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ABSTRACT 
BACKGROUND：Physiological noise reduction plays a critical role in spinal cord (SC) resting-state 
fMRI (rsfMRI).  
PURPOSE：To reduce physiological noise and increase the robustness of SC rsfMRI by using an 

independent component analysis (ICA) based nuisance regression (ICANR) method. 
STUDY TYPE: Retrospective. 
SUBJECTS: 10 healthy subjects (female/male = 4/6, age = 27±3 years, range 24 - 34 years). 
FIELD STRENGTH/SEQUENCE: 3T/ Gradient-echo EPI. 
ASSESSMENT: We used three alternative methods (no regression [Nil], conventional region of 
interest (ROI) based noise reduction method without ICA [ROI-based], and correction of structured 
noise using spatial independent component analysis [CORSICA]) to compare with the performance of 
ICANR. Reduction of the influence of physiological noise on the SC and the reproducibility of rsfMRI 
analysis after noise reduction were examined. Correlation coefficient (CC) was calculated to assess 
the influence of physiological noise. Reproducibility was calculated by intra-class correlation (ICC). 
STATISTICAL TESTS: Results from different methods were compared by one-way ANOVA with 
post-hoc analysis.  
RESULTS: No significant difference in CSF pulsation influence or tissue motion influence were found 



(P=0.223 in CSF, P=0.2461 in tissue motion) in the ROI-based (CSF: 0.122±0.020; tissue motion: 
0.112±0.015) and Nil (CSF: 0.134±0.026; tissue motion: 0.124±0.019). CORSICA showed a 
significantly stronger influence of CSF pulsation and tissue motion (CSF: 0.166±0.045, P=0.048; 
tissue motion: 0.160±0.032, P=0.048) than Nil. ICANR showed a significantly weaker influence of 
CSF pulsation and tissue motion (CSF: 0.076±0.007, P=0.0003; tissue motion: 0.081±0.014, P=0.0182) 
than Nil. The ICC values in the Nil, ROI-based, CORSICA, and ICANR were 0.669, 0.645, 0.561 and 
0.766, respectively. 
DATA CONCLUSION: ICANR more effectively reduced physiological noise from both tissue 
motion and CSF pulsation than three alternative methods. ICANR increases the robustness of SC 
rsfMRI in comparison with the other three methods.  
 
Keywords: spinal cord, resting-state fMRI, physiological noise, independent component analysis, 
nuisance regression, robustness  



INTRODUCTION 
 
Spinal cord resting-state fMRI (rsfMRI) is a promising technique that offers a new way to investigate 
intrinsic spinal cord function in health (1-6) and disease (7,8). However, several technical challenges 
still hamper its clinical application. Recent studies (1-4) have adopted adjustments to rsfMRI image 
acquisition to successfully overcome challenges such as the small size of the spinal cord and 
susceptibility artifacts (9-11). One key problem that remains is non-ignorable physiological noise (12).  
 
Spinal physiological noise can be mainly divided into non-rigid tissue motion and CSF pulsation, 
Tissue motion noise is mainly caused by respiration (12), and respiration-related susceptibility changes 
cause artifacts in rsfMRI images. These artifacts introduce intra-voxel dephasing which results in 
image shifting, intensity shading in the phase-encoding direction, and signal variation (13,14). These 
artifacts are much stronger in the spinal cord than in the brain because the spinal cord is closer to the 
lungs than the brain (15,16). Cardiac activity (12) leads to pulsatile movement of CSF in which the 
spinal cord is embedded and results in a non-rigid oscillatory cord motion (17). CSF pulsation leads to 
large signal variations due to unsaturated spins moving into imaging slices (18), which cannot be 
ignored because the spinal cord is surrounded by CSF. It has been reported that tissue motion and CSF 
pulsation might lead to detection of BOLD signal changes (19,20), which could generate false positive 
correlations in rsfMRI analysis. 
  
Conventional physiological noise reduction method uses regions of interests (ROIs) (21). However, 
tissue motion is a random process so physiological noise and motion artifacts are not usually well 
depicted in terms of ROIs. The noise level extracted from an ROI is the average signal intensity from 
all voxels within the ROI (22). This averaging process makes it possible to lose the temporal features 
of independent noise within the ROI (23), decreasing the performance of noise extraction and reduction.  
 
Independent component analysis (ICA) is a data-driven method to extract independent components 
that are mixed together in the signals. It has been recommended as a noise reduction algorithm in the 
brain rsfMRI because it facilitates efficient and clear separation of useful information from noise 
(24,25). ICA has already shown potential for noise reduction in brain rsfMRI (26-28) and spinal cord 
fMRI analysis (29). However, current methods cannot be directly applied to spinal cord rsfMRI for 
two reasons. First, existing ICA noise reduction methods select physiological noises according to its 
frequency (30) because differences exist between the frequencies of intrinsic BOLD signals (0.01Hz–
0.1Hz) and physiological noise (0.2Hz-0.3Hz for respiration-related physiological noise and > 1Hz for 
cardiac-related physiological noise) in brain rsfMRI (31). Because the intrinsic BOLD signals of spinal 
cord rsfMRI above 0.1Hz are also important (5,6), intrinsic BOLD signals can be indistinguishable 
from physiological noises in that frequency domain. Second, the influence of physiological noise on  
variable BOLD signals would not only decrease the detectability of BOLD signals in spinal cord fMRI 
analysis (29) but also affect the investigation of gray matter intrinsic functional connectivity of the 
spinal cord by rsfMRI (32,33). As a result, the use of ICA to reduce physiological noise should be 
further adapted to spinal cord rsfMRI.  
 



This issue has been addressed by Eippert et al in a review paper that suggested application of ICA to 
regress out physiological noise in spinal cord rsfMRI (12). Further, Oscar et al and Liu et al noticed 
the application of ICA without presenting its efficiency at regressing out physiological noise or its 
influence on the robustness of spinal cord rsfMRI investigation (3,4).  
 
Hence, the aim of this study was to develop ICA-based nuisance regression (ICANR) as a method to 
reduce physiological noise and improve the robustness of cervical spinal cord rsfMRI. 
 
MATERIAL AND METHODS 
 
Subjects  
 
We recruited 10 healthy subjects (6 male and 4 female, aged 24–34 years (27±3 years)). Informed 
consent was obtained from all participants following Institutional Review Board approval.  
Subjects with normal sensory and motor functions were included. The exclusion criteria were finger 
flexor reflex during the physical examination, a history of traumatic injury or compressive myelopathy 
in the spinal cord, other neurological diseases or spinal stenosis identified in images, which were 
determined by professional radiologists.  
 
Resting-state fMRI Data Acquisition 
 
A 3-Tesla MRI machine (Philips Achieva, Amsterdam, the Netherlands) with a 16-channel 
neurovascular coil was used, with a gradient-echo echo planar imaging (GE-EPI) sequence. The 
scanning protocol was the same as that used in previously published work (4): number of slices = 26 
(vertebrae C1–C7), repetition time (TR)/echo time (TE)=2000/30 ms, scan direction from head to toe, 
phase encoding anterior to posterior, voxel size=1.25×1.25×4 mm, scan thickness=4 mm, field of view 
(FOV)=80×80×104 mm, scanning time=6 min, number of volumes=180. The first five volumes were 
excluded because of initial transient effects. 
 
Data Analysis 
 
The pre-processing of rsfMRI data included slice timing, motion correction, noise reduction, 
detrending, and high-pass filtering (0.01 Hz), which were performed with Statistical Parametric 
Mapping 8 (SPM8, http://www.fil.ion.ucl.ac.uk/spm/), Resting-State fMRI Data Analysis Toolkit 
(REST, http://restfmri.net/forum/index.php), and Group-ICA (GIFT, 
http://mialab.mrn.org/software/gift/index.html) toolboxes. During motion correction, the ‘realignment’ 
function of the SPM toolbox was used to correct global motion of the FOV. For the detrending step, 
the REST toolbox was used to remove the BOLD signals’ linear trends, avoiding false positive 
correlations caused by common linear trends. 
During the noise reduction step, four different methods were applied for comparison. First, the ICANR 
method was applied to reduce physiological noise. The ICANR method included three steps: (1) by 
using the GIFT toolbox, spatial ICA was applied on rsfMRI data after motion correction and spatial Z-



score maps of the correlational distributions with each component were obtained (the number of 
components was determined by the criterion of minimum description length, which is a function 
embedded in the GIFT toolbox); a threshold of Z>2 was applied to the Z-score spatial maps to ignore 
areas having low correlations with the components; (2) physiological noise components were 
identified according to source location, which is defined as the area that showed the strongest 
correlation with noise components. The source of CSF pulsation noise components was located in the 
CSF area, and the source of tissue motion was located in the tissue around the cervical spinal cord, 
such as muscle or nerve root; (3) physiological noise components were regressed out of the rsfMRI 
data using the REST toolbox. Apart from physiological noise components acquired from spatial ICA, 
the regressor included motion correction parameters (x and y translation) (Figure 1). Second, a 
conventional noise reduction method (which is a nuisance regression without ICA) was applied. In this 
ROI-based nuisance regression, the regressor included motion correction parameters and CSF signals 
extracted using a CSF mask. In addition, a conventional ICA noise filtering method was performed. 
Third, a commonly used method called correction of structured noise using spatial independent 
component analysis (CORSICA) was selected for comparison. CORSICA regards independent 
components with high frequencies (>0.1Hz) as noises. After extracting high-frequency noises, 
CORSICA performs nuisance regression to regress it out. Furthermore, rsfMRI data on which nuisance 
regression was not performed were introduced as the control group. ICANR and ROI-based nuisance 
regression were the only two methods applied for noise reduction of spinal cord rsfMRI, while 
CORSICA was applied for noise reduction of spinal cord fMRI. 
 
Region of Interests (ROIs) Definition 
 
For ICANR reduction, CSF and motion source ROIs were defined. CSF ROIs were manually drawn 
on each slice except the first and last (Figure 2 E). Motion source ROIs were defined according to the 
spatial maps of tissue motion components acquired from spatial ICA. In each spatial map that includes 
tissue motion component, the voxel that had the strongest correlation with the tissue motion component 
signal was selected as the motion source ROI (Figure 2 F). Overall, 24 CSF ROIs were defined, while 
the number of motion source ROIs was equal to the number of tissue motion components acquired 
from spatial ICA. 
For rsfMRI connectivity analysis, ROIs were manually drawn on the gray matter using the 
comparatively higher image contrast and clearer anatomy in the C2 to C6 segments (a total of 15 slices, 
3 for each segment). Slices crossing the inter-vertebral discs were excluded because of FOV mismatch. 
Spinal cord gray matter includes the ventral horn as the motor neural pathway and the dorsal horn as 
the sensory neural pathway. Therefore, four ROIs were manually drawn in each slice to define the left 
and right sides of the ventral and dorsal horns. A total 60 ROIs were drawn for connectivity analysis 
(Figure 2 A-D). 
 
Performance Evaluation of Noise Reduction 
 
Person’s correlation coefficient of the mean time series of each pair of gray matter ROIs were 
calculated to investigate intrinsic functional connectivity in gray matter. A 60×60 correlation matrix 



was generated for each subject. Pair-wise correlation coefficients between each gray matter ROI and 
each CSF ROI (15 CSF ROIs per subject, on slices on which gray matter ROIs were drawn) were 
calculated to evaluate the interaction between gray matter and CSF and investigate the extent of 
influence of CSF pulsation on gray matter. A 60×15 correlation matrix was calculated for each subject 
to represent the influence of CSF pulsation on the gray matter. Similarly, the correlation coefficient 
between each gray matter ROI and each motion source ROI was calculated to investigate the extent of 
influence of tissue motion on the gray matter. The overall dimensions of the correlation matrix for the 
influence of tissue motion on the gray matter were 60×n for each subject (n is the number of tissue 
motion components in each subject). Higher correlation coefficients were associated with stronger 
influence of physiological noise on BOLD signals of the gray matter. 
 
Statistical Analysis 
 
For each subject, the mean value of the correlation coefficients between gray matter and CSF was 
calculated to represent the level of influence of CSF on the gray matter. In addition, the mean value of 
the correlation coefficients between gray matter and motion source ROIs was calculated to represent 
the level of influence of tissue motion on the gray matter. The levels of influence of both CSF and 
motion on the gray matter were compared by performing the following nuisance regression methods 
on the rsfMRI data: ICANR, CORSICA, ROI-based nuisance regression, and no nuisance regression. 
One-way ANOVA followed by post-hoc analysis was performed to evaluate the difference. Games-
Howell method was used to correct for multiple comparison. P-values smaller than 0.05 were 
considered to be significant.  
 
We tested the distribution of gray matter intrinsic functional connectivity to test whether the ICANR 
method affects it. Based on gray matter correlation coefficient values in each slice, four categories of 
gray matter intrinsic functional connectivity were established: inter-ventral, inter-dorsal, ipsilateral 
ventral-dorsal (left–left or right–right side), and contralateral ventral-dorsal cross side (left–right side). 
In a recent work, Barry et al. found robust functional connectivity between the left and right ventral 
horns and dorsal horns (5,6). Whether rsfMRI data after ICANR show a similar distribution (functional 
connectivity: correlation between left and right ventral/dorsal horns [two kinds]>correlation between 
ipsilateral and contralateral ventral/dorsal horns [2 kinds]) of gray matter intrinsic functional 
connectivity was examined by comparing the averaged correlation coefficients of these four types of 
gray matter intrinsic functional connectivity across all subjects. 
 
The signals of noise-affected and noise-not-affected gray matter ROIs were compared to observe 
whether ICANR would process the BOLD signals not affected by noises. Considering that the affected 
areas were determined by the highlighted areas (Z>2, Z-transformed spatial map after spatial ICA) of 
the tissue motion or CSF pulsation components, the noise-affected gray matter ROIs were ones that 
included the affected areas (red dots in Figure 3) in terms of tissue motion or CSF pulsation 
components. Signal variation in gray matter ROIs that were both affected and unaffected by noise were 
compared after each noise reduction method was performed on the rsfMRI.  
 



Reproducibility Test of RsfMRI Investigation 
 
To test whether ICANR influences the intra-subject reproducibility of the rsfMRI investigation, all 
subjects were scanned twice with a scanning interval of 30 minutes with repositioning and re-
shimming. All rsfMRI data were acquired by the same scanning protocol and underwent the same data 
processing as described in the methods section. Previous studies described that the strongest and most 
robust functional connectivity was that between left and right ventral horns (1). Therefore, to guarantee 
the robustness of the reproducibility test, gray matter functional connectivity between ventral horns 
was used to measure the reproducibility of rsfMRI. Reproducibility was calculated by intra-class 
correlation (ICC), which was defined as follows: 

𝐼𝐶𝐶 = (𝐵𝑀𝑆 − 𝐸𝑀𝑆)/(𝐵𝑀𝑆 + ((𝑘 − 1) ∗ 𝐸𝑀𝑆)) 
where BMS is the between-subjects mean square, EMS is the error mean square and k is the number of 
repeated sessions. 
 
RESULTS 
 
Performance of Noise Reduction 
 
Figure 3 shows the spatial maps (ICA results, Z-score transformed) of rsfMRI data after four different 
nuisance regression methods. In each spatial map, the voxel with the strongest correlation with the 
independent component (IC) may reveal the source for the IC. The tissue motion component was 
identified when its source of IC was located in the tissue area. Similarly, the CSF pulsation component 
was identified when its source of IC was located within CSF. The highlighted (red/yellow, Z>2.0) areas 
depicted regions with relatively strong temporal correlations with the IC, indicating influence by the 
IC. In the rsfMRI data on which no nuisance regression was performed, highlighted areas of gray 
matter in the first column of Figure 3 indicate contamination of gray matter BOLD signals by tissue 
motion and CSF pulsation. After ROI-based nuisance regression or CORSICA, some highlighted spots 
(the second column of Figure 3) were still visible in the area of the gray matter, representing the 
influence of tissue motion and CSF pulsation. After ICANR, little highlighted spots (the third column 
of Figure 3) can be seen in the area of gray matter, suggesting a clear BOLD signal estimation. 
Statistical analysis results showed the performance of noise reduction using different methods (Table 
1). There were no significant differences between ROI-based and no nuisance regression in terms of 
the correlation coefficients of CSF/tissue motion with gray matter BOLD signals (P=0.223 in CSF, 
P=0.2461 in tissue motion). After CORSICA was performed, the correlation coefficient of CSF/tissue 
motion with the gray matter BOLD signals was significantly stronger than that after no nuisance 
regression (P=0.048). After ICANR, the correlation coefficient was significantly weaker than that after 
the other three methods (P=0.0182), indicating that ICANR showed the best performance of these four 
methods (Figure 4).  
 
Robustness of rsfMRI after ICANR 
 
The rsfMRI reproducibility was compared among four methods. The ICC values of no nuisance 



regression, ROI-based nuisance regression, CORSICA, and ICANR were 0.669, 0.645, 0.561 and 
0.766 respectively. Inter-subject variation of intrinsic functional connectivity was also compared 
among the fourmethods. Compared with ROI-based nuisance regression and no nuisance regression, 
ICANR resulted in the lowest variations of inter-ventral intrinsic functional connectivity (Figure 5). 
To test whether ICANR affected the intrinsic functional connectivity, the distribution of gray matter 
intrinsic functional connectivity within slices was observed (Table 2). The pattern of within-slice gray 
matter functional connectivity distribution reported by previous studies should be inter-ventral/inter-
dorsal>ipsilateral/contralateral ventral-dorsal. Inter-ventral functional connectivity was greater than 
the other three kinds for all three noise reduction methods. After ROI-based nuisance regression, 
CORSICA, and no nuisance regression, inter-dorsal functional connectivity was weaker than 
ipsilateral ventral-dorsal, different from the pattern shown in Figure 6A, 6B, and 6C. After ICANR 
was performed on the rsfMRI data, the functional connectivity strength trend was inter-ventral>inter-
dorsal>ipsilateral ventral-dorsal>contralateral ventral-dorsal, which coincides with the distribution 
pattern shown in Figure 6D. Signal variation comparison found that ICANR did not change signals 
that were not affected by noises. In noise-affected gray matter ROIs, the signal after ICANR had lower 
signal variation than that after ROI-based nuisance regression and no regression, indicating that 
ICANR could reduce noise (Figure 7A). In a noise-not-affected gray matter ROI, the time series of 
four nuisance methods did not show the obvious difference (Fig. 7B). In both conditions, BOLD 
signals after CORSICA had decreased variation (Table 3). 
 
DISCUSSION 
 
Based on the spatial distribution of physiological noise components extracted by ICA, and ICANR 
method was developed for cervical spinal cord rsfMRI. Compared with no nuisance regression method, 
conventional ROI-based nuisance regression, and CORSICA, ICANR efficiently reduced the influence 
of both tissue motion and CSF pulsation on gray matter of cervical spinal cord. In addition, ICANR 
greatly increased the robustness of cervical spinal cord rsfMRI results, with greater intra-subject 
reproducibility and smaller inter-subject variations. Spinal cord rsfMRI enables new types of 
evaluation of spinal cord neural activity in both health and disease. This could facilitate depiction of 
the resting state functional neural network of the spinal cord and exploration of the motor and sensory 
networks inside the spinal cord. Spinal cord rsfMRI could also improve diagnosis or prognosis of 
cervical spinal cord neural dysfunctional diseases, such as amyotrophic lateral sclerosis (ALS), 
cervical spondylotic myelopathy, ossification of the posterior longitudinal ligament, and central cord 
syndrome. The reliable spinal cord rsfMRI investigation with assistance of ICANR may further 
promote the use of spinal cord rsfMRI in basic research and clinical application. 
 
Selection of physiological noise is a crucial part of ICANR. Convincing criteria for selection of noise 
components can improve the accuracy of noise reduction of rsfMRI data. In this study, a threshold was 
applied to Z-score spatial maps to ignore areas with weak correlation with the components. In each Z-
score spatial map, the voxel with the strongest correlation with the components was identified as the 
source. Combined with anatomic information, components with sources located in CSF were defined 
as CSF pulsation components; and those with sources located in tissue (e.g. muscle, nerve root) were 



defined as tissue motion components. These physiological noise components selection requirements 
ensured that ICANR could extract reliable physiological noise components from rsfMRI data. 
 
Another ICA-based method for spinal cord fMRI noise reduction is called CORSICA (29), which 
selects physiological noise components according to their frequency because of the frequency 
difference between physiological noises and activated BOLD signal of spinal cord fMRI (29,30). 
However, in spinal cord rsfMRI, the frequency band of physiological noise overlaps with the frequency 
band of the resting-state BOLD signal (5,6). As a result, physiological noises and resting-state BOLD 
signals cannot be distinguished by their frequencies. However, ICANR extracts physiological noises 
according to its source location. In this case, ICANR is still able to differentiate resting-state BOLD 
signals from physiological noise, although their frequency bands overlap.  
 
ICANR aims to reduce tissue motion noise. The first row of Figure 3 shows red dots inside the spinal 
cord, which indicate a strong correlation between the spinal cord signals and the tissue motion 
component. In this case, there were correlations between the tissue motion noise and gray matter ROIs. 
If two gray matter ROIs are both correlatied with tissue motion noise, this correlation contributes to 
that between the two gray matter ROIs, resulting in a false positive correlation (32). This study used 
the signals of tissue motion ROIs (the sources of the tissue motion components) to represent tissue 
motion noise. The correlations between tissue motion ROIs and gray matter ROIs were used to measure 
the influence of tissue motion on spinal cord gray matter.  
 
In this study, the correlation between each gray matter ROI and the motion source ROI was calculated 
to investigate the level of influence of tissue motion on the cervical spinal cord. ICANR is able to 
decrease the influence of tissue motion significantly (P=0.0182), but ROI-based nuisance regression 
cannot decrease it significantly (P=0.2461). CORSICA even increase the influence of tissue motion on 
the spinal cord. Both ROI-based nuisance regression and ICANR use motion correction parameters 
acquired from motion correction as regressors (34,35). These regressors mainly referred to bulk motion 
of the FOV, which include part of the tissue motion. Further, ICANR has more regressors than ROI-
based nuisance regression. Those regressors specifically include tissue motion signals, which were 
different from the bulk motion of the FOV. These extra tissue motion regressors could explain why 
ICANR had better performance of tissue motion noise reduction than the ROI-based method. 
Regarding poor performance of CORSICA, because it selected high-frequency components as noises, 
CORSICA had a similar role of low-pass filtering. In this case, CORSICA did not address the false 
positive correlations caused by low-frequency components of tissue motion. This might be the reasons 
why CORSICA had poor performance of noise reduction. Overall, ICANR was found to efficiently 
reduce tissue motion noise in cervical spinal cord rsfMRI. 
 
In this study, CSF pulsation noise was reduced by ICANR. The influence of CSF pulsation can be 
observed in the second row of Figure 3, as there were correlations between signals from the spinal 
cord and CSF (red dots inside the spinal cord). Therefore, there were correlations between CSF 
pulsation noise and gray matter ROIs. The correlation between two gray matter ROIs may be a false 
positive if both of the gray matter ROIs are correlated with CSF pulsation noise. (33,36,37). In this 



study, the signals of CSF ROIs were used to represent the CSF pulsation noise. As a result, the 
correlations between CSF ROIs and gray matter ROIs were used to measure the influence of CSF 
pulsation on spinal cord gray matter.   
 
In our study, the correlation between each gray matter and CSF ROIs were calculated to evaluate the 
level of influence of CSF pulsation on the cervical spinal cord. These correlations were compared 
among four different methods. The rsfMRI data after ICANR showed less CSF pulsation influence 
than either ROI-based nuisance regression or no regression. CORSICA even increased the influence 
of CSF pulsation on the spinal cord. These results indicated that ICANR effectively reduces the 
influence of CSF pulsation on the cervical spinal cord. Both ROI-based nuisance regression and the 
ICANR method included regression of CSF signals. In ROI-based nuisance regression, the CSF signals 
were extracted from a CSF mask, while the CSF signals from ICANR were independent noise 
components extracted by spatial ICA. CSF pulsations in the spinal cord canal are independent because 
they are not uniform and have different velocities (38). This characteristic corresponds to the 
independent CSF components extracted from spatial ICA. As a result, regressing out the independent 
CSF pulsation signals may regress out all possible components of CSF pulsations. In ROI-based 
method, CSF signal extracted from a CSF ROI was the average of signals from all voxels within the 
CSF ROI. The averaging process made it possibility to average the independent CSF pulsation signals 
inside each CSF ROI. Thus, the averaged CSF signal may lose the temporal feature of independent 
CSF pulsation signals (23). As a result, it may reduce the performance of CSF pulsation noise reduction. 
The reason for poor performance of CORSICA may be its inability to handle false positive correlations 
caused by low-frequency components of CSF pulsation. Our results indicated that ICANR can 
efficiently reduce CSF pulsation noise in cervical spinal cord rsfMRI. 
 
In this study, measurement of the robustness of rsfMRI investigation after ICANR included two aspects: 
intra-subject reproducibility and inter-subject variability. Results of intra-subject reproducibility 
showed that ICANR had the highest intra-class correlation coefficient in the rsfMRI investigation. 
Meanwhile, the inter-subject variability comparison indicated that ICANR had the lowest intrinsic 
functional connectivity variation among four methods. Both the increased intra-subject reproducibility 
and decreased inter-subject variability indicate that ICANR provides high robustness in cervical spinal 
cord rsfMRI investigation, which further verifies its reduction of the influence of physiological noise. 
 
To investigate whether ICANR distorts results of the rsfMRI analysis, the intrinsic functional 
connectivity distribution among gray matter ROIs within each slice was summarized. Figure 6 shows 
that inter-ventral functional connectivity was stronger than the other three methods. However, after no 
nuisance regression, ROI-based nuisance regression, and CORSICA, inter-dorsal was weaker than 
ipsilateral ventral-dorsal functional connectivity, which was not consistent with the pattern reported 
by other studies (5,6). After ICANR was performed on the rsfMRI data, inter-dorsal was stronger than 
ipsilateral ventral-dorsal functional connectivity, which was consistent with the findings of previous 
studies (5,6). The intrinsic functional connectivity distribution pattern without nuisance regression was 
the pattern in which physiological noises was not reduced. ROI-based nuisance regression and 
CORSICA generated similar patterns to that of no nuisance regression, which might indicate that the 



rsfMRI data were still affected by residual physiological noises. The pattern of intrinsic functional 
connectivity after ICANR was consistent with the findings of previous studies, indicating that the 
influence of physiological noise had been reduced.  
 
Our observation indicated that not all gray matter ROIs were affected by physiological noise because 
some gray matter ROIs did not show strong correlations with CSF pulsation or tissue motion. To test 
whether ICANR will over-process BOLD signal when they are not affected by noises, signals from 
noise-affected and noise-not-affected gray matter ROIs were compared. In the noise-affected gray 
matter ROIs, the signals after ICANR showed lower variations than those of three alternative methods. 
In the gray matter ROI that were not affected by noise, the signals did not show obvious difference 
among four methods. This implies that ICANR only reduces physiological noises in the affected gray 
matter area and will not over-process BOLD signal. However, in both conditions, BOLD signals after 
CORSICA all present decreased variations, indicating that CORSICA may over-process BOLD signals. 
 
This study focused on noise reduction, rather than each step of rsfMRI processing (6,12,19). Future 
studies will focus on the performance of all possible methods in each step of rsfMRI processing. 
Furthermore, the selection of physiological noise was made manually in this study. Automatic noise 
selection methods, which should be developed for ICANR in future studies, can reduce the time 
required for processing (26,39,40). With the development of spinal cord rsfMRI technology, there will 
be future study on new noise reduction methods other than the proposed ICANR. 
 
In conclusion, we have developed an ICANR method to reduce physiological noise in spinal cord 
rsfMRI. Compared with conventional ROI-based nuisance regression, CORSICA, and no regression 
methods, the ICANR efficiently reduced the influence of both tissue motion and CSF pulsation on gray 
matter. As a result, ICANR greatly increased the robustness of cervical spinal cord rsfMRI 
investigation, showing greater intra-subject reproducibility and smaller inter-subject variations. Our 
results indicate that ICANR is an effective method to reduce physiological noise and improve the 
robustness of spinal cord rsfMRI. The ICANR method enables more accurate investigation of spinal 
cord intrinsic functional connectivity, which may deepen our understanding of the entire human 
nervous system. This study demonstrates the use of ICANR method for the robust spinal cord rsfMRI. 
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Tables 
Table 1 Influence of CSF/tissue motion on the gray matter after different noise reduction 
methods 
 No Regression ROI-based CORSICA ICANR 

CSF pulsation 
influence 

0.134±0.026 0.122±0.020 0.166±0.045 0.076±0.007 

Tissue motion 
influence 

0.124±0.019 0.112±0.015 0.160±0.032 0.081±0.014 

Note: no regression – no nuisance regression; ROI-based – ROI-based nuisance regression; CORSICA 
- correction of structured noise using spatial independent component analysis; ICANR – ICA-based 
nuisance regression.  
 
  



Table 2 summary of the distribution of gray matter intrinsic functional connectivity within slices 
(mean±std) 
 No Regression ROI-based CORSICA ICANR 

Inter-ventral 0.230±0.233 0.243±0.210 0.194±0.233 0.189±0.131 
Inter-dorsal 0.095±0.179 0.096±0.152 0.085±0.195 0.107±0.134 
Ipsilateral 
ventral-dorsal 

0.111±0.197 0.106±0.169 0.126±0.207 0.057±0.144 

Contralateral 
ventral-dorsal 

0.058±0.179 0.052±0.154 0.069±0.194 0.017±0.121 

Note: no regression – no nuisance regression; ROI-based – ROI-based nuisance regression; CORSICA 
- correction of structured noise using spatial independent component analysis; ICANR – ICA-based 
nuisance regression. 
 
  



Table 3 Signal variations in noise-affected and noise-not-affected gray matter ROIs (std) 
 No Regression ROI-based CORSICA ICANR 

Noise-affected gray 
matter 

249.3 218.3 106.7 151.5 

Noise-not-affected 
gray matter 

87.6 86.9 38.7 85.6 

Note: no regression – no nuisance regression; ROI-based – ROI-based nuisance regression; CORSICA 
- correction of structured noise using spatial independent component analysis; ICANR – ICA-based 
nuisance regression.  
 

Figure 1. Method of ICA-based nuisance regression (ICANR). rsfMRI data firstly performed spatial 
ICA to get spatial maps. Noise components were selected out and their signals were combined with 
motion correction parameters to establish regressors. Nuisance regression was finally performed to 
regress out noise based on the established regressors. 



 

Figure 2. Gray matter regions of interest (ROIs) definition in the cervical spinal cord. The rsfMRI 
scanning field of view (FOV) and slice location that cover vertebrae C1 to C7 (A); the gray matter was 
drawn on post-processed echo planar imaging (EPI) images (B); the gray matter ROI was then 
delineated and split into ROI1 (ventral horn) and ROI2 (dorsal horn) (C); left and right parts of each 
horn were also furtherly separated; finally 60 ROIs were extracted from each subject (D). CSF ROIs 
were also manually drawn on each slice except for first and last slice (E). Based on the spatial maps 
of tissue motion components acquired from spatial ICA, the voxel that had the highest correlation 
(yellow arrow) with tissue motion component signal was selected as motion source ROI (F). 



 
Figure 3. Spatial maps (ICA results, Z-score transformed) of rsfMRI data after four different nuisance 
regression methods. In each spatial map, the voxel with highest correlation to independent component 
(IC) may reveal the source of IC. For tissue motion component, the voxel have highest correlation to 
IC is located at the tissue area. The CSF pulsation component have the voxel with highest correlation 
to IC that located at CSF area. The highlighted (red/yellow, |z|>2.0) areas depicted regions that have 
relatively high temporal correlation to IC. The yellow areas may represent the source of the 
independent component signal. In each figure, the yellow circle is the spinal cord area. The red dots in 
yellow circle indicated that the spinal cord have high correlation with the independent component 
signal, which means the spinal cord was affected by the independent component. RsfMRI data that did 
not perform nuisance regression will be affected by tissue motion and CSF pulsation. ROI-based 
nuisance regression could decrease the influence but the gray matter was still affected. CORSICA did 
not decrease the influence. ICA-based nuisance regression could decrease the influence of both tissue 
motion and CSF pulsation clearly. Note: no regression – no nuisance regression; ROI-based – ROI-
based nuisance regression; CORSICA - correction of structured noise using spatial independent 
component analysis; ICANR – ICA-based nuisance regression.  



 
Figure 4. Statistical analysis about the level of CSF pulsation and tissue motion influence on gray 
matter. For individual comparison, compared with no nuisance regression, ROI-based nuisance 
regression did not have an obvious difference on CSF pulsation influence and tissue motion influence. 
The ICA-based nuisance regression has an obvious weaker influence of both CSF pulsation and tissue 
motion influence (A, B). For group comparison, ROI-based nuisance regression did not have a 
significantly different influence of CSF and tissue motion. CORSICA have a significantly stronger 
influence of CSF and tissue motion. ICA-based nuisance regression has the significant weaker 
influence of both CSF pulsation and tissue motion in comparison with no nuisance regression and ROI-
based nuisance regression. Note: no regression – no nuisance regression; ROI-based – ROI-based 
nuisance regression; CORSICA - correction of structured noise using spatial independent component 
analysis; ICANR – ICA-based nuisance regression.  



 
Figure 5. Inter-subject variability comparison of inter-ventral intrinsic functional connectivity after 
rsfMRI data performed four different nuisance regression methods. ICA-based nuisance regression 
method showed lowest variations of inter-ventral functional connectivity among all subjects, which 
means that ICA-based nuisance regression method has the lowest inter-subject variability. Note: no 
regression – no nuisance regression; ROI-based – ROI-based nuisance regression; CORSICA - 
correction of structured noise using spatial independent component analysis; ICANR – ICA-based 
nuisance regression.  

 

Figure 6. Distribution of gray matter intrinsic functional connectivity after rsfMRI data performed 
four different nuisance regression methods. Inter-ventral and inter-dorsal have stronger intrinsic 
functional connectivity values than ipsilateral ventral-dorsal and contralateral ventral-dorsal after 
rsfMRI data performed ICA-based nuisance regression. The rest three methods only showed obvious 
stronger inter-ventral intrinsic functional connectivity than the rest three kinds of intrinsic functional 
connectivity. Note: no regression – no nuisance regression; ROI-based – ROI-based nuisance 
regression; CORSICA - correction of structured noise using spatial independent component analysis; 
ICANR – ICA-based nuisance regression.  



 
Figure 7. An example of the signal from both noise- affected and noise-not-affected gray matter ROIs. 
In the noise-affected gray matter ROI, time series after ICA-based nuisance regression exhibited lower 
signal variations than no nuisance regression and ROI-based nuisance regression (A). In the noise-not-
affected gray matter ROI, time series did not have an obvious difference among these three methods 
(B). In both conditions, BOLD signals after CORSICA all present decreased variations.  Note: no 
regression – no nuisance regression; ROI-based – ROI-based nuisance regression; CORSICA - 
correction of structured noise using spatial independent component analysis; ICANR – ICA-based 
nuisance regression.  
 
 


