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In digital holography, it is crucial to extract the object distance from a hologram in order to reconstruct its amplitude
and phase. This is known as autofocusing, which is conventionally solved by first reconstructing a stack of images, and
then the sharpness of each reconstructed image is computed using a focus metric such as entropy or variance. The
distance corresponding to the sharpest image is considered the focal position. This approach, while effective, is com-
putationally demanding and time-consuming. To cope with this problem, we turn to machine learning, where we cast
the autofocusing as a regression problem, with the focal distance being a continuous response corresponding to each
hologram. Therefore, distance estimation is converted to hologram prediction, which we solve by designing a powerful
convolutional neural network trained by a set of holograms acquired a priori. Experimental results show that this
allows fast autofocusing without reconstructing an image stack, even when the physical parameters of the optical setup
are unknown. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (090.1995) Digital holography; (110.1758) Computational imaging; (110.3010) Image reconstruction techniques.
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1. INTRODUCTION

Digital holography (DH) is a powerful imaging technique that
can capture the diffracted wavefront of a three-dimensional (3D)
object by recording the interference pattern with an electronic
sensor [1,2]. With the hologram preserving the entire complex
wavefront, one can reconstruct both the amplitude and phase
information by back-propagating to a proper distance. As a non-
invasive and label-free imaging technique, DH has been applied
to biological imaging [3,4], MEMS defect inspection [5], and
surface topography [6,7].

A fundamental problem in DH is to obtain the exact location
of the object, a process known as autofocusing. In certain appli-
cations, such as a continuous monitoring of living specimens,
autofocusing allows for tracking of axial movements; in other in-
dustrial uses, it provides a means to measure the surface profile
[8]. Autofocusing is also critical for robust imaging against un-
stable environmental conditions [9]. Furthermore, in numerical
reconstruction, we need to find the true location of an object in
order to reconstruct an in-focus and sharp image. All in all, nu-
merically searching for the object distance from a hologram would
benefit various subsequent reconstruction, such as sectioning [10],
extended focused imaging [11], and 3D imaging [12].

Specific optical configurations with additional components in
the setup to handle autofocusing have been developed for digital
holographic microscopy [13,14]. However, more often, autofo-
cusing is handled computationally. Several algorithms, based on
magnitude differential [8], variance [15,16], entropy [17], structure

tensor [18], and edge sparsity [19] have been proposed in recent
years. These methods, however, all require sequential numerical
reconstructions within an estimated distance range. An image-
based focus metric is then used to compute the sharpness of each
reconstructed image, and the position that corresponds to the
sharpest one is considered the focal distance. Often, in practical
applications, a refinement with a shorter step is needed after
the coarse search in order to improve the accuracy. Such appro-
aches, while effective, are computationally demanding and time-
consuming, especially for large holograms and a small step width.
It should also be mentioned that Oh et al. have proposed a
frequency-based method to estimate the focal distance without
any numerical reconstruction. Yet, the authors acknowledge that
their method cannot be applied to objects with multiple distances
[20], which severely limits its use.

In addition to autofocusing for amplitude objects, it is desir-
able to develop techniques that can work for pure phase objects.
However, due to the wrapped phase values’ modulo 2π, phase
jumps are often misinterpreted as sharp structures, leading to
further difficulty in autofocusing using the above approaches.
References [9,21] propose four sharpness-based methods for phase
contrast DH. However, they require sequential unwrapped phase
images to be reconstructed first, which consume even more time
than the sequential reconstructions for the amplitude-only objects
due to phase unwrapping.

Since the hologram records the entire wavefront information
of the object, we aim to extract the distance parameter directly
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from it without back-propagation. The method we propose to
use is based on deep learning, which has shown to be useful for
many problems ranging from computer vision [22,23] to medical
image analysis [24]. Deep learning for holographic imaging is a
nascent area. Kamilov et al. sparked interest in a learning approach
to imaging by showing that they can recover the phase from
scattered light using a layered structure of a neural network in
a tomographic configuration [25]. Sinha et al. applied deep neural
networks to solve inverse problems in computational imaging,
demonstrating through a setup that has some resemblance to
DH and transport-of-intensity imaging [26]. Rivenson et al. con-
structed a deep neural network to eliminate twin-image and self-
interference artifacts for the in-line holography setup. To generate
the training data, which consist of the reconstructed images, an
autofocusing algorithm based on the axial magnitude differential
is used for a coarse scan, and a golden section search algorithm
is then applied for refinement [27]. Nguyen et al. employ a sim-
plified U -net model to generate a binary mask for phase aberra-
tion compensation. Afterwards, the phase map is reconstructed
using an angular spectrum method, where the location of the
sample is still needed either by manual measurement or auto-
focusing [28]. As for autofocusing, Pitkäaho et al. propose to
use the AlexNet architecture to estimate the focal position in
holography. However, the hologram has to be pre-processed first
to remove the zero-order and twin terms and subsequently back-
propagated to a set of manually selected axial positions. Then, the
in-focus depth is found among the reconstructed images using
deep learning [29]. More recently, in Ref. [30], autofocusing
is treated as a classification problem tackled by deep learning.
Although effective, this technique assumes a discrete set of dis-
tances, which is not as versatile as the method being proposed
in the current work.

In this paper, we harness the convolutional neural network
(CNN) to achieve autofocusing in DH. For a sectional object, the
focal distance of the individual section is regarded as a response of
the hologram. Thus, we transform the problem of estimating the
section distance to predicting a hologram, making it equivalent to
a regression problem that can be tackled with machine learning
effectively. After describing our method in detail, we quantita-
tively compare it with other learning-based algorithms, such as
multilayer perceptron (MLP) [31], support vector machine (SVM)
[32], and k-nearest neighbor (kNN) [33], as well as other model-
based autofocusing algorithms. Experimental results show that the
proposed CNN is capable of predicting the distance without recon-
structing or knowing any physical parameters about the setup, and
has better performance than other competing methods.

2. PRINCIPLE

A. Digital Holography

As shown in Fig. 1, the optical setup we use consists of a Mach–
Zehnder interferometer. The beam emitting from the laser source
(He–Ne with 632.8 nm) is filtered and collimated using a spatial
filter and a lens. Then, the beam size is expanded, and it enters the
interferometer by splitting into two paths. One is the reference
beam and the other is the object beam, which carries the infor-
mation of the object. Two half-wave plates are placed in the setup
to adjust the intensity ratio of the two beams. At the exit of the
interferometer, a hologram is created by the interference between

the object and the reference waves, and this is recorded with a
camera (pixel pitch is 5.2 μm).

In a regular DH setup, after data acquisition, the hologram is
back-propagated to an estimated distance to reconstruct both
the amplitude and phase distributions. For our experiment,
we need to train an algorithm with an extensive set of hologram
data. Thus, two linear motion controllers (Newport, CONEX-
LTA-HL, typical absolute accuracy is �1.2 μm) are used to pre-
cisely control the movement of the object. The main controller,
annotated as “z axis,” is used to move the object axially, while the
other one is used to move laterally.

B. Deep-Learning-Based Method

CNN has shown to be powerful for a variety of recognition, clas-
sification, and segmentation tasks [22,34]. Conventionally, it is
viewed as an extension of the multilayer neural network consisting
of convolutional layers followed by one or more fully connected
layers. Such an architecture has the advantages of being shift,
scale, and distortion invariant, making it especially suitable for
image processing applications [35]. To the best of our knowledge,
this is the first report of using CNN to estimate the focal distance
of an object and thereby achieving autofocusing in digital holo-
graphic imaging.

Motivated by LeNet, which does not require any knowledge of
the viewing geometry [36], we propose the framework as shown
in Fig. 2. The CNN architecture consists of several functional
layers: convolution layer, pooling layer, fully connected layer, and
output layer. For the lth convolutional layer, suppose there are
N �l� feature maps with a uniform size of k × k, which can be
denoted as h�l�j , for j � 1; 2;…; N �l�. The convolutional layer
can then be represented as

h�l�j � ψ

0
@XN �l−1�

i�1

h�l−1�i � w�l�
ij � b�l�j

1
A; (1)

where wij and bj are the weight and bias that need to be learned
through training, and ψ�·� denotes an activation function. In
this work, the rectified linear unit (ReLU), ψ�x� � max�0; x�,

Fig. 1. Schematic diagram of a DH system. SF stands for the spatial
filter. L is the collimation lens. BE is the beam expander. HWP1 and
HWP2 are the half-wave plates. PBS and BS are the polarization and
non-polarization beam splitters, respectively. M1 andM2 are the mirrors.
OBJ is the object. PD is the camera. x axis and z axis denote the two
motion controllers along the two directions. z is the distance between the
object and the camera. The object shown here is a small region of a
negative USAF 1951 resolution chart.
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is used [35]. After each convolutional layer and application of the
ReLU, we compute the batch normalization, using both mean
and variance to normalize each batch to improve the performance
of the proposed network [35]. The network then has a pooling
layer, which downsamples the feature map, before the next con-
volutional layer. This operation can significantly reduce the spatial
dimension of the representation and the number of parameters,
and consequently the total amount of computation. It also helps
to prevent the network from over-fitting. There are generally two
pooling methods: max pooling and average pooling [35]. We
make use of the former to obtain the maximum value as the rep-
resentation among a small region. The combination of convolu-
tion and pooling layers is the basic building block in our network,
which is repeated a total of five times, before leading to the final
feature extraction module. These steps are grouped as the feature
extraction module in Fig. 2.

The main purpose of this module is to identify the underlying
characterization of the hologram data. Before the final classifica-
tion, a dropout layer is added to prevent the network from over-
fitting. At each training iteration, the individual nodes are either
kept with a probability of p or discarded from the network with a
probability of 1 − p, so that consequently we have a reduced net-
work [37]. Finally, the extracted feature representation is fed into
the fully connected layer for regression analysis, and the output
layer gives a predicted response, which is the axial distance esti-
mate of the input hologram.

To train a deep CNN, we need a substantial collection of
holograms and their true distances as the response assigned to
each hologram. We only train with holograms resulting from
several discrete distances, but through regression the resulting
neural network can output a continuum of distances for the test
cases. To compute the loss between the predicted quantity and
the true value, we measure the square of the L2 norm of their
difference. Suppose ŷ is the estimated output and y is the corre-
sponding true value, the square of the L2 norm is the loss function
L given by

L � 1

N

XN
i�1

kyi − ŷik22; (2)

where N is the total number of terms.

3. RESULTS

A. Evaluation Metrics and Training Details

We make use of three quantitative evaluation metrics, namely,
mean absolute error (MAE), explained variance regression score
function (EV), and R2 (coefficient of determination) regression
score function, for the assessment of the regression performance.
These functions are defined as [38]

MAE�y; ŷ� � 1

N

XN
i�1

jyi − ŷij; (3)

EV�y; ŷ� � 1 −
Varfy − ŷg
Varfyg ; (4)

R2�y; ŷ� � 1 −

PN
i�1 �yi − ŷi�2PN
i�1 �yi − ȳ�2

; (5)

where ȳ � 1
N

PN
i�1 yi, and Varf·g denotes the biased variance.

The first function is an average measure of the absolute difference
between two variables, and its best possible score is 0. The last two
functions provide measurement of how well future samples are
likely to be predicted by the model. The best possible scores of
EV and R2 are 1.0, and smaller values are worse; while for MAE,
the range is unbounded.

We now evaluate the model based on the typical train-
validation-test approach. The hologram data are randomly split
into three subsets with a ratio of 75:15:10 for training, validation,
and testing, respectively. The network is trained using the Adam
optimizer [35], which is a form of gradient descent, where a
parameter known as the learning rate needs to be set beforehand.
Here, we set it empirically to 0.001, and allow it to decay expo-
nentially with a rate of 0.9 as the training progresses. The dropout
probability is set to be 0.75 in training, while in validation and
testing it becomes 1, i.e., no dropout. This allows 25% of the
nodes to be randomly chosen and intentionally disabled in train-
ing to reduce over-fitting, while keeping all nodes alive can effec-
tively check how well the network has learned.

To tackle the issues of limited computer memory and stagna-
tion in local minima during optimization, every time only a small
batch of 8, called a mini-batch, of the entire training data is fed

Fig. 2. Framework of the proposed CNN for autofocusing. In each “Layer,” a convolutional layer, a ReLU layer, a batch normalization layer, and a max-
pooling layer are included. “FC1” and “FC2” represent fully connected layers, and “Dropout” means dropout layer. In “Input,” the input hologram size,
which is cropped from the raw 1280 × 1024 image, is shown beneath. In “Feature Extraction,” the kernel size and depth are given at the bottom of each
layer. In “Regression,” the input hologram is predicted with a response, denoting the estimated focal distance.
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into the network for training instead of the entire set of holo-
grams. All the weights are initialized using truncated normaliza-
tion, with a standard deviation of 1, and the biases are initialized
with a constant value of 0.1. In each mini-batch training, one
iteration of the optimization is performed, and the parameters of
the network are updated. The whole training stage is stopped after
20 epochs training. We implement the CNN using TensorFlow
[39], and all the experiments are performed on a Ubuntu 16.04.2
environment with CPU Intel Core i7@2.67 GHz and an Nvidia
GTX 760.

B. Amplitude Object

The optical setup is shown in Fig. 1, and we select various sam-
ples, including different local areas of a negative USAF 1951 res-
olution chart and biological specimens, as the amplitude objects.
In Fig. 3, we present several used areas of the test target and
several biological specimens including a testis slice, a ligneous
dicotyledonous stems, an earthworm crosscut, etc., for example.
To control the movement of the object accurately during record-
ing, we use two linear actuators for the optical axis and the lateral
direction. At distances 250, 252, 254, 256, 258, 260, 263, 266,
269, and 272 mm, we collect 500 holograms with different lateral
positions of various objects. Therefore, in total, we have 5000
holograms with 10 possible responses. In Fig. 4, we provide an
example showing 16 of the holograms.

To train the network, a mini-batch of 8 holograms is fed into
the network for every iteration. Then, for every 625 iterations
(which is 1 epoch), the network is evaluated using the validation
dataset. After finishing the training with a predetermined number
of epochs, the network is assessed with the test subset. In Fig. 5,
the validation loss is presented. As can be seen from the plot, the
CNN converges gradually as the loss decreases along the training.
This agrees with our expectation that the network is continuously
updating its parameters and learning representative features of the
holograms.

The quantitative comparisons using the three evaluation met-
rics with kNN, SVM, and MLP are given in Table 1. For kNN,
we set k, which defines the number of nearest neighbors we wish
to take vote from in regression, to range from 1 to 10 and select the
value that gives the best performance, which is 5. For SVM, the
kernel of the radial basis function is used, and the two parameters,

γ (the standard deviation of the Gaussian Kernel) and C (penalty
parameter of the error term) as given in Ref. [32], are set as 1 and
2 according to multiple trials. For MLP, we construct a five-layer
neural network using the same weight initialization method and
loss function as CNN to perform regression analysis. The results,

Fig. 3. USAF test target and its local area, as well as several biological
specimens used in the experiment.

Fig. 4. Sixteen of the experimentally collected testing holograms re-
cording various amplitude objects.

Fig. 5. Validation loss decreases along the training process. Only 1000
iterations are shown here.

Table 1. Comparison of the Regression Performance on
the Validation and Test Datasets among kNN, SVM, MLP,
and CNN for the Amplitude Object

Measure Methods

Amplitude Dataset

Validation Test

MAE kNN 1.63 1.54
SVM 1.04 0.99
MLP 0.98 1.12
CNN 0.05 0.06

EV kNN 0.3990 0.3922
SVM 0.4528 0.4705
MLP 0.5163 0.5016
CNN 0.9843 0.9836

R2 kNN 0.3041 0.2701
SVM 0.6447 0.5922
MLP 0.5727 0.5846
CNN 0.9901 0.9907
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given in the table, indicate that these three comparison methods
have very similar performance for autofocusing with generally
large MAE and low EV and R2 scores. In contrast, our CNN-
based autofocusing delivers a much better performance in terms
of MAE, with substantially smaller error. The EV score and R2

score also corroborate with this finding, where their values are
much closer to one. In addition, based on the predicted focal dis-
tance, in Fig. 6 we reconstruct the 16 images from the holograms
presented in Fig. 4. The reconstructed images are sharp, further
supporting the claim that CNN is able to extract the correct focal
distance from the holograms directly.

C. Phase Object

Apart from autofocusing an amplitude object, we also collect
experimental hologram data of a phase-only object. We use a cus-
tomized groove with tiny structures on an optical wafer, where a
magnified image using a microscope with a 4× objective is shown
in Fig. 7. In total, we collect 2000 holograms at 270, 272, 274,
276, and 278 mm. Figure 8 shows several holograms (without
the magnification as shown in Fig. 7) randomly chosen from the
dataset. The network is trained in a similar fashion as before. The
validation loss curve is shown in Fig. 9.

In Table 2, the quantitative comparisons with kNN, SVM,
and MLP are presented. The parameters of the three regressors
remain unchanged. We can observe that our CNN-based auto-
focusing again has the best performance among the four methods,

whether in terms of MAE, EV, or R2. Nevertheless, it can be
noted that all methods generally have a better performance com-
pared to Table 1 involving the amplitude object. This is because
there is only one phase object used during recording in this case,
while various amplitude objects are used for the collection of

Fig. 6. Back-propagated images of the testing holograms in Fig. 4 us-
ing the predicted distances with CNN.

Fig. 7. Customized groove used as the phase object.

Fig. 8. Sixteen experimentally collected testing holograms of a phase
object shown in Fig. 7.

Fig. 9. Validation loss decreases and accuracy increases as the network
is trained. Only 1000 iterations are shown here.

Table 2. Comparison of the Regression Performance on
the Validation and Test Datasets among kNN, SVM, MLP,
and CNN for the Phase Object

Measure Methods

Phase Dataset

Validation Test

MAE kNN 1.17 1.12
SVM 1.01 1.06
MLP 0.87 0.79
CNN 0.03 0.02

EV kNN 0.4471 0.4945
SVM 0.6559 0.6940
MLP 0.6633 0.6435
CNN 0.9849 0.9838

R2 kNN 0.4247 0.4417
SVM 0.6287 0.6333
MLP 0.6123 0.6388
CNN 0.9911 0.9907
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holograms in the previous experiment. This may result in reduc-
ing the difficulty of training a model.

Similarly, based on the predicted focal distances, in Fig. 10 we
show the reconstructed and unwrapped phase images using con-
volution and double exposure [40] of the corresponding holo-
grams in Fig. 8. The thickness of the groove on the optical
wafer (fused silica, refractive index is 1.4585) is around 140 nm.
With a He–Ne laser as the illumination source (wavelength is
632.8 nm), its phase difference with the wafer surface is about
2 radian. Thus, the phase of the groove is smaller than that of
the surface, which is in agreement with what we expect of the
true height. Nevertheless, there are still some artifacts in the un-
wrapped phase images. Since we are using double exposure to
compensate for the phase aberration due to experimental conven-
ience, the reference holograms are not captured instantly after
their corresponding holograms. The noise introduced by the laser,
the camera, and the ambiance can then differ with time. The
phase images therefore are not identical; yet, by comparing the
phase values of the groove and the surface in one phase image,
the relative difference shows the correct estimate of the distance.

4. DISCUSSIONS

Here we further explore the capability of the trained network
under various situations.

A. Different Exposure Times

Exposure time affects the contrast of the interference pattern. The
holograms in the training set are recorded with a fixed exposure
time of 12 ms, and we then record 20 additional holograms ex-
posed for 0.5, 2, 6, 18, and 80 ms. These holograms are directly
fed into the trained network for testing. Results show that, except
for the two extreme cases with severe underexposure and overex-
posure where the images are very close to pure black and white
images, the network can make correct estimates with a MAE score
and R2 score of around 0.04 and 0.97, respectively. In Fig. 11 we
give two examples that are captured with an exposure time of 5 ms

and 18 ms, as well as their reconstructions with the individual
predicted distances. This illustrates that even the interference
pattern is rather dim or bright, the proposed method is robust
enough to give an accurate prediction.

B. Different Axial Distances

Since we are training a regression network for autofocusing, it is
natural to consider how well it can perform if an object is located
at distances different from those in the training set. To test this,
we collect 60 holograms where the objects are at integer distances
between 259 and 271 mm inclusive, except for the specific dis-
tances used in the training. We feed these holograms into the
trained network and compare the estimated output with the true
target. Results show that our regression model can correctly pro-
duce the mapping function between the hologram and its corre-
sponding response, and can give an accurate estimated distance.
The MAE score and R2 score are 0.06 and 0.97, respectively. In
Fig. 12, we show several reconstructed images from this experi-
ment, which support the generalization capability of the proposed
autofocusing CNN.

When the object is located outside the training range, predict-
ing its position directly using the trained network may lead to a
significant error. However, this situation is rare in applications
where the object is normally located in a fixed range. An example
is in-line holography, in which the object has to be located be-
tween the point source and the detector. Many commercial DH
products also have a designated object localization. Even for other
situations, the problem can be mitigated with a rather straightfor-
ward solution, where we simply extend the range of collected dis-
tances. By doing so, it is possible to train a network that has a
better and wider capability to deal with various holograms with
various distances.

C. Different Incident Angles

In off-axis digital holography, prior to Fresnel back-propagation,
the 0 and −1 spectra are normally filtered out, and only the �1
spectrum remains in the frequency domain. For different con-
figurations, we then need to set the center of the �1 spectrum
manually. In real experiments, the incident angle between the
two beams varies and may not be the same as the angle used for
training. Moreover, even for each acquisition, the angle may also
change due to the adjustment of the fringe contrast. Since we
compute the autofocusing using the raw holograms, it is critical
to test the performance of the network under this situation of

0 2 4 6 8

Fig. 10. Reconstructed and unwrapped phase images of the testing
holograms in Fig. 8 using the predicted focal distances and double ex-
posure method. The unit of the color bar is radian.

(a) (b) (c) (d)

Fig. 11. Hologram and reconstructed image, respectively, with an ex-
posure time of (a), (b) 5 ms and (c), (d) 18 ms.

(a) (b) (c) (d)

Fig. 12. Reconstructed images with the holograms recorded at differ-
ent distances.
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different incident angles. We slightly change the incident angle
(by no more than 2–3 deg) 5 times and record 10 holograms
for each angle. In Fig. 13, two holograms captured under different
angles and their corresponding frequency spectra are shown. We
can see that the �1 spectra of the two holograms are different, as
annotated with the red markers.

These holograms are tested by the same trained network,
which achieves an MAE score and R2 score of 0.02 and 0.98,
respectively. With the estimated distances computed from the
neural network, the two holograms are then back-propagated, and
the reconstructions are given in Figs. 13(e) and 13(f ). This result
illustrates that the network is capable of autofocusing with little
regard for a variation in the incident angles. In other words, in an
optical setup, even if the mirrors have a slight rotation, the
proposed method can still perform well.

D. Comparison with Conventional Autofocusing
Algorithms

We consider the advantages and disadvantages of a learning-based
approach to DH autofocusing versus traditional image-sharpness-
based techniques. The major strength of the former is certainly
speed; no sequential reconstruction is needed at all, which signifi-
cantly saves time in autofocusing. In addition, in conventional
methods, we normally need the parameters of the optical setup
such as the wavelength, pixel pitch of the camera, incident angle
of the two beams, and sampling rate for a good numerical
reconstruction. Unfortunately, some of them may not be known
a priori, and this limits the applicability of many approaches that
require computing the sharpness of the reconstructed images.

On the other hand, learning-based approaches require a sizable
database consisting of the hologram data and the true distance as
the label for training. However, once the network is trained, it has
a very short prediction time compared to conventional autofocus-
ing methods. In Table 3, quantitative comparisons in terms of
absolute autofocusing error [19] and computational speed of the
proposed CNN with several selected conventional methods, in-
cluding integrated amplitude modulus (AMP), self-entropy (SEN),
variance (VAR), gradient (GRA), summed Laplacian (LAP),
Tenenbaum gradient (TEN), Gini of the gradient (GoG), and
Tamura of the gradient (ToG), are presented. The detailed def-
inition of each method can be found in Ref. [19]. The holo-
grams in Fig. 4 are used to test the conventional metrics, and
the average results are given in Table 3. The hologram has the
same size as the input of the network, and the number of sam-
pling steps for a stack of reconstructed images is 50. For a fair

comparison, conventional metrics are also run on the same GPU.
The fact that CNN has the least error and shortest computation
time demonstrates the superior performance of the proposed
method over others.

5. CONCLUSIONS

In this paper, a deep-learning-based autofocusing method is pro-
posed. Holograms of various amplitude and phase objects are col-
lected to verify its effectiveness. Compared to conventional
autofocusing algorithms and other machine learning methods,
this approach outperforms without any numerical reconstruction
in digital holography.
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