
Computational Statistics manuscript No.
(will be inserted by the editor)

Efficient computation of multivariate empirical distribution functions at the observed
values

David Lee · Harry Joe

Received: date / Accepted: date

Abstract Consider the evaluation of model-based functions of cumulative distribution functions that are integrals. When
the cumulative distribution function does not have a tractable form but simulation of the multivariate distribution is easily
feasible, we can evaluate the integral via a Monte Carlo sample, replacing the model-based distribution function by the
empirical distribution function. Given a simulation sample of size N , the naive method uses O(N2) comparisons to compute
the empirical distribution function at all N sample vectors. To obtain faster computational speed when N needs to be large
to achieve a desired accuracy, we propose methods modified from the popular merge sort and quicksort algorithms that
preserve their average O(N log2 N ) complexity in the bivariate case. The modified merge sort algorithm can be extended to
the computation of a d-dimensional empirical distribution function at the observed values with O(N logd−1

2 N ) complexity.
Simulation studies suggest that the proposed algorithms provide substantial time savings when N is large.

Keywords Integral evaluation · Joint probabilities ·Monte Carlo simulation · Sorting algorithms

1 Introduction

There are some functionals of a multivariate cumulative distribution function (cdf) where evaluation is most easily imple-
mented based on the empirical cdf evaluated at each point of a large simulated sample. In this case, it is important to efficiently
compute the empirical cdf at the observed values.

Let F (y1, . . . , yd ) be a d-dimensional, absolutely continuous cdf. Analytic or numerical evaluation of integrals of the form∫
h (F (y1, . . . , yd )) g(y1, . . . , yd ) dF (y1, . . . , yd ), (1)

where h : Rd → R is a possibly non-linear function that involves F, is subject to the availability of a tractable cdf. If this is
not the case, but simulation from F is computationally easy, then it may be practical to evaluate (1) via Monte Carlo (MC)
simulation using the sample counterpart

1
N

N∑
i=1

h
(
F̂ (Yi1, . . . ,Yid )

)
g(Yi1, . . . ,Yid ), (2)

where Y 1, . . . ,YN , Y i = (Yi1, . . .Yid )ᵀ, is a random sample from F, and

F̂ (Yi1, . . . ,Yid ) =
1
N

N∑
m=1

1 {Ym1 ≤ Yi1, . . . ,Ymd ≤ Yid } (3)

David Lee
Department of Statistics, University of British Columbia
Vancouver, BC, Canada V6T 1Z4
E-mail: david.lee@stat.ubc.ca, dav001@gmail.com

Harry Joe
Department of Statistics, University of British Columbia
Vancouver, BC, Canada V6T 1Z4



2 David Lee, Harry Joe

is the empirical cdf atY i based on the sample, with 1{A} being the indicator function for the event A. In the following, assume
g,h are continuous and h(F) ·g is integrable with respect to F, so that the convergence of (2) to (1) in probability as N → ∞ is
guaranteed via the Glivenko-Cantelli theorem and the law of large numbers. The following example gives a possible situation
when such MC evaluation is necessary, together with a quantity of practical interest that has the form (1).

Model examples. Some multivariate models with parsimonious structures have cdf’s that are numerically intractable but sim-
ulation is relatively easy. Examples include high-order factor copulas (Krupskii and Joe (2013)), Markov trees and truncated
vine copulas (Bedford and Cooke (2001); Brechmann et al (2012)). Vine copulas have a tractable density so that likelihood
inference is possible, but some joint marginal cdf’s are not computationally tractable. The vine and factor models use bivariate
copulas as building blocks for the construction of high-dimensional distributions. The bivariate linkages are between observed
and latent variables in the case of factor copulas, and among the observed variables for Markov trees and vine copulas. Their
stochastic representations allow easy model simulation, but a p-factor copula cdf has a p-dimensional integral, while a d-
dimensional regular vine copula cdf is typically an integral with dimension O(d). Thus, it may not be feasible to evaluate (1)
directly.

Example of quantities involving the expectation of a function of the cdf. An example of quantity that has the form (1), with
g being a constant, is the limiting variance of the Kendall’s τ for a bivariate margin ( j, k) with cdf Fjk . The limiting variance
of the sample version, τ̂jk , can be derived using theory of U-statistics (Hoeffding (1948)), and is given by

lim
n→∞

nVar(τ̂jk ) = 16
∫ [

Fjk (y j , yk ) + F jk (y j , yk )
]2

dFjk (y j , yk ) − 4(τjk + 1)2,

where τjk is the true value and F jk (y j , yk ) is the bivariate survival function1. The models discussed in the preceding example
may have Fjk ’s that are intractable. If F is parametrized with a vector parameter θ and the model is fitted by maximum
likelihood, and the model-based Kendall’s τ (denoted as τ̂jk,θ̂) is obtained based on the parameter estimate θ̂, then under
certain regularity conditions, we have

√
n
(
τ̂jk,θ̂ − τjk,θ0

) d
→ N

(
0,
∂τjk,θ0

∂θᵀ
I−1 ∂τjk,θ0

∂θ

)
by the delta method, where θ0 is the true value of θ, I is the Fisher information matrix and

τjk,θ = 4
∫

Fjk (y j , yk ;θ) dFjk (y j , yk ;θ) − 1 = 4
∫ ∫

Fjk (y j , yk ;θ) f jk (y j , yk ;θ) dy jdyk − 1

is the population Kendall’s τ, with the latter expression valid when Fjk is absolutely continuous with density f jk . Then

∂τjk,θ0

∂θ
= 4

∫ ∫ [
∂Fjk (y j , yk ;θ0)

∂θ
f jk (y j , yk ;θ) + Fjk (y j , yk ;θ0)

∂ f jk (y j , yk ;θ0)
∂θ

]
dy jdyk (4)

= 4
∫ [

F jk (y j , yk ;θ0) + Fjk (y j , yk ;θ0)
] ∂ log f jk (y j , yk ;θ)

∂θ
dFjk (y j , yk ;θ0),

where the last equality follows via two applications of integration by parts on the first term inside the integrand in (4). This
has the form of (1) with a bivariate cdf, and has to be evaluated numerically in order to obtain a variability estimate of τ̂jk,θ̂ if
τjk,θ0 has no analytic expression.

To compute (2), we need to obtain the empirical cdf at each of the N simulated values or observations. For d fixed,
the naive way to do this is to make O(N ) comparisons for each of the N observations, for a total of O(N2) complexity.
This can be prohibitively costly when N is large, in order for the MC-based evaluation to reach a desired level of accuracy.
We suggest more efficient methods for this purpose as modifications of either the merge sort or quicksort algorithms (see,
e.g., Knuth (1998); Cormen et al (2009)). The proposed methods preserve the O(N log2 N ) average complexity of these two
common sorting algorithms. To illustrate the main idea of the modified algorithms, we initially focus on bivariate empirical
distributions. Then we show how the modified method based on the merge sort can be extended to higher dimensions.

The rest of the paper is organized as follows. In Section 2 we describe the modified merge sort and quicksort algorithms
for the computation of bivariate empirical cdf’s at the observed values through the use of counters. The modification of the
merge sort algorithm for the calculation of higher-dimensional empirical cdf’s is described in Section 3. Section 4 contains
simulation studies that compare the computational efficiency of various methods, where it is demonstrated that the time savings
are substantial for practical MC sample sizes. Section 5 has some concluding remarks.

1 The relationship 1
{
Ymj ≥ Yi j , Ymk ≥ Yik

}
= 1

{
−Ymj ≤ −Yi j , −Ymk ≤ −Yik

}
allows one to obtain the empirical survival function at the same

order of complexity as the empirical cdf. We therefore only focus on the cdf in this paper.



Multivariate empirical distribution functions 3

2 The modified merge sort and quicksort algorithms for computation of the bivariate empirical cdf

We provide an overview of the merge sort and quicksort algorithms, and their connection to the computation of bivariate
empirical cdf’s in Section 2.1. The proposed modifications of these algorithms are given in Sections 2.2 and 2.3. Section 2.4
addresses the issues concerning non-absolutely-continuous distributions, when ties are possible.

2.1 Computation of the bivariate empirical cdf using sorting algorithms

The merge sort and quicksort are two common sorting algorithms for a single variable. Based on the divide-and-conquer
principle, each has O(N log2 N ) average complexity and is more efficient than some simple algorithms such as the insertion
and selection sort algorithms, which have O(N2) average complexity. The merge sort algorithm starts with pairs of elements,
which are compared and sorted. These sorted pairs are then merged, two at a time, to yield sorted subsequences each of length
4. The procedure is repeated until the full sorted sequence is retrieved. There are O(N ) comparisons in each layer of the
procedure, but there are only O(log2 N ) layers as each merge reduces the number of groups by half. This results in a total of
O(N log2 N ) comparisons to be made regardless of the initial degree of “sortedness” of the data. Meanwhile, the quicksort
algorithm starts from the full sequence. At each iteration, a pivot is chosen and each element is compared to this pivot; all
smaller elements are brought to one side of the pivot and the larger elements to the other side, thus forming two subsequences
and completing the sorting of the pivot (i.e., the pivot is at its final position). This is repeated for each subsequence until every
element has been sorted. The choice of the pivot can influence the efficiency of the quicksort. If the pivot is such that the
resulting subsequences are very unbalanced, at most O(N ) iterations are necessary and the worst-case complexity is O(N2).

Computation of the bivariate empirical cdf (expression (3) with d = 2) requires only the ranks of the data to be known.
Without loss of generality, assume that each of the vectors {Y11, . . . ,YN1} and {Y12, . . . ,YN2} is a scrambled sequence of the
integers {1, . . . ,N }, without ties due to the assumption of F being absolutely continuous. Suppose the vector {Y11, . . . ,YN1}

has been sorted by an efficient algorithm (i.e., with O(N log2 N ) complexity) to result in the sorted sequence {Yk1,1, . . . ,YkN ,1},
where k j is the index of the jth smallest observation, j = 1, . . . ,N , so that the problem amounts to finding the sequential rank
with respect to the second index. That is, for each of the Yk j ,2’s, we find its rank among the elements {Yk1,2, . . . ,Yk j ,2}, as
the rest {Yk j+1,2, . . . ,YkN ,2} are such that their corresponding first indices Yk j+1,1, . . . ,YkN ,1 are all larger than Yk j ,1 and hence
the indicator function in (3) evaluates to zero. In the following, we describe the algorithms to achieve this, and for brevity in
notation we assume {Y11, . . . ,YN1} is the sorted increasing sequence with corresponding second variable {Y12, . . . ,YN2}.

2.2 The modified merge sort algorithm

To compute the sequential rank for each element in {Y12, . . . ,YN2}, we can use a modified merge sort algorithm by adding a
counter associated with each element; the pseudocode is displayed in Algorithm 1. In each merge operation involving two
vectors, “left” and “right”, the counter associated with an element x in the “right” vector is incremented by the number of
elements from the “left” vector already inserted into the output vector. The reasoning is that these elements are smaller than x,
but have not been counted in the previous merge operations. Elements from the “right” vector inserted before x are not counted
as they have already been considered in a previous merge operation. The counters for elements in the “left” vector are left
untouched, as (locally) there are no elements preceding them. Figure 1 shows this procedure graphically with 8 observations.
A number is added to the top right corner of a digit if its counter has to be incremented; for easier understanding, that number
is the increment arising from that merge operation only, and the table on the right keeps track of the increments. The row
labelled “total” gives the total number of lesser elements preceding each of them; to match the definition (3), 1 should be
added to each final count to include the element itself, and then the count should be divided by N to obtain the empirical
distribution function at (Yi1,Yi2).

After executing the Sort function in Algorithm 1, the ith entry of the vector z contains the sequential rank for the element i
(not for the ith element). This can be rearranged to the order of appearance of the elements at O(N ) complexity. This algorithm
makes use of the fact that the vector y used for sorting contains distinct integers, so that each observation (with value y1[i] or
y2[ j] in the algorithm) maps uniquely to one index of the z vector.

2.3 The modified quicksort algorithm

Alternatively, the sequential rank of a vector can be computed based on a modification of the quicksort algorithm. As men-
tioned in Section 2.1, the pivot should be chosen carefully to minimize the possibility of reaching O(N2) complexity. A
fixed-location pivot is not suitable as trends in the data may result in very unbalanced subsequences. An example is when



4 David Lee, Harry Joe

Algorithm 1 The modified merge sort algorithm for a bivariate empirical cdf (modifications within functions are boxed)
1: Input is the matrix (Y11,Y12), . . . , (YN1,YN2), where Y 1 = Y11, . . . ,YN1 are sorted and Y 2 = Y12, . . . ,YN2 are paired accord-

ingly. Convert Y 1 and Y 2 to the marginal ranks 1, . . . ,N . In the following, the vector Y 2 is the input variable y.

2: initialize global variable z a vector of zeros of the same length as y

3: function Sort(y) . The main merge sort function; recursive
4: N ← length(y)
5: if N = 1 then
6: return y

7: else
8: m ← bN/2c
9: y1 ← Sort(y[1:m]); y2 ← Sort(y[(m + 1):N])

10: y ← Merge(y1, y2)
11: return y

12: end if
13: end function

14: function Merge(y1, y2) . The function to sort and merge two subsequences
15: N1 ← length(y1); N2 ← length(y2); N ← N1 + N2
16: initialize i ← 1, j ← 1, k ← 1
17: initialize b← 0 . Counts the number of “left" vector elements entered
18: initialize y of length N
19: while i ≤ N1 and j ≤ N2 do
20: if y1[i] ≤ y2[ j] then
21: y[k]← y1[i]; b← b + 1; i ← i + 1
22: else
23: y[k]← y2[ j]; z[y2[ j]]← z[y2[ j]] + b; j ← j + 1
24: end if
25: k ← k + 1
26: end while
27: if i ≤ N1 then . If “left" vector not yet exhausted
28: fill in the rest of y with remaining content of the “left" vector
29: end if
30: if j ≤ N2 then . If “right" vector not yet exhausted
31: fill in the rest of y with remaining content of the “right" vector
32: increment z (at indices of remaining “right" elements) by b
33: end if
34: return y

35: end function

36: Increment every element of z by 1, and then divide by N to obtain the empirical distribution function at the N observations;
the rth element of z corresponds to the sth observation where Ys2 = r .

the bivariate observations have perfect positive or negative dependence, and the first or last element is chosen as the pivot.
This amounts to sorting an already sorted vector and each step only reduces the length of the longer sequence by 1. Statistical
applications typically involve bivariate observations that are related to each other (in the sense that a trend, not necessarily
monotone, can be detected on a scatterplot). To mitigate this issue, we adopt a random pivot (Section 7.3 of Cormen et al
(2009)) where each element of a subsequence has the same probability to be chosen.

There are various implementations of the quicksort algorithm. We use the one that results in a stable sort, i.e., preserving
the order in case of ties, at the expense of extra storage space. Although in-place quicksort is possible with minimal additional
storage, this variant is not stable and is much harder to modify to suit our needs.

In our modification, we again introduce a counter associated with each element. During the scanning of an input vector
and placement of its elements into an output vector, we keep track of the number of elements (denoted as b) whose values are
smaller than the pivot. When an element larger than the pivot is scanned, we increment the associated counter by b; when the



Multivariate empirical distribution functions 5

Fig. 1 Illustration of the modified merge sort with N = 8 elements. Elements in grey are those coming from the “left” vector and are thus eligible for counting
if a larger element from the “right” vector enters after them. The smaller digit at the top right corner of each box is the counter for that merge operation. The
row for “total” indicates the number of smaller elements to the left of each observation; the bivariate empirical distribution function at (Yi1, Yi2) is obtained
by adding 1 to the “total” and then dividing the number by N .

pivot itself is scanned, we increment its counter by b and then increase b by 1, so that subsequent elements that are larger than
the pivot will count the pivot as a smaller preceding number. This ensures that no increment is missed and that comparisons
leading to the increment of an counter will not be made again at a later stage of the sorting. An example of the modified
quicksort in action, based on the same 8 observations as in Section 2.2, is shown in Figure 2. For simplicity in illustration, the
middle element (or the (N/2)-th element if the subsequence is of an even length N) is chosen as the pivot and highlighted in
grey. Each step places elements sequentially to the left of the pivot if they are smaller, or to the right otherwise. The pivot is
then highlighted in black, signifying that it has been sorted. The pseudocode of the modified quicksort is given in Algorithm
2. As with the modified merge sort, 1 is to be added to every element of the counter after the whole procedure, and then the
count be divided by N to obtain the empirical distribution function at (Yi1,Yi2).

2.4 Accounting for ties for non-absolutely-continuous distributions

If the bivariate distribution is discrete or mixed discrete/continuous, it is possible to have ties in the observed values and
their corresponding ranks. Both Algorithms 1 and 2 are stable sorts and preserve the order when there are ties. However, the
mapping to the counter (variable z in these algorithms) should be done using a second array, so that identical values in the
input vector map to different indices in z. In addition, there are several possibilities that must be considered, depending on
whether the ties occur in the first or second variable:

– If ties occur in the first variable (i.e., Ym1) but not the second (i.e., Ym2, elements of the vector being fed into the proposed
algorithms), then the second variable should act as the tiebreaker when sorting the first one.

– If ties occur in the second variable but not the first, then the algorithm is still applicable after implementing the aforemen-
tioned change of unique mapping to the z vector.

– If there are identical entries (same first and second variables), it is necessary to accommodate for them using alternative
methods, such as pre-populating the z vector with non-zero entries. Since the sequential rank algorithm does not search
beyond the current observation, it cannot detect the presence of identical entries that will lead to 1{Ym1 ≤ Yi1,Ym2 ≤ Yi2} =

1 for some m after the current observation i.

3 Trivariate and higher-dimensional generalization

In this section, we illustrate how the modified merge sort can be adapted to compute the empirical cdf for trivariate distri-
butions. By iterating, the method extends to higher-dimensional empirical cdfs. The idea is that the algorithm flags the left



6 David Lee, Harry Joe

Fig. 2 Illustration of the modified quick sort with N = 8 elements. Elements in grey are the pivots chosen for the next step; they are highlighted in black in
the next step as they rest in their final locations. The smaller digit at the top right corner of each box is the counter for that scan operation. The smaller digit
at the bottom left corner is the order of scanning for that element, and is used to assist in counting the increment for the pivot and elements to the right of
it. The row for “total” indicates the number of smaller elements to the left of each observation; the bivariate empirical distribution function at (Yi1, Yi2) is
obtained by adding 1 to the “total” and then dividing the number by N .

elements for each sort/merge procedure of the second variable as being ineligible for counter increment, as there are no el-
ements preceding them. The corresponding third variables are then sorted, starting by pairs and up to subsequences of the
same length as the current iteration of the sorting for the second variable. Taking into account the relative locations of the
elements for the second variable, the sorting procedure for the third variable tracks the number of smaller elements in both
the second and third variables, and increments the counters accordingly. Specifically, the counter for an element x may only
be incremented if it comes from the “right” vectors in both operations, with increment being the number of elements coming
from the “left” vectors in both operations that enter before x. An example is given in Figure 3; elements in grey (circle) are
those coming from the “left” vectors when sorting the second (third) variables. Same as the bivariate version, the algorithm
outputs the total number of lesser elements preceding each of them; 1 should be added and the result divided by N to obtain
the empirical cdf.

Algorithm 3 contains the pseudocode of this procedure. An extra indicator (w) is used for storing the eligibility of elements
based on the sorting of the second variable. Within the Merge function, an inner merge sort on the third variable is performed
using the SortInner and MergeInner functions, where the z counter is incremented.

Because a partial merge sort is nested within each iteration of the sorting for the second variable, the complexity of this
algorithm is O

(∑p
i=1(2p + 2p · i)

)
= O(N log2

2 N ), where p = log2 N . This is asymptotically better than the naive method,
which has O(N2) complexity. A similar method can be generalized to compute the d-variate empirical distribution function
at a complexity of O(N logd−1

2 N ).



Multivariate empirical distribution functions 7

Algorithm 2 The modified quicksort algorithm for a bivariate empirical cdf (modifications within functions are boxed)
1: Input is the matrix (Y11,Y12), . . . , (YN1,YN2), where Y 1 = Y11, . . . ,YN1 are sorted and Y 2 = Y12, . . . ,YN2 are paired accord-

ingly. Convert Y 1 and Y 2 to the marginal ranks 1, . . . ,N . In the following, the vector Y 2 is the input variable y.

2: initialize global variable z a vector of zeros of the same length as y

3: function Sort(y) . Recursive function
4: N ← length(y)
5: if N ≤ 1 then
6: return y

7: else
8: m ← a random integer in 1:N
9: initialize k ← 1, b← 0

10: initialize empty vectors v1,v2,vm
11: while k ≤ N do
12: if y[k] < y[m] then
13: push y[k] to the end of v1

14: b← b + 1
15: end if
16: if y[k] = y[m] then
17: push y[k] to the end of vm
18: z[y[k]]← z[y[k]] + b; b← b + 1
19: end if
20: if y[k] > y[m] then
21: push y[k] to the end of v2

22: z[y[k]]← z[y[k]] + b
23: end if
24: k ← k + 1
25: end while
26: v1 ← Sort(v1); v2 ← Sort(v2)
27: y ← concatenate v1,vm ,v2
28: return y

29: end if
30: end function

31: Increment every element of z by 1, and then divide by N to obtain the empirical distribution function at the N observations;
the rth element of z corresponds to the sth observation where Ys2 = r .

Algorithm 3 The modified merge sort algorithm for a trivariate empirical cdf. In the following, the list() command combines
several variables into a single object; these variables are extracted from the object using the $ operator.

1: Input is the matrix (Y11,Y12,Y13), . . . , (YN1,YN2,YN3), where Y 1 = Y11, . . . ,YN1 are sorted and Y 2 = Y12, . . . ,YN2 as well
as Y 3 = Y13, . . . ,YN3 are linked accordingly. Convert Y 1, Y 2 and Y 3 to the marginal ranks 1, . . . ,N . In the following, the
vectors Y 2 and Y 3 are the input variables x and y, respectively. The vector 1:N is inputted as xind.

2: initialize global variables z, w vectors of zeros of the same length as x
3: (comment: z stores the total count and w an indicator for “left" elements in x; they are modified by the following func-

tions)

4: function Sort(x, y,xind) . The main merge sort function; recursive
5: N ← length(x)
6: if N = 1 then
7: return list(x = x, y = y,xind = xind)
8: else
9: m ← bN/2c

10: u1 ← Sort(x[1:m], y[1:m],xind[1:m]); u2 ← Sort(x[(m + 1):N], y[(m + 1):N],xind[(m + 1):N])
11: u ← Merge(u1$x,u2$x,u1$y,u2$y,u1$xind,u2$xind)
12: return u . Returns a list containing sorted x, associated y and index of original x vector (xind)
13: end if
14: end function



8 David Lee, Harry Joe

15: function Merge(x1, x2, y1, y2,xind1,xind2) . The function for sorting/merging x
16: N1 ← length(x1); N2 ← length(x2); N ← N1 + N2
17: initialize i ← 1, j ← 1, k ← 1
18: initialize x, y,xind of length N
19: while i ≤ N1 and j ≤ N2 do
20: if x1[i] ≤ x2[ j] then . Two x elements in increasing order; left element may be eligible for counting
21: x[k]← x1[i]; y[k]← y1[i]; xind← xind1[i]; w[xind1[i]]← 1; i ← i + 1
22: else
23: x[k]← x2[ j]; y[k]← y2[ j]; xind← xind2[ j]; w[xind2[ j]]← 0; j ← j + 1
24: end if
25: k ← k + 1
26: end while
27: if i ≤ N1 then
28: fill in the rest of x, y,xind with remaining content of the “left" vectors, i.e., x1, y1,xind1
29: set the associated indices of w to 1
30: end if
31: if j ≤ N2 then
32: fill in the rest of x, y,xind with remaining content of the “right" vectors, i.e., x2, y2,xind2
33: set the associated indices of w to 0
34: end if
35: SortInner(y,xind)
36: return list(x = x, y = y,xind = xind)
37: end function

38: function SortInner(y,xind) . The inner sort function for y; recursive
39: L ← length(y)
40: if L = 1 then
41: return list(y = y,xind = xind)
42: else
43: m ← bL/2c
44: v1 ← SortInner(y[1:m],xind[1:m]); v2 ← SortInner(y[(m + 1):L],xind[(m + 1):L])
45: v ← MergeInner(v1$y,v2$y,v1$xind,v2$xind)
46: return v . Returns a list containing sorted y and index of original x vector (xind)
47: end if
48: end function

49: function MergeInner(y1, y2,xind1,xind2) . The function for merging y and incrementing counters
50: L1 ← length(y1); L2 ← length(y2); L ← L1 + L2
51: initialize i ← 1, j ← 1, k ← 1,b← 0
52: initialize y,xind of length L
53: while i ≤ L1 and j ≤ L2 do
54: if y1[i] ≤ y2[ j] then
55: y[k]← y1[i]; xind[k]← xind1[i]
56: if w[xind1[i]] = 1 then b = b + 1 end if; i ← i + 1 . Two x, y elements in increasing order; left

element eligible for counting
57: else
58: y[k]← y2[ j]; xind[k]← xind2[ j]
59: if w[xind2[ j]] = 0 then z[xind2[ j]] = z[xind2[ j]] + b end if; j ← j + 1
60: end if
61: k ← k + 1
62: end while
63: if i ≤ L1 then
64: fill in the rest of y,xind with remaining content of the “left" vectors, i.e., y1,xind1
65: end if
66: if j ≤ L2 then
67: fill in the rest of y,xind with remaining content of the “right" vectors, i.e., y2,xind2
68: increment the associated counters (z) whose corresponding value of w is 0 by b
69: end if
70: return list(y = y,xind = xind)
71: end function

72: Increment every element of z by 1, and then divide by N to obtain the empirical distribution function at the N observations;
the rth element of z corresponds to the rth observation (Yr1,Yr2,Yr3).



Multivariate empirical distribution functions 9

Fig. 3 Illustration of the modified merge sort for trivariate empirical cdf with N = 8 elements. Elements in grey are those coming from the “left” vector in
the sorting of the second variables (left-hand side of the figure). Circled elements are those coming from the “left” vector in the sorting of the third variables
(right-hand side of the figure). The grey colouring is retained going from the left-hand side to the right-hand side, and starts afresh with a new merge on the
left. The counter for each white square element on the right of the figure is incremented by the number of grey circle elements preceding it. The smaller digit
at the top right corner of each box is the counter for that merge operation. The row for “total” indicates the number of smaller elements to the left of each
one; the trivariate empirical distribution function at (Yi1, Yi2, Yi3) is obtained by adding 1 to the “total” and then dividing the number by N .

4 Simulation studies

We conduct simulation studies to compare the efficiency between the naive method and the proposed algorithms, and to
demonstrate the importance of using a random pivot in the modified quicksort. All simulations are run on an Intel Core
i5-2450M CPU (2.5 GHz) with 6 GB of RAM.

In the first simulation, bivariate samples of sizes 102,107/3, . . . ,1020/3,107 are simulated from the Gumbel copula (Gumbel
(1960)):

C(u1,u2; δ) = exp
{
−
[∑2

i=1(− log u j )δ
]1/δ

}
, u1,u2 ∈ [0,1]; δ ≥ 1, (5)

with parameter δ = 2 which corresponds to a Kendall’s τ of 0.5. The samples have their first variables sorted using an
O(N log2 N ) algorithm and the corresponding second variables are used as input for finding their sequential ranks. This part
of the procedure is timed for each of the three methods: (a) Naive, (b) modified merge sort, and (c) modified quicksort with
random pivot, all implemented in Fortran 90 and linked to in R. To reduce sampling variability, the whole procedure is repeated



10 David Lee, Harry Joe

5 times, and the average time is taken for each sample size. The naive method is only run with a maximum sample size of
1016/3 = 215443 due to its slow speed compared to the other methods.

A similar simulation up to N = 106 is performed on trivariate observations generated from the exchangeable Gumbel
copula with pairwise Kendall’s τ of 0.5; the cdf is given by (5) but with variables u1,u2,u3 and the summation from 1 to 3
instead. The computation times for the naive method and the modified merge sort in Section 3 are compared. All empirical
cdf’s are inspected to ensure results from different methods agree.

The results of the two simulation studies are shown in Figure 4. In each case, the naive method has complexity O(N2) and
is much slower than the modified methods when N is large (N > 5000). For the bivariate case, the modified merge sort and
quicksort yield similar performance; both methods are efficient for very large sample sizes (N = 106 or 107). In addition, we
perform a simulation on independent bivariate and trivariate distributions; the results are similar and are thus omitted.

Biv. emp. cdf, Gumbel copula, tau=0.5

Sample size

T
im

e 
(s

)

100 1000 10000 1e+05 1e+06 1e+07

0.001

0.01

0.1

1

10

100

● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

Naive
Merge sort
Quicksort

Triv. emp. cdf, Gumbel copula, tau=0.5

Sample size

T
im

e 
(s

)

100 1000 10000 1e+05 1e+06

0.001

0.01

0.1

1

10

100

● ● ●

●
●

●

●

●

●

●

●

●

●

●

Naive
Merge sort

Fig. 4 Time (in seconds) needed to compute the bivariate (left) and trivariate (right) empirical cdf at the observed values using the naive method with O(N 2)
complexity and proposed methods with O(N logd−1

2 N ) complexity for dimension d.

A third simulation is conducted to demonstrate the importance of using a random pivot for the modified quicksort algo-
rithm. We simulate bivariate samples of various sizes from the Gumbel copula with Kendall’s τ equal to 0.5, 0.9 and 0.97, and
obtain the empirical cdf using the modified quicksort algorithm with the pivot being (a) randomly chosen with equal proba-
bility, and (b) the last element of the sequence being sorted. A comparison of the computation times based on 5 replicates for
each sample size is displayed in Figure 5; with a random pivot, the computational efficiency is more or less the same for all
three strengths of dependence. However, when the last element is always chosen as the pivot, the time used increases when
observations are more concordant, i.e., when there are longer sorted subsequences. This also has implications on the memory
usage, as the number of nested recursive calls of the sorting function depends on the number of iterations. To avoid potential
time and memory issues, we thus recommend using a random pivot regardless of the structure of the data.

Finally, to demonstrate the versatility of the proposed algorithms, a simulation is performed using bivariate copulas with
(a) negative quadrant dependence and (b) permutation asymmetry (i.e., there exists (u1,u2) ∈ [0,1]2 such that C(u1,u2) ,
C(u2,u1)). For (a), we use the t copula:

C(u1,u2; ρ, ν) = T2,ν
(
T−1

1,ν (u1),T−1
1,ν (u2); ρ

)
, u1,u2 ∈ [0,1]; ρ ∈ [−1,1]; ν > 0,

where Td,ν is the cdf of the d-variate t distribution with ν degrees of freedom. We choose ν = 5 and three values of ρ so that
the copula has Kendall’s τ equal to −0.5, −0.9 and −0.97. For (b), we use the asymmetric Gumbel copula (Tawn (1988)):

C(u1,u2; δ,p1,p2) = exp
{
−
[
(1 − p1)x1 + (1 − p2)x2 + (pδ1 xδ1 + pδ2 xδ2 )1/δ

]}
, u1,u2 ∈ [0,1]; p1,p2 ∈ [0,1]; δ > 1,

where xi = − log ui , i = 1,2. Various degrees of permutation asymmetry can be obtained by adjusting the values of p1 and p2.
We fix p2 = 1 and choose (δ,p1) = (1.3,0.9), (1.42,0.6) and (2.2,0.3). These three copulas have similar overall dependence
strengths but different degrees of permutation asymmetry, with the set (δ,p1) = (2.2,0.3) being the most asymmetric; see
Figure 6 for the contour plots of these copula densities2.

2 The densities are coupled with standard normal margins for a better illustration of the permutation asymmetry.



Multivariate empirical distribution functions 11

●

●
●

●

●

●

●

●

●

●

Biv. emp. cdf, Gumbel copula, tau=0.5

Sample size

T
im

e 
(s

)

10000 1e+05 1e+06 1e+07

0.001

0.01

0.1

1

10

100 ● Random pivot
Fixed pivot

●
●

●

●

●

●

●

●

●

●

Biv. emp. cdf, Gumbel copula, tau=0.9

Sample size

T
im

e 
(s

)

10000 1e+05 1e+06 1e+07

0.001

0.01

0.1

1

10

100 ● Random pivot
Fixed pivot

●
●

●

●

●

●

●

●

●

●

Biv. emp. cdf, Gumbel copula, tau=0.97

Sample size

T
im

e 
(s

)

10000 1e+05 1e+06 1e+07

0.001

0.01

0.1

1

10

100 ● Random pivot
Fixed pivot

Fig. 5 Time (in seconds) needed to compute the bivariate empirical cdf at the observed values using quicksort with a random pivot (solid lines) and the last
element in the subsequence as the pivot (dashed lines), for observations from the Gumbel copula with Kendall’s τ = 0.5, 0.9 and 0.97.

Asymmetric Gumbel: δ = 1.3, p1 = 0.9

x

y

 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14 

 0.16 

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Asymmetric Gumbel: δ = 1.42, p1 = 0.6

x

y

 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14 

 0.16 

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Asymmetric Gumbel: δ = 2.2, p1 = 0.3

x

y

 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14 

 0.16 

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Fig. 6 Contour plots of three asymmetric Gumbel copula densities with standard normal margins for three different sets of parameter values. The contours
should be symmetric along the diagonal dashed line x = y if the copula has permutation symmetry.

For each sample simulated from these copulas, we carry out the modified merge sort and quicksort (with random pivot)
algorithms. Based on 5 replicates for each copula and sample size combination, the average computation times are obtained
and listed in Table 1. We can see that the proposed algorithms have robust performance with respect to different degrees of
dependence strengths (both positive and negative) and permutation asymmetry. The computational times also appear to grow
at a rate very close to O(N log2 N ).

Table 1 Time (in seconds) needed to compute the bivariate empirical cdf at the observed values using the proposed methods, for observations from t5 copulas
with parameters ρ = −0.707, −0.988 and −0.999 (corresponding to Kendall’s τ of −0.5, −0.9 and −0.97), and asymmetric Gumbel copulas with the three
sets of parameters given in Figure 6.

Copula t5 Asymmetric Gumbel
Parameter −0.707 −0.988 −0.999 (1.3,0.9) (1.42,0.6) (2.2,0.3)

Sample size Average time (in s) using modified merge sort
105 0.03 0.03 0.03 0.03 0.03 0.04
106 0.36 0.31 0.29 0.37 0.37 0.37
107 4.81 4.30 3.72 4.94 4.92 4.93

Sample size Average time (in s) using modified quicksort
105 0.04 0.05 0.04 0.04 0.05 0.05
106 0.47 0.45 0.45 0.49 0.47 0.49
107 5.79 5.78 5.28 5.95 5.91 5.79



12 David Lee, Harry Joe

5 Summary and concluding remarks

We proposed algorithms based on the merge sort and quicksort to compute bivariate empirical cdf’s at the observed values
efficiently. These methods leverage the O(N log2 N ) efficiency of these algorithms and scale well to large sample sizes, which
are often needed for Monte Carlo evaluation of integrals. The modified merge sort can be generalized to higher dimensions
with O(N logd−1

2 N ) complexity, where d is the dimension. For our applications in diagnostics for low-dimensional margins
of multivariate distributions (such as the one mentioned in the introduction), we are mainly interested in two- and three-
dimensional integrals of the form (1).

Through simulation studies, we confirmed that the proposed algorithms can handle large samples (in the order of 106 or
107), and that the modified merge sort and quicksort algorithms have similar efficiency for bivariate data. We also demonstrated
the importance of using a random pivot for the modified quicksort; the one with a fixed pivot is not robust against certain
structures of the data that may be common in statistical analysis.

Acknowledgements

This research has been supported by UBC’s Four Year Doctoral Fellowship and NSERC Discovery Grant 8698. We would
like to thank the editors and the anonymous referee for the comments that lead to a better presentation of the paper.

References

Bedford T, Cooke RM (2001) Probability density decomposition for conditionally dependent random variables modeled by
vines. Annals of Mathematics and Artificial Intelligence 32:245–268

Brechmann EC, Czado C, Aas K (2012) Truncated regular vines in high dimensions with application to financial data. Cana-
dian Journal of Statistics 40:68–85

Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to Algorithms, 3rd edn. MIT Press, Cambridge, MA
Gumbel EJ (1960) Distributions des valeurs extrêmes en plusieurs dimensions. Publications de l’Institut de Statistique de

l’Université de Paris 9:171–173
Hoeffding W (1948) A class of statistics with asymptotically normal distribution. Annals of Mathematical Statistics 19:293–

325
Knuth DE (1998) The Art of Computer Programming: Sorting and Searching, vol 3, 2nd edn. Addison-Wesley, Reading, MA
Krupskii P, Joe H (2013) Factor copula models for multivariate data. Journal of Multivariate Analysis 120:85–101
Tawn JA (1988) Bivariate extreme value theory: models and estimation. Biometrika 75:397–415


