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Abstract: 

A parking lot (PL) dynamic resource allocation system for recharging electric vehicles (EVs) 

is introduced in this paper. For scheduling purposes, a day is divided into sequential timeslots. At 

the beginning of each timeslot, the dynamic system can determine an optimal charging schedule 

for that timeslot, as well as plan for subsequent timeslots. An EV may arrive at a PL with or without 

an appointment. Considering the variation in electricity prices during the day, the objective is to 

minimize the cost of electricity used to charge EVs by scheduling optimal electric quantities at the 

parking timeslots of each EV. The optimal solution satisfies the EV’s charging rate limit and the 

PL’s transformer limit. Based on particle swarm optimization (PSO), fuzzy systems and heuristics, 

this paper describes a heuristic fuzzy particle swarm optimization (PHFPSO) algorithm to solve 

the optimization problem. From the case studies, the results show the proposed dynamic resource 

allocation system has a significant improvement in satisfying charging requests and in reducing 

the electricity cost of the PL when compared with other scheduling mechanisms. 

 

Keywords: 

Electric Vehicle, parking lot, dynamic resource allocation, particle swarm optimization, fuzzy 

system, heuristics. 
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1. Introduction 

Electric vehicles (EVs) typically charge at public parking lots (PLs) equipped with power 

outlets, which would take hours to fully recharge the battery. With the rapid growth of EV 

populations [1], it is essential to employ a resource allocation system to schedule the limited public 

PLs and satisfy the electric requirements for power infrastructures. The main limitations of EV PL 

systems include long charging times, uncertain parking periods, varied charging demands and 

transformer limits. Currently, most of the PLs manage the EV charging requests on a first-in-first-

serve (FIFS) strategy. 

The motivation for proposing a dynamic PL resource allocation system is given as follows. 

First, in some big cities where people mostly live in apartments and work in the urban areas, only 

a small proportion of EV owners can afford to install a private charging pile to recharge their EVs. 

Many other EV owners drive to some super-charging stations to recharge their vehicles while they 

run a few errands, typically within an hour. An alternative would be for EV owners to recharge 

their vehicles during parking in a public PL with specialized EV charging facilities. In this case, 

the vehicles are parked for a longer duration, from two or more hours. EV recharging can also take 

place in an office building PL while their owners go to work during daytime. Hence, it is essential 

for a PL to have a resource allocation system to manage the EV charging during parking.  

Secondly, the PL should have a transformer limit due to the power grid and safety precautions. 

In this case, the PL should balance the allocated electric quantities in each timeslot to satisfy the 

transformer limit. Each timeslot is typically set as 30 minutes in this study. Also, considering the 

charging specifications, the allocated electric quantities cannot exceed the maximum charging rate 

of each EV. Hence, the PL should determine an optimal charging schedule that satisfies both the 

transformer limit and the charging rate limit.  

Thirdly, most current commercial PLs use the FIFS scheduling mechanism to deal with the 

parking and charging requests from EVs. Due to the transformer limit, a PL with a FIFS 

mechanism cannot optimize the distribution of the charging resources to the vehicles, and some of 

the late arrival requests cannot be fulfilled. Hence, the PL should use some optimization schedule 

to take care of the charging requests.  

Lastly, the PL providing a service to recharge the EVs has to buy a large amount of electricity 

from the power company. Knowing that many power companies provide a time-of-use price that 

varies at different times, the PL would aim to lower the cost by purchasing in a low-price period. 

Supposed the electricity is sold to the EV owners at a fixed price rate, the PL can make more 

revenue by determining an optimized strategy to allocate more electric supply during the low price 

period, and less amounts when the price is high.  

The main contributions of this study are as follows. Firstly, a viable PL operation system is 

designed to manage the charging requests for vehicles that arrive with or without appointments. 

The dynamic system determines a charging schedule for the immediate timeslot. Secondly, the 

aim of the optimization model is defined to best satisfy the EV charging requests and minimizes 

the PL’s electricity cost concurrently. Thirdly, a resource allocation model based on the 

proportion-based assignment method is proposed to improve the efficiency in generating the initial 

solutions for optimization. Lastly, a PHFPSO algorithm is proposed to solve the optimization 
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problem with the use of the PSO algorithm, fuzzy systems and heuristics, and the results show that 

the PHFPSO can determine an optimized solution and outperform other algorithms.  

The related work is described in Section 2. Section 3 introduces the operation model. The 

problem formulation is given in Section 4. In Section 5, the methodology for solving the 

optimization problem is presented. The simulation case studies are given in Section 6, and 

conclusions and future work complete this paper in Section 7.   

 

2. Literature Review 

Some approaches have been proposed in the literature to solve the EV charging problem for 

power grid and PLs, which include power grid coordination, charging station recommendation, PL 

planning, EV charging pricing, and charging schedule decision model.  

In order to manage the potential high peak demand of EV charging at residential distribution 

areas, some demand response (DR) systems were studied in [2] – [7] for a smart grid. A 

hierarchical coordinated charging framework and a vehicle-to-grid (V2G) scenario were proposed 

in [8] and [9] to solve the optimization operation problem in a distribution system operator (DSO). 

Considering the benefit of a renewable energy source (RES) but with drawbacks such as the 

intermittent nature and uncontrollability, [10] – [13] proposed some optimization methods to 

manage a multi-energy system at a charging station. Besides that, an energy storage (ES) unit was 

used to minimize the impact of uncertainty and inaccurate prediction in [13] and [14].  

Another approach is to determine the capacity and location of PLs in [15] – [17]. Starting with 

some candidate charging stations, [18] proposed a real-time charging station recommendation 

system for EV taxis. In [19], a coordinated bidding of ancillary services for V2G was proposed to 

maximize profits. Further studies determined the charging price so as to maximize the profit in 

[13] and [20].  

A novel strategy allowing vehicle-to-vehicle (V2V) charging was proposed in [21]. It aimed 

to minimize the total cost, which included the electricity cost and the damage to the EV batteries 

due to extra charging cycles. The decision was determined using binary variables denoting the 

charging and discharging states of each EV. A small number of EVs were used to evaluate the 

performance, but the computational time was very high. [22] proposed a real-time charging scheme 

to coordinate EV charging decisions and to accommodate demand based on the electricity price 

and the demand curtailment request from the utility company. The objective was to maximize the 

number of EVs for charging at each scheduling period and to minimize the electricity bill. The 

schedule used a binary decision approach for determining the on-off strategy of each charging pole.  

Differing from the binary decision approach, [23] proposed a PL management system to 

determine the optimal charging strategy for the EV charging in day-time. The objective was to 

minimize the charging cost of the station considering the electricity cost and a penalty cost if EV 

demand was not satisfied. In [24], authors also developed an optimal schedule for EV charging 

using a game-theoretic approach. However, the vehicle profiles they used overlapped for 30 time 

intervals and the charging demands were very low, so that the candidate solutions were easily 

found. In [25] and [26], some optimization intelligent-based algorithms were proposed for 
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determining the charging schedule, and [27] designed new accelerated particle swarm optimization 

(APSO) algorithms to solve the same problem. The aim was to maximize the average State-of-

Charge for all EVs at the next time step. However, in the optimization model, the decision was 

only for the EVs being charged in the next time step. Hence, this may not provide an optimized 

schedule without considering the whole parking period of the EVs. 

Separated layers/scenarios/schemes was proposed to handle EVs with and without 

appointments in [28] – [30]. Two scenarios were proposed in [28] to determine a charging schedule 

considering the aggregator’s revenue and customer demands and cost. The static charging scenario 

was for the known customers of the aggregator, while the dynamic charging scenario was for those 

customers who came and left without any advanced notice. The decision was fixed for these EVs 

in the static schedule. If a new customer comes without advanced notice, the determined schedule 

cannot be changed, even if a better solution exists. A PL management system for a centralized EVs 

recharging system was proposed in [29] for maximizing the PL revenue or maximizing the total 

number of EVs fulfilling their requirements. They defined a two-layer scheduling model to deal 

with regular and irregular EVs. They used an optimization algorithm to determine the schedule for 

the routine layer, and used the first-in-first-serve (FIFS) and earliest-deadline-first (EDF) 

mechanisms to deal with the irregular EVs. However, their optimization model can only deal with 

regular EVs but the FIFS and EDF are used to handle the irregular EVs, which may not lead to6 

an optimal decision. [30] proposed a global optimal scheduling scheme and a locally optimal 

scheduling scheme for EV charging and discharging. The aim was to minimize the total cost of all 

EVs and the decision involved the charging and discharging power of each EV at each timeslot. A 

global and local scheduling scheme was defined to deal with the appointed and non-appointed EVs 

respectively. In their local optimization model, the power load may exceed the transformer limit. 

 

2.1. Decision Methods 

In the literature, different methods, such as decision strategies/mechanisms, linear 

programming (LP), mixed-integer linear programming (MILP), dynamic programming (DP), 

game theory and computational intelligent algorithms, are used to obtain solutions. 

In most commercial PLs, some scheduling strategies/ mechanisms are used to manage the 

charging requests for EVs, such as FIFS and EDF. Accordingly, the FIFS and EDF mechanisms 

are widely used as the baseline scheduling method such as in [22] [23] [28] [29]. Some references, 

[6] [14] [15] [21] [22] [28] [29] [30], defined the problem as a linear optimization problem, which 

can be solved by mathematical methods such as LP and MILP. [6] and [28] used CPLEX to solve 

the LP problem. A dynamic programming method was implemented in [23] to determine the 

optimal charging strategy knowing the short-term future and long-term prediction information. In 

addition, game theory was used in [5] [7] [20] [24] to solve charging station pricing and charging 

scheduling problems.  

Besides LP, MILP, DP and game theory methods, computational intelligent algorithms were 

also used in another approach to solve the optimization problems. In [26] – [28], estimation of 

distribution algorithm (EDA), particle swarm optimization (PSO) and interior point method (IPM) 

algorithms were implemented and compared in the simulation studies. In our study, an intelligent 
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algorithm is proposed to solve the optimization problem with the use of the PSO algorithm, fuzzy 

systems and heuristics. 

 

2.2. Comparisons with this paper 

The decision in our paper are the electricity quantities allocated to all available timeslots of 

each EV, which are continuous variables that satisfy the constraints. On-off values were used as 

the decision variables, which means each EV can only be charged or not charged in a timeslot in 

[21] and [22]. This binary decision is a limitation of the problem setup and the result may not be 

refined. The solution given in [25] - [27] is only for one particular timeslot. In our model, the 

decision variables are determined by a proposed proportion-based assignment method to improve 

the efficiency in generating the initial solutions for optimization, and the proportion concept can 

ensure the fulfillment of the charging demands.  

The proposed system can deal with EVs, no matter whether they come with or without 

appointments, in a single model. However, in [28] – [30], two separate systems were designed to 

make a schedule for the appointed and non-appointed EV, such as the static/ dynamic scenario in 

[28], regular/ irregular EVs in [29], and global/ local optimal scheme in [30]. In our work, the 

system can make an optimal charging schedule considering all types of EVs, which can help the 

system to determine a near global optimal solution. 

Considering the influence of the charging load to the power grid, a transformer limit is defined 

in our paper to avoid the total power exceeding the demand limit, which is regarded as a vital 

consideration in the demand response strategy of [2] - [7]. Many papers (e.g. [21] – [30]) only used 

a constant transformer limit, which might be sufficient for determining a charging schedule. In our 

work, a varied value of the PL’s transformer limit is used to evaluate the flexibility and 

performance of our system.  

The vehicle-to-grid (V2G) model has been widely utilized in power grid coordination ([4] – 

[6], [9], [11] – [14]) and the charging station pricing model in [19]. However, in EV charge 

scheduling, most of the works ([21] – [29]) did not used the V2G model, considering the drawback 

of V2G, such as discharge damage to the battery, unfulfilled EV demand and the uncertain 

electricity selling price. We do not deny the positive influence of the V2G model to the power gird, 

but some further studies on V2G should be clarified before applying it into our model. Also, 

renewable energy sources, such as solar-based energy and energy storage units are not used in our 

model. The V2G, RES and ES models may be included in the next phase of our research.  

In summary, our approach to tackling the EV charging scheduling problem are as follows. First, 

the decision is that continuous electric quantities are assigned to all EVs at each timeslot. Second, 

at the beginning of each timeslot, the dynamic system can determine an optimal charging schedule 

for that timeslot, as well as plan for subsequent timeslots. Thirdly, the drivers’ charging demands 

will be satisfied when they leave the PL, which will minimize any negative effect on the drivers. 

Fourthly, the transformer limit is defined as the overall power constraint of the PL. We also vary 

the value of the power limit to compare its impact on the schedule result. 
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2.3. Particle Swarm Optimization (PSO) Algorithm 

The particle swarm optimization (PSO) algorithm is a typical population-based search 

algorithm proposed by Kennedy and Eberhart in 1995 [31]. XℝN×M is denoted a set of solutions 

with N candidate particles/solutions, and VℝN×M
 is denoted a set of velocities for updating the 

solution set X in each iteration. Let n denotes the index of a particle in a solution set, and m is the 

index of the position in a solution. X(n) ℝM is denoted as the solution of the n-th particle, which 

is constructed by a M-dimension vector for each position. Let it{1, 2, …, IT} be the index of 

iteration. At the it-th iteration, the set of solutions and velocities is denoted as Xit and Vit 

respectively. Pbest(n) ℝM denotes the personal best solution of the n-th particle. GbestℝM denotes 

the global best solution, whose objective value is better than the other solutions. Pbest and Gbest are 

updated at the end of each iteration.  

In the original particle swarm optimization (OPSO) algorithm, at the it-th iteration, the velocity 

of the n-th particle Vit (n) is updated by 
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where c1 and c2 are defined as the personal acceleration coefficient and global acceleration 

coefficient respectively. Rand1 and Rand2 are different random numbers within the range of [0,1].  

In order to improve the performance of the original PSO, Shi and Eberhart [32] proposed the 

inertia-weight PSO (IPSO) to adopt a linearly decreasing method for updating the inertia weight, 

and the revised velocity formula is given by 
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where w is defined as the inertia weight to adjust the velocity in the previous iteration. In the 

typical use of an IPSO algorithm, w decreases linearly from 0.9 to 0.4 as  
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where IT is the maximum number of iterations.  

Clerc [33] proposed the construction PSO (CPSO) algorithm by using the constriction factor 

 in the velocity updating equation by  
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where  is obtained by the equation 
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and  is determined by 21 cc  . 

After determining the velocity Vit(n) of the n-th particle in the it-th iteration, the corresponding 

particle Xit(n) is  

ititit VXX  1 .      (6) 

In this study, the OPSO, IPSO and CPSO algorithms are implemented and compared in Section 

6.  

 

2.4. Fuzzy Particle Swarm Optimization (FPSO) Algorithm 

Fuzzy particle swarm optimization (FPSO), or fuzzy adaptive swarm optimization (FAPSO), 

was first introduced by Shi in 2001 [34]. A fuzzy system was designed to dynamically adapt the 

inertia weight w of the PSO with the use of normalized current best performance evaluation. [35] 

proposed a FAPSO to solve the biding strategy by determining the inertia weight dynamically. The 

normalized fitness value and the current inertia weight were used as the input variables, and the 

change in inertia weight was used as the output variable. [36] proposed the variance of the 

population fitness as the input of the fuzzy system with the use of two fuzzy rules and two 

membership functions. [37] used FAPSO to solve a power loss minimization problem in 

distribution systems. [38] proposed a FPSO algorithm to determine the inertia weight w and the 

learning factor (c1 and c2). A mutation fuzzy adaptive PSO algorithm was proposed in [39] to solve 

a multi-objective optimization problem.  

[40] proposed a self-tuning algorithm PSO algorithm based on fuzzy logic. The fuzzy logic 

was used to calculate the best setting of inertia weight w, cognitive factor c1 and social factor c2. 

They used two linguistic variables, the distance from g and normalized fitness incremental factor, 

as the inputs of the fuzzy logic. The output variables were the inertia weight, cognitive factor and 

social factor corresponding to each particle in PSO algorithm. Three groups of fuzzy rules were 

defined in the fuzzy logic, and each group contained three rules to determine each fuzzy output 

variable respectively.  

In this paper, we develop a fuzzy system to determine w, c1 and c2 in Section 5. The 

membership functions and fuzzy rules have been modified in our algorithm, and the performances 

have been compared with those in [40] in Section 6. 
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3. DYNAMIC RESOURCE ALLOCATION SYSTEM 

3.1 Operation Model 

In this section, we describe the dynamic operation model for determining the optimal charging 

schedule of EVs considering two types of EVs: EVs with appointments and EVs without 

appointment. Here, the EVs with appointments refer to those whose drivers have made 

appointments for reserving a parking space for charging before arrival. The drivers are encouraged 

to provide the expected arrival times, departure times and charging demands, so that the PL can 

make use of such information to predict the future demand and allocate proper charging facilities 

to the incoming EVs. On the other hand, the operation model also allows for drive-in EVs without 

appointments for drivers arriving for sudden meetings, shopping or short-time stay. The EVs’ 

expected departure times and charging demands are also encouraged to be given when they arrive. 

Yet, in an actual operation, our model is also flexible to handle any EV which suddenly leaves the 

PL without notice. The model can also deal with EVs which made appointments but do not appear.   

As shown in Fig.1, three types of information are used to determine the charging schedule for 

the immediate timeslot including the arrived EVs with appointments, the not-yet-arrived EVs with 

appointments and the arrived EVs without appointments. The arrived EVs (with and without 

appointments) can provide the expected departure times and charging demands, while the not-yet-

arrived EVs with appointments should provide the expected arrival times, departure times and 

charging demands. Knowing the expected information, the PL can use the proposed resource 

allocation system to determine an optimized charging schedule for the immediate timeslot and the 

subsequent timeslots.  

 

Fig. 1.  Operation model of the dynamic resource allocation system. 

 

Fig. 2 gives an example for determining an optimized charging schedule for timeslot t3. A1, 

A2, …, A20 are the EVs with appointments, and B1, B2, …, B20 are the EVs without 

appointments. Within the 40 EVs, the EVs denoted as A1, A2, A3, A4, B1, B2 and B3 have arrived 

at the PL already. At the beginning of t3, the system can make use of the information from the 
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arrived EVs (A1, …, A4, B1, …, B3) and the EVs with appointments (A5, …, A20) to determine 

an optimized schedule for all the EVs in the immediate timeslot and the subsequent timeslots. Then, 

the schedule for the arrived EVs will be executed immediately. In this dynamic system, an 

optimized charging schedule can be determined at the beginning of each timeslot.  

 

Fig. 2.  Example of a schedule for timeslot t3. 

 

3.2 System Considerations 

Based on the literature review, we propose a dynamic resource allocation for determining the 

charging schedule for the EVs. Some major considerations of the proposed system are presented. 

3.2.1. EV’s charging demand.  

The fulfillment of the EV’s charging demand is a vital constraint in our model, which is 

different from most other research on scheduling problems. Instead of charging at a residential 

location, most public PLs and charging stations are located in office buildings or shopping malls. 

In this case, the drivers usually leave the PL for some other purposes, such as working or shopping, 

instead of waiting in the vehicle. When they come back to pick up the EV, they expect it to be 

fully recharged, which would allow for long driving mileage. In this model, all the EV drivers’ 

charging demands are fulfilled when they depart the PL, which maximizes the satisfaction of EV 

drivers.  

3.2.2. Transformer limit 

The transformer limit is defined as the maximum capacity/ power supply of the PL, which 

restricts the power load exceeding the requirement of the grid. In most of the demand response 

literature [2] – [14], the power load of EV charging is regarded as an important influence of the 

power grid, which may cause potential transformer overload, feeder congestion and undue circuit 

faults [2]. In the EV charging schedule literature [21] – [30], the maximum charging power load 

or transformer limit is defined as a constraint to limit the total power of a PL. In this paper, the 

transformer limit is considered as an important constraint to the PL. The transformer limit 
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determines the maximum number of EVs that the PL can serve. For example, if the transformer 

limit of a PL is 100 kW and the charging rate of an EV is 9.6 kW, only 10 EVs can be recharging 

at the same time. In this study, the transformer limit will be varied to evaluate the performance, 

which was not undertaken in previous research.  

3.2.3. Insufficient charging poles 

An insufficient number of charging poles is considered as the major reason for queueing. In 

the proposed system, the drawback of insufficient poles can be avoided as follows. First, rather 

than a constant maximum charging rate, the rate of each charging pole can be a continuous value 

between 0 and the maximum rate. Within a timeslot, the scheduling system can recharge more EVs 

to fulfill their requests. Secondly, with the use of a lower charging rate, the number of charging 

poles can be increased given a constant transformer limit. Lastly, the EV drivers can make an 

advanced appointment to the PL to reserve a charging space to avoid queuing.  

3.2.4. Unaccepted charging request 

Due to the transformer limit, it is possible that the PL cannot determine a feasible solution 

when a new charging request comes, which is regarded as an unaccepted charging request. In this 

case, the EV driver can reduce the charging demand or prolong the stay period to satisfy the PL’s 

constraints. In addition, the drivers are encouraged to make advanced notice before arrival. It has 

been shown in Section 6.4 that the appointments from EV drivers can help the PL to make a general 

schedule and reduce the total cost. Hence, the appointment process not only helps the EV drivers 

to reserve a charging space in advance, but also help the PL to reduce its electricity cost. In future 

work, we will work out a new algorithm to suggest a lower charging request or a later departure 

time if the current request is not accepted by the PL.    

3.2.5. V2G model 

In our paper, the vehicle to grid (V2G) model is not considered as revenue generating due to 

the following reasons. Firstly, the discharge damage of EV batteries could be a potential cost to 

EV owners, and they may not agree to sell the electricity to grid even if some discount and benefits 

are given. Secondly, the arrival time and departure time of EV drivers should be more flexible. 

For example, if an EV departs earlier than the expected departure time, its desired SOC may not 

be fulfilled if it is in a discharging process. Thirdly, the electricity energy loss during the 

transmission cannot be avoided, which would be a potential cost to the PL. Fourthly, the additional 

facilities to transmit the electricity to grid and the operation expense would also be an extra cost 

to the PL. Lastly, the bidding strategy with the electricity markets and the cooperation model 

between the PL and the power company should be further investigated, and currently is an 

uncertain factor to the V2G model. 

3.3 Optimal solution 

In the proposed system, the solution is the charging schedule for all the EVs in the immediate 

and the subsequent timeslots. Compared with the schedule determined by the FIFS or EDF 

mechanisms, the proposed method can use a lower electricity cost to serve the EVs, and can 

accommodate more charging requests, which is shown in the case studies. The solution contains 

numE  numT dimensions/ variables, where numE is the number of EVs and numT is the number 
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of timeslots. For each variable, the charging decision is a continuous value between zero and the 

charging rate limit. Hence, it is impossible to search for all possibilities without using some 

intelligent algorithms.  

As shown in Section 2.1, many methods can be used to solve the optimization problem. In this 

paper, PSO algorithms along with the fuzzy systems and heuristics are used to find a better solution 

for the following reasons. First, the algorithms are universal for solving the problem, and do not 

need to format the problem as linear and mixed-integer models. Secondly, we define some 

constraints to satisfy the charging demands, the transformer limit and the charging rate limit, and 

the proposed algorithm is suitable to search for solutions. Lastly, the algorithm can be implemented 

in MATLAB without using any toolbox or embedded solver. Hence, the program can be easily 

migrated to any platform.  

It is notable that the optimal solution denotes the best solution that the algorithm has found so 

far, which does not guarantee that the solution is the final/global optimal solution.  

3.4 Benefits for EV drivers 

The dual parking and charging process in our system is similar to the current parking in a 

public PL. In the proposed model, given a constant transformer limit, the PL can provide more 

charging poles, so that there would be more parking spaces with charging facilities. The 

appointment process can help EV drivers to reserve a space in advance, which means that they do 

not need to queue up for charging. When the departure time and charging demand of an EV is 

known, the system can fully recharge its battery before leaving the PL. 

3.5 Benefits for parking lot 

We have developed a dynamic resource allocation system for the PL for serving the incoming 

EVs, which has some significant benefits for PL. First and foremost, the system can help the PL 

to minimize the cost of buying electricity from the power grid, so that its profit can be increased. 

Second, the system is based on an intelligent algorithm/software, which do not need to reconstruct 

the utility and equipment of the PL. Third, the proposed system allows the EV drivers to make 

advanced appointments to reserve a parking and charging outlet. Hence, EV drivers can avoid 

queuing up for recharging and the PL can make use of advanced information to determine an 

optimal charging schedule. Lastly, the system does not exceed the transformer limit of the grid, 

and the charging schedule is a continuous electric quantity assigned to each EV at each timeslot. 

Hence, the PL can employ more charging outlets/poles to satisfy more EVs.  
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4. Problem Formulation 

This section is to formulate the optimization model for determining a solution at the beginning 

of a single timeslot. In the dynamic model, this computation process can be repeated at the 

beginning of each timeslot after updating the EV arrival information and charging statues of the 

arrived vehicles.  

The notation of variables is shown in Table 1. 

 

Table 1 

Notation 

 Descriptions 

Sets:  

E Set of EVs with index i 

T Set of timeslots with index t 

Parameters:  

τ Timeslot unit 

arri Arrival timeslot of EV i 

depi Departure timeslot of EV i 

demi Charging demand capacity EV i 

Ai
t Availability of EV i at timeslot t 

numE Number of EVs 

numT Number of timeslots 

numV Number of variables in a solution 

EPt Electricity price at timeslot t 

limC Limit of charging rate in a timeslot  

limTt Limit of transformer capacity in timeslot t 

Mi
t Average electricity amount of EV i assigned to timeslot t 

Pi
t Proportion of EV i’s demand assigned to timeslot t 

Decision Variables: 

X Solution Vector 

xi
t Proportion of EV i's demand to timeslot t 

Ci
t Allocated capacity of EV i to timeslot t 

TCt Total capacity of parking lot in the timeslot t 
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4.1. EV profile 

We define each timeslot τ as 30 minutes, and each EV arrives at the PL at known arrival 

timeslot arri, departure timeslot depi and charging demand of electricity demi. We assume the EV 

arrives right before arri and departs right after depi, which means that the EV charging process 

occurs between arri and depi. We also assume each EV will be fully recharged with the demand 

capacity demi when it departs the PL. Ai
t
 denotes the availability of EV i at timeslot t, and Ai

t
 is 

defined as in 

 

Ei
deptarr

A
iit

i 


 


otherwise0

1

.     (7) 

EPt denotes the electricity price at timeslot t, which varies at different timeslots, such as off-

peak, mid-peak and on-peak.   

 

4.2. Solution 

In this model, the electric quantity stands for the energy charged to the EV battery, and the 

solution is to have the electric quantities allocated to all available timeslots for each incoming EV. 

Hence, the number of variables numV is derived based on  

 


 


Tt Ei

t

iAnumV

      (8) 

The solution is denoted as  

},...,,...,,...,,...,,,...,,{ 2211

2211
numEnumE dep

numE

arr

numE

t

i

deparrdeparr
xxxxxxxX 

, which is a set of allocated electricity 

proportions corresponding to the available timeslots. In vector X, the number of variables is numV, 

and xi
t denotes the proportion of EV i’s demand assigned to the timeslot t.  

 

4.3. Objective function 

The objective of this model is to minimize the cost of buying electricity by the PL from the 

power grid, considering the varying electricity price at different timeslots.  

 
 


numE

i

dep

arrt

ti

t

i

i

i

EPdemx
1

minimize

     (9) 

s.t.: 

TtEixt

i  ,10
     (10) 
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      (11) 
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EideparrtdemxC iii

t

i

t

i  ,],[
     (12) 

TtCTC
Ei

t

it 
       (13) 

TtEilimCCt

i  ,
     (14) 

TtlimTTC tc 
      (15) 

Here, the minimum cost of electricity can be achieved by allocating more charging demands 

to the timeslots in which the electricity price is low.  

 

4.4. Constraints 

Constraint (10) indicates that the proportion of the charging demand should be a non-negative 

value. Constraint (11) shows that the sum of the allocated proportions to any EV equals 1. This 

means the charging demands by EVs are fully satisfied during the parking periods. Equation (12) 

defines the electric quantity allocated to EV i in the timeslot t, and (13) determines the required 

capacity of the PL at timeslot t by summarizing the individual allocated capacities of each EV. 

Considering an EV’s charging rate limit, constraint (14) states that the allocated capacity for any 

EV at any timeslot should be within the defined charging rate limC. Constraint (15) indicates that 

the total capacity in timeslot t should not exceed the maximum transformer capacity limit limTt.  

 

5. Methodology  

Here, the complexities for determining the optimal schedule are summarized as follows. Firstly, 

the number of variables in the decision vector is large, and the values of the variables are real 

numbers. Secondly, due to the transformer limit and charging rate limit in the timeslots, the 

decision model needs to check constraints (14) and (15) after obtaining candidate schedules. Lastly, 

due to the various electricity prices during the time period, it is essential to apply the optimization 

operation to minimize the PL’s cost. 

The number of iterations is denoted by numI. The population size is numP. The dimension of 

the decision solution is numV, which is derived by the attributes of the EVs. We also denote 

numRep as the number of repeats for the algorithm in evaluating the performance.  

The flowchart of the proposed heuristic fuzzy particle swarm optimization (PHFPSO) 

algorithm is given in Fig. 3. Firstly, the proportion-based assignment (PBA) method is designed 

to determine the initial population of candidate solutions for the following optimization algorithm. 

In each optimization iteration, the particle swarm optimization (PSO) algorithm is used to obtain 

better solutions. Then, a fuzzy system is deployed to determine the three crucial coefficient of PSO 

algorithms, inertia weight w, personal acceleration coefficient c1 and global acceleration 

coefficient c2. Lastly, the heuristics are used to improve the solutions. The PSO algorithm, fuzzy 
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system and heuristics will be executed in each iteration. When it reaches the end of iteration, the 

solution with the best objective value will be assigned as the optimal solution.  

In this section, the PBA method is presented in Section 5.1. The proposed fuzzy system is 

introduced in Section 5.2, which includes the definition of the fuzzy variables, membership 

functions, fuzzy rules and defuzzification functions. In Section 5.3, the heuristics for improving 

the solutions is illustrated. Lastly, the baseline algorithms for evaluating the PHFPSO algorithm 

are given in Section 5.4.  

 

Fig. 3.  Flowchart of the PHFPSO algorithm 
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5.1.Proportion-Based Assignment (PBA Method) 

As shown in Section 4.2, the solution contains the allocated electric quantity proportion for 

each EV’s demand. The use of proportion makes sure that the EVs’ demands are satisfied. In the 

evolutionary algorithm, the initial population is usually generated randomly. In this paper, a 

proportion-based assignment method is proposed to improve the efficiency for generating the 

initial population. The detailed pseudo-code of the PBA method is shown in Algorithm 1, and the 

basic steps are as follows. 

First, the charging demand of each EV is assigned to its available timeslots by an average 

quantity. Let Mi
t be the average electricity amount of EV i assigned to timeslot t, which is derived 

by 

1


ii

it

i
arrdep

dem
M

.     (16) 

Then, TCt is denoted as the total electric quantity at timeslot t, which is determined by 





numE

i

t

it MTC
1 .      (17) 

The arrival time, charging demand and stay time are different for each EV, and hence the 

electricity demand for each timeslot could vary a lot. The following is used to calculate the 

proportion value Pi
t for allocating an EV’s charging demand at timeslot t by 














 



i

i

dep

arrt

tt

t

i TCTCP /1

.                        (18) 

For each EV i, the proportions Pi
t are adjusted by random variation, and then scaled to the 

solution xi
t. 
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Algorithm 1 Proportion-Based Assignment Method 

Input: EVs list E, number of EVs numE; number of variables 

numV, number of population numP; 

Output: A set of populations/solutions P ; 

1: Calculate the maximum time slots in E as Tmax ; 

2: for i = 1 to numE do 

3: avei = demi / (depi – arri + 1) ; 

4: for t = arri to depi do 

5: alit = avei ; 

6: end for 

7: end for 

8: for t = 1 to Tmax do 

9: 



numE

i

t

it CTC
1

; 

10: end for 

11: while numP’ ≥ numP do 

12: P’ = null ; 

13: for i = 1 to numE do 

14: T = arri to depi; 

15: for t = arri to depi do 

16: 












 



i

i

dep

arrt

tt

t

i TCTCP /1
 

17: end for 

18: calculate the minimum value in Pi
T as Pmin

 ; 

19: for t = arri to depi do 

20: xi
t= Pi

t + Pmin - 2×Pmin×rand(1); 

21: end for 

22: scale xi
T to range [0,1]; 

23: insert xi
T to P’; 

24: end for 

25: if check(P’) ≠ -1 then 

26: insert P’ to P; 

27: end if 

28: calculate the size of P’ as numP’ ; 

29: end while 

30: return P 
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5.2. Fuzzy System for Determining the PSO coefficients   

In the proposed heuristic fuzzy particle swarm optimization (PHFPSO) algorithm, a new fuzzy 

system is used to determine the three critical coefficients of the PSO algorithm in equation (1). 

The pseudo-code of the fuzzy PSO algorithm is shown in Algorithm 2. The equation of velocity is 

revised: 

)].,()1([),(

)],(),1([),(

),1(),(),(

22

11

iPitXitGRandiPitc

iPitXiPitPRandiPitc

iPitViPitwiPitV

best

best







   (19) 

Here, w(it,iP), c1(it,iP) and c2(it,iP) denote the inertia weight, personal acceleration coefficient 

and global acceleration coefficient at the it-th iteration corresponding to the iP-th particles. At the 

end of each iteration, the coefficients are updated according to the proposed fuzzy system. 

In this new fuzzy system, we use two input fuzzy variables, δ and ϕ. The Euclidean distance δ 

between the particle X and the global best G is calculated by 





numV

i

ii GXGXX
1

2)()(

.    (20) 

The normalized fitness incremental factor ϕ is used to measure the improvement between the 

current iteration to the previous iteration of particle X, which is calculated by  

max

)1()())1(())((
)(










tXtX

F

tXftXf
X

worst ,    (21) 

where f(X) is the objective value obtained by the solution X, Fworst is the worst objective value and 

δmax is the maximum distance between any two solutions. The first part is used to calculate the 

improvement of the objective between the current and previous iterations, and the second part is 

to calculate the Euclidean distance between the current and previous iterations.  

The input fuzzy variable δ is defined in three fuzzy sets, Low, Medium and High with 

associated membership functions, and the input fuzzy variable ϕ is defined in another three fuzzy 

sets of linguistic values (Better, Unvaried and Worse) with the associated membership function. 

The fuzzy sets and corresponding associated membership functions are shown in Fig. 4. The output 

variables are defined in three different fuzzy sets of linguistic values in Table 2.  

 

Fig. 4.  Membership functions for the Euclidean distance δ and normalized fitness incremental factor ϕ 
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Table 2 

Output Fuzzy Variables  

Linguistic 

Value 

Output Value 

Inertia Weight w Personal Coefficient c1 Global Coefficient c2 

Low 0.3 0.1 0.1 

Medium 0.5 1.5 1.5 

High 1.0 3.0 3.0 
 

 

As shown in Table 3, nine fuzzy IF/THEN rules are defined with two input variables, and each 

input variable contains three different linguistic values. The linguistic variables are connected 

using the OR operator in the fuzzy rules. In this proposed fuzzy system, all rules having the same 

output variable are selected as the candidate rules, then the final output variable is determined by 

the weighted average of the individual output of the candidate rules.  

Table 3 

Fuzzy Rules 

Rule Rule Definition 

1 IF (δ IS Low OR ϕ IS Worse) THEN w IS Low 

2 IF (δ IS Medium OR ϕ IS Unvaried) THEN w IS Medium 

3 IF (δ IS High OR ϕ IS Better) THEN w IS High 

4 IF δ IS High THEN c1 IS Low 

5 
IF (δ IS Low OR δ IS Medium OR ϕ IS Worse OR ϕ IS Unvaried) THEN c1 IS 

Medium 

6 IF ϕ IS Better THEN c1 IS High 

7 IF ϕ IS Better THEN c2 IS Low 

8 IF (δ IS Low OR δ IS Medium OR ϕ IS Unvaried) THEN c2 IS Medium 

9 IF (δ IS High OR ϕ IS Worse) THEN c2 IS High 
 

 

The defuzzification function for determine the three coefficient is given by  
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var

var

0.3 0.5 0.3 0.5Low Medium High Wrose Un ied Better

Low Medium High Wrose Un ied Better

w
     

     

        


    
        

             (22) 

var

1

var

1.5 1.5 0.1 1.5 1.5 3Low Medium High Wrose Un ied Better

Low Medium High Wrose Un ied Better

c
     

     

          

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(23) 

var

2

var

1.5 1.5 3 3 1.5 0.1Low Medium High Wrose Un ied Better

Low Medium High Wrose Un ied Better

c
     

     

          


    
 

(24) 

In this PHFPSO algorithm, the number of populations numP is given by  

 numVnumP 210
 ,    (25) 

, as proposed by Hansen et. al [41].  

 

Algorithm 2 Fuzzy Particle Swarm Optimization Algorithm 

parameters 

numP: number of particles in the PSO population 

nunIT: number of iterations  

1: 
generate an initial population of particles using PBA method  

P←{ X(0,1), X(0,2), …, X(0,numP-1), X(0,numP) } 

2: 
generate an initial velocity of each particle   

V←{ V(0,1), V(0,2), …, V(0,numP-1), V(0,numP) } 

3: calculate the scores of all particles from P 

4: set the particle with highest score as Pbest and Gbest  

5: for each iteration it less than numIT do 

6: calculate the scores of each solution from P 

7: for each particle iP less than numP do 

8: Fworst  ← the worst objective value 

9: δmax    ←  the maximum distance between any two solutions 

10: 
1

( , ) ( ( , ) )
numV best

i
it iP X it iP G


   

11: 
1

max

( ( , ) ( 1, ))( ( , )) ( 1, )
( , )

numV

i

worst

X it iP X it iPf X it iP X it iP
it iP

F





  

 


 

12: δ1
  
= 0.12× δmax ;    δ2 = 0.14× δmax ;    δ3

  
= 0.16× δmax  

13: if δ(it, iP) ≤ δ2 then
 

14: 
2

1 2

( , )
min( ,1)Low

it iP 


 





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15: 
1

2 1

( , )
max( ,0)Medium

it iP 


 





 

16: 0High   

17: else 

18: 0Low   

19: 
3

2 3

( , )
max( ,0)Medium

it iP 


 





 

20: 
2

3 2

( , )
min( ,1)High

it iP 


 





 

21: end if 

22: if ϕ(it, iP)
 
≤ 0 then 

23: 0Worse   

24: 
1

( , )
max(1 ,0)Unvaried

it iP



   

25: 
1

( , )
min( ,1)Better

it iP



  

26: else 

27: 
2

( , )
min( ,1)Worse

it iP



  

28: 
2

( , )
max(1 ,0)Unvaried

it iP



   

29: 0Better   

30: end if 

31: 
var

var

0.3 0.5 0.3 0.5Low Medium High Wrose Un ied Better

Low Medium High Wrose Un ied Better

w
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        
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Low Medium High Wrose Un ied Better

c
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          


    
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var

2

var

1.5 1.5 3 3 1.5 0.1Low Medium High Wrose Un ied Better

Low Medium High Wrose Un ied Better

c
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34: 

1 1

2 2

( , ) ( 1, ) ( ( 1, ) ( , ))

                                         ( ( 1) ( , ))

best

best

V it iP w V it iP c Rand P it iP X it iP

c Rand G it X it iP

       

    

 

35: ( , ) ( 1, ) ( 1, )X it iP X it iP V it iP     

36: 
if the objective value of X(it, iP) is smaller than that of Pbest 

then 

37: ( , )bestP X it iP  

38: end if 

39: 
if the objective value of X(it, iP) is smaller than that of Gbest 

then 

40: ( , )bestG X it iP  

41: end if 
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42: end for 

43: end for 

44: bestX G  

 

5.3.Heuristics  

In the previous section, the fuzzy PSO algorithm can obtain an optimal solution of the 

scheduling problem. Here, further heuristics are employed in the final PHFPSO algorithm to 

explore solutions with a better objective value. Heuristics have been used in many applications 

including distribution system planning [42], clock skew scheduling [43], distribution substation 

planning [44] and sensor localization [45].  

As shown in Algorithm 3, the proposed heuristics are used to reduce the cost of solution X 

when a particle is updated. Based on a given solution X, the total capacity in the timeslot t is 

determined as TCt. The transformer limit margin mt is defined as mt = limTt – TCt, which indicates 

the remaining electric quantity. Let wt denote the weighting to time t. A higher weighting is 

assigned to a low cost period. Then, the weighted margin wmt of timeslot t is derived by wmt = wt 

 mt. A higher weighted margin is obtained if the timeslot has further remaining capacity and the 

electricity price is lower. A modification step on electric quantity is defined as σ.  

The detailed steps in the heuristic process are given as follows. An EV index is randomly 

chosen, and two available timeslots are chosen as t1 and t2. If the electricity price EPt1 > EPt2 and 

the weighted margin wmt1<wmt2, a candidate solution is determined by moving σ from t1 to t2 

because the electricity price in t2 is lower and the weighted margin in t2 is higher. If the candidate 

solution satisfies the transformer limit and charging rate limit, the solution X will be updated. 

Lastly, the margin mt and weight wmt will be calculated according to the updated solution. 

 

Algorithm 3 Heuristics 

Input: A solution X determined by the PSO algorithm at each 

iteration 

Output: A improved solution X’ 

1: Total capacity assigned to timeslot t 

2: for timeslot t less than numT do 

3: TCt ← total capacity assigned to timeslot t 

4: t t tm limT TC   

5: 0t tw EP EP   

6: t t twm w m   

7: end for 

8: 
while a candidate solution is obtained or reach the end of 

searching 

9: t1, t2 ←  randomly choose two timeslots 

10: if EPt1 > EPt2 and wmt1 < wmt2 

11: tmpX ← move electric quantity (by σ) from t1 to t2 
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12: end if 

13: if tmpX satisfy the constraints 

14: X’ ← tmpX 

15: end if 

16: end while 

17: return X’ 

 

5.4.Baseline Algorithms 

In this paper, we evaluate the performance of our proposed heuristic fuzzy PSO (PHFPSO) 

algorithm with basic scheduling mechanisms and six versions of PSO algorithm.  

 FIFS, EDF: the first-in-first-serve (FIFS) and earliest-deadline-first (EDF) mechanisms use the 

basic rules to deal with the incoming charging requests without any optimization algorithm.   

 RS: the random search (RS) is to choose the best schedule from 100 candidate solutions.   

 OPSO, IPSO, CPSO: in Section 2.3, three basic PSO algorithms are introduced with difference 

velocity function, so that the original PSO (OPSO), inertia-weight PSO (IPSO), construction 

PSO (CPSO) algorithms are implemented as baseline algorithms.  

 OFPSO: the fuzzy PSO algorithm introduced in Section 2.4 is implemented as the original 

fuzzy PSO (OFPSO) algorithm, which is used to compare with our proposed fuzzy PSO 

algorithm.  

 PFPSO: we have designed a new fuzzy system to determine the three coefficients of PSO 

algorithm in Section 5.2, which is denoted as proposed fuzzy PSO (PFPSO) algorithm.  

 PHFPSO: after deploying the heuristics (in Section 5.3) to the PFPSO algorithm, the proposed 

heuristic fuzzy PSO (PHFPSO) algorithm is designed as the finalized algorithm.  

 

6. Simulation Studies 

A series of simulation studies have been conducted for evaluating the performance of the 

dynamic scheduling system and the proposed algorithm. In the first part (Section 6.1 and 6.2), we 

show two static examples to compare the performance of the algorithms described in Section 5.4. 

In the second part (Section 6.3 and 6.4), we simulate the operation of the dynamic scheduling 

system over the entire period with ten timeslots. At the beginning of each timeslot, the system 

would be executed to determine an optimized charging schedule for the immediate timeslot with 

the minimum electricity cost. The schedule for the subsequent timeslots is also available but the 

schedule would be revised at the beginning of the next timeslot when the system is again executed. 

Two simulation examples are presented to evaluate the case of EVs that arrive with and without 

appointments. In the evaluation of the dynamic scheduling system, the performance determined 

by the new PHFPSO algorithm are compared with other scheduling methods.   

The timeslot unit is defined as 30 minutes. We used the Nissan Leaf model 2017 [46] as the 

electric vehicle, which is equipped with a 30 kWh lithium-ion battery with 107 mile traveling 

distance. We assumed the PL uses SAE J1772 as its standard EV connector [47], whose charging 

power can reach 19.20 kW with the use of the AC Level 2 mode. The limited charging rate limC 
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in a timeslot is 9.60 kW. We define a dynamic electricity price pattern EPt  as shown in Table 4, 

which denotes the electricity price at timeslot t. Hence, the varied electricity price affects the 

expenditure in buying electricity from the power company. The electricity price is defined in USD 

per kWh, and the price is used in all simulation studies.  

Table 4 

Electricity Price at Timeslot ($/kWh) 

t 1 2 3 4 5 6 7 8 9 10 

EP 0.1 0.2 0.4 0.2 0.1 0.1 0.2 0.4 0.2 0.1 
 

 

The simulation results were computed by MATLAB R2016b on a PC with Intel Core i5-4570 

CPU @3.20GHZ 3.20GHz, 8GB RAM and 64-bit Windows 10 Enterprise. 

6.1. Simple Example with 20 EVs 

In this section, a simple numerical example is illustrated to explain the proposed model. We 

used 20 EVs (Table 5) to determine a charging schedule for the first timeslot. The parking profile 

included the arrival timeslot, departure timeslot and the charging capacity demand of each EV. 

The first 18 EVs made the appointments, and the last two EVs arrived at the PL without 

appointments. The transformer limit was set to 60 kW, and the charging rate limit was set to 9.6 

kW. The number of solutions in the initial population was set to 28 as determined by (25), and 

number of iterations was 50.  

Table 5  

EV Parking Profile 

EV id i arri depi demi EV id i arri depi demi 

1 1 3 18 11 3 8 26 

2 3 5 15 12 2 6 17 

3 1 5 25 13 5 8 15 

4 2 4 18 14 4 8 16 

5 2 3 15 15 3 7 14 

6 6 10 22 16 5 8 12 

7 7 8 14 17 4 7 16 

8 8 10 16 18 5 9 19 

9 7 8 10 19a 1 10 28 

10 6 9 20 20a 1 5 16 
 

aEV comes without appointment. 

 

Table 6 shows an optimal schedule determined by the proposed PHFPSO algorithm with the 

total electricity cost of 53.766. For example, the EV1 stays at the PL from timeslot 1 to 3. The 
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optimal schedule will only assign capacity to the first two timeslots because their electricity prices 

are low. The EV19 will stay at the PL for all ten timeslots, and its charging schedule includes the 

first and last timeslot due to the low electricity price, while no capacity is assigned to timeslot 2, 

3, 4 and 8.  

The total electric quantity in the ten timeslots are 38.25, 41.78, 5.41, 46.23, 59.91, 60.00, 42.54, 

4.90, 24.18 and 28.80. The most expensive electricity price is at timeslot 3 and 8, which is the 

reason why the total quantity in timeslot 3 and 8 are lower than the others. Also, the electric 

quantity assigned to timeslots 5 and 6 is higher than others because the electricity price is low.  

Table 6  

An Optimal Schedule for 20 EVs 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

EV1 9.53 8.47 0 - - - - - - - 

EV2 - - 0 7.61 7.39 - - - - - 

EV3 9.55 5.85 0 0 9.60 - - - - - 

EV4 - 9.25 0 8.75 - - - - - - 

EV5 - 9.60 5.40 - - - - - - - 

EV6 - - - - - 7.46 0 0 4.94 9.60 

EV7 - - - - - - 9.55 4.45 - - 

EV8 - - - - - - - 0 6.40 9.60 

EV9 - - - - - - 9.55 0.45 - - 

EV10 - - - - - 9.55 7.90 0 2.55 - 

EV11 - - 0 3.44 8.89 8.40 5.27 0 - - 

EV12 - 8.62 0 4.26 0 4.12 - - - - 

EV13 - - - - 7.67 7.33 0 0 - - 

EV14 - - - 8.29 3.98 0 3.73 0 - - 

EV15 - - 0 0 4.95 9.00 0.05 - - - 

EV16 - - - - 8.64 3.36 0 0 - - 

EV17 - - - 7.45 8.55 0 0 - - - 

EV18 - - - - 0 7.32 6.43 0 5.25 - 

EV19 9.60 0 0 0 0.24 3.46 0.06 0 5.04 9.60 

EV20 9.57 0 0 6.43 0 - - - - - 
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The objective values obtained by PHFPSO, PFPSO, OFPSO, CPSO, IPSO and OPSO are 

53.7660, 54.3166, 54.5614, 58.5152, 56.5936 and 59.4461 respectively, and the results determined 

by RS, FIFS and EDF are 70.10, 73.52 and 73.69. The results show that the performance of the 

PSO algorithms are significantly better than random search, FIFS and EDF scheduling 

mechanisms. Within the performances of the PSO algorithms, the proposed PHFPSO algorithm 

achieves the minimum electricity cost, and the performances by PFPSO and OFPSO are 

comparable. 

 

6.2. Evaluation of Algorithms with 100 EVs 

A dataset of 100 EVs was simulated to evaluate the performance, and an optimized schedule 

was obtained. The arrival and departure times were randomly assigned within the ten timeslots, 

and the charging demand of each EV was randomly set to an integer value between 4 and 8 kWh. 

The constraints of charging rate limit and transformer limit remained to be 9.6 kW and 500 kW 

respectively. In this 100 EV dataset, the number of variables in the solution was 485. The size of 

initial population was set to 54 as determined by (25), and the number of iteration was set to 50. 

In order to avoid the fluctuation of the performances, we repeated the algorithms for 20 times, then 

the statistical results were illustrated for comparison.  

Table 7 and Fig. 5 compare the performance obtained by different versions of PSO algorithms. 

After repeating the algorithms for 20 times, the best, worst, mean, median and standard deviation 

of the objective value are calculated. It is clear that the proposed algorithm (PHFPSO) outperforms 

other algorithms on all the merits on the objective value and the standard variation is slightly higher 

than CPSO and OPSO. Hence, the PHFPSO algorithm is shown to be an effective method to solve 

the scheduling problem.  

 

Table 7 

Performances Comparison with 100 EVs 

 Best Worst Mean Median S.D 

OPSO 641.0 652.9 645.3 644.8 2.79 

IPSO 626.5 647.4 635.9 636.3 5.09 

CPSO 641.9 649.2 645.8 645.5 2.15 

OFPSO 594.6 618.6 605.5 606.9 7.12 

PFPSO 580.9 600.2 591.4 592.9 5.78 

PHFPSO  546.1 559.3 552.1 551.4 3.35 
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Fig. 5. Box plot of objective values with 100 EVs. 

Fig.6 shows the convergence curves of the mean objective values obtained by the six 

algorithms. It is clear that the performance of the proposed PHFPSO algorithm is significantly 

better than the other algorithms, which is followed by the PFPSO, OPSO and the three versions of 

PSO algorithms. In this case, the performance of the proposed fuzzy PSO algorithms is relatively 

better than the original fuzzy PSO, and both fuzzy algorithms outperform the PSO algorithms 

without the fuzzy system.  

 

Fig. 6.  Optimization performances with 100 EVs. 



29 
 

The electricity costs determined by the random search (RS), first-in-first-serve (FIFS), earliest-

deadline-first (EDF) mechanisms are 642.9, 659.6 and 660.7 respectively. Compared with the 

results in Table 7, the performance of the PSO algorithms are significantly better than the 

scheduling mechanisms without optimization. With the use of the proposed algorithm (PHFPSO), 

the electricity costs of RS, FIFS and EDF are reduced by 17.73%, 20.78% and 20.99% respectively. 

To determine an optimal solution of the 100 EVs, the average computational times of OPSO, 

IPSO, CPSO, OFPSO, PFPSO and PHFPSO are 6.2s, 6.4s, 6.5s, 8.6s, 8.5s and 23.6s respectively. 

Here, the computational time of the PHFPSO algorithm is longer than other algorithms because 

the heuristic process is employed to search for better solutions. In actual operation, the 

computational procedure runs only at the beginning of each timeslot to determine the charging 

schedule for the immediate 30-minutes. Compared with the improvement on the objective value, 

the computational time of 23.6 seconds should be acceptable.  

 

6.3. Dynamic Simulation with 40 EVs 

Forty EVs with 10 timeslots were considered here, and the electricity price in Table 4 was used. 

The transformer limit and the charging rate limit were set to 110 kW and 9.6 kW respectively. Five 

simulation scenarios were used on EVs with and without appointments at different proportions. In 

each scenario, the results were obtained by the proposed PHFPSO algorithm, and then compared 

with the FIFS and EDF scheduling mechanisms. The dynamic system can determine a charging 

schedule at the beginning of each timeslot with the use of all the EVs with appointments and the 

arrived EVs, and then the PL can charge the arrived vehicles with the use of the schedule for the 

immediate timeslot. At the beginning of each timeslot, the computational process has to be 

executed. In order to acquire safe statistical analysis results, the program was repeated five times 

and the mean of the results presented. 

Table 8 shows the results of the five scenarios, with different proportions of EVs, with and 

without appointments. In scenario 1, all EVs arrive at the PL with appointments. With the use of 

proposed PHFPSO algorithm, the total cost of buying electricity is 113.5, which is 28.02% and 

28.46% less than using the FIFS and EDF mechanisms respectively. In other scenarios, our 

algorithm also outperforms the FIFS and EDF significantly on electricity cost. Comparing the five 

scenarios, the results show that the more EVs that have appointments, the better the objective value. 

This shows the advantage to the PL if the EVs make appointments. The average computational 

time of the dynamic case is also given in Table 8. The decision is obtained at the beginning of each 

timeslot, and the computational time is acceptable.   
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Table 8 

Results of the Dynamic Case with 40 EVs 

Scenario 1 2 3 4 5 

Number of EVs 

With/without 

appointments 

40/0 30/10 20/20 10/30 0/40 

Cost with PHFPSO 113.5 115.5 118.1 119.2 123.7 

Cost with FIFS 145.3 145.3 145.3 145.3 145.3 

Cost with EDF 145.8 145.8 145.8 145.8 145.8 

Average Time 7.5s 6.9s 6.4s 6.4s 5.9s 

 The simulations have been carried out for five times, and the mean costs are presented 

in this table.   

An example schedule for the third scenario (20 EVs with appointment and 20 EVs without 

appointment) is given in Fig.7. FIFS, EDF and PHFPSO are used to determine charging schedules 

for the 40 EVs, with the electricity costs of 145.3, 145.8 and 118.1 respectively. In Fig.7, the real-

time power load in each timeslot is shown in the bar graph, along with the electricity price. It is 

clear that the proposed method occupies most of the transformer limit in timeslots 5 and 6 when 

the electricity price is the lowest. Also, the power load in timeslot 3 and 8 is very low because of 

the high electricity price. The results show that the proposed method can make full use of low price 

resources while avoiding the high-price timeslots.  

 

 
Fig. 7. Power load of the dynamic case with 40 EVs 

           (based on Scenario 3, transformer limit of 110 kW) 
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6.4. Dynamic Simulation with 150 EVs 

Here, we used four scenarios to evaluate the dynamic PL system with 150 EVs. In scenarios 1, 

2, 3 and 4, 150, 100, 50 and 0 EVs arrived with appointments respectively. The dynamic system 

was executed at the beginning of each timeslot, and the schedule for the immediate timeslot and 

the subsequent timeslots was determined to minimize the electricity cost. The charging rate limit 

was set to 9.6 kW and the number of iterations was set to 50. The transformer limit was varied 

from 540 kW to 460 kW.  

Table 9 shows the performances of the 150 EVs with the use of the proposed PHFPSO 

algorithm, FIFS and EDF mechanisms. As the FIFS and EDF are both real time scheduling 

mechanisms, their scheduled results are the same for all the scenarios. When comparing the 

performances of the PHFPSO, FIFS and EDF methods, the PHFPSO always outperforms the 

others in all transformer limit cases.  

Table 9 

Performances Comparison with 150 EVs 

Transformer 

Limit 
Criterions PHFPSO with Scenarios a 

FIFS EDF 
1 2 3 4 

540 

kW 

Elec. Cost 527 527 531 546 624 631 

Fail EVs 0 0 0 0 5 0 

Fail Dem. 0 0 0 0 11.8 0 

520 

kW 

Elec. Cost 529 546 543 543 623 627 

Fail EVs 0 0 0 9 6 0 

Fail Dem. 0 0 0 39.4 12.2 0 

500 

kW 

Elec. Cost 545 555 544 537 620 627 

Fail EVs 0 0 13 18 8 0 

Fail Dem. 0 0 61.9 103 23.4 0 

480 

kW 

Elec. Cost 563 553 552 533 627 628 

Fail EVs 0 10 16 26 10 2 

Fail Dem. 0 48.7 73.0 155 28.6 10.8 

460 

kW 

Elec. Cost 576 556 543 537 634 632 

Fail EVs 0 19 27 28 10 3 

Fail Dem. 0 98.2 148 181 28.6 12.4 
a Scenario 1: 150 EVs with appointments, no EV without appointment;  

Scenario 2: 100 EVs with appointments, 50 EVs without appointments;  

Scenario 3: 50 EVs with appointments, 100 EVs without appointments;  

Scenario 4: 150 EVs without appointments, no EV with appointment.  

 

In the first case (transformer limit 540 kW), the results show that the charging demands can be 

fulfilled in all scenarios, and the electricity costs in all scenarios are comparable. In addition, the 

scenario with more appointments is usually better. In scenario 4, even though all the EVs arrive 

without appointments, the electricity cost is also significantly less than the FIFS and EDF results.  
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When the transformer limit is reduced to 520 kW, the charging demands in 9 EVs cannot be 

satisfied in scenario 4. It is because the PHFPSO determines a schedule to minimize the electricity 

cost, and that some low-price timeslots would be occupied in the earlier scheduling without any 

predicted information. Hence, when some later EVs arrive without appointments, the parking 

timeslots may not be able to satisfy their charging needs because of the transformer limit. When 

the transformer limit drops from 500 kW to 460 kW, some of the demand in scenarios 3 and 2 

cannot be fulfilled due to the same reason. In scenario 1 where all the EVs arrive with appointments, 

the demands can be satisfied even though the transformer limit is low. In this case, the appointment 

process can help the PL to reduce the minimum requirement of the transformer limit to satisfy all 

the drivers’ demands.  

A detailed example (based on Scenario 2, transformer limit of 500 kW) is given in Fig.8 for 

comparing the FIFS, EDF and the proposed PHFPSO algorithm. The electricity costs of the FIFS, 

EDF and PHFPSO are 620, 627 and 555 respectively, which means the electricity cost by the new 

algorithm is reduced by 10.5% and 11.5% compared with the FIFS and EDF mechanism. In Fig.8, 

the new schedule occupied the transformer limits in timeslot 5, 6 and 7 when the electricity price 

is low. On the contrary, the proposed schedule can avoid using timeslots with high electricity price, 

while the timeslot 3 is fully used by the FIFS and EDF mechanisms. At the beginning of each 

timeslot, the dynamic system is executed for determining a solution for that timeslot, as well as 

plan for subsequent timeslots. The computational times of the ten timeslots are 38.5s, 34.97s, 

33.02s, 31.20s, 25.86s, 20.22s, 15.20s, 9.97s, 6.45s and 4.17s respectively. In real-world situation, 

the computational time for the immediate 30-minutes is acceptable to determine the schedule.  

 

 

Fig. 8. Power load of the dynamic case with 150 EVs (based on Scenario 2, transformer limit of 

500 kW). 

In conclusion, the proposed model is feasible for dynamic scheduling no matter the EVs arrive 

with or without appointments, and the optimized schedule is significantly better than the FIFS and 

EDF mechanisms. When the transformer limit is low, the appointment process helps the system to 
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know the expected information in the future, and then the PL can determine an optimized schedule 

with the minimum electricity cost. On the other hand, the appointment process can help the PL to 

reduce the requirement of the transformer limit, which is also a crucial consideration in the PL’s 

operation. Lastly, we show some case studies which simulate realistic situations such as EVs with 

appointments but not showing up, or arrived EVs departing earlier than expected. The results show 

the new operation model and algorithms are also applicable to handle these sudden cases. 

 

7. Conclusion 

In this paper, we propose a new dynamic resource allocation system for recharging EVs in a 

PL with the aim of minimizing the PL’s electricity expenditure. In order to solve the optimization 

problem, we designed a proposed heuristic fuzzy particle swarm optimization (PHFPSO) 

algorithm based on particle swarm optimization (PSO), fuzzy systems and heuristic technologies. 

Four case studies are presented to demonstrate the performance of the proposed dynamic system 

and the PHFPSO algorithm. The results show that the proposed algorithm can achieve an optimal 

solution and outperform the typical PSO algorithms, and the performance is significantly better 

than the FIFS and EDF. The results also show the proposed system is not only viable in 

determining dynamic solutions at the beginning of each timeslot but is flexible in dealing with EVs 

that arrive without appointments.  

In future work, we will develop a business model to generate revenue by charging parking fees 

and selling electricity to the drivers. We will use multiple PLs in the system, and provide the driver 

a suggested PL with the use of the appointment process. We will employ the EV’s minimum and 

maximum charging demands in the EV profile, so that the PL can determine a flexible quantity to 

EV. We will also employ real data in evaluating the proposed system, which include the EVs’ 

practical arrival and departure patterns and their remaining capacities. In this paper, we study the 

PSO algorithm as the baseline algorithm, and deploy the fuzzy system and heuristics to PSO 

algorithm. We mainly focus on improving the PSO algorithm in this work, and will study other 

optimization algorithms with the use of fuzzy system or heuristics in the future.   
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