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Abstract— A new model for a viable battery swapping station 

(BSS) is proposed to minimize its cost by determining the 

optimized charging schedule for swapped EV batteries. The aim is 

to minimize an objective function considering three factors: the 

number of batteries taken from stock to serve all the swapping 

orders from incoming EVs, potential charging damage with the 

use of high-rate chargers, and electricity cost for different time 

period of the day. A mathematical model is formulated for the 

charging process following the constant-current /constant-current 

charging strategy. An integrated algorithm (IA) is proposed to 

determine an optimal charging schedule, which is inspired by 

genetic algorithm (GA), differential evolution (DE) and particle 

swarm optimization (PSO). A series of simulation studies are 

executed to assess the feasibility of the proposed model and 

compare the performance between IA and the typical 

evolutionary algorithms. 

 
Index Terms—Battery swapping stations, electric vehicles, 

battery charging, optimization algorithms. 

I. INTRODUCTION 

lectric vehicles (EVs) are now being widely adopted, not 

only to reduce the amount of fossil fuels used, but also out 

of consideration for greenhouse gas emissions and 

environmental protection. However, many car owners are still 

willing to buy traditional vehicles due to certain well-known 

drawbacks of EVs, such as long charging time, short battery 

life, limited travel distance per charge and expensive EV 

batteries. The introduction of the battery swapping station 

(BSS) would reduce range anxiety and provide access to 

fully-charged batteries for EV owners. When the battery of a 

vehicle is running low, an EV driver can drive to the nearest 

battery swapping station and swap to a recharged battery within 

two minutes.  

Electric vehicle technology has been applied in many 

countries all over the world, and many different kinds of 

vehicles, such as private cars, taxicabs, buses and trucks have 

gone electric [1]. However, battery limitation remains the chief 

drawback to the development of EV technology. Firstly, the 

battery is deemed to be an expensive component of an electric 

vehicle, considering its initial purchase cost related to the life of 

the battery. Secondly, the travel range per charge mainly 

depends on the chemistry of the battery. The most commonly 

used battery on EVs is the lithium-ion battery, which can 

provide a travel range from 320 to 480 km per charge [2]. Yet, 

the range is still too short for some travelers who need to travel 

long distances within a day. Thirdly, charging time varies 

depending on different types of charging technology and 

equipment [3]. In this case, the battery swapping station model 

has been proposed as the alternative way for overcoming the 

drawback of EV batteries and charging technologies.   

In the past decades, there are already loads of studies in the 

field of battery swapping station models. Some previous 

research [4] - [8] has focuses on maximizing the BSS’s revenue 

by applying renewable energy resource, selling electricity back 

to grid and building centralized charging stations. In [4] and 

[5], a BSS model was proposed as a mediator between power 

system and EV order. It aimed to meet swapping demand and 

maximize its profits by buying electricity during low-price 

periods and selling electricity during high-price periods. 

However, the profits obtained by reselling electricity from 

batteries are unreal since they did not consider the batteries’ 

degradation due to the frequent recharging cycles. In [6], an 

intelligent battery information management system was 

designed to eliminate the limitations of the long charging 

process and huge infrastructure cost. The idea was to charge 

swapped batteries in a management hub and then deliver them 

to a switching station via an optimized route with minimal 

supply chain costs. Nevertheless, the model assumes that all 

battery charging takes place only at the hub, which would result 

in many shipments of batteries. However, the challenge of the 

model is its difficulty to deliver the massive and heavy EV 

battery pack along with the potential damage during the 

delivery process. An economic dispatch model considering 

wind power for an EV battery swapping station was proposed 

in [7], and its results showed that a BSS operated on wind 

power can be profitable. In [8], a BSS distribution and power 

distribution model was established based on the energy 

exchanges in the battery swapping system. However, these 

studies are simplified since they didn’t consider the possibility 

and complexity for building the renewable energy 

infrastructure in an urban area.  

Other researchers [9] – [12] have worked to determine the 

location and distribution of battery swapping stations with the 

objective of maximizing its revenue, and decide on the 

charging schedule for electric buses. In [9], a distribution model 

of the BSSs in a particular area was proposed to optimize the 

cost-benefit and enhance safety. The life cycle cost criterion 

was used to specify the objective combining the cost of 

investment, operation, maintenance, failure and disposal. This 

model also considers the fluctuation of electricity prices during 

the day, and then adjust the charging strategies based on the 

electricity price. In [10], a decision model was proposed to 

choose the location of a battery swapping station serving EVs 

on freeways. The operation policy of the charging service 

provider was determined with the aim of preparing sufficient 

stock batteries for incoming swapping demand. However, the 

operation models with more than one battery swapping station 
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has not been fully verified yet. Also, it is predictable that the 

investment for establishing a BSS distribution system is huge 

and the profit is not yet certain. Another BSS model was 

designed for the bus terminal at the Hong Kong International 

Airport in [11], which serves the electric bus routes in the 

airport. The BSS model aimed to optimize the battery charging 

methods to maximize the number of batteries in stock. 

However, the target of the model was only for the airport bus 

terminal serving electric buses. Also, the mathematical 

formulation was over simplified, and did not sufficiently 

consider the conditions of the charging stations and the 

batteries. An optimal charging schedule model for electric 

buses was proposed in [12] by determining the charging power 

of all the charging boxes over all time slots. The objective of 

the model was to minimize the cost combining the electricity 

cost, battery degradation and low battery utilization. However, 

the charging strategy did not follow the typical 

constant-current/constant-voltage strategy. Also, the arrival 

time of EVs considered in this paper is less predictable than 

electric buses.  

Most of the research in the field of scheduling and decision 

making have focused on studying optimization algorithms, 

including heuristic, robust and evolutionary algorithms and 

policy definition. [4] and [5] used a mixed-integer linear 

programming model to solve the optimization problem. [8] 

proposed a “feed-in shift” method to realize the optimal 

configuration of wind, solar and hydro power. A robust 

optimization model was used for battery swapping 

infrastructure in [10]. Two particular policies, first-in first-out 

and highest State-of-Charge first, were compared in order to 

operate the swapping station with different numbers of batteries 

in stock. However, when the charging speed was improved to 

an acceptable level, the battery life factor becomes very 

important. Both the optimization software and robust models 

are not intelligent for exploring the optimal solution. A particle 

swarm optimization method was proposed in [6] to solve the 

multi-objective problem. The proposed model in [9] was a 

multistage, nonlinear, constrained mixed-integer optimization 

problem. A heuristic optimization technique was used to obtain 

a solution by determining the location, size, and strategy of the 

charging station based on the fixed demand of electric vehicles. 

[11] proposed a basic version of the genetic algorithm to obtain 

an optimal solution for determining the charging schedule for 

the airport buses. [12] proposed a direct projection method for 

solving the scheduling problem, which is more rapid than the 

generic algorithm. However, these research using optimization 

algorithms only implemented the basic program for solving a 

particular problem. Furthermore, they did not compare the 

performances using different algorithms for solving their 

problems.  

Besides the operation model and optimization algorithms, 

the property of EV batteries play an important role in the 

proposed BSS model. Many factors, such as power and energy 

density, charging cycle life, calendar life, weight, and 

environmental friendliness, affect the development of battery 

technologies. Compared with lead acid, nickel-metal hydride 

and sodium batteries, the lithium-ion battery is regarded as the 

best type of battery for use in EVs ([13] - [16]). It has been 

widely reported that the battery’s charging strategy is related to 

its charging rate, cycle life, temperature and safety ([17] - [19]). 

The constant-current (CC)/constant-voltage (CV) charging 

strategy [20] is the common standard for charging lithium-ion 

batteries. As a typical charging operation would take much 

longer than refilling a vehicle with gasoline, fast- and ultra-fast 

charging technologies were proposed [21] to improve the 

charging efficiency. However, these fast-charging schedules 

require certain conditions. First, the battery must be designed to 

be charged with a high current. Secondly, fast charging only 

applies to the first stage of charging, which is typically the 

constant-current stage. Thirdly, the high current should be 

reduced after the battery is around 70 percent charged, in order 

to protect the circuit and prolong the battery life. Lastly, fast 

charging can only be used in an environment in which a certain 

temperature can be maintained. Therefore, in this paper, we 

introduce a two-stage charging strategy (constant-current 

/constant-voltage) in Section II.  

Cycle life is considered as one of the most important 

characteristics of EV batteries. There have been many 

experiments and studies that have focused on factors related to 

battery cycle life, such as material type, environmental 

temperatures, and charging depth [22] - [26]. After a battery has 

reached a long cycle life, the available electricity capacity is 

usually lower. Hence, the state of health (SOH) is used to 

indicate the battery’s health condition in this paper. The cycle 

life of a battery is also related to the charging rate. When the 

SOH drops to a disposal threshold, it may indicate the 

retirement condition of the batter. The cycle life of a battery 

charged using 1C, 2C and 3C is around 500, 300, and 100 

cycles respectively [21]. Hence, the damage to a battery 

charged using an ultra-fast charger is considerably increased. 

The cost of using fast chargers would be higher than that of 

using normal or slow chargers. 

In this paper, based on the review of previous work, we 

assume that the BSS swaps and recharges batteries at the same 

location. The BSS does not aim to make profits by selling 

electricity back to the grid, considering that each discharging 

process would reduce the battery’s lifecycle and increase the 

potential expense. Also, we have formulated a mathematical 

model for the constant-current/constant-voltage charging 

strategy in the optimization model. Three optimization 

algorithms are used and compared to solve the proposed model, 

and a new integrated algorithm is designed for improving the 

performance. 

The main contribution of this paper is to develop a new 

battery swapping station model for determining a near-optimal 

schedule for recharging batteries at a battery swapping station, 

aimed at minimizing its operation cost. Previous research in [4] 

– [12] focused on making a profit by using a renewable energy 

source, optimizing the location of BSSs, and selling electricity 

back to the grid. Hence, the model and algorithms developed in 

this paper are inherently different from previous works. Based 

on the studies on battery technology in [13] - [26], this paper 

also formulates the battery’s charging power function along 

with the charging time and charging power estimation model.  
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This paper is organized as follows. Section II describes the 

operation model and the mathematical formulations. Section III 

introduces the optimization algorithms and a new integrated 

algorithm. A series of case studies are presented and discussed 

in Section IV. Finally, Section V gives the conclusions and 

describes the contribution of the paper.   

II. PROBLEM FORMULATION 

In this model, the EV drivers are suggested to send an advanced 

notice to the BSS if they need to swap a battery. The advanced 

notice should include a forecast of arrival time, remaining 

capacity and state of health of the battery. In order to entice the 

EV drivers to send notices before arrival, the BSS may provide 

some price discount for the swapping service. 

From the BSS’s perspective, the BSS aims to obtain an 

optimal charging schedule for all the known batteries. There are 

different strategies to enable a battery swapping station to 

minimize its operation cost.  

1) Given a set of swapping orders with advanced notice from 

incoming EVs, the BSS should use the minimum number 

of batteries taken from the stock to serve the orders. This 

would allow the BSS to have more reserve to handle other 

EVs that arrive without appointment. With the use of the 

optimization strategy, the BSS can plan for a lower 

number of initial stock batteries in operation. 

2) The BSS should aim to recharge swapped batteries with 

slow chargers, knowing that a fast charging schedule using 

high current/voltage would degrade the battery life cycle 

and hence increase the BSS’s potential cost.  

3) Due to the variability of electricity price during the day, 

the BSS should recharge the batteries when the electricity 

price is low.  

Therefore, the proposed BSS model intends to find a balance 

to satisfy the above conditions.   

A. Notation 

The notation of variables used in this model is shown in 

Table I. 

B. Decision Solution 

From the battery swapping station’s viewpoint, the aim is to 

minimize an objective function value which depends on the 

number of batteries needed from stock to serve all the orders, 

the potential charging damage with the use of different types of 

chargers and the electricity energy cost. Given a set of EV 

TABLE I 

NOTATION OF VARIABLES 

Variables Descriptions 

T Set of time with index t. 

S Set of decision at time t. 

E Set of EV orders with index i. 

B Set of batteries with index j. 

C Set of charging methods with index k. 

sol(j) Assigned charging method to battery j. 

NumB Number of battery in a decision. 

NumE Number of EV orders. 

Pbat Normalized purchase price of a battery ($). 

dm(k) Normalized charging damage using charging method 
k ($). 

E(t) Electricity price at time t ($). 

Pj(t) Charging power to battery j at time t (kW). 

Tj
S Battery j’s start charging time (HH:MM). 

Tj
E Battery j’s end charging time (HH:MM). 

BT(t) Number of batteries taken from stock at time t. 

BC(t) Number of fully-recharged batteries at time t. 

BS(t) Number of batteries in stock at time t. 

BTmax Maximum number of batteries taken from stock. 

Pk(t) Charging power using method k at time t (kW). 

Pk
cc Power at constant-current stage of method k (kW). 

Pmax Maximum power of a BSS (kW). 

tk
cc Time for switching from constant-current to 

constant-voltage stage using method k. 
tk

CV Time that finish charging using method k. 

ak Parameter corresponding to charging method k. 

η State of health threshold switching from CC to CV 

state (%). 

SOHj(t) State of health of battery j at time t (%). 

RCapj Rated capacity of battery j (kWh). 

Capj(t) Available capacity of battery j at time t (kWh). 

SOHmin Disposal threshold state of health (kWh). 

Tj Time to recharge battery j from its current capacity to 

fully-charged. 

SOCj(t) State of charge of battery j at time t (%). 

Eoff-peak Electricity price in off-peak period ($). 

Emid-peak Electricity price in mid-peak period ($). 

Eon-peak Electricity price in on-peak period ($). 

 

TABLE II 
EXAMPLE WITH 16 ORDERS 

Order 

index 

Arrival 

Time 

Remaining 

Capacity 
SOH 

Charging 

method a 

Finishing  

time of 

recharging  

1 9:04 30% 98% 2 11:16 

2 9:17 13% 98% 2 11:29 

3 9:43 26% 82% 1 10:57 

4 9:55 17% 91% 2 11:57 

5 10:03 34% 99% 1 11:32 

6 10:26 14% 99% 1 11:55 

7 10:44 34% 90% 1 12:05 

8 10:53 30% 83% 2 12:45 

9 11:00 21% 98% 4 15:23 

10 11:26 30% 99% 4 15:52 

11 11:36 26% 81% 4 15:13 

12 11:54 31% 99% 4 16:20 

13 12:14 27% 95% 4 16:29 

14 12:22 29% 88% 4 16:18 

15 12:32 26% 83% 4 16:15 

16 13:00 28% 81% 4 16:37 

a Notation of charging methods: 1-super charger; 2-fast charger; 3-normal 

charger; 4- slow charger. 
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orders, with predicted arrival time, remaining capacity and 

SOH, the decision solution S is given as 

)}(),...,(),...,2(),1({ NumEsoljsolsolsolS     (1) 

Here, sol(j) = k means that charging method k is assigned to 

recharge the battery of EV order j in this solution, and NumE is 

the number of EV orders/batteries needed for recharging.  

Table II gives an illustration of the importance of 

determining an optimal schedule for simple 16-order case with 

arrival time between 9:00 and 13:00. The remaining capacity 

and state of health (SOH) of each incoming battery is assumed 

to be known. In this example, this information (column 3 and 4) 

is randomly assigned. A decision solution is shown below:  

S = {2, 2, 1, 2, 1, 1, 1, 2, 4, 4, 4, 4, 4, 4, 4, 4} 

as in column 5, and the finishing time of recharging is shown in 

column 6. Note that 1, 2, 3 and 4 denote super, fast, normal and 

slow charger respectively. For example, order index 3 arrives at 

9:43, and a super charger (denoted by 1) is assigned to recharge 

the swapped battery. Then, the battery will be fully-recharged 

at 10:57 and it can be swapped to an order that comes after 

10:57.  

In this case, the eight batteries from order 1 to 8 have been 

assigned to use the super and fast chargers, so that they can be 

swapped to the subsequent orders. The other eight batteries 

from order 9 to 16 have been assigned for the slow chargers so 

that the charging damage can be minimal due to the use of low 

currents. This is as expected as they are the last batch of orders. 

With the use of the above solution, only 8 batteries would be 

taken from stock to serve the 16 swapping orders. Suppose the 

charger type for orders 1 to 8 are randomly assigned to super, 

fast, normal chargers, and orders 9 to 16 are assigned to slow 

chargers, our simulation results with 100 random solutions 

show that the average number of batteries taken from stock is 

over 10. In the next section, we will discuss that the key issue is 

on intelligent assignment of chargers for all the orders so as to 

balance between the number of batteries needed from stock, 

and the damage incurred to the batteries if super or fast chargers 

are used. 

C. Objective Function 

In order to determine an optimal solution for our problem, the 

objective function is formulated in terms of a monetary value. 

Here, it is defined as the average cost for serving the EV 

swapping orders as follows:   

minimize     

])()(

))(([
1 max













Bj

T

T
j

Bj

bat

dttEtP

jsoldmBTP
NumB

E
j

S
j

  (2) 

Here, the charger assigned for battery j is defined as sol(j). The 

objective function consisted of three components. The first 

part,  
maxBTPbat                          (3) 

refers to the need to use BTmax number of batteries taken from 

stock to serve all the orders, where Pbat is the normalized price 

of a battery. 

The second part,  


Bj

jsoldm ))((             (4) 

is the total charging damage by summing up the charging 

damage to each battery. dm(sol(j)) denotes the normalized 

charging damage using charger sol(j). Details on their 

calculations are given in Section IV.  

The third part,  


Bj

T

T
j dttEtP

E
j

S
j

)()(        (5) 

is the total electricity cost on recharging all the batteries. Here, j 

is the battery index for the battery. Pj(t) is the charging power of 

battery j at time t, and E(t) is the electricity price at time t. 

Considering the variation of electricity price, the electricity cost 

for each battery is obtained by integrating the product of 

charging power and electricity price within its charging period 

from Tj
S to Tj

E. The total electricity cost is the sum of individual 

cost spent on recharging the swapped batteries.  

D. Battery Stock Condition 

Next, we define some features of BSS. BT(t) is the number of 

batteries taken from stock at time t, and BC(t) is the number of 

batteries that have been recharged and are available at time t. 

When an EV comes for a swap, if BC(t) is not zero, the BSS 

would swap a recharged battery to the EV. Otherwise, the BSS 

would use a stock battery for swapping. That is, when an EV 

arrives at time t, BT(t) and BC(t) are updated as follows: 

If 0)1( tBC ,  

 1)1()(  tBCtBC                      (6) 

, otherwise 

1)1()(  tBTtBT .       (7) 

 
Fig. 1.  BT(t) and BC(t) in the Example with 16 Orders. 

 
Fig. 2.  BS(t) in the Example with 16 Orders. 
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When a battery becomes fully-charged at time t, BC(t) is 

updated as follows: 

1)1()(  tBCtBC        (8) 

BTmax is the number of stock batteries taken to serve all the 

orders and it is defined as: 

))(max(max TBTBT  .      (9) 

Here, BT(T) is the number of batteries taken from stock during 

the time period T. 

In order to record the BSS’s stock condition, BS(t) is defined 

as the number of batteries in stock at time t, which is derived 

based on 

)()()( max tBTtBCBTtBS  .    (10)  

Fig. 1 shows the graph of BT(t) and BC(t) corresponding to 

the example in Section B. In the period from 9:00 to 10:56, the 

BT(t) increases at the time of a new order, and BC(t) is stable at 

zero. Refer to Table II, the battery swapped from order 3 is fully 

recharged at 10:57, so that BC(t) increases at 10:57 in Fig.1. 

When the next order comes at 11:00, there is a fully recharged 

battery in stock (BC(t)>0), then the BSS would swap this 

recharged battery to the EV rather than using a battery from 

stock. Hence, the BC(t) decreases while BT(t) remains stable at 

11:00. At the end, both BT(t) and BC(t) would reach 8, which 

means that the number of batteries taken from stock is 8.  

 If the BSS starts with 8 batteries, the number of batteries in 

stock (BS(t)) is shown in Fig. 2. It is clear that the stock battery 

level can be split into three periods. In the first period (09:00 – 

10:56), the stock level drops seriously because the stock 

batteries are swapped to the EVs and no swapped batteries are 

recharged yet. During the second period (10:57 -13:00), the 

stock level is stable around zero because the number of 

swapping demands and recharged batteries are more or less 

balanced. In the third period, the stock level increases because 

the swapped batteries have been recharged but the swapping 

demand is low in that period.  

E. Charging Power Estimation Model 

In order to simulate the characteristic of 

constant-current/constant-voltage charging strategy, we 

formulate the relationship between charging power and time in 

(11)  










   tt,tttaP

    tt,P
tP

k

cc

k

cc

kk

cc

k

cc

k

cc

k

k
   ))(exp(

0
)(

cv
 (11) 

where Pk(t) represents the output power of charging method k at 

time t, t is the time lapse since recharging from empty capacity, 

Pk
cc is the method k’s power at constant-current stage, tk

cc 

represents the time for switching from constant-current to 

constant-voltage stage, tk
cv represents the time that finish 

charging, and ak is a parameter corresponding to charging 

method k.  

As shown in Fig. 3, four types of chargers with different 

charging powers and charging curves are used. At the first stage 

of constant-current (CC), the charger would use a 

constant-power to recharge the battery from empty to a 

threshold η, which denotes a SOC of the battery.  At the second 

stage of constant-voltage (CV), the charger’s power would 

decrease gradually until the battery is fully charged. 

F.  Charging Time Estimation Model 

Considering the degradation of lithium-ion battery, the state 

of health (SOH) of battery j at time t is defined as 

%100
)(

)( 
j

j

j
RCap

tCap
tSOH        (12) 

such that 

 TtBjtSOHSOH j  100)(min
  (13) 

where t is the time when the battery is fully recharged, RCapj is 

the rated capacity of battery j, SOHj(t) is defined as the state of 

health of the battery j at time t, and SOHmin indicates the 

disposal threshold SOH. When the SOH of battery j degrades 

below SOHmin, the battery can no longer be used for recharging. 

When an EV i comes to a BSS, one type of charger from the 

optimal schedule will be assigned for its swapped battery. 

Then, the BSS would calculate the time Tj needed to recharge 

the swapped battery j from its remaining capacity to full charge 

in (14). 

If )( 0tSOC j
: 

cc

k

jjcv

kj
P

tCaptSOC
tT

)()( 00 
       (14a) 

If )( 0tSOC j
: 

)])()((1ln[
1

00

cc

k

cc

kjjcc

k

k

k

cc

k

cv

kj tPtCaptSOC
P

a

a
ttT   

                        (14b) 

such that 

TtBjtSOC j  100)(0     (15) 

Here, η is the threshold indicating the SOC that the charger 

need to switch from CC to CV mode, Pk
cc is the power at 

constant-current mode of charger k, SoCj(t) is the state of 

charge of the battery j at time t, Capj is the available capacity of 

battery j at time t.  

Hence, we also denote Tj
S as the start charging time of battery 

j, which is the same as the arrival time of EV i. Then, the end 

charging time of battery j is 

j

S

j

E

j TTT            (16) 

where Tj is the charging time obtained in (14).  

 
Fig. 3.  Charging curve of different charging methods  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

6 

G.  Real-time Charging Power Estimation Model 

The real-time charging power to battery j is shown below. 

If 
cc

k

jjcc

k
P

tCaptSOC
tt

)()( 0 
 : 

cc

kj PtP )(          (17a) 

, otherwise: 

)))
))()((

1ln(
1

(exp()(
0

cc

k

cc

k

cc

kjjk

k

k

cc

kj
P

tPtCaptSOCa

a
taPkP




                      (17b) 

such that 

TtPtP
Bj

j 


max)(             (18) 

where t is the time since the battery starts charging, Pmax is the 

maximum power that a BSS can reach at any time. 

H. Electricity Price Model  

A Time-of-Use (TOU) price model is used as the electricity 

price in this problem [32]. Three TOU periods, off-peak, 

mid-peak and on-peak, are assigned to different electricity price 

periodpeak -onin  is  ,   

periodpeak -midin  is  ,    

periodpeak -offin  is  ,   

)(

t

t

t

E

E

E

tE

peakon

peakmid

peakoff

















.  (19) 

III. METHODOLOGY 

The objective of this paper is to determine an optimal charging 

schedule for the incoming EVs in order to minimize the cost for 

the BSS. Assuming that there are N incoming batteries and K 

types of charging methods, the solution is an array with N 

elements. In this model, the total number of possible solutions 

is K N. 

Accordingly, the solution of the model is a discrete array 

with exponential dependence of the number of batteries. As a 

result, the defined model is a non-deterministic 

polynomial-time hard (NP-hard) problem with high 

computational complexity [22].  

Optimization algorithms are regarded as acceptable methods 

to solve the problem. Three well-known optimization 

algorithms genetic algorithm (GA), particle swarm 

optimization (PSO) algorithm, and differential evolution (DE) 

algorithm, are adapted to obtain a solution of the model. After 

studying the performances with previous algorithms, we 

propose an Integrated Algorithms (IA) by combining GA and 

PSO algorithms for solving the problem. 

A. Genetic Algorithm 

In order to obtain an optimized solution for the BSS based on 

the use of different charging methods, Genetic Algorithm (GA) 

is considered as an efficient and powerful method for NP-hard 

problems with high computational complexity. GA is a 

powerful metaheuristic algorithm proposed by Holland in 

1970s [23] and has been applied in many areas for solving 

optimization problems. 

Algorithm 1 in the Appendix presents the implementation of 

the adapted GA algorithms in this paper. Firstly, a set of initial 

parents are randomly generated at the beginning of the 

optimization. For each parent, crossover and mutation 

operations are used to work out some chromosomes as the 

children of this iteration in Line 5 - 14. After gathering up these 

children and parents, the scores of these candidates are 

calculated according to the multi-objective functions. Next, 

candidates with higher scores are selected as the parents in the 

next iteration. After iterations, the candidate with the best 

objective score is identified.  

B. Particle Swarm Optimization Algorithm  

Particle Swarm Optimization (PSO) is a computational 

algorithm inspired by the social behaviors in the artificial life 

[24]. PSO is also a powerful method for solving the 

optimization problem by exploring the particles. In each 

iteration, the particles would be updated to a better position 

according to the particles’ position and velocity.  

Algorithm 2 (see Appendix) shows the detailed procedure of 

the PSO algorithm, which is initialized with a group of random 

particles. Each particle has a corresponding fitness value which 

is evaluated by the observation model, and has a relevant 

velocity which directs the movement of the particle. In each 

iteration, the particle moves with the adaptable velocity, which 

is a function of the best state found by that particle (for 

individual best), and of the best state found so far among all 

particles (for global best). In this paper, three versions of PSO 

algorithms, the original PSO [25], the PSO-In [26] and the 

PSO-Co [27], are implemented in lines 9 – 17. 

C. Differential Evolution Algorithm 

Differential Evolution (DE), proposed by Price and Storn in 

1995 [28], is also a typical evolutionary computation algorithm 

to obtain an optimized solution for non-linear optimization 

problems. The basic idea of DE is to maintain a population of 

candidates, and then use the DE formulas to create new 

candidates by combining the existing solutions. After 

generating new solutions, the candidate with the best objective 

value would be stored.  

Algorithm 3 (see Appendix) presents the pseudo-code of the 

differential evolution algorithm adapted in the BSS model. 

Assuming that a candidate solution is a permutation in the 

vector X, each individual in the vector is indexed by i, and each 

generation is indexed by g. For the initial generation, the 

elements in parent P are generated randomly. The next 

populations will be created from the previous generation, as in 

line 2 – 20. After each generation, the best solution XP would be 

updated.  

D. Integrated Algorithm 

After comparing the performances using the above three 

algorithms, we found that the PSO algorithms perform 

significantly better than GA and DE within the first few 

iterations. However, GA always explores for better solution 

with more iterations than PSOs and DE. Hence, an integrated 

algorithm (IA) is proposed to solve the optimization problem 

by combining the GA and PSO algorithm.  

The steps of the proposed IA are as follows: 

1) Set the total number of generations as NumGen and the 
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number of generations for PSO as NumGenPSO. Set 

NumP as the number of parent in the IA process.  

2) From the 1st generation to the NumGenPSO-th generation, 

execute the PSO, PSO-In and PSO-Co algorithms 

respectively in Algorithm 2.  

3) Evaluate the objective values of the solutions at the 

NumGenPSO-th generation and choose the NumP 

solutions with the highest scores as new parents P.  

4) From the NumGenPSO-th generation to the NumGen-th 

generation, set the updated P as the new parents of GA and 

then execute the GA process introduced in Algorithm 1. 

5) At the NumGen-th generation, the solution with best 

objective is assigned as the optimal solution. 

In the next section, the simulation studies are shown and 

compared.   

IV. CASE STUDY 

The proposed model has been applied to a series of case studies. 

A type of lithium-ion battery pack is used with a rated capacity 

of 85 kWh, which is the typical battery on Tesla Model S [29]. 

Four types of EV battery chargers, super-charger, fast-charger, 

normal-charger and slow-charger, are used with different 

charging rate and different potential charging damages to 

batteries.  

Some discussions on the cost calculation on the objective 

function are given below: 

1) Cost 1: number of batteries taken from stock 

We would like to minimize the use of batteries taken from 

stock, so that they can be reserved for the swapping orders that 

come without advanced notice. In the cost calculation, the 

number of batteries is multiplied by the battery’s purchase price 

as a component in the objective function. 

Nykvist et.al. [30] has analysed over 80 different reports 

from 2007 to 2014 to trace the costs of Li-ion battery packs for 

electric vehicles. They showed that the industry-wide cost has 

declined from above US$ 1,000 per kWh to around US$410 per 

kWh, and the cost of battery packs used by market-leading 

BEV manufacturers was even lower at US$300 per kWh. They 

also concluded it is possible that economies of scale would 

continue to push cost towards US$200 per kWh in the near 

future. The battery considered in the case study is an 85kWh 

battery pack for Tesla Model S, and the price is around $250 

per kWh. Hence, the initial purchase price for a battery pack is 

estimated to be $21,000. Some studies showed that a 

lithium-ion battery’s cycle life is from 600 to 1200 charging 

cycles depending on the charging rates [31].  

Assuming that the average life of the battery is 1000 

charging cycles and the purchase price is $21,000, the average 

cost for each charging is $21. Hence, in this simulation study, 

the normalized purchase price of a battery Pbat is set to $21 in 

(3).  

2) Cost 2: charging damage due to different charging rates 

Rezvanizaniani et.al. [31] has summarized the lithium-ion 

battery life for different charging rates. At a temperature of 30 

℃, the battery’s cycle life is 1200, 1100 and 800 corresponding 

to the charging rate of 1C, 2C and 3C. In the case study, we use 

four types of chargers with power of 120kW, 80kW, 60kW and 

40kW, and the charging curves are shown in Fig. 3.  

As shown in [31], the use of fast chargers would decrease the 

life cycles of a battery. Suppose the life cycles of the four types 

of chargers are 800, 1100, 1150 and 1200, with the battery price 

of $21,000, the normalized damages are worked out as 

US$26.25, US$21, US$18.2 and US$17.5. Suppose the slow 

charger (40kW) is used as a reference, the additional cost of 

using super-charger, fast-charger and normal charger are $8.75, 

$3.50 and $0.70. Hence, the normalized charging damage using 

the four charging methods, dm(1), dm(2), dm(3) and dm(4), are 

set to $8.75, $3.50, $0.70 and $0 respectively.  

3) Cost 3: electricity cost for different time period of the day 

In this paper, we refer to the Pricing and Schedules provided 

by Power Stream in Canada [32]. The TOU prices subject to 

winter in Table III.  

The simulation results are computed by MATLAB R2016b 

on a PC with Intel Core i5-4570 CPU @3.20GHZ 3.20GHz, 

8GB RAM and 64-bit Windows 10 Enterprise.  

A. Case 1: Comparison Between an Optimal Schedule and a 

Random Schedule 

This case assesses the feasibility of the proposed model and 

algorithms. The results with an optimal schedule and a random 

schedule are compared.  

1) Initialization 

This case simulates 100 EVs arrive between 09:00 to 13:00, 

and the arrival times are distributed evenly in this period. The 

remaining capacities of the swapped batteries are randomly set 

 
Fig. 4.  Optimization performance of Case 1.        

 

TABLE III 

TOU PRICES - WINTER 

Time of the day 
TOU 

Period 

Price in CAD 

per kWh 

Price in USD 

per kWh 

7:00 a.m. to 11:00 a.m. On-peak $0.180 $0.13 

11:00 a.m. to 5:00 p.m. Mid-peak $0.132 $0.10 

5:00 p.m. to 7:00 p.m. On-peak $0.180 $0.13 

7:00 p.m. to 7:00 a.m. Off-peak $0.087 $0.0.06 
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between 10% and 35%, and the SOHs are randomly set 

between 100% and 80%.  

Genetic algorithm (GA), differential evolution (DE), and 

three versions of particle swarm optimization (PSO) are 

implemented to solve the case. The basic parameters are 

identical. Both the number of parents and number of iterations 

are set to 50. In DE, the two adjustment parameters λ and μ are 

0.9 and 0.8 respectively. The acceleration coefficients c1 and c2 

are both set to 2. To the PSO with the inertia weight (PSO-In) 

algorithm, the weight w is varied linearly from 0.9 to 0.4 

depending on the generation variable. The program would 

terminate when it reaches the maximum number of iterations, 

and the solution with the lowest objective value is chosen as the 

optimal solution. 

2) Results using Optimal Schedule 

Fig. 4 shows the optimization performances of the five 

algorithms. Within the first ten iterations, the performances of 

the algorithms are comparable, while GA obtains a better 

solution than others with more iterations. It is clear that the PSO 

algorithms cannot explore more significant solutions after the 

15th iteration.  

Initially, the PSO algorithms are more efficient than GA and 

DE. Particularly, the running times of the PSO, PSO-In and 

PSO-Co are 11.34s,11.24s and 11.15s respectively, while the 

running times of GA and DE are 38.25s and 44.28s, which are 

obviously longer than the PSO algorithms.  

The GA obtains the optimal solution rather than the DE and 

PSOs. The objective value of the optimal charging schedule is 

$22.82, which indicates the average cost for serving a swapping 

EV.  

Fig. 5 shows the battery stock condition during the day. With 

a number of initial stock battery of 49, the stock battery level 

drops when batteries are swapped to EVs, and the stock battery 

level increases when a battery has been recharged. It is clear 

that the stock battery level can be split into three periods. In the 

first period (09:00 – 11:00), the stock level drops seriously 

because the stock batteries are swapped to EVs but no swapped 

batteries are recharged yet. During the second period (11:00 

-13:00), the stock level is stable around zero because the 

number of swapping demands and recharged batteries are more 

or less balanced. In the third period, the stock level increases 

because the swapped batteries have been recharged but the 

swapping demand is low in that period.  

Fig. 6 shows the distribution of different charging methods. 

 
Fig. 8.  Battery stock condition of Case 1 using random schedule. 

 
Fig. 9. Distribution of different charging methods of Case 1 using random 

schedule. 

 
Fig. 10.  Real-time power of Case 1 using random schedule. 

 
Fig. 5.  Battery stock condition of Case 1 using optimal schedule. 

 
Fig. 6. Distribution of different charging methods of Case 1 using optimal 
schedule.   

 
Fig. 7.  Real-time power of Case 1 using optimal schedule. 
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It is notable that the slow chargers are more frequently-used 

than other chargers, while the numbers of super chargers, fast 

chargers and normal chargers required are similar. Fig. 7 shows 

the real-time power requirement during the day. It is clear that 

the power reaches the peak power in the first period (09:00 – 

11:00) for satisfying the initial demands.  

3)  Results using Random Schedule 

This case generates a random schedule and the result is 

compared with an optimal schedule. We generate a solution by 

randomly assigning one type of charging method to each 

incoming battery. The procedure is repeated 100 times and the 

solution with the best objective value is chosen.  

The objective value of the 100 random solutions has a range 

from 27.44 to 34.04. The mean of the values is 29.44 and the 

standard deviation is 1.19. Here, the solution with the lowest 

objective value is chosen for comparison.  

The objective value of the random solution is 27.44, while 

the objective value of the optimal solution is 22.62. It means 

that the optimal solution saves $4.82 per battery than the 

random solution. Hence, for serving the 100 EVs, the BSS 

saves $482.00 in total. In the random solution, the number of 

batteries using super charger, fast charger, normal charger and 

slow charger are 26, 21, 28 and 25 respectively. 

Fig. 8 shows the battery stock condition of the random 

solution. Compared with Fig. 5, the BSS needs to prepare 

eleven more batteries than the optimal solution. Fig. 9 shows 

the distribution of different charging methods using the random 

solution. In the first period (09:00 – 11:00), there is no 

significant difference for the four types for chargers. Fig. 10 

and Fig. 7 indicate the real-time power requirement of the 

random solution and optimal solution are comparable. 

Compared with the results using optimal schedule, it is 

obvious that the proposed optimization algorithms would help 

the BSS to obtain an optimal schedule with lower cost than a 

random assignment method.  

B. Case 2: Comparison of Algorithms  

This case compares the performance of the algorithms with 

an alternate arrival time pattern which follows a normal 

distribution function.  

1) Initialization 

We simulate 100 EVs come to the BSS for swapping 

batteries between 09:00 and 13:00. The arrival times of the EV 

orders follow the probability distribution function (PDF) in Fig. 

11, which is a normal function with the peak at 11:00. The 

remaining capacities of the swapped batteries are randomly set 

between 10% and 35%, and the SOHs are randomly set 

between 100% and 80%. 

Same as Case 1, the GA, DE and three versions of PSO are 

implemented to solve the case. The number of parents and 

number of iterations are both 50. In DE, the two adjustment 

parameters λ and μ are 0.9 and 0.8 respectively. The 

 
Fig. 13.  Battery stock condition of Case 2. 

 
Fig. 14. Distribution of different charging methods of Case 2.   

 
Fig. 15.  Real-time power of Case 2. 

 
Fig. 11. Arrival time probability distribution function of Case 2.  

 
Fig. 12.  Optimization performance of Case 2.        
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acceleration coefficients c1 and c2 are both set to 2. The weight 

w of PSO-In is varied linearly from 0.9 to 0.4 depending on the 

generation variable. The program would terminate when it 

reaches the maximum number of iterations, and the solution 

with the minimum objective value is chosen as the optimal 

solution. 

2) Results 

Fig. 12 shows the optimization performance of the five 

algorithms. At the first ten iterations, the PSO algorithms obtain 

more optimal solutions than GA and PSO, while the PSO 

algorithms cannot explore more significant solutions after the 

tenth iteration. However, the GA and PSO obtain optimal 

solutions with more iterations. At the 50th iteration, the GA 

obtains the most optimal solution with objective value of 

$30.71.   

The computational time in this case is comparable with Case 

1. The PSO algorithms perform faster than GA and DE. 

Particularly, the running times of the PSO, PSO-In and PSO-Co 

are 10.88s,10.68s and 10.71s respectively, while the running 

times of GA and DE are 40.23s and 44.06s.  

3) Optimal Schedule 

The GA obtains the optimal solution with an objective value 

of the optimal charging schedule being $30.71, which indicates 

the average cost for serving a swapping EV.  

Fig. 13 shows the battery stock condition during the day. The 

initial number of stock battery is 76. It is clear that the stock 

battery level can be split into three periods. In the first period 

(09:00 – 11:30), the stock level drops seriously because the 

stock batteries are swapped to EVs but there are no recharged 

batteries. In the second period (11:30 -13:00), the stock level is 

stable around zero because the number of swapping demands 

and recharged batteries are balanced. In the third period, the 

stock level increases because some swapped batteries have 

been recharged but there is less swapping demand in that 

period.  

Fig. 14 shows the distribution of different charging methods. 

It is notable that the slow and normal chargers are more 

frequently-used than the fast and super chargers. To be specific, 

the number of batteries using super charger, fast charger, 

normal charger and slow charger are 23, 6, 36 and 35 

respectively. Fig. 15 shows the real-time power requirement 

during the day. It is clear that the power reaches the peak power 

in the first period (09:00 – 11:30) for satisfying the initial 

demands.  

C. Case 3: Results from Integrated Algorithm 

This case evaluates the proposed Integrated Algorithm (IA) 

with an EV order set following a normal distribution function. 

1) Initialization 

We use the same EV order set of Case 2. The number of 

batteries is 100, and the arrival times are between 09:00 and 

13:00 following a normal distribution function.  

In the proposed IA, we use the PSO, PSO-In and PSO-Co 

algorithms from the 1st to 10th iteration, and then use the GA 

from the 11th to 50th iteration. The number of parent and 

iteration are both 50, which are the same as Case 2. 

2) Results and Comparison 

As shown in Fig. 16, a better objective value is obtained by 

the IA, and the performance has been remarkable improved 

compared to the GA, DE and PSOs. The objective value obtain 

by IA is $30.08, which is $0.62 less than the solution by GA. 

Hence, the BSS would save $62.00 for serving the 100 

swapping orders by the IA schedule. 

In this case, the computational time of IA is 34.08s, which is 

shorter than GA (40.23s) and DE (44.06s) but longer than the 

PSO (10.88s), PSO-In (10.68s) and PSO-Co (10.71s).  

 
Fig. 16.  Optimization performance of Case 3.      

TABLE IV 
SIMULATION RESULTS 

Item IA GA DE PSO 
PSO-

In 

PSO-

Co 

Objective 
Value 

($) 

Best 30.02 30.38 30.24 31.33 31.40 31.38 

Worst 30.21 31.53 31.51 33.39 33.42 33.48 

Median 30.09 30.88 30.70 32.19 32.20 32.11 

Mean 30.09 30.93 30.75 32.22 32.26 32.14 

Std. 0.05 0.27 0.28 0.45 0.47 0.43 

Cost 1 

($) 

Best 15.12 15.33 15.12 15.12 15.12 15.12 

Worst 15.33 16.80 20.58 15.75 15.75 15.75 

Median 15.12 15.85 19.74 15.54 15.43 15.33 

Mean 15.15 15.87 15.89 15.43 15.45 15.41 

Std. 0.074 0.353 2.131 0.221 0.199 0.199 

Cost 2 

($) 

Best 2.278 1.921 0.462 3.062 2.894 2.975 

Worst 2.576 2.807 8.750 4.645 4.819 4.287 

Median 2.457 2.520 1.061 3.736 3.763 3.598 

Mean 2.443 2.493 2.935 3.779 3.765 3.623 

Std. 0.068 0.214 3.254 0.362 0.394 0.305 

Cost 3 

($) 

Best 12.49 12.46 12.50 12.49 12.49 12.49 

Worst 12.50 13.27 20.78 14.17 13.95 14.30 

Median 12.50 12.50 19.24 12.90 12.92 13.04 

Mean 12.50 12.57 17.75 13.01 13.05 13.10 

Std. 0.002 0.18 3.09 0.39 0.40 0.44 

Time 

(s) 

Best 32.54 35.04 40.27 10.22 10.24 10.21 

Worst 36.81 39.19 48.23 12.00 11.83 11.81 

Median 33.75 36.54 41.78 10.53 10.48 10.59 

Mean 33.97 36.63 41.99 10.69 10.65 10.66 

Std. 1.00 1.04 1.41 0.42 0.38 0.37 
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3) Results with More Evaluations 

In order to evaluate the performance of the proposed 

algorithms, we repeat the above program for 50 times 

independently with the same set of EV orders. The detailed 

results including the objective value, separate costs and 

computational times are presented in Table IV.  

In terms of the objective value, the proposed IA has 

significantly better performance than the other algorithms 

referring to all the metrics. The performance of the GA and DE 

are comparable, while the three version of PSO algorithms 

perform worse than IA, GA and DE. In terms of the three 

separated costs, Cost 1 and Cost 3 are the two major costs 

contributing to the objective value, because the impact of 

battery stock number and electricity cost play more important 

roles than the potential cost of different charging methods. The 

performance of IA is the best in both Cost 1 and Cost 3, and is 

comparable with DE in Cost 2.  

It is important to note that the standard deviation of IA is 

significantly smaller than the other algorithms, which indicates 

that the proposed IA is the most reliable algorithm for solving 

the problem. 

The computational time of IA is shorter than GA and DE but 

longer than PSO, PSO-In and PSO-Co. However, according to 

the optimization performance in Fig. 16 and the summarized 

results in Table IV, the performance of PSO algorithms is not 

acceptable for obtaining an optimal solution. 

D. Case 4: Extensive Evaluation on Integrated Algorithm 

This case evaluates the proposed Integrated Algorithm (IA) 

by a massive EV order set following a normal distribution 

function. 

1) Initialization 

In this case, we simulate 400 EVs coming to the BSS for 

swapping batteries between 08:00 and 20:00. The pattern of 

arrival times follows a normal distribution in Fig. 17 with the 

peak at 14:00. The number of parents is set to 100. Other 

parameters are the same as Case 3. 

2) Results and Comparison 

As shown in Fig. 18, from the 1st to 10th iteration, the 

performances of GA, DE, PSO-In, PSO-Co and IA are 

comparable, but the performance of PSO is worse than others. 

After the 25th iteration, the PSO, DE, PSO-In and PSO-Co 

cannot explore for a better solution significantly. Only the 

performances of GA and IA are improved continuously. It is 

obvious that the proposed IA always performs better than GA 

after the 10th iteration. 

3) Optimal Schedule 

In this case, the IA obtains the optimal solution than GA, DE 

and PSOs. The objective value of the optimal charging 

   

 
Fig. 17. Arrival time probability distribution function of Case 4.   

 

 
Fig. 18.  Optimization performance of Case 4.  

 
Fig. 19.  Battery stock condition of Case 4. 

 
Fig. 20. Distribution of different charging methods of Case 4.   

 
Fig. 21.  Real-time power of Case 4. 
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schedule is $17.34, which indicates the average cost for 

serving a swapping EV.  

Fig. 19 shows the battery stock condition during the day. The 

initial number of stock battery is 161. The pattern is similar to 

the previous cases.  

Fig. 20 shows the distribution of different charging methods. 

The number of batteries using super charger, fast charger, 

normal charger and slow charger are 125, 42, 42 and 191 

respectively. Fig. 21 shows the real-time power requirement 

during the day. It is clear that the power reaches the peak power 

around 14:00 when the arrival peak comes.  

V. CONCLUSION 

In this paper, an optimization model has been established for 

EV battery charging in a battery swapping station. This model 

aims to optimize the operation of a BSS by assigning an 

optimized charging schedule for each incoming battery. This 

paper proposed a new integrated algorithm (IA) after studying 

and comparing the genetic algorithm (GA), differential 

evolution (DE) and particle swarm optimization (PSO). A 

series of simulation studies are executed to assess the feasibility 

of the proposed model and compare the performance between 

IA and the typical evolutionary algorithms. 

The contributions are summarized as follows. This paper has 

proposed a new operation model for the operation of a viable 

battery swapping station. In this model, the BSS would 

determine an optimized charging schedule for the batteries to 

minimize the cost to the BSS. The cost includes the number of 

batteries taken from stock to serve all the swapping orders from 

incoming EVs, potential charging damage with the use of 

high-rate chargers, and electricity cost for different time period 

of the day. A mathematical model is designed to formulate the 

charging process following the constant-current/ 

constant-voltage charging strategy. Three optimization 

algorithms (GA, DE, and PSO) have been studied and 

compared. A new integrated algorithm (IA) has been developed 

and extensive evaluation results have shown that the proposed 

algorithm is applicable for obtaining an optimization solution.  

APPENDIX 

Genetic algorithm (GA): 

 
 

Particle swarm optimization (PSO): 
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Differential evolution (DE): 
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