study area (Hamilton, Canada) was 3 percent higher than if traffic 
congestion is considered for Tact alone. Their explanation for the difference was that (a) there 
were more short trips in the case of optimum assignment under Tmin compared with Tact; and 
(b) the modal split in the case of Tmin was different to that of Tact. However, the study did not 
consider how traffic congestion influences Tmin as measured by travel distance, rather they 
solely considered travel time. While Horner’s (2010) study does not directly focus on traffic 
congestion, it does consider travel time between origins and destinations as something 
uncertain and examines how changing travel times between specific origins and destinations 
affects the values of Tact, Tmin and EC. He finds that Tact is more likely to be affected by 
uncertain travel times than Tmin. However, the study does not directly model how available 
road capacity and traffic congestion might impact the route choice of commuters. Indeed, 
neither Scott et al. (1997) or Horner (2010) note that the optimum assignment pattern (Tmin) 
determined using the TPLP, there will likely be some routes where the assigned flows far 
exceed the available carrying capacity along certain links, which forces some commuters to 
choose alternative routes. In reality, therefore, there may be routes congested under the 
optimum assignment pattern and in such cases commuters may choose routes that are longer 
in distance to reduce commuting time. In reality therefore, the average minimum distance of 
commuters may be longer than predicted using the TPLP.  

To illustrate the carrying capacity/congestion issue further, Figure 1 provides a 
hypothetical example. It is well-known that congestion extends commuting time; but it can 
also extend commuting distance, which is not always evident to commuters. Consider Figure 
1 as an illustration. 
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Figure 1. Schematic depicting the impact of traffic congestion on commuting distance 

Figure 1(a) outlines a scenario where traffic congestion is absent and commuters from A and 
C travel to their respective workplaces D and B in ten minutes on the shortest paths (CD or 
AB); this equates to 18 kilometres. The route ADB is not considered by commuters 
originating at A given its longer commuting time. Figure 1(b) outlines a scenario where 
traffic congestion exists between A and B resulting from capacity constraints along the route. 
Under the assumption that rational commuters seek to minimise travel time, commuters from 
A would then use routes AB and ADB to travel to B; both routes have equal travel times (25 
minutes). However, for commuters using the route ADB, their commute distance is now 25 
kilometres instead of 18 kilometres. In other words, commuters would choose the shortest-
time route instead of the short-distance route. Thus, even when all jobs and housing are near 
to one another, there may still be issues of insufficient road capacity along links connecting 
those origins and destinations.  

From the foregoing illustration and a review of the relevant literature, it is evident that 
little research has been undertaken that considers the impacts of available carrying capacity 
and resulting traffic congestion on the route choice of commuters and the impact of these 
issues on the resulting EC benchmarks and indices. This motivates the current study within 
the Los Angeles region to demonstrate how these issues can be integrated into, and more 
broadly considered within EC studies. 

 

Methodology 

Study area and input data 

Our study area is the six-country Los Angeles region (Figure 1). This particular study area 
has been studied quite extensively by other scholars interested in urban form and commuting 
for two core reasons. First, it is the second-largest metropolitan area in the US: as of 2006 the 
area covers a land area of 258,178 square kilometres accommodating 22.6 million residents. 
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Second, it is notorious for urban sprawl with a number of studies pointing to issues of jobs-
housing imbalance, high EC levels, and environmental sustainability issues, including high 
energy use from private transport and high levels of air pollution (see for example Giuliano, 
1991; Giuliano and Small, 1993; Small and Song, 1992; Giuliano et al., 2007, 2012). 

The Southern California Association of Governments (SCAG), which is the local 
transportation planning agency, divides the LA region into 4,191 traffic analysis zones 
(TAZs), including 82 “virtual TAZs”, which are important egresses or ingresses in the region 
such as airports, railyards, highway exits/entrances and seaports. Unlike actual TAZs, there 
are no internal trips within virtual TAZs as they are only considered as nodes. The 4,102 
TAZs (not including the visual TAZs) have an average area of 62.78 square kilometres. 
Located in the core of the region (Los Angeles and Orange Counties), the TAZs are much 
smaller than those in the east, that include large expanses of desert.  The core also contains 
over 80% of the region’s jobs and residences (Figure 2). Indeed, Niedzielski et al. (2013) 
analysed the relationship between Modifiable Areal Unit Problem (MAUP) effects and 
indicators in the EC framework. Their analysis and others (see also Horner and Murray, 2002) 
shows that EC and CU indicators vary substantially with the size of the zonal unit being 
utilised for analysis. However, it is notable that values of Ce and NCe display much less 
variability with the level of zonal aggregation (Niedzielski et al., 2013) 

 

Figure 1: The six-county LA region 



8 

 

 

Figure 2: Spatial distribution of employment and residential density (per kilometre) by 
TAZ across the LA region 
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The data utilised for this study was taken from SCAG’s 2003 travel demand model, which 
was validated and released in 2007 (SCAG, 2007). Note that the dataset is entirely 
automobile-based and does not consider rail-based commuting, which accounts for less than 
one percent of travel in the region (SCAG, 2007). The dataset contains the following 
information for the morning peak period (06:00 to 09:00): 

• OD vehicle flows for solo drivers;  
• OD vehicle flows for car poolers (including drivers); 
• OD vehicle flows for light-duty truckers; 
• OD vehicle flows for medium-duty truckers; 
• OD vehicle flows for heavy-duty truckers; 
• The GIS polyline files for the road network (comprising a total length of 32,726 

centreline kilometres); 
• The GIS polygon files for local TAZs.  

Table 2 shows the descriptive statistics for each of the categories of vehicle flows contained 
within the SCAG dataset. Results reveal that the overwhelming majority of trips are 
associated with lone car drivers followed closely by car poolers. It is notable that only seven 
percent of the workers who drive alone have their workplace and residence in the same TAZ. 
Thus, the vast majority of workers must travel to another TAZ to reach their workplace 
destination. As was the case for other relevant studies (see for example, Small and Song, 
1992; Giuliano and Small, 1993; Murphy, 2009; Murphy and Killen, 2011), this study treats 
all solo-drivers in the SCAG model as workers/commuters. 

 

Table 2: Vehicle flows in the LA region (proportions in parentheses) 

Type of commuter Total vehicle 
count 

Vehicle count by area 
Within 
TAZs 

Between 
TAZs 

Solo drivers 5,041,306  
 

354,462 (7) 4,686,844 
(93) 

Car poolers 2,112,983 
 

255,031 
(12) 

1,857,952 
(88) 

Light-duty truckers 75,131 
 

10,001 
(13) 

65,130 
(87) 

Medium-duty truckers 44,497 
 

1,733 
(4) 

42,764 
(96) 

Heavy-duty truckers 54,485 
 

1,191 
(2) 

53,294 
(98) 

Total 7,328,402 622,418 
(8) 

6,705,984 
(92) 

 

Other travellers (car poolers and various truckers) in the SCAG dataset were considered as 
background traffic: their total numbers do not change but each time the route choice of solo-
drivers changes, their route choice also changes. Together, solo-drivers and other travellers 
interact and contribute to the final equilibrium of the road traffic, that is, the user equilibrium, 
system equilibrium, all-or-nothing assignment, multi-modal multi-class assignment or 
stochastic assignment that travel demand modellers often refer to (Caliper, 2015). In this 
study, we combine the user equilibrium and multi-modal multi-class assignment to best 



10 

 

account for traffic congestion on the road network given that we have five classes of 
travellers’ OD flow matrices, which were either not utilised or were unavailable in previous 
studies.   

 

Calculation approaches for EC benchmarks 

The first element of this study involves the calculation of Tmin, Tmax, Trand and Tact. For Tmin, 
the TPLP was used to determine the assignment of trips from origin to destination that 
minimised average commuting cost. The objective function and constraints of the TPLP are 
given by: 

Min: Z = ijij
n
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N
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where, m = number of origins; n = number of destinations; Oi = trips beginning at zone i; Dj 
= trips destined for zone j; cij = travel cost from zone i to zone j; Xij = number of trips from 
zone i to zone j, and N = total number of trips. The objective function (2) minimises average 
transport costs. Constraint (3) ensures that trip demand at each destination zone is satisfied 
while constraint (4) limits the number of trips leaving each origin zone to the number of trips 
originating there. Constraint (5) restricts the decision variables, Xij, to non-negative values. It 
should be noted that travel costs, cij, may be expressed in terms of any measure of zonal 
separation, for example travel distance, travel time or indeed a generalised cost measure. For 
this study, Euclidean distance (ED) and route network distance (ND) were both used as 
measures of zonal separation. 

Tmax was also determined using the TPLP where the objective function is the inverse 
of the minimisation problem discussed previously (5) and is given by: 

cijXij
n

j

m

i
∑∑
==

=
11N

1Max Z       (9)  

The approach for calculating Trand utilised the Markov Chain Monte Carlo (MCMC) hit-and-
run algorithm outlined by Murphy and Killen (2011, p.1261-62). It is given by the following: 

N!=NT         (10) 
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Where: NT is the number of possible commuting configurations in a city; N! is the factorial of 
the total number of trips in the urban area. Constraints (11-13) are identical to those of the 
transportation problem and they limit commuting possibilities to those supported by the fixed 
distribution of jobs and residences. Because it takes days to complete a random traffic 
assignment for the LA region, only ten assignments were run to derive the values of Trand 
quoted in the current paper. Finally, Tact was calculated from observed trip data and 
associated commuting costs. 

 

Assignment and travel demand modelling 

Travel demand modellers have developed and used different traffic assignment models to 
consider the impacts of traffic congestion on travel behaviour. These models include but are 
not limited to the following: the user equilibrium, system equilibrium, all-or-nothing 
assignment, multi-modal multi-class assignment, and stochastic assignment. The 
aforementioned models can now be implemented more conveniently in practice using 
specialist software packages such as TransCAD, EMME, PTV and Cube. Previous related 
studies use two different approaches to derive different EC benchmarks: the all-or-nothing 
assignment (i.e. the TPLP) and the user equilibrium multi-modal multi-class assignment. The 
former effectively assumes that road capacity is always sufficient and thus congestion is non-
existent on the route network. In this study, we follow this approach to generate the base 
results where congestion is not considered. Next, the user equilibrium multi-modal multi-
class assignment is used where congestion is considered because the approach allows 
considerations of road capacity and traffic congestion.  

Based on Bechmann et al. (1956), the mathematical formulation of the user 
equilibrium approach is to find an optimal solution to the following problem: 

Min              ∑ ∫ la
fa
0a∈A (x)dx 

s.t.                ∑ fP = fap∋a               for all a ∈ A,                                     (14) 

                     ∑ fp = dkP∈Pk            for all k ∈ K                                    (15)     

                      fa≤Ca                            for all a ∈ A                           (16) 

                      fP≥0                             for all p ∈ P                            (17), 

Where:  

a is a link of the set of links A between an origin and a destination(OD);  

fa is the traffic passing a;  

la(x) is the cost function, which can be used to calculate the cost of travel for a when there is 
x amount of traffic; 
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fp is the amount of traffic using path (route) p, which contains a; 

dk is the rate of traffic from a point to another point in OD pairs of K; 

Ca is the feasible flow capacity for a; 

P are all possible paths (routes) between the origin-destination pairs of K.  

Usually, the user equilibrium approach only considers one class of vehicle and thus applying 
it requires the conversion of all vehicles into a common unit of analysis such as passenger car 
equivalent (Caliper, 2015).  

All-or-nothing assignment does not require condition (16) to be met and assumes that 
all traffic between an OD pair in K is always assigned to the least cost route and, crucially, 
that that can accommodate unlimited traffic volumes.   Multi-modal multi-class assignment 
has a similar mathematical formalisation to the user equilibrium approach but adopts a la(x) 
that is more complex and that accounts for interactions of different classes of vehicles on 
roads and does not assume that routes can accommodate unlimited volumes of traffic. It takes 
the following form: 

𝑙𝑚 = ∑ �𝑉𝑂𝑇𝑚𝑉𝐷𝐹�𝑇𝑏 ,𝐶𝑏 ,∑ 𝑃𝐸𝐶𝑚𝑋𝑏, …𝑚 � + 𝐹𝑇𝑏𝑚�𝑏∈𝐵 + ∑ 𝑀𝑇𝑚𝑖𝑖𝜖𝑀𝑚                                  
(18), 

Where: 

𝑙𝑚 is the generalized cost between origin and destination for mode m; 

m is mode of travel; 

b is a link in a network; 

B is the set of links on the shortest path between origin and destination for mode m; 

VOTm is the value of time of mode m; 

Tb is free flow travel time on b; 

Cb is the capacity on b; 

𝐹𝑇𝑏𝑚 is fixed toll on link b for mode m; 

Mm is set of nodes based tool section between origin and destination for mode m; 

𝑀𝑇𝑚𝑖  is toll value for section i, mode m; 

VDF is the volume delay function; 

Xb is total volume on link b, ∑ 𝑃𝐸𝐶𝑚𝑋𝑏𝑚 ; 

𝑋𝑏𝑚 is flow of type m on link b; 

PCEm is passenger car equivalent for mode m (Caliper, 2015). 

Mathematically, there are different ways to find the optimal solution to a multi-modal multi-
class assignment problem. All-or-nothing assignment and the user equilibrium are simply two 
such options. In this study, we use both options.  
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Specifically, we used the Los Angeles data described previously as the input data. For the 
parameters of the volume delay function, which is required when implementing different 
traffic assignment models, we adopted the Bureau of Public Roads function as follows: 

S(Xb)=Tb*(1+0.15*(Xb/Cb)4)                                                            (19) 

Where:  

S(Xb) is the average travel time for a traveller/vehicle on link b; 

All other notation is the same as that outlined in equation (18).  

To convert different vehicle classes into PCEs, we used the weighted average conversion 
factors specified in SCAG (2007) (Table 3). 

Table 3: Converting different vehicle classes into PCEs 

Vehicle class Car/SUV Light-duty 
trucks 

Medium-duty 
trucks 

Heavy-duty 
trucks 

Conversion factors 1.0 2.9 3.6 4.8 
 

Because trips inside TAZs are always treated separately in traffic assignment processes, this 
study only considers commuting trips between TAZs when calculating EC benchmarks which 
is consistent with previous studies such as Small and Song (1992) and Giuliano and Small 
(1993) for the same region. Thus, this differs from some existing studies, e.g., Frost et al., 
(1998), which considers the distance of all trips within a TAZ as: 

Di=�𝐴𝑖/𝜋                                                                                            (20) 

Where: 

Di is the distance for all trips within a TAZ i;  

Ai is the area of the TAZ i. 

The formula assumes that the intrazonal commuting distance travelled by individuals 
assigned to a workplace within in the same zone as they live is equivalent to the radius of the 
circle which approximates the area of a TAZ. However, there has not been a consistent way 
to estimate the time duration of commuting trips inside TAZs. Typically, these trips measured 
by time are not considered when calculating Tact, Tmin, Tmax, and Trand. In travel demand 
modelling, commuting trips inside TAZs are usually assumed to occur on “virtual links” 
between the centroid of the TAZ and several egresses/ingresses of the lowest-level of 
links/roads of the local transport network in question. These “virtual links” are called 
“centroid connectors” by travel demand modellers. Most of the time these “centroid 
connectors” are so short that travel times/distances on them can be ignored and overall traffic 
assignment results’ (including EC benchmarks) are not significantly affected.  In the case of 
Los Angeles, for instance, if Equation (20) is adopted to derive the average of Di for all TAZs, 
the average is only 1.6 miles while the average distance between any two TAZs is 37.5 miles. 
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Results 

EC in LA 

Table 4 presents estimates for the four EC benchmarks (Tmin, Tact, Trand and Tmax) as well as 
the four indices (EC, Cu, Ce and NCe) using the all-or-nothing assignment approach alongside 
previous EC studies  (see Small and Song 1992 and Giuliano and Small, 1993) in terms of 
travel distance and time. Comparing the results of this study with others for the same region 
reveals a number of interesting trends. Table 4 also outlines the results of the modelling 
exercise that explore the impact of road carrying capacity and traffic congestion on EC 
benchmarks and indices. 

First, the values of Tmin, Tact and EC have changed over time. It can be seen that our results 
report a higher Tact for LA workers relative to that revealed in previous studies. Our study 
calculated a commuting average time of 36.0 minutes compared to 22.1 and 23.0 minutes for 
the Small and Song (1993) and Giuliano and Small (1993) studies respectively – equating to 
a value between 57 to 63 percent higher. In terms of distance, Tact is more than double (20.1 
miles) than that reported in Small and Song’s (1992) study (10.0 miles) in the 1980s. This 
implies that behavioural characteristics of LA commuters have evolved in such a way that 
they have moved more towards choosing origins and destinations in a manner which trades 
off distance for (in relative terms) improvements in commuting time. 

Turning to the results for Tmin, they show that the average commuting time is also 
higher than those reported in previous studies (Small and Song, 1992; Giuliano and Small, 
1993), however the difference is only marginally. Whereas the difference for Tact was in the 
region of 57 to 63 percent, the difference for Tmin is only 6 to 17 percent. For distance, the 
Tmin value for our study is substantially lower at 0.9 miles compared to 3.1 miles , that was 
reported by Small and Song (1992) . Overall, our results for Tmin imply substantial declines in 
travel distance but increases in travel time values for LA commuters since the 1990s. This 
suggests that jobs and housing arrangements have become more physically juxtaposed than in 
the 1990s; yet, has not led to proportional declines in the value of Tmin or Tact (for time or 
distance). In this regard, the values of Trand, measured by time, are particularly noteworthy 
because they suggest that actual commuting behaviour is, on average, only 2 minutes away 
(or 7 percent as indicated by the NCe values) from what would be expected if commuter’s 
behaved randomly. Put another way, in terms of journey time the relative results for Trand and 
Tact suggest that commuters are collectively quite close to behaving in a manner where the 
cost of separation between origins and destinations is irrelevant to them. However, when the 
input cost is distance, this trend does not hold, indicating that commuting behaviour is much 
closer to what would be expected under random conditions for time rather than distance. 
Using distance, commuters are 36 percent away from behaving randomly indicating that 
distance minimisation is more important for LA commuters than time when choosing 
residences and workplaces. In this regard, the results for Ce in LA are by and broadly 
comparable to those for Dublin, Ireland (Murphy and Killen, 2011) and similar to those found 
by Schleith et al (2016) for Columbus, Milwaukee, and Portland in the United States.   

In sum, the foregoing results suggest that the jobs-housing balance hypothesis does 
not hold in the case of LA – reducing the average distance between jobs and housing does not 
lead to expected benefits in observed commuting time/distance efficiency. In theory, workers 
in LA on average have more jobs in proximity as time progresses while in reality they are 
either unable to find a job that matches their expectations or skills nearby or willing to make 
trade-off  between job proximity and other amenities such as better schools and safer 
neighbourhoods. On the one hand, this is somewhat consistent with Giuliano (1991); however, 
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on the other, it in part highlights the importance of the match between jobs and workers’ 
expectations or skills (Benner and Karner, 2016; Stoker and Ewing, 2014).  Of course, in a 
metropolis like LA, labour division has become so sophisticated, the sprawl of certain jobs is 
so severe, and housing prices are so high in certain areas that it may also be difficult for many 
to find an appropriate job near his/her residence, or vice versa.  

Table 4: EC estimates for LA 

 Tmin Tact Trand Tmax EC 
(%) 

Cu 
(%) 

Ce 
(%) 

NCe 
(%) 

Traffic congestion not considered (TPLP, i.e., the all-or-nothing assignment) 
Results for this study 
Time (mins) 8.9 

 
36.0 

 
38.0 92.0 

 
75 33 

 
5 7 

Trips 
considered* 

1,942,191 4,686,844 NA 5,039,202 NA NA NA NA 

Dist. (miles) 0.9 

 
20.1 

 
30.9 47.6 

 
95 40 35 36 

Trips 
considered* 

4,992,857 4,686,844 NA 5,039,202 NA NA NA NA 

Small and Song’s (1992) Study** 
Time (mins) 7.6 22.1 NA NA 66 NA NA NA 
Dist. (miles) 3.1 10. 0 NA NA 69 NA NA NA 
Giuliano and Small’s (1993) Study*** 
Time (mins) 8.4 23.0 NA NA 63 NA NA NA 
Dist. (miles) NA NA NA NA 66 NA NA NA 

 
Traffic congestion considered (Initial Tmin /Tmax flow distribution based on distance), this study 
Time (mins) 2.2 

 
81.6 

 
104.3 225.2 

 
97 55 22 22 

Trips 
considered* 

4,992,857 4,686,844 NA 5,039,202 

Dist. (miles) 1.0 

 
25.2 

 
46.9 75.5 

 
96 32 46 47 

Trips 
considered* 

4,992,857 4,686,844 NA 5,039,202 

Traffic congestion considered (Initial Tmin /Tmax flow distribution based on time), this study 
Time (mins) 4.3 

 
81.6 

 
104.3 216.3 

 
94 36 22 23 

Trips 
considered* 

1,942,191 4,686,844 NA 5,039,202 

Dist. (miles) 2.4 
 

25.2 
 

46.9 75.4 
 

90 31 46 49 

Trips 
considered* 

1,942,191 4,686,844 NA 5,039,202 

*As we have no way to consider traffic congestion on centroid connectors, which are “virtual links” within TAZs, only trips 
between TAZs are considered. But even if those trips on centroid connectors were considered, they should make Tmin, Tmax 
Trand and Tact consistently smaller as centroid connectors are usually shorter than most of the travel distances between any 
two TAZs in the local transport network. 
** Their study area had 706 zones covering 1,289 square miles.  
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*** Their study area had 1,146 zones and has 10.6 million residents and 4.6 million jobs; they did not provide information on 
the land area.  
 
Impact of traffic congestion on commuting efficiency 

Table 4 shows estimates of the four EC benchmarks (Tmin, Tact, Trand, and Tmax) when traffic 
congestion (or more specifically, different road segment’s carrying capacity in relation to 
traffic volume) is considered in the assignment model set against the results where congestion 
is not considered. To derive these estimates, the model allows for two possible inputs 
regarding the optimised flow distribution in the final equilibrium of traffic flows for the 
region (i.e. for deriving Tmin): one is based on travel distance while the other is based on 
travel time (i.e. where the travel cost matrix (Cij) specified in Equation (5) is based on 
distance or time). The matrix based on travel time considers traffic congestion along the route 
network while the matrix for distance does not. The hypothesis was that traditional EC 
studies where distance is typically minimised overestimate the extent of distance-based 
commuting efficiency because they do not consider the fact that individual’s trade off time 
for distance when making commuting decisions. In other words, the optimum allocation of 
individuals from home to work is likely to be associated with longer distance minimum 
commutes on average if congestion is considered in the assignment process. 

The results are interesting because they reveal the impact of congestion in the 
optimum assignment process. Table 4 shows that when distance is minimised Tmin is 1.0 
miles on average whereas when time is minimised Tmin is 2.4 miles – more than twice that 
when distance is considered in isolation. This suggests that if we overlook road capacity 
and/or congestion, we could mistakenly assume that workers will always take the shortest 
path between their home and workplace. Our modelling results indicate that when some 
routes become congested, it can lead to significant increases in the average distance travelled 
both in terms of Tmin/Tmax but also in terms of observed commuting distance (Tact). In relation 
to the latter, it can be seen that Tact is much higher when congestion is considered indicating 
that congestion also leads to significant increases in observed travel distance and time costs. 
Specifically, Tact for distance increased from 20.1 to 25.2 miles (25 percent) while Tact for 
time increased from 36.0 to 81.6 minutes (143 per cent) when congestion is considered. This 
elucidates the fact that observed commuting time is much more likely to suffer during times 
of route congestion and as such commuters tend to place a premium on the minimisation of 
time over distance during periods of congestion. Bearing this in mind, the foregoing results 
imply that individuals trade off distance for improvements in time when making route 
choices between home and work.  

The results also suggest that traditional EC studies that rely solely on distance as the 
inter-zonal measure of commuting costs are likely significantly underestimating the true 
extent of Tmin and Tmax. Moreover, the results for EC in Table 4 show that when congestion is 
considered, it is considerably higher (between 94 and 97 percent) when time is used as the 
inter-zonal separation measure versus when no congestion is considered (75 percent). 
However, it is also notable that the EC measures for distance are similar when congestion is 
considered and not. 

Turning next to the values for Cu, Ce and NCe some interesting results also emerge. 
LA’s commuting efficiency (as measured by Cu) and commuting economy (indicated by Ce 
and NCe) when congestion is not considered is considerably higher if the input trip cost is 
measured by distance rather than time. In relation to Cu this suggests that commuters are 
consuming a greater proportion of available commuting distance capacity than time capacity 
while for Ce and NCe it suggests that LA’s commuters are much closer to behaving as random 



17 

 

commuters when commuting distance is utilised as the input versus travel time. It is also 
notable that when congestion is considered and where the input cost is measured by distance, 
commuters are much further away from behaving as random commuters (see values for Ce 
and NCe in Table 5) when compared with the Ce and NCe results presented thereby implying 
more efficient behaviour than we might have concluded by assessing only the values for 
when congestion is not considered. Ultimately, the results show that considering congestion 
in the assignment process allows us to draw quite different behavioural interpretations 
regarding the nature of the efficiency of a city regions collective commuting efficiency than if 
congestion was not considered. 

 

Discussion and conclusions 

The EC framework has evolved considerably over the last three decades to incorporate a 
range of new benchmarks, indices, disaggregated analysis by type of commuter, as well as 
application to specific local contexts. However, previous studies have rarely considered the 
impacts of road carrying capacity and traffic congestion on EC benchmarks and indices. As 
Higgins (2017) notes, congestion does increase impedance and unpredictability of travel 
times and, as a result, it can reduce an individual’s perceived control over the duration of 
their commute.  Using empirical data and modelling approaches, this study demonstrates the 
extent to which EC benchmarks and indices change when traffic congestion is taken into 
account in the assignment modelling process. The empirical results from LA indicate that 
traditional EC studies that rely solely on distance as the inter-zonal measure of commuting 
cost are likely to underestimate, in particular, the true extent of Tmin, Tact, and Tmax as well as 
the indices that rely on those values. The traditional calculation of Tmin and Tmax using the 
TPLP is based on an all-or-nothing assignment approach that assumes routes in the optimum 
assignment have unlimited carrying capacity. Quite clearly, this approach is unrealistic and 
our study utilised a modelling approach that accounts for changes in behaviour when a route 
reaches its carrying capacity and becomes congested. In overall terms, the results here 
suggest that future EC studies should take account of the carrying capacity/congestion in 
determining EC benchmarks and indices. 

In the case of LA, the results generated in this study suggest that LA’s commuting 
efficiency has changed since the 1990s in line with its land use arrangements. The Tmin results 
suggest that residences and workplaces have become more inter-mixed in LA over time. 
While this has resulted in a greater jobs-housing balance, it has not led to reductions in 
average observed commuting distances (Tact). This has notable implications for policies 
aimed at improving jobs-housing balances in cities because it suggests that greater jobs-
housing balance alone does not lead to reductions in the average length of commutes. It 
seems that improvements in jobs-housing balance has resulted in commuters trading off 
longer distance commutes for shorter time commutes which is the antithesis to improving 
environmental sustainability in the region.  Our modelling results indicate that: (1) workers 
may use an alternative route in order to avoid recurrent traffic congestion which is 
considerably longer (in distance) than the shortest path available; (2) while jobs-housing 
balance policies should be encouraged, their desired benefits in terms of reducing the overall 
distance of commuting or vehicle miles travelled (VMT) can only be achieved when there is 
no traffic congestion that forces commuters to take a longer route to minimise commute time 
rather than commute distance. Thus, in addition to achieving a balance between housing 
affordability, earnings and mixed land use (see Benner and Karner, 2016; Stoker and Ewing, 
2014), our study implies that high-quality connections (preferably via public transport) 
between jobs and housing along with sufficient carrying capacity of the related infrastructure 
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are crucial ingredients for cities and regions if they are to harvest the full benefits of jobs-
housing balance policies for reducing commuting distance and VMT.  

It is important to note the limitations of the current study and, related, the avenues it 
presents for future research. First, when considering the potential route choice of commuters, 
our model assumes that travel time (a proxy of congestion) is the only determinant for 
decision-making. It does not account for a range of other factors that might impact upon route 
choice decision-making such as available modal choice, access to real time travel information 
concerning alternative routes, trip-chaining needs, and indifference to commute time because 
of path-dependence or daily habits among many other factors as well as MAUP effects. 
Commuters, for instance, may stick to a familiar route so long as the perceived level of 
congestion and/or additional commute time does not exceed a certain threshold. In this regard, 
the introduction of a stochastic assignment approach may be useful for considering this 
dimension in future work. Second, is the issue of modal shift among commuters. Because of 
the lack of stated preference data about commuters’ mode choice, this study assumes that 
commuters who drive would always drive regardless of the level of congestion or availability 
and quality of alternative modes. This may be true in the context of the LA region, where 
driving is the preferred mode of travel and often the most feasible/convenient for the majority 
of commuters. However, in other situational contexts where public transit services are more 
competitive, modal shift is likely to play a more important role and this should be 
incorporated into the modelling framework. It is likely that the modelling results would have 
utility for better evidence-based decisions that point towards how improvements to public 
transit and/or adjustments to land uses could enhance public transit uptake. In other words, 
this study’s practical relevance could be enhanced by considering modal shift in future work.  
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