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Review
The rapid development of new computational methods and 

tools for data analysis and building predictive models has enabled 
more precise cancer prognosis. Use the prediction of the risk of 
recurrence after liver transplantation as an example, in the recent 
years, researchers and clinical practitioners have discovered sever-
al clinicopathological variables that play an important role, such as 
the number and size of tumors and the level of alpha-fetoprotein 
(AFP). There were a few significant studies of patients who under-
went primary liver transplantation; to name a few, Mazzaferro et 
al. [1] studied a cohort of 1,018 patients at three tertiary centers 
in Italy and achieved an average c-statistic of 0.780 on predicting 
5-year risk of HCC-related death using 2 variables including:

a) Sum of tumor number and size and

b) Logarithmic level of AFP.

 Ling et al. [2] studied a cohort of 1,010 patients extracted from 
the China Liver Transplant Registry database and achieved a c-sta-
tistic of 0.767 on predicting 2-year risk of HCC recurrence using 4 
variables including:

a) Cold Ischemia Time, 

b) Tumor Burden, 

 
c) Differentiation And

d) Afp.

 Mehta et al. [3] studied a cohort of 1,061 patients at 3 academic 
transplant centers including the University of California-San Fran-
cisco; Mayo Clinic, Rochester; and Mayo Clinic, Jacksonville, and 
achieved a c-statistic of 0.82 on predicting 5-year risk of HCC recur-
rence using 3 variables including:

a) Micro Vascular Invasion

b) Afp and 

c) The sum of the Largest Viable Tumor Diameter and Num-
ber of Viable Tumors on Explant. 

Agopian et al. [4] studied a cohort of 865 patients at University 
of California, Los Angeles from 1984 to 2013 and achieved a c-sta-
tistic of 0.85 on predicting 5-year risk of HCC recurrence using 8 
variables including: 

a) Nuclear Grade,

b)  Macrovascular Invasion,

c)  Milan Criteria, 
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Traditional methods to predict cancer survival include Competing-Risk Regression and Cox Proportional Hazards Regression; both require 
the hazard of input variables to be proportionate, limiting the use of non-proportionate measurements on miRNA inhibitors and inflammatory 
cytokines. They also require imputation at missing data before prediction, adding fallible workloads to the clinical practitioners. To get 
around the two requirements, we applied Restricted Boltzmann Machine (RBM) to two patient datasets including the NCCTG lung cancer 
dataset (228 patients, 7 clinicopathological variables) and the TCGA Glioblastoma (GBM) miRNA sequencing dataset (211 patients, 533 mRNA 
measurements) to predict the 5-year survival. RBM has achieved a c-statistic of 0.989 and 0.826 on the two datasets, outperforming Cox 
Proportional Hazards Regression that achieved 0.900 and 0.613, respectively.
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d) Nonincidental and Radiologic Maximum Diameter

e)  Microvascular Invasion, 

f) Neutrophil-Lymphocyte Ratio,

g)  Afp and

h) Total Cholesterol.

The first study is using Competing-Risks Regression, while the 
second, third and fourth studies are using Cox Proportional-Haz-
ards Regression to analyze the impact of potential factors on pa-
tients’ recurrence or survival. With Competing-Risks Regression, 
one focuses on the cumulative incidence function that indicates the 
probability of the event of interest happens before a certain time, 
while in Cox Proportional Hazards Regression, one instead focuses 
on the survival function that indicates the probability or survival 
beyond a certain time. Although both the Competing-Risk Regres-
sion and Cox Proportional Hazards Regression method have been 
widely adopted in biomedical research for investigating the asso-
ciation between the recurrence time and survival time of patients 
and one or more predictor variables, there are requirements to sat-
isfy for the two methods to work correctly.

One requirement is the proportionality of the hazard of the 
input variables. That is, using variables that might strengthen or 
weaken as a hazard factor of recurrence along the time in the two 
regression methods may result in a false inference. In practice, only 
some but not all variables satisfy this requirement [5]. Moreover, 
this limits the use of variables with a time-varying effect such as the 
circulating proteins (e.g., the level of some inflammatory cytokines), 
or transcriptome profile (e.g., the abundance of some miRNA inhib-
itors) to enhance the prediction performance. According to the pre-
vious studies, the c-statistic is higher when using more variables 
(say, 0.85 using 8 variables against 0.82 using 3 variables). Hence, a 
computational method that allows variables with unproportionate 
hazards along the time is needed. Another requirement of the two 
regression methods is that there must be no missing data, i.e., as 
not all the variables were measured for all the patients, either we 
reduce the number of patient samples to fulfill a broader set of us-
able variables, or we use a smaller set of variables to increase the 
number of usable patient samples. A common practice to alleviate 
the downside of missing data is to do multiple imputation before 
prediction [6]. However, multiple imputation is computationally 
intensive. Some algorithms need to be run multiple rounds to get 
the approximation, and the required runtime increases when more 
data are missing [7]. Moreover, it adds additional workloads to the 
clinical practitioners to learn not only how to do multiple imputa-
tion, but also how to identify possible imputation failures to avoid a 
“garbage in, garbage out” situation in the following prediction.

To get around the two requirements, in our study, we leveraged 
the power of Restricted Boltzmann Machine (RBM) for both the 
problem of missing data imputation and the problem of post-trans-
plantation recurrence risk prediction. RBM is an undirected, prob-
abilistic and parameterized neural network model (Figure 1). 
Although RBM has one of the simplest architectures of all neural 
networks, it is often used amongst other machine learning methods 

to extract vital information from an unknown distribution of some 
high-dimensional data. RBM captures dependencies between varia-
bles by associating an energy to each configuration of the variables 
and the training of RBM is basically finding a combination of param-
eters for the given input values so that the sum of energies reaches 
a minimum. Imputation using RBM works by clamping the value 
of the observed variables and finding configurations of the miss-
ing variables that minimize the energy. A detailed guide to training 
and using RBM were made available by Hinton et al. [8]. Previous 
studies have estimated RBM’s power in imputing high-dimension-
al datasets [9,10]. RBM has been successfully applied to imputing 
acoustic speech signal [11], but its power on imputing biomedical 
data has not been studied. In our study, we provided a best-prac-
tice and filled the gap of using RBM on biomedical data. Specifically, 
we modeled the risk prediction problem as an imputation problem 
by feeding in the known risk of post-translation recurrence during 
model training, and intentionally leave the risk blank (or more pre-
cisely, fill in a random value Gibbs sampled from its exact condi-
tional distribution) when making inference from a trained model. 
We used the RBM model implementation publicly available at the 
link “https://github.com/Cospel/rbm-ae-tf”. The code was written 
in Python using a popular machine learning platform named Ten-
sorflow, and can be modified easily. We changed the number of in-
put nodes in the code to fit our data. We also increased the number 
of hidden nodes to 50 in order to increase the model’s power to 
learn the nonlinearity and multicollinearity of the input variables, 
although it takes longer and more computational resources to train 
the model. Sigmoid was used as the activation function between the 
visible (input) layer and the hidden layer. In terms of hyperparame-
ter tuning, we used the Adam optimization algorithm with an initial 
learning rate at 0.001 as the stochastic optimization method to train 
the RBM. A sparsity penalty the same as the value of learning rate 
was applied to the training. L2 regularization (weight-decay) was 
also applied to avoid model overfitting with the lambda set to 0.9 
times the sparsity penalty. We randomized the order of the training 
samples and used 64 samples as the batch size. We held out 20% of 
the input samples as the validation data, and we stopped the model 
training when a higher scalar energy is observed in the validation 
data than the training data for continuously 5 epochs. We initiated 
the weights of the model with small random values chosen from a 
zero-mean normal distribution with a standard deviation of 0.01. 
We also initiated the biases to log $’(%%&&), where pi is the pro-
portion of training samples in which the value is non-zero. To test 
the power of our RBM model, we first used the NCCTG lung cancer 
dataset [12] that contains 228 patients and 7 clinicopathological 
variables. The dataset is freely available and was provided as a part 
of the “survival” package in the R programming language. Besides 
the institution code, survival time in days and the patients’ vital sta-
tus, the dataset contains 7 clinicopathology variables for building 
a model to predict the 5-year survival rate. The variables include:

a. Age

b. Sex

c. ECOG performance score
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d. Karnofsky performance score rated by physician

e. Karnofsky performance score rated by patient

f. Calories consumed at meals and

g. Weight loss in last six months. 

Figure 1: An RBM model consists of a visible (input) layer 
with four nodes and a hidden layer with three nodes, and 
the corresponding biases vector for both layers.

The dataset has 167 (73.25%) patients with all variables avail-
able, and the remainder is with one or more missing variables 
(Figure 2). We first studied the performance of the traditional Cox 
Proportional Hazards Regression on the 167 patients by building 
models for ten groups of samples, each group generated by ran-
domly dividing the patients into 80% for model training and 20% 
for evaluating the c-statistic (also named as AUC, the Area Under the 
Curve). The ten trained models have achieved an average c-statistic 
of 0.892 (Figure 3a). Next, in order to increase the number of usa-
ble patients for building a model, we imputed the dataset using the 
“mice” package in R with the “Predictive Mean Matching” algorithm. 
The algorithm by default have generated five imputed datasets and 
we picked the second in our study. We also built ten Cox regres-
sion models on the imputed dataset with 228 patients and achieved 
an average c-statistic of 0.900 (Figure 3b), which is slightly higher 
than without imputation. Then we worked on training RBM mod-
els. The training of the RBM model used less than a minute on a 
nVidia GTX1080 GPU and won’t exceed a couple of minutes using 
a multi-core general CPU. For those patients with missing data, we 
used different numbers of visible (input) nodes in the model, while 
the number of hidden nodes remained the same. To make inference 
from the trained RBM model, we feed the model with 

Figure 2: The summary of missing data in the NCCTG lung cancer dataset.

Figure 3: The Receiver Operating Characteristic (ROC) curve and the c-statistic (AUC) of the three different methods on the 
NCCTG lung cancer dataset.
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a. Known variables;

b. Missing variables in the visible (input) layer, each substi-
tuted by a random value Gibbs sampled from the exact condi-
tional distribution of that variable, and

c. The probability of recurrence with 0 as the initial value. 

After input, the RBM model was iterated for 500 steps to burn 
in, and we define recurrence probability >0.5 as recurrent. We also 
trained ten RBM models on ten groups of samples. The models 
achieved an outstanding average c-statistic of 0.989 (Figure 3c). 
Then, we tested RBM’s power in dealing with non-proportionate 
data. We worked on the TCGA Glioblastoma (GBM) miRNA sequenc-
ing dataset with 211 patients and 533 miRNA measurements to pre-
dict the patients’ 5-year survival [13]. The dataset is publicly avail-
able at link https://www.synapse.org/#!Synapse:syn1710282. The 
survival time in days and the patients’ vital status are in the file 
with identifier “syn1710370”. The 533 miRNA measurements are 
available in the file with identifier “syn17103768”. We also built ten 
models using Cox Regression and RBM, respectively. The average 
c-statistic of using RBM is 0.826 (Figure 4b), which significantly 
outperformed Cox Regression (Figure 4a).

Figure 4: The ROC curve and the AUC of the two different 
methods on the TCGA Glioblastoma miRNA sequencing 
dataset.

In our study, we explored using RBM on biomedical data to 
allow missing variable and the hazard of input variables to be 
non-proportionate. Instead of doing imputation and prediction in 
separated steps, RBM integrates the two steps together by mode-
ling the prediction as an imputation problem. The experiment on 
predicting the 5-year survival rate of 228 patients with 7 clinical 
pathological variables has shown that RBM model has achieved 
superior c-statistic on the raw data over using the traditional Cox 
Proportional Hazards Regression with imputed data. The exper-
iment on predicting the 5-year survival rate of 211 patients with 
533 mRNA measurements has shown that RBM surpassed the tra-
ditional method in dealing with a large amount of non-proportion-
ate input variables.
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