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Abstract

In this paper, we consider the optimal proportional reinsurance problem in a risk model with

the thinning-dependence structure, and the criterion is to minimize the probability that the value

of the surplus process drops below some fixed proportion of its maximum value to date which is

known as the probability of drawdown. The thinning dependence assumes that stochastic sources

related to claim occurrence are classified into different groups, and that each group may cause a

claim in each insurance class with a certain probability. By the technique of stochastic control

theory and the corresponding Hamilton-Jacobi-Bellman equation, the optimal reinsurance strategy

and the corresponding minimum probability of drawdown are derived not only for the expected

value principle but also for the variance premium principle. Finally, some numerical examples are

presented to show the impact of model parameters on the optimal results.

Keywords: Proportional reinsurance; Stochastic optimal control; Probability of drawdown; Thinning-

dependence structure
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1. Introduction

In recent years, research on insurance risk processes with correlated classes of business has attracted

a great deal of attention in the actuarial literature. To depict such a dependence structure among

several classes of insurance business, the so-called common-shock risk model are often used. The

problem of optimal reinsurance with common shock dependence has been studied in the past few

years. Bai et al. (2013) sought the optimal excess of loss reinsurance to minimize the ruin prob-

ability for the diffusion approximation risk model. Liang & Yuen (2016) considered the objective

of maximizing the expected exponential utility with variance premium principle, and derived the

optimal reinsurance strategy not only for the diffusion approximation risk model but also for the

compound Poisson risk model. Yuen et al. (2015) extended their work to the case with more than

two correlated classes and premiums determined using the expected value principle. Liang et al.

(2016, 2017) investigated the optimal reinsurance-investment problems in a financial market with

jump-diffusion risky asset, where the jumps in both the risky asset and insurance risk process are

correlated through a common shock.

In addition to the common-shock dependence, there exists other risk models with dependence

among claim-number processes in the literature. Yuen & Wang (2002) proposed a continuous-time

risk model with thinning dependence, in which claims in one class may induce in other classes with

certain probabilities. A typical example is that a severe car accident may cause not only the loss

of the damaged car but also the medical expenses of injured driver and passengers. Inspired by the

work of Yuen & Wang (2002), Wu & Yuen (2003) studied the thinning relation in discrete-time case.

Wang & Yuen (2005) extended the thinning-dependence structure into a more general framework,

and derived some basic properties of the risk process as well as investigated the impact of thinning

dependence on ruin probability. It is worth noting that the common-shock risk model is a special

case of the thinning risk model of Wang & Yuen (2005).

The problem of controlling risk exposures to reach a certain goal is another important research

topic, and has been studied extensively in the past few decades. For example, see Pestien &

Sudderth (1985), Browne (1997), Young (2004), Moore et al. (2006), Wang & Young (2012), Yener

(2015), and references therein. In the actuarial context, many authors including Promislow &

Young (2005), Bayraktar & Young (2008), Azcue & Muler (2013), Bäuerle & Bayraktar (2014)

and Bayraktar & Zhang (2015) adopted the objective of minimizing probability of ruin to carry
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out various optimality studies. However, in real financial markets, investors would rather prefer

maintaining the values of their surplus processes at or above a certain positive level such as a fixed

proportion of its maximum value to date. In this regard, researchers are motivated to study the

optimization problem of minimizing the so-called probability of drawdown, i.e., the probability that

the value of the surplus process drops below some fixed proportion of its maximum value to date.

Recently, Angoshtari et al.(2016a) and Han et al. (2017) investigated the minimum drawdown

probability problems over an infinite-time horizon, and showed that the optimal strategy which

minimizes the probability of ruin also minimizes the probability of drawdown if drawdown does

not happen. Besides, Chen et al. (2015) and Angoshtari et al. (2016b) both studied a lifetime

investment problem aiming at minimizing the risk of drawdown occurrence. They found that the

optimal strategy for a random (or finite) maturity setting such as lifetime drawdown is very different

from that of the corresponding ruin problem. Other earlier works related to drawndown can be

found in Grossman & Zhou (1993), Cvitanić & Karatzas (1995), and Elie & Touzi (2008).

In this paper, under the criterion of minimizing the probability of drawdown, we investigate

the optimal proportional reinsurance problem for the diffusion approximation to the model of

Wang & Yuen (2005) with thinning dependence. When the surplus follows the risk process with

thinning dependence, the special method in Bäuerle & Bayraktar (2014) does not apply. Therefore,

following the analysis of Chen et al.(2015) and Angoshtari et al.(2016a,b), we apply the technique

of stochastic control theory to tackle the optimal problem. Furthermore, the problem becomes

more challenging if we require the reinsurance proportion to lie in the interval [0, 1]. By some

nonstandard analytical analysis, we obtain explicit expressions for the optimal reinsurance strategy

and the corresponding minimum probability of drawdown for both of the expected value principle

and the variance premium principle. We find that the optimal strategies under the two different

premium principles depend not only on the safety loading but also on the claim-size distribution

and the claim-number process. Under the variance premium principle, we show that when the same

safety loading applies to all classes, a simple expression for the optimal strategy can be derived even

though the reinsurance premium formula seems more complex than the one with different safety

loadings. Interestingly, we work out an optimal retention level which holds for all classes, and falls

into the interval [0, 1]. Moreover, we can conclude that the optimal strategy for the drawdown

problem coincides with the one for the ruin problem if drawdown does not happen.

The rest of the paper is organized as follows. In Section 2, the model and the optimization
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problem are presented. Under the expected value principle, explicit expressions for the optimal

strategies and the corresponding minimum probabilities of drawdown are derived in Sections 3.

Optimal results under the variance premium principle are given in Section 4. In Section 5, we

present some numerical examples which show the impact of some model parameters on the optimal

results. Finally, we conclude the paper in Section 6.

2. Model and problem formulation

In this section, we first introduce the thinning model proposed in Wang & Yuen (2005). Suppose

that an insurance company has n dependent classes of insurance business, such as life insurance,

motor insurance, and so on. Stochastic sources related to claim occurrences of the n classes are

classified into l groups. Assume that each event in the kth (k = 1, 2, · · · , l) group may cause a claim

in the jth (j = 1, 2, · · · , n) class with probability pkj , and that there exists at least some k for each

j such that pkj > 0. With this set-up, we denote by Nk(t) the number of events from the kth group

occurred up to time t. Let Nkj(t) be the number of claims of the jth class up to time t generated

from the events in group k. Then the claim-number process Nj(t) for class j (j = 1, 2, . . . , n) takes

the form

Nj(t) = N1j(t) +N2j(t) + · · ·+Nlj(t).

Moreover, it is natural to assume that N1(t), N2(t), . . . , N l(t) are independent Poisson processes

with parameters λ1, λ2, . . . , λl, respectively, and that Nkj(t) is a homogenous Poisson process with

intensity λkpkj , i.e., Nkj(t) is the pkj−thinning of Nk(t). It is further assumed that the two

vectors of claim-number processes, (Nk(t), Nkj(t), . . . , Nkn(t)) and (Nk′(t), Nk′j(t), . . . , Nk′n(t)) are

independent for k 6= k′, and that Nk1(t), Nk2, . . . , Nkn(t) are conditionally independent given Nk(t)

for each k (k = 1, 2, . . . , l). We label these the partial independence assumptions on the claim-

number processes.

Let Yj(i) be the claim-size random variable for the ith claim in the jth class. Then, the total

amount of claims from the jth class up to time t can be expressed as

Sj(t) =

Nj(t)∑
i=1

Yj(i).
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Therefore, the aggregate claims process of the company is given by

S(t) =

n∑
j=1

Sj(t) =

n∑
j=1

Nj(t)∑
i=1

Yj(i),

where {Yj(i); i = 1, 2, . . .} are a sequence of independent and identically distributed positive random

variables having common distribution Fj with mean µj and variance σ2j for each j. As usual, we

assume that the n sequences {Y1(i); i = 1, 2, . . .}, . . . , {Yn(i); i = 1, 2, . . .} are mutually independent

and are independent of all claim-number processes.

Define the surplus process R(t) by

R(t) = u+ ct− S(t),

where u is the initial surplus, and c is the premium rate. Moreover, we allow the insurance

company to continuously reinsure a fraction of its claim with the retention level qj(·) ∈ [0, 1] for

each risk Yj(i) in class j (j = 1, 2, . . . , n), and the reinsurance premium rate at time t is δ(qt) with

qt = (q1t(·), q2t(·), . . . , qnt(·)) ∈ [0, 1]n. Furthermore, the insurer is allowed to invest all its surplus

in a risk free asset (bond or bank account) with interest rate r. Let U(t) denote the associated

surplus process, i.e., U(t) is the surplus of the insurer at time t under the strategy q. This process

then evolves as

dU(t) = [rU(t) + (c− δ(qt))]dt− dSq(t), (1)

with the initial surplus U(0) = u, where

Sq(t) =

n∑
j=1

Nj(t)∑
i=1

qjYj(i).

It follows from Wang & Yuen (2005) that Sq(t) is statistically equivalent to a compound Poisson

process

S̃q(t) =

N Ỹ
t∑

i=1

Ỹi,

where N Ỹ
t is a Possion process with intensity

λ = λ1 + λ2 + · · ·+ λl,
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and {Ỹi; i = 1, 2, . . .} are independent with common distribution FỸ having moment generating

function

MỸ (r) =
1

λ

l∑
j=1

n∏
k=1

(Mk(qkr)pjk + 1− pjk),

with Mk(r) being the moment generating function of distribution Fk for k = 1, 2, . . . , n. Further-

more, following the derivations of Yuen & Wang (2002), one can show that

ESq(t) = ES̃q(t) =
n∑
j=1

µjqj

l∑
k=1

λkpkjt,

and

V arSq(t) = V arS̃q(t) =
n∑
j=1

q2j (µ
2
j + σ2j )

l∑
k=1

λkpkjt+
l∑

j=1

n∑
k=1

n∑
i 6=k

µiµkqiqkλjpjipjkt.

Let Bt be a standard Brownian motion. Then it follows from Grandell (1991) that the Brownian

motion risk model given by

Ŝq(t) = a(q)t− b(q)Bt,

with

a(q) =
n∑
j=1

µjqj

l∑
k=1

λkpkj ,

and

b2(q) =
n∑
j=1

q2j (µ
2
j + σ2j )

l∑
k=1

λkpkj +
l∑

j=1

n∑
k=1

n∑
i 6=k

µiµkqiqkλjpjipjk (2)

can be treated as a diffusion approximation to the compound Poisson process Sq(t). Replacing

Sq(t) of (1) by Ŝq(t), one can obtain the following surplus process

dÛ(t) = [rÛ(t) + c− δ(qt)− a(qt)]dt+ b(qt)dBt, (3)

with Û(0) = u.

Define the maximum surplus value M(t) at time t by

M(t) = max

{
sup
0≤s≤t

Û(s), M(0)

}
,

where M(0) = m > 0. Note that we allow the surplus process to have a financial past and that m
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is no less than the initial surplus u by definition. Here the term ‘drawdown’ means that the value

of the surplus process reaches α ∈ [0, 1) times its maximum value. Define the corresponding hitting

time by

τα = inf{t ≥ 0 : Û(t) ≤ αM(t)}.

It is easy to see that we are in the case of minimizing the probability of ruin for the fixed ruin level

0 if α = 0. Besides, if the value of the investment fund is no less than

us =
δ(0) + a(0)− c

r
, (4)

which is the safe level defined in Angoshtari et al. (2016a), then the insurer can transfer all the

risk, and hence the surplus value will never decrease, i.e., drawdown cannot occur in this case.

In the following definition, we give the admissible set of q.

Definition 2.1: Let (Ω,F ,P) be a probability space equipped with a complete filtration Ft which is

generated by Û(s) (0 ≤ s ≤ t). A strategy q = (q1(·), q2(·), . . . , qn(·)) is said to be admissible if the

following conditions are satisfied:

(a) q = (q1(·), q2(·), . . . , qn(·)) is (Ft)t≥0 progressively measurable;

(b) qi(·) ∈ [0, 1] for i = 1, 2, . . . , n;

(c) Equation (3) for Û(t) has a unique strong solution.

The set of all admissible strategies is denoted by D.

Denote the minimum probability of drawdown by φ(u,m) which depends on the initial surplus

u and the maximum (past) value m. Specifically, φ is the minimum probability of τα <∞. Thus,

the objective function can be written as

Jq(u,m) = Pu,m(τα <∞) = Eu,m(1{τα<∞}),

where Pu,m and Eu,m denote the probability and expectation, respectively, conditional on Û(0) = u

and M(0) = m; and the corresponding value function is given by

φ(u,m) = inf
q∈D

Jq(u,m).
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3. Optimal results under expected value principle

In this section, we consider the optimization problem for the risk model (3) under the expected

value principle.

Recall the safe level us of (4). In the case of m ≥ us, we can see that if Û(0) = u ≥ us, then

drawdown is impossible; and if Û(0) = u ≤ αm, then drawdown has occurred and the game is over.

Thus, we assume that Û(0) = u ∈ [αm, us]. If Û(0) = u ≤ us, either Û(t) < us almost surely for

all t ≥ 0 or Û(t) = us for some t > 0. Since m ≥ us, M(t) = m holds almost surely for all t ≥ 0.

Therefore, avoiding drawdown is equivalent to avoiding ruin with a (fixed) ruin level of αm. On

the other hand, in the case of m ≤ us, M(t) can be larger than m, i.e., the level that we set is not

necessarily a fixed one. Based on the technique of stochastic control theory and the corresponding

Hamilton-Jacobi-Bellman equation, we obtain the optimal proportional reinsurance strategy and

the minimum probability of drawdown for both cases.

Remark 3.1: Note that when m ≥ us, the level of drawdown is not changing, then the problem

is essentially minimizing the probability of ruin. Therefore, in Angoshtari et al. (2016a) and Han

et.al (2017), the optimal results in the case of m ≥ us are derived by maximizing the ratio of

the drift of the diffusion to its volatility squared, i.e., the method used in Bäuerle and Bayraktar

(2014). However, for n-dimensional control variables (especially when n ≥ 3), it is more direct

to derive the optimal results using the technique of stochastic control theory and the corresponding

Hamilton-Jacobi-Bellman equation.

As u and m respectively indicate the initial surplus and the maximum (past) value, we only

need to consider the function f on the domain O := {(u,m) ∈ (R+)2 : αm ≤ u ≤ min(m,us)}. Let

C2,1 denote the space of f(u,m) such that f and its partial derivatives fu, fuu, fm are continuous

on O. It follows from standard arguments that if the value function φ(u,m) ∈ C2,1, then φ satisfies

the following Hamilton-Jacobi-Bellman(HJB) equation

inf
q∈D
Aqφ(u,m) = 0,

where

Aqφ(u,m) = [ru+ c− δ(q)− a(q)]φu +
1

2
b2(q)φuu. (5)

Applying the method of Angoshtari et al. (2016a), we obtain the following verification theorem.
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Theorem 3.1: (Verification Theorem) Suppose that h : O → R is a bounded continuous function

satisfying the following conditions:

(i) h(·,m) ∈ C2 (αm,min(m,us)) is a non-increasing convex function,

(ii) h(u, ·) is continuously differentiable, except possibly at us,

(iii) hm(m,m) ≥ 0 if m ≤ us,

(iv) h(αm,m) = 1,

(v) h(us,m) = 0,

(vi) Aqh ≥ 0 for q ∈ D.

Then h(u,m) ≤ φ(u,m) on O. Furthermore, suppose that the function h satisfies all the condi-

tions, and that Conditions (iii) and (vi) hold with equality for some admissible strategy q∗ defined

in feedback form (q∗1(Û(t)), q∗2(Û(t)), . . . , q∗n(Û(t))). Then we have h(u,m) = φ(u,m) on O, and

(q∗1(u), q∗2(u), . . . , q∗n(u)) is the optimal reinsurance strategy.

We now consider the following boundary-value problems and try to find a solution at which a

certain function is minimized according to Theorem 3.1.


(ru+ c)hu + min

q

[
−(δ(q) + a(q))hu + 1

2b
2(q)huu

]
= 0,

h(αm,m) = 1, h(us,m) = 0,

(6)

for αm ≤ u ≤ us ≤ m; and

(ru+ c)hu + min
q

[
−(δ(q) + a(q))hu + 1

2b
2(q)huu

]
= 0,

h(αm,m) = 1, h(us, us) = 0,

hm(m,m) = 0,

(7)

for αm ≤ u ≤ m ≤ us. Notice that once we derive the ratio of hu
huu

under the optimal strategy,

solutions to the problems can be obtained easily through some calculations. Therefore, we devote

ourselves to the study of hu
huu

in different cases.

For notational convenience, we denote

f̂(q) = [c− δ(q)− a(q)]hu +
1

2
b2(q)huu.

Before investigating the optimal problems of (6) and (7), we give the following lemma.
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Lemma 3.1: For a given scalar d1, constant vector e1 and an arbitrary positive definite matrix

A1, if f1(q) is a quadratic function of q = (q1(u), q1(u), . . . , qn(u)) in the form

f1(q) = d1 + qe1 +
1

2
qA1q

T ,

then the minimizer of f1(q) is given by

q = −(A−11 e1)
T ,

where the superscripts ‘−1’ and ‘T ’ denote the inverse of a matrix and the transpose of a matrix

or vector, respectively.

When the reinsurance premium is calculated according to the expected value principle, the

insurance premium rate is

c =
n∑
j=1

(1 + θj)µj

l∑
k=1

λkpkj ,

and the reinsurance premium rate is

δ(q) =
n∑
j=1

(1 + ηj)µj(1− qj)
l∑

k=1

λkpkj ,

where θj (j = 1, 2, . . . , n) and ηj (j = 1, 2, . . . , n) are the insurer’s and reinsurer’s safety loadings

of the n classes of the insurance business, respectively. Without loss of generality, we assume that

ηj > θj (j = 1, 2, . . . , n). Then we have

c− δ(q)− a(q) =
n∑
j=1

(θj − ηj)µj
l∑

k=1

λkpkj +

n∑
j=1

ηjµjqj

l∑
k=1

λkpkj ,

and thus

f̂(q) =
n∑
j=1

(θj − ηj)µj
l∑

k=1

λkpkjhu − qChu +
1

2
qAqThuu,
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where the matrix

A =



(µ21 + σ21)
∑l

k=1 λkpk1
∑l

j=1 µ2µ1λjpj2pj1 · · ·
∑l

j=1 µnµ1λjpjnpj1∑l
j=1 µ1µ2λjpj1pj2 (µ22 + σ22)

∑l
k=1 λkpk2 · · ·

∑l
j=1 µnµ2λjpjnpj2

...
...

. . .
...

∑l
j=1 µ1µnλjpj1pjn

∑l
j=1 µ2µnλjpj2pjn · · · (µ2n + σ2n)

∑l
k=1 λkpkn


, (8)

and the vector

C =



−η1µ1
∑l

k=1 λkpk1

−η2µ2
∑l

k=1 λkpk2

...

−ηnµn
∑l

k=1 λkpkn


.

Define 
ai = (µ2i + σ2i )

∑l
k=1 λkpki, i = 1, 2, . . . , n,

bik = bki =
∑l

j=1 µkµiλjpjkpji, i, k = 1, 2, . . . , n, i 6= k,

(9)

and

ci = −ηiµi
l∑

k=1

λkpki, i = 1, 2, . . . , n. (10)

Assumption 1: We assume that A defined in (8) is positive definite.

Under Assumption 1, the matrix Ahuu is also positive definite since huu > 0. It follows from

Lemma 3.1 that the minimizer q̂ = (q̂1(u), q̂1(u), . . . , q̂n(u)) of f̂(q) is given by

q̂ = (A−1C)T
hu
huu

. (11)

Note that we cannot make sure whether or not the reinsurance strategy q̂ = (q̂1(u), q̂1(u), . . . , q̂n(u))

in (11) belongs to the interval [0, 1]n. Before investigating the optimal reinsurance strategy, we

present Lemma 3.2 which plays a key role in the following discussion.

Lemma 3.2: A continuous and strictly convex function ψ(x) : Rn → R is defined on a closed

convex set Ω. If the stationary point is located in Rn\Ω, then the minimum value is on ∂Ω, i.e.,
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the boundary of Ω.

In the following subsections, we restrict our attention to solve the optimization problem for the

thinning model with n dependent classes of insurance business.

3.1. The case of n = 2

When n = 2, the minimizer of f̂(q̂1(u), q̂2(u)) has the form


q̂1(u) =

a2c1 − b12c2
a1a2 − b212

· hu
huu

,

q̂2(u) =
a1c2 − b12c1
a1a2 − b212

· hu
huu

,

(12)

where b12, ai and ci (i = 1, 2) are given by (9) and (10), respectively. After some calculations, the

following lemma can be obtained.

Lemma 3.3: For n = 2, the following two statements hold:

(i) a1a2 − b212 > 0;

(ii) Inequalities a2c1 − b12c2 > 0 and a1c2 − b12c1 > 0 cannot hold true at the same time.

Proof : It follows from (9) that

a1a2 − b212 =
(
µ21 + σ21

)∑l
k=1 λkpk1 ·

(
µ22 + σ22

)∑l
k=1 λkpk2 −

(∑l
j=1 µ1µ2λjpj1pj2

)2
≥
(
µ21 + σ21

) (
µ22 + σ22

)∑l
k=1 λkp

2
k1

∑l
k=1 λkp

2
k2 −

(∑l
j=1 µ1µ2λjpj1pj2

)2
≥
(
µ21 + σ21

) (
µ22 + σ22

)
(
∑l

k=1 λkpk1pk2)
2 −

(∑l
j=1 µ1µ2λjpj1pj2

)2
> 0.

The second inequality above comes from the Hölder inequality. Moreover, if a2c1 − b12c2 > 0, i.e,

c1 >
b12c2
a2

, then

a1c2 − b12c1 < a1c2 − b12 ·
b12c2
a2

=
c2
a2

(a1a2 − b212) < 0,

because ci < 0 (i = 1, 2). Along the same lines, one can show that if a1c2− b12c1 > 0, then we have

a2c1 < b12c2. 2
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If Condition (i) of Theorem 3.1 holds, then we must have hu
huu

< 0. Therefore, to find the

optimal strategies in D, we need to examine the optimal problem in the following three cases.

Case 1 : a2c1 − b12c2 ≤ 0 and a1c2 − b12c1 ≤ 0 (i.e., q̂1(u) ≥ 0, q̂2(u) ≥ 0),

Case 2 : a2c1 − b12c2 ≥ 0 and a1c2 − b12c1 ≤ 0 (i.e., q̂1(u) ≤ 0, q̂2(u) ≥ 0),

Case 3 : a2c1 − b12c2 ≤ 0 and a1c2 − b12c1 ≥ 0 (i.e., q̂1(u) ≥ 0, q̂2(u) ≤ 0).

We first discuss Case 1: a2c1 − b12c2 ≤ 0 and a1c2 − b12c1 ≤ 0. In this case, q̂1(u) ≥ 0 and

q̂2(u) ≥ 0. If 0 ≤ q̂1(u) ≤ 1 and 0 ≤ q̂2(u) ≤ 1 hold, then q∗1(u) = q̂1(u), q∗2(u) = q̂2(u). Inserting

(q∗1(u), q∗2(u)) = (q̂1(u), q̂2(u)) into (5) and putting Aqh(u,m) = 0, we obtain

1

ξ11(u)
=

hu
huu

=
2(ru+41)(a1a2 − b212)2

42
, (13)

where 
41 =

∑2
j=1(θj − ηj)µj

∑l
k=1 λkpkj < 0,

42 = a1a
2
2c

2
1 + a21a2c

2
2 + 2b312c1c2 − a1b212c22 − a2b212c21 − 2a1a2b12c1c2.

Lemma 3.4: In Case 1, inequality 42 > 0 holds.

Proof : It follows from the form of 42 that

42 = a2c
2
1(a1a2 − b212) + a1c

2
2(a1a2 − b212)− 2c1c2b12(a1a2 − b212)

= (a1a2 − b212)(a1c22 + a2c
2
1 − 2c1c2b12)

≥ (a1a2 − b212)(2c1c2
√
a1a2 − 2c1c2b12) > 0,

where the last inequality is due to Lemma 3.3. 2

Substituting hu
huu

of (13) back into (12), we obtain


q̂1(u) =

2[ru+ ∆1](a1a2 − b212)(a2c1 − b12c2)
∆2

,

q̂2(u) =
2[ru+ ∆1](a1a2 − b212)(a1c2 − b12c1)

∆2
.

(14)
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Let 
u1 =

1

r

[
∆2

2(a1a2 − b212)(a2c1 − b12c2)
−∆1

]
,

u2 =
1

r

[
∆2

2(a1a2 − b212)(a1c2 − b12c1)
−∆1

]
,

it is easy to see that q̂1(u1) = 1 and q̂2(u2) = 1.

For simplicity, we assume that u1 < u2 as similar results can be obtained for u1 > u2. It follows

from Lemma 3.4 that q̂1(u) and q̂2(u) are decreasing functions in u. Thus, when u2 ≤ u ≤ us,

we have 0 ≤ q̂1(u) < 1 and 0 ≤ q̂2(u) ≤ 1, and hence q∗1(u) = q̂1(u) and q∗2(u) = q̂2(u). On the

other hand, when u < u2, we have q̂2(u) > 1. So, we have to choose q∗2(u) = 1, and derive the

corresponding

q̃1(u) =
c1
a1

hu
huu
− b12
a1
.

Therefore, if 0 ≤ q̃1(u) ≤ 1, we have q∗1(u) = q̃1(u) and q∗2(u) = 1. Substituting them into (5) and

letting Aqh(u,m) = 0 yield

1

ξ12(u)
=

hu
huu

= −
a1

(
ru+ ∆1 − c2 + b12c1

a1

)
− a1

√(
ru+ ∆1 − c2 + b12c1

a1

)2
+

c21(a1a2−b212)
a21

c21
. (15)

Then it is easy to show that

q̃1(u) =

(
ru+ ∆1 − c2 + b12c1

a1

)
−
√(

ru+ ∆1 − c2 + b12c1
a1

)2
+

c21(a1a2−b212)
a21

c1
− b12
a1
. (16)

Note that q̃1(u) is also a decreasing function in u. Let

ũ1 =
1

r

[
a1c1 − a2c1 + 2b12c2 + 2a1c2

2(a1 + b12)
−∆1

]
.

Then we have q̃1(ũ1) = 1. After some tedious calculations, we show in Appendix B that ũ1 < u2

under the assumption of u1 < u2. Therefore, we can come to the conclusion that when ũ1 ≤ u < u2,

we have 0 ≤ q̃1(u) ≤ 1, and thus q∗1(u) = q̃1(u). Finally, when u < ũ1, we have to choose q∗1(u) = 1

and q∗2(u) = 1. Inserting (q∗1(u), q∗2(u)) = (1, 1) into (5) yields

1

ξ13(u)
=

hu
huu

= − a21 + a22 + 2b12
2(ru+ ∆1 − c1 − c2)

. (17)
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To summarize, we give the optimal reinsurance strategy and the corresponding minimum prob-

ability of drawdown for the case of m ≥ us with a2c1 − b12c2 ≤ 0 and a1c2 − b12c1 ≤ 0 in the

following theorem.

Theorem 3.2: Suppose that a2c1−b12c2 ≤ 0 and a1c2−b12c1 ≤ 0. Let ξ11(u), ξ12(u) and ξ13(u) be

given in (13), (15) and (17), respectively; q̂i (i = 1, 2) and q̃1 be given in (14) and (16), respectively;

and g1i (i = 1, 2, 3) be given in Appendix A.1. If us ≤ m, then the minimum probability of drawdown

for the surplus process (3) is given by

φ(u,m) =



1− g11(u,m)

g13(us,m)
, αm ≤ u < max(αm, ũ1),

1− g12(u,m)

g13(us,m)
, max(αm, ũ1) ≤ u < max(αm, u2),

1− g13(u,m)

g13(us,m)
, max(αm, u2) ≤ u ≤ us,

for any u ∈ [αm, us], and the corresponding optimal reinsurance strategy is

(q∗1, q
∗
2) =



(1, 1) , αm ≤ u < max(αm, ũ1),

(q̃1(u), 1), max(αm, ũ1) ≤ u < max(αm, u2),

(q̂1(u), q̂2(u)), max(αm, u2) ≤ u ≤ us.

(18)

Proof : Because h in (6) satisfies the differential equation as well as the boundary conditions,

taking the integral of hu over [αm, u] yields

h(u,m) = 1 + d1

∫ u

αm
exp

{∫ y

αm
ξ(w)dw

}
dy.

Therefore, when max(αm, u2) ≤ u ≤ us, we have

h(u,m) = 1 + d1 · g13(u,m),

where

d1 = − 1

g13(us,m)
.

It follows from the continuity of h that the results for the other two cases, i.e., max(αm, ũ1) ≤ u <
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max(αm, u2) and αm ≤ u < max(αm, ũ1), can be obtained along the same lines. By Appendix C,

it is straightforward to show that h satisfies Conditions (i), (ii), (iv), (v) and (vi) of Theorem 3.1.

Condition (iii) is moot because m ≥ us. Thus, we have φ = h, and (q∗1, q
∗
2) given by (18) is the

optimal reinsurance strategy. 2

In the next theorem, the optimal results for the case of m ≤ us with a2c1 − b12c2 ≤ 0 and

a1c2 − b12c1 ≤ 0 are presented.

Theorem 3.3: Suppose that a2c1−b12c2 ≤ 0 and a1c2−b12c1 ≤ 0. Let ξ11(u), ξ12(u) and ξ13(u) be

given in (13), (15) and (17), respectively; q̂i (i = 1, 2) and q̃1 be given in (14) and (16), respectively;

and g1i, f1i (i = 1, 2, 3) be given in Appendix A.1. For m ≤ us,

(i) if max(αm, u2) ≤ m ≤ us, the minimum probability of drawdown for the surplus process (3) is

given by

φ(u,m) =



1− k13(m) · g11(u,m)

g13(us, us)
, αm ≤ u < max(αm, ũ1),

1− k13(m) · g12(u,m)

g13(us, us)
, max(αm, ũ1) ≤ u < max(αm, u2),

1− k13(m) · g13(u,m)

g13(us, us)
, max(αm, u2) ≤ u ≤ m ≤ us,

(19)

for any u ∈ [αm,m], where

k13(m) = exp

{∫ us

m
−f13(y)dy

}
;

(ii) if max(αm, ũ1) ≤ m < max(αm, u2), the minimum probability of drawdown for the surplus

process (3) is given by

φ(u,m) =


1− k12(m) · g11(u,m)

g13(us, us)
, αm ≤ u < max(αm, ũ1),

1− k12(m) · g12(u,m)

g13(us, us)
, max(αm, ũ1) ≤ u ≤ m ≤ u2,

(20)

for any u ∈ [αm,m], where

k12(m) = exp

{(∫ u2

m
−f12(y)−

∫ us

u2

f13(y)

)
dy

}
;

(iii) if αm ≤ m < max(αm, ũ1), the minimum probability of drawdown for the surplus process (3)
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is given by

φ(u,m) = 1− k11(m) · g11(u,m)

g13(us, us)
, (21)

for any u ∈ [αm,m], where

k11(m) = exp

{(∫ ũ1

m
−f11(y)−

∫ u2

ũ1

f12(y)−
∫ us

u2

f13(y)

)
dy

}
.

Also, the corresponding optimal reinsurance strategy has the form

(q∗1, q
∗
2) =



(1, 1) , αm ≤ u ≤ m < max(αm, ũ1),

(q̃1(u), 1), max(αm, ũ1) ≤ u ≤ m < max(αm, u2),

(q̂1(u), q̂2(u)), max(αm, u2) ≤ u ≤ m ≤ us.

(22)

Proof : We present the proof for the case of m ∈ [max(αm, u2), us] only. The proofs for m ∈

[max(αm, ũ1),max(αm, u2)) andm ∈ [αm,max(αm, ũ1)) can be derived similarly. When max(αm, u2) ≤

u ≤ m ≤ us, the general solution to (7) has the form

h(u,m) = 1 + d1(m) · g13(u,m).

Using the condition of hm(m,m) = 0, one can show that

d1(m) = − 1

g13(us, us)
exp

{∫ us

m
−f13(y)dy

}

with f13 given in Appendix A.1. Along the same lines, we can derive the results for the other two

cases shown in (19).

It is not difficult to see that h satisfies Conditions (iv), (v) and (vi) of Theorem 3.1. Besides,

in Appendix C, we prove that h(u,m) is a non-increasing convex function in u but an increasing

function in m. Then the only item remaining to show is that the expressions given in (19), (20)

and (21) as well as their derivatives with respect to u and m are continuous at u = ũ1, u = u2,

m = ũ1, m = u2 and m = us. The proof is similar to Han et al. (2017), so we omit the details here.

Thus, h also satisfies Conditions (i), (ii) and (iii). Therefore, we have φ = h with the optimal

reinsurance strategy (q∗1, q
∗
2) given in (22). 2
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Remark 3.2: Note that the relationship between αm and ũ1 (u2) is uncertain. Since we are

only interested in u ∈ [αm, us], max(αm, ũ1) and max(αm, u2) are used in the expressions for the

optimal results which depend on the values of α and m.

We now switch our attention to Case 2: a2c1 − b12c2 ≥ 0 and a1c2 − b12c1 ≤ 0. In this case,

q̂1(u) ≤ 0 and q̂2(u) ≥ 0, and thus we have to choose q∗1(u) = 0 based on which we obtain

q̄2(u) =
c2
a2

hu
huu

> 0.

If 0 ≤ q̄2(u) ≤ 1, we get q∗2(u) = q̄2(u), and

1

ξ21(u)
=

hu
huu

=
2a2(ru+ ∆1)

c22
. (23)

Thus, we have

q̄2(u) = −2(∆1 + ru)

a2η2
. (24)

Let

u′2 =
1

r

(c2
2
−∆1 + c1

)
. (25)

It is not difficult to see that q̄2(u
′
2) = 1. In particular, when u′2 ≤ u ≤ us, we have 0 ≤ q̄2(u) ≤ 1.

However, when u ≤ u′2, we have to choose q∗1(u) = 0 and q∗2(u) = 1. It follows that

1

ξ22(u)
=

hu
huu

= − a2
2(ru+ ∆1 − c2)

. (26)

Theorem 3.4: Suppose that a2c1 − b12c2 ≥ 0 and a1c2 − b12c1 ≤ 0. Let ξ21(u) and ξ22(u)

be given in (23) and (26), respectively; q̄2 and u′2 be given in (24) and (25), respectively; and

g2i, f2i (i = 1, 2) be given in Appendix A.2. If us ≤ m, then for any u ∈ [αm, us], the minimum

probability of drawdown for the surplus process (3) is given by

φ(u,m) =


1− g21(u,m)

g22(us,m)
, αm ≤ u < max(αm, u′2),

1− g22(u,m)

g22(us,m)
, max(αm, u′2) ≤ u ≤ us.

For m ≤ us, (i) if max(αm, u′2) ≤ m ≤ us, then for any u ∈ [αm,m], the minimum probability of
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drawdown for the surplus process (3) is given by

φ(u,m) =


1− k22(m) · g21(u,m)

g22(us, us)
, αm ≤ u < max(αm, u′2),

1− k22(m) · g22(u,m)

g22(us, us)
, max(αm, u′2) ≤ u ≤ m ≤ us,

where

k22(m) = exp

{∫ us

m
−f22(y)dy

}
;

(ii) if αm ≤ m < max(αm, u′2), then for any u ∈ [αm,m], the minimum probability of drawdown

for the surplus process (3) is given by

φ(u,m) = 1− k21(m) · g21(u,m)

g22(us, us)
,

where

k21(m) = exp

{(∫ u′2

m
−f21(y)−

∫ us

u′2

f22(y)

)
dy

}
.

Also, the corresponding optimal reinsurance strategy has the form

(q∗1, q
∗
2) =


(0, 1) , αm ≤ u < min(max(αm, u′2),m),

(0, q̄2(u)), max(αm, u′2) ≤ u ≤ min(m,us).

Proof : Since one can derive the results by using arguments similar to those in the proof of

Theorem 3.2 and Theorem 3.3, we omit the details here. 2

In Case 3: a2c1 − b12c2 ≤ 0 and a1c2 − b12c1 ≥ 0, we have q̂1(u) ≥ 0 and q̂2(u) ≤ 0. Following

the derivations in Case 2, we can get the following result.

Theorem 3.5: Suppose that a2c1 − b12c2 ≤ 0 and a1c2 − b12c1 ≥ 0. Let ξ31(u), ξ32(u), u′1 and

g3i (i = 1, 2) be given in Appendix A.3. If us ≤ m, then for any u ∈ [αm, us], the minimum

probability of drawdown for the surplus process (3) is given by

φ(u,m) =


1− g31(u,m)

g32(us,m)
, αm ≤ u < max(αm, u′1),

1− g32(u,m)

g32(us,m)
, max(αm, u′1) ≤ u ≤ us.
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For m ≤ us, (i) if max(αm, u′1) ≤ m ≤ us, then for any u ∈ [αm,m], the minimum probability of

drawdown for the surplus process (3) is given by

φ(u,m) =


1− k32(m) · g31(u,m)

g32(us, us)
, αm ≤ u < max(αm, u′1),

1− k32(m) · g32(u,m)

g32(us, us)
, max(αm, u′1) ≤ u ≤ m ≤ us,

where

k32(m) = exp

{∫ us

m
−f32(y)dy

}
;

(ii) if αm ≤ m < max(αm, u′1), then for any u ∈ [αm,m], the minimum probability of drawdown

for the surplus process (3) is given by

φ(u,m) = 1− k31(m) · g31(u,m)

g32(us, us)
,

where

k31(m) = exp

{(∫ u′1

m
−f31(y)−

∫ us

u′1

f32(y)

)
dy

}
.

Finally, the corresponding optimal reinsurance strategy has the form

(q∗1, q
∗
2) =


(1, 0) , αm ≤ u < min(max(αm, u′1),m),

(q̄1(u), 0), max(αm, u′1) ≤ u ≤ min(m,us),

where

q̄1(u) = −2(∆1 + ru)

a1η1
.

Remark 3.3: Note that if we set the two reinsurance safety loadings equal, i.e., η1 = η2, it is not

difficult to show that both a2c1− b12c2 ≥ 0 and a1c2− b12c1 ≥ 0 never hold, i.e., we have only Case

1 left. In particular, when the reinsurance safety loadings of the two classes differ greatly, we can

guarantee that c1 is larger or smaller than both b12c2
a2

and a1c2
b12

, and thus Case 2 or Case 3 holds.

Example 5.2 also illustrates this property for n = 3.

Remark 3.4: Note that when m ≥ us, avoiding drawdown is equivalent to avoiding ruin with a

(fixed) ruin level of αm. From the expressions for the optimal reinsurance policy in each case, we see

that, for a specific level of net surplus u0, the optimal drawdown policy, in some sense, follows the
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optimal ruin policy until drawdown happens. In fact, as was mentioned in Remark 3.2 of Angoshtari

et al. (2016a), we can also conclude that the same reinsurance strategy minimizes the expectation

of any function that is non-increasing in the minimum surplus value and non-decreasing in the

maximum surplus value, if the differential equation remains the same. The changes only happen in

the boundary conditions.

3.2. The case of n ≥ 3

In this subsection, we investigate the optimization problem for the thinning model with more than

two (n ≥ 3) dependent classes of insurance business. For n ≥ 3, the feasible region Ω is [0, 1]n.

Recall the minimizer of q̂ of (11). Two possible scenarios are as follows:

• if for i = 1, 2, . . . , n, q̂i(u) ∈ [0, 1], then q∗i (u) = q̂i(u), and the minimum probability of

drawdown is φq̂(u,m);

• if for some i, q̂i(u) /∈ [0, 1], Lemma 3.2 implies that the minimizer is on ∂Ω. Under the

definition of admissible control in D, the feasible region is convex polyhedron. For q =

(q1(u), q2(u), . . . , qn(u)), we consider qj(u) (j = 1, 2, . . . , n) taking a value of 0 or 1, and hence

there are 2n combinations of optimal problems whose dimensions are n − 1. Therefore, the

corresponding drawdown probability of the original problem is the one which is the minimum

of these 2n optimal results. In these 2n optimal problems, if some minimizers are out of the

feasible region, then repeat the steps above to get the minimizer of the problem.

To illustrate how the optimal results can be obtained in the two scenarios, we take n = 3 as

an example. To keep things simple, we constrain the reinsurance proportion in the interval [0,∞).

For qi(u) ∈ [0, 1], the insurer has a proportional reinsurance cover. On the other hand, the case

with qi(u) ∈ (1,∞) may be thought of as acquiring new business. Therefore, the feasible region Ω

is [0,∞)3.

In the first scenario with n = 3, q∗i (u) = q̂i(u) for i = 1, 2, 3. Inserting the optimal strategy

back into (5) and letting Aqh(u,m) = 0, it can be shown that

hu
huu

=
2(ru+ 4̄1)

CT (A−1)TC
,
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where

4̄1 =
n∑
j=1

(θj − ηj)µj
l∑

k=1

λkpkj .

Thus,

q∗ =
2(ru+ 4̄1)(A

−1C)T

CT (A−1)TC
,

and the corresponding minimum probability of drawdown is φq̂(u,m).

In the second scenario with n = 3, q̂i(u) /∈ [0,∞) for some i. Parallel to the analysis for n = 2,

we consider the boundary of Ω which is formed by the following three faces:

D1 = (q1(u), q2(u), q3(u))|q1(u) = 0, q2(u) ≥ 0, q3(u) ≥ 0),

D2 = (q1(u), q2(u), q3(u))|q1(u) ≥ 0, q2(u) = 0, q3(u) ≥ 0),

D3 = (q1(u), q2(u), q3(u))|q1(u) ≥ 0, q2(u) ≥ 0, q3(u) = 0).

Therefore, we need to investigate the optimal reinsurance strategy in these three faces. The fol-

lowing steps show how the optimal reinsurance strategy is derived:

S1. Let q1(u) = 0. Differentiating Aqφ(u,m) with respect to qi(u) (i = 2, 3) and setting

Aqφ(u,m)
qi(u)

= 0, we have 
q̂102 (u) =

a3c2 − b23c3
a2a3 − b223

· hu
huu

,

q̂103 (u) =
a2c3 − b23c2
a2a3 − b223

· hu
huu

.

If q̂10i (u) ∈ [0,∞) (i = 2, 3), then the minimizer of function φ(u,m) in D1 is q∗10 =

(0, q̂102 (u), q̂103 (u)). We denote the corresponding probability of drawdown by φ10(u,m). If

for some i, q̂10i (u) /∈ [0,∞), we need to find the minimizers on the boundary of D1, i.e.,

D11 = {(0, 0, q3(u))|q3(u) ≥ 0}, D12 = {(0, q2(u), 0)|q2(u) ≥ 0}.

Let q1(u) = q2(u) = 0. Differentiating Aqφ(u,m) with respect to q3 yields

q̂10203 (u) =
c3
a3
· hu
huu
≥ 0.
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Along the same lines, we have

q̂10302 (u) =
c2
a2
· hu
huu
≥ 0.

Under the strategy (0, 0, q̂10203 (u)) and (0, q̂10302 (u), 0), we denote the corresponding probability

of drawdown by φ1020(u,m) and φ1030(u,m), respectively. It follows that

φ10(u,m) = min {φ1020(u,m), φ1030(u,m)} ,

and

q∗10 =


(0, 0, q̂10203 (u)), if φ1020(u,m) < φ1030(u,m),

(0, q̂10302 (u), 0), if φ1020(u,m) ≥ φ1030(u,m).

S2. Mimicking the steps in S1, one can find the minimizer q∗i0 and the corresponding minimum

probability of drawdown φi0(u,m) in Di (i = 2, 3), respectively.

S3. It follows from the results in S1 and S2 that the minimum probability of drawdown in Ω is

φ(u,m) = min{φ10 , φ20 , φ30};

and the corresponding optimal reinsurance proportional strategy is

q∗ =



q̂∗10 , if φ(u,m) = φ10(u,m),

q̂∗20 , if φ(u,m) = φ20(u,m),

q̂∗30 , if φ(u,m) = φ30(u,m).

Remark 3.5: Suppose that l = n+1, plj = 1 for j = 1, 2, . . . , n, pij = 0 (i 6= j) for i, j = 1, 2, . . . , n,

and pii = 1 for i = 1, 2, . . . , n. Then the resulting risk model becomes the risk model with common

shock studied in Yuen et al.(2015) in which the optimal proportional reinsurance problem under

the criterion of maximizing the expected utility of terminal wealth was examined. Under the model

of Yuen et al. (2015), Han et.al (2017) investigated the optimal proportional reinsurance problem

with the objective of minimizing the probability of drawdown. With n = 2, one can verify that the
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optimal results given in Theorems 3.2-3.5 coincide with those in Han et al. (2017) .

4. Optimal results under variance premium principle

In this section, we discuss the problems given by (6) and (7) under the variance premium principle

based on which the insurance premium rate has the form

c =
n∑
j=1

µj

l∑
k=1

λkpkj +
n∑
j=1

θ̄j(µ
2
j + σ2j )

l∑
k=1

λkpkj ,

and the reinsurance premium rate can be expressed as

δ(q) =
n∑
j=1

µj(1− qj)
l∑

k=1

λkpkj +
n∑
j=1

η̄j(1− qj)2(µ2j + σ2j )
l∑

k=1

λkpkj , (27)

where θ̄j (j = 1, 2, . . . , n) and η̄j (j = 1, 2, . . . , n) are the insurer’s and reinsurer’s safety loadings of

the n classes of the insurance business, respectively. Again, we assume that η̄j > θ̄j (j = 1, 2, . . . , n).

Thus, we obtain

c− δ(q)− a(q) =
n∑
j=1

(θ̄j − η̄j)(µ2j + σ2j )
l∑

k=1

λkpkj +
n∑
j=1

η̄j(2qj − q2j )(µ2j + σ2j )
l∑

k=1

λkpkj .

Then it follows that

f̂(q) =
∑n

j=1(θ̄j − η̄j)(µ2j + σ2j )
∑l

k=1 λkpkjhu + 2Dqhu −
1

2
qBqThu +

1

2
qAqThuu

=
∑n

j=1(θ̄j − η̄j)(µ2j + σ2j )
∑l

k=1 λkpkjhu + 2Dqhu +
1

2
q(Ahuu −Bhu)qT ,

where the matrix

B =



2η1(µ
2
1 + σ21)

∑l
k=1 λkpk1 0 · · · 0

0 2η2(µ
2
2 + σ22)

∑l
k=1 λkpk2 · · · 0

...
...

. . .
...

0 0 · · · 2ηn(µ2n + σ2n)
∑l

k=1 λkpkn


,
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and the vector

D =



η1(µ
2
1 + σ21)

∑l
k=1 λkpk1

η2(µ
2
2 + σ22)

∑l
k=1 λkpk2

...

ηn(µ2n + σ2n)
∑l

k=1 λkpkn


.

Obviously, the matrix B is positive definite. Under Assumption 1, we know that the matrix A is

positive definite, and hence the matrix Ahuu −Bhu is also positive definite. Therefore, it follows

from Lemma 3.1 that

q̂ = 2DT (B−A
huu
hu

)−1.

Note that once the ratio of hu
huu

is derived, one can carry out the analysis presented in Section 3 to

study the problem. However, even though we can show that hu
huu

is the solution to the equation

2DT (B−A
huu
hu

)−1D = −(ru+ c− δ(0)),

for q∗ = q̂, explicit expression for hu
huu

cannot be obtained easily.

When the reinsurance safety loadings for all classes are the same, it may be possible to derive

explicit expressions for the optimal results. Therefore, in the rest of this section, we focus on

investigating the optimization problem with a common reinsurance safety loading.

δ(q) =
∑n

j=1 µj(1− qj)
∑l

k=1 λkpkj + Λ̄

(∑n
j=1(1− qj)2(µ2j + σ2j )

∑l
k=1 λkpkj

+
∑l

j=1

∑n
k=1

∑n
i 6=k µiµk(1− qi)(1− qk)λjpjipjk

)
,

(28)

where Λ̄ is the common reinsurance safety loading. Using b2(q) of (2), we get

c− δ(q)− a(q) = Λb2(1)− Λ̄

(∑n
j=1(1− qj)2(µ2j + σ2j )

∑l
k=1 λkpkj

+
∑l

j=1

∑n
k=1

∑n
i 6=k µiµk(1− qi)(1− qk)λjpjipjk

)
,

where 1 = (1, 1, . . . , 1), and Λ is the safety loading of the insurer. Without loss of generality, we
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assume that Λ̄ > Λ. Thus, we have

f̂(q) = (Λ− Λ̄)b2(1)hu − Λ̄qAqThu + 2Λ̄qD1hu + 1
2qAq

Thuu

= (Λ− Λ̄)b2(1)hu + 2Λ̄qD1hu + 1
2q(Ahuu− 2Λ̄Ahu)qT ,

where the vector

D1 =



(µ21 + σ21)
∑l

k=1 λkpk1 +
∑l

j=1

∑n
k 6=1 µkµ1λjpjkpj1

(µ22 + σ22)
∑l

k=1 λkpk2 +
∑l

j=1

∑n
k 6=2 µkµ2λjpjkpj2

...

(µ2n + σ2n)
∑l

k=1 λkpkn +
∑l

j=1

∑n
k 6=n µkµnλjpjkpjn


.

Note that D1 = A1T . Then, under Assumption 1, it follows from Lemma 3.1 that the minimizer

of f̂(q) is given by

q̂ =
2Λ̄

2Λ̄− huu
hu

1.

For hu
huu

< 0, it is easy to see that q̂ = (q̂1(u), q̂1(u), . . . , q̂n(u)) falls into the interval [0, 1]n, i.e.,

q∗ = q̂.

In the following lemma, we present the form of huu
hu

under the optimal strategy.

Lemma 4.1: When q∗ = q̂, one can show that

ξ(u) =
huu
hu

=
2ruΛ̄ + 2ΛΛ̄b2(1)

ru+ (Λ− Λ̄)b2(1)
. (29)

Proof : When the reinsurance premium is calculated by the variance premium principle with a

common safety loading for all classes, we have the corresponding HJB equation

[ru+ (Λ− Λ̄)b2(1)]hu + inf
q∈D

{
2Λ̄qD1hu − Λ̄qAqThu +

1

2
qAqThuu

}
= 0.

Instituting q = q∗ back into the equation, we have

[ru+ (Λ− Λ̄)b2(1)] +
2Λ̄21D1

2Λ̄− huu
hu

= 0.
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Noting that b2(1) = 1D1, one can show that (29) holds. 2

In the following theorem, we present the solution to our optimization problem under the variance

premium principle.

Theorem 4.1: Let ξ(u) be given in (29). Then the minimum probability of drawdown on O :=

{(u,m) ∈ (R+)2 : αm ≤ u ≤ min(m,us)} is given by

φ(u,m) =


1− g(u,m)

g(us,m)
, αm ≤ u ≤ us ≤ m,

1− k(m) · g(u,m)

g(us, us)
, αm ≤ u ≤ m ≤ us,

where

g(u,m) =

∫ u

αm
exp

{∫ y

αm
ξ(w)dw

}
dy,

and

k(m) = exp

{
−
∫ us

m
f(y)dy

}
with

f(y) = α

[
1

g(y, y)
+ ξ(αy)

]
;

and the corresponding optimal reinsurance strategy is given by

q∗ = −ru+ (Λ− Λ̄)b2(1)

Λ̄b2(1)
1. (30)

Proof : Following the arguments and steps in Theorem 3.2 and Theorem 3.3, we can derive the

solutions to problems (6) and (7), and prove that h satisfies all the conditions stated in Theorem

3.1. Finally, we have φ = h with the optimal reinsurance strategy q∗ given in (30). 2

Remark 4.1: Note that the corresponding safe level us equals to

(Λ̄− Λ)b2(1)

r

under the variance premium principle. Then we see that the inequality

ru+ (Λ− Λ̄)b2(1) < 0
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holds for any u ∈ [αm,min(m,us)]. Besides, it is not difficult to see that

ru+ (Λ− Λ̄)b2(1)

Λ̄b2(1)
= 1− ru+ Λb2(1)

Λ̄b2(1)
< 1.

Therefore, one can show that the optimal strategy q∗ belongs to [0, 1]n.

Remark 4.2: Even though the reinsurance premium rate given in (28) looks more complex than

the one given in (27), it leads to a simpler expression for the optimal strategy, which exactly falls

into the interval [0, 1]n and perfectly equals to each other. Furthermore, the optimal strategies

under the two different premium principles both depend not only on the safety loading but also on

the claim-size distribution and the claim-number process. However, comparing with the influence

under the expected value principle, the impact of the claim-size and the claim-number process is

rather smaller when the reinsurance premium is calculated by the variance premium principle (see

Examples 5.4-5.6 for details). This observation can be explained by the expression given in (30),

where the impact of the claim size distributions and the counting processes is somehow cancelled

out when the reward of risk-free investment is relatively small.

Remark 4.3: If α = 0, then we are in the case of minimizing the probability of ruin for the fixed

level 0. Also, it follows from (4) that the safe level approaches ∞ as r tends to 0. Our correspond-

ing optimal results in this case coincide with those in Liang & Yuen (2017) (they studied the same

optimization problem with the objective of minimizing ruin probability for the risk model with thin-

ning dependence). Furthermore, as was mentioned in Remark 3.4, we can see from Theorem 4.1

that the optimal strategy in relation to drawdown probability is in some sense equal to the optimal

strategy associated with ruin probability. Therefore, in our model, if drawdown has not happened,

the optimal strategy in relation to drawdown probability follows the optimal strategy associated with

ruin probability not only for the expected value principle but also for the variance premium principle.

5. Numerical examples

In this section, we provide six examples to show the optimal reinsurance strategy and the effect

of different parameters on the optimal results. Examples 5.1∼5.5 is under the expected value

principle, while Example 5.6 is under the variance premium principle.

The first example presents the optimal reinsurance strategy with two dependent classes of

insurance business and two groups of stochastic sources, i.e., n = l = 2, p11 = p22 = 1.
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Example 5.1: In this example, we set u = 5, r = 0.05, µ1 = µ2 = 1, σ21 = 0.75, σ22 = 0.25,

θ1 = θ2 = 0.12, λ1 = 4, λ2 = 5, p12 = 0.3 and p21 = 0.5. Here we consider two pairs of (η1, η2). For

(0.22, 0.28), the results are given in Table 5.1. For (0.3, 0.15), the results are shown in Table 5.2.

Table 5.1 Optimal strategy for (η1 = 0.22, η2 = 0.28)

i q̂i q∗i

1 0.4084 0.5228

2 1.2672 1

Table 5.2 Optimal strategy for (η1 = 0.3, η2 = 0.15)

i q̂i q∗i

1 1.1326 1

2 0.3264 0.3992

Example 5.2 involves three classes of insurance business and three groups of stochastic sources,

i.e., n = l = 3, p11 = p22 = p33 = 1. Here q∗i (u) ∈ [0,∞). For q∗i (u) ∈ [0, 1], the insurer has a

proportional reinsurance cover. For q∗i (u) ∈ (1,∞), it may be thought of as acquiring new business.

Example 5.2: In this example, we set u = 20, r = 0.05, µ1 = µ2 = µ3 = 1, σ21 = 0.49,

σ22 = 0.36, σ23 = 0.25, θ1 = θ2 = θ3 = 0.12, λ1 = 3, λ2 = 4, λ3 = 5, p12 = p13 = p23 = 0.3 and

p21 = p31 = p32 = 0.5. Again, we consider two triplets of (η1, η2, η2). They are (0.2, 0.25, 0.3) and

(0.2, 0.4, 0.35). The results are summarized in Tables 5.3 and 5.4.

Table 5.3 Optimal strategy for (η1 = 0.2, η2 = 0.25, η3 = 0.3)

i q̂i q∗i

1 0.2525 0.2525

2 0.4255 0.4255

3 0.9460 0.9460
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Table 5.4 Optimal strategy for (η1 = 0.2, η2 = 0.4, η3 = 0.35)

i q̂i q∗i0 φ̂i0 q∗i

1 -0.1129 (0, 1.3164, 1.0499) 0.1816 0

2 1.3034 (0.1641, 0, 2.4166) 0.3067 1.3164

3 1.1234 (0.2078, 2.1810, 0) 0.2582 1.0499

In Table 5.4, since the minimizer q̂ = (−0.1129, 1.3034, 1.1234) /∈ [0,∞)3, we investigate q∗i0

and the corresponding minimum φ̂i0 (i = 1, 2, 3), respectively. By comparing φ̂i0 for i = 1, 2, 3, we

get the optimal reinsurance strategy.

In the following examples, with two dependent classes of insurance business and two groups

of stochastic sources, we show how the initial surplus u and the maximum (past) value m affect

the the optimal reinsurance strategy and its corresponding minimum probability of drawdown. We

also present the impact of η1, η2, p12 and σ21 on the optimal strategy.

Example 5.3: In this example, we set r = 0.05, α = 0.2, µ1 = µ2 = 1, σ21 = 0.75, σ22 = 0.25,

θ1 = θ2 = 0.12, η1 = 0, 22, η2 = 0.28, λ1 = 4, λ2 = 5, p12 = 0.3 and p21 = 0.5. The results are

shown in Figure 1.

−20 −10 0 10 20 30 40
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

u

( 
 q

1*
, 
q

2*
)

 

 

usu2ũ1
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Figure 1: The influence of u and m on the optimal reinsurance results

We see from Figure 1 that the optimal reinsurance strategy (q∗1, q
∗
2) decreases as u increases.

According to (14) and (16), it is not difficult to prove that q∗1 and q∗2 are decreasing functions of u,
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and independent of m. Meanwhile, the corresponding minimum probability of drawdown φ(u,m)

is a decreasing function of u but an increasing function of m. We give the proof of this property

in Appendix C for both cases of m ≥ us and m ≤ us. These observations are kind of reasonable.

When the value of the surplus increases toward us, the insurer can transfer all the risk to the

reinsurer. As a result, wealth will never decrease, and drawdown cannot happen. On the other

hand, the drawdown level increases as the maximum (past) value m increases. This in turn makes

drawdown more likely.

Example 5.4: In this example, we set u = 10, r = 0.05, µ1 = µ2 = 1, σ21 = 0.75, σ22 = 0.25,

θ1 = θ2 = 0.12, λ1 = 4, λ2 = 5, p12 = 0.3 and p21 = 0.5. The results are shown in Figure 2. We set

η2 = 0.22 in Figure 2(a), and η1 = 0.22 in Figure 2(b).
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Figure 2: The influence of η1 and η2 on the optimal reinsurance strategy

Figure 2 examines the influence of the reinsurer’s safety loadings, i.e., η1 and η2 on the optimal

reinsurance strategy. It is easy to see that a greater value of ηi (i = 1, 2) yields a greater value of

q∗i (i = 1, 2), which illustrates the intuition that if the reinsurance premium increases, the insurer

would rather retain a greater share of each claim by purchasing less reinsurance. We also see that as

the value of η1(η2) increases, the retention level of the other class first increases and then decreases

after reaching a certain level. When the company keep buying less reinsurance for one class, it

eventually needs to reduce the risk of its insurance portfolios by buying a bit more reinsurance for

another class. In Figure 2(b), when η2 > η′, we have q∗2 = 1 and a constant q∗1. This phenomenon

can be explained by the expression for q∗1 given in (16), which is independent of η2.
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Example 5.5: In this example, we set u = 10, r = 0.05, µ1 = µ2 = 1, σ22 = 0.25, θ1 = θ2 = 0.12,

η1 = η2 = 0.2, λ1 = λ2 = 4 and p21 = 0.5. The results are shown in Figure 3.
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Figure 3: The influence of p12 and σ21 on the optimal reinsurance strategy

Figure 3 shows that a greater value of p12 yields a greater value of q∗2, but the monotonicity

does not apply to q∗1. Besides, we observe that a greater value σ21 yields a smaller value of q∗1 but a

greater value of q∗2. It makes sense because a greater value of σ1 and p12 implies a larger insurance

risk in class 1. To reduce the risk, the insurer tends to purchase more reinsurance for class 1 when

the value of the σ1 or p12 gets larger. On the other hand, for a fixed σ22, the insurer would like to

retain a bit more in class 2 as the risk in class 1 increases.

Example 5.6: In this example, we set u = 10, r = 0.05, µ1 = µ2 = 1, σ22 = 0.25, Λ = 0.12,

λ1 = λ2 = 4 and p21 = 0.5. The results are shown in Figure 4.

Figure 4 illustrates the impact of the parameters of Λ̄, p12 and σ21 on the optimal strategy

under the variance premium principle. It shows that the strategy q∗ increases as Λ̄ increases, and

this monotonicity is similar to the one under the expected value principle. We also observe that

a greater value of σ21 and p12 yields a greater value of the optimal reinsurance strategy q∗. This

phenomenon is in line with (30). Furthermore, comparing with Figure 2 and Figure 3 under the

expected value principle, we see from Figure 4 that the impact of p12 and σ21 on the optimal strategy

is relatively smaller when the reinsurance premium is calculated according to the variance premium

principle.

33



0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Λ

  
q

*

 

 

σ2
1
=0.25

σ2
1
=0.64

σ2
1
=0.81

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

 p
12

  
q

*

 

 

σ2
1
=0.25

σ2
1
=0.64

σ2
1
=0.81

(a) (b)
Figure 4: The influence of Λ̄, p12 and σ21 on the optimal reinsurance strategy

6. Conclusion

We first recap the main results of this paper. From an insurer’s point of view, we consider the

optimal proportional reinsurance problem to minimize the probability of drawdown in a diffusion

approximation risk model with thinning-dependence. Using the technique of stochastic control the-

ory and the corresponding Hamilton-Jacobi-Bellman equation, we derive the optimal reinsurance

strategy and the corresponding minimized probability of drawdown under the expected value prin-

ciple and the variance premium principle. Our results show that the optimal reinsurance strategy

strongly depends on the value of the initial surplus u, and the expression under the expected value

principle is very different from the one under the variance premium principle.

Although the literature on optimal reinsurance is increasing rapidly, there are still many in-

teresting problems that deserve investigation. For further research, one can discuss other types

of reinsurance such as excess-of-loss reinsurance or combined reinsurance in the risk model with

thinning-dependence. Another interesting research topic is to consider the optimization problem

with a more general objective function such as minimizing the expectation of some function that

is non-increasing with respect to the minimum surplus value or non-decreasing with respect to the

maximum surplus value. Apart from reinsurance, one may consider taking the life time of individ-

ual τd into consideration so as to investigate the problem of optimal insurance which minimizes the

probability of lifetime drawdown.
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Appendix A Auxiliary functions

A.1. The functions g1i and f1i (i = 1, 2, 3) are given by



g11(u,m) =

∫ u

αm
exp

{∫ y

αm
ξ13(w)dw

}
dy,

g12(u,m) =

∫ αm∨ũ1

αm
exp

{∫ y

αm
ξ13(w)dw

}
dy

+

∫ u

αm∨ũ1
exp

{(∫ αm∨ũ1

αm
ξ13(w) +

∫ y

αm∨ũ1
ξ12(w)

)
dw

}
dy,

g13(u,m) =

∫ αm∨ũ1

αm
exp

{∫ y

αm
ξ13(w)dw

}
dy

+

∫ αm∨u2

αm∨ũ1
exp

{(∫ αm∨ũ1

αm
ξ13(w) +

∫ y

αm∨ũ1
ξ12(w)

)
dw

}
dy

+

∫ u

αm∨u2
exp

{(∫ αm∨ũ1

αm
ξ13(w) +

∫ αm∨u2

αm∨ũ1
ξ12(w) +

∫ y

αm∨u2
ξ11(w)

)
dw

}
dy;
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and

f1i(y) =



α

[
1

g1i(y, y)
+ ξ11(αy)

]
, if u2 < αm,

α

[
1

g1i(y, y)
+ ξ12(αy)

]
, if ũ1 ≤ αm ≤ u2,

α

[
1

g1i(y, y)
+ ξ13(αy)

]
, if αm < ũ1.

A.2. The functions g2i and f2i (i=1,2) are given by



g21(u,m) =

∫ u

αm
exp

{∫ y

αm
ξ22(w)dw

}
dy,

g22(u,m) =

∫ αm∨u′2

αm
exp

{
−2

∫ y

αm
ξ22(w)dw

}
dy

+

∫ u

αm∨u′2
exp

{
−2

(∫ αm∨u′2

αm
ξ22(w) +

∫ y

αm∨u′2
ξ21(w)

)
dw

}
dy;

and

f2i(y) =


α

[
1

g2i(y, y)
+ ξ21(αy)

]
, if u′2 ≤ αm,

α

[
1

g2i(y, y)
+ ξ22(αy)

]
, if αm < u′2.

A.3. The functions g3i and f3i (i=1,2) are given by



g31(u,m) =

∫ u

αm
exp

{∫ y

αm
ξ32(w)dw

}
dy,

g32(u,m) =

∫ αm∨u′1

αm
exp

{∫ y

αm
ξ32(w)dw

}
dy

+

∫ u

αm∨u′1
exp

{(∫ αm∨u′1

αm
ξ32(w) +

∫ y

αm∨u′1
δ31(w)

)
dw

}
dy,

with ξ3i (i = 1, 2) and u′1 given by



ξ31(u) = − c21
2a1(ru+ ∆1)

,

ξ32(u) = −2(ru+ ∆1 − c1)
a1

,

u′1 =
1

r

(c1
2
−∆1 + c2

)
;
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and

f3i(y) =


α

[
1

g3i(y, y)
+ ξ31(αy)

]
, if u′1 ≤ αm,

α

[
1

g3i(y, y)
+ ξ32(αy)

]
, if αm < u′1.

Appendix B Proof of ũ1 < u2 when u1 < u2

Note that

u2 − ũ1 =
1

r

[
∆2

2(a1a2 − b212)(a1c2 − b12c1)
− a1c1 − a2c1 + 2b12c2 + 2a1c2

2(a1 + b12)

]

=
∆2(a1 + b12)− (a1c1 − a2c1 + 2b12c2 + 2a1c2)(a1a2 − b212)(a1c2 − b12c1)

2r(a1a2 − b212)(a1c2 − b12c1)(a1 + b12)

=
(b212 − a1a2)

(
c2(b12c2 − a2c1) + c1(a1c2 − c1b12) + (a1c

2
2 − a2c21)

)
2r(a1a2 − b212)(a1c2 − b12c1)(a1 + b12)

.

(B.1)

Under the assumption of u1 < u2, we have

a2c1 − c2b12 > a1c2 − c1b12.

Then it follows from Lemma 3.3 that

(b212 − a1a2)
(
c2(b12c2 − a2c1) + c1(a1c2 − c1b12) + (a1c

2
2 − a2c21)

)
< (b212 − a1a2)(b12c22 − a2c1c2 − c1c2b12 + a1c

2
2)

= c2(b
2
12 − a1a2)(c2b12 − a2c1 − c1b12 + a1c2)

< 0.

In Case 1, we have a1c2 − b12c1 ≤ 0, and thus the denominator of (B.1) is non-positive. So, we

have ũ1 < u2.
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Appendix C Proof of monotonicity and convexity of h

If m ≥ us, we have

h(u,m) = 1− g13(u,m)

g13(us,m)
,

for αm < ũ1 < u2 ≤ u ≤ us. Differentiating φ(u,m) with respect to m yields

hm(u,m) =
α (g13(us,m)− g13(u,m))

g213(us,m)
≥ 0.

If m ≤ us, we have

h(u,m) = 1− k13(m) · g13(u,m)

g13(us, us)
,

where

k13(m) = exp

{∫ us

m
−f13(y)dy

}
,

with

f13(y) = α

[
1

g13(y, y)
+ ξ13(αy)

]
,

for αm < ũ1 < u2 ≤ u ≤ m ≤ us. It follows that

hm(u,m) = − k13(m)

g13(us, us)
· [f13(m)g13(u,m)− αξ13(αm)g13(u,m)− α]

=
α · k13(m)

g13(us, us)
·
[
1− g13(u,m)

g13(m,m)

]
≥ 0.

Besides, it is not difficult to see that

∂g13(u,m)

∂u
= exp

{(∫ αm∨ũ1

αm
ξ13(w) +

∫ αm∨u2

αm∨ũ1
ξ12(w) +

∫ u

αm∨u2
ξ11(w)

)
dw

}
> 0,

and
∂g213(u,m)

∂u2
=
∂g13(u,m)

∂u
· ξ13(u) < 0.

Thus, we have hu < 0 and huu > 0. Along the same lines, we can get the same results for other

cases. Therefore, we conclude that h(u,m) is a non-increasing convex function with respect to the

surplus wealth u but a non-decreasing function with respect to the maximum (past) value m.
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