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Abstract

In this paper we consider the joint Laplace transform of occupation times over dis-
joint intervals for spectrally negative Lévy processes with a general loss-carry-forward
taxation structure. This tax structure was first introduced by Albrecher and Hipp
in their paper in 2007. We obtain representations of the joint Laplace transforms in
terms of scale functions and the Lévy measure associated with the driven spectrally
negative Lévy processes. Two numerical examples, i.e. a Brownian motion with drift
and a compound Poisson model, are provided at the end of this paper and explicit
results are presented with discussions.
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1 Introduction

Lévy processes are stochastic processes with independent and stationary increments. Spec-
trally negative Lévy processes (SNLPs) are Lévy processes with no upward jumps, which
find many applications in risk theory, mathematical finance and branching processes. In
the recent literature of risk theory and mathematical finance, there have been increasing
interests in studying the Laplace transforms of occupation times for Lévy processes. For
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general SNLPs, Laplace transforms of occupation times were studied in Landriault et al.
(2011) and Loeffen et al. (2014), by adopting different approximation schemes. Quite
recently, the joint Laplace transforms of occupation times under Lévy processes have been
attracting much research attention. For instance, Li and Zhou (2013) considered joint oc-
cupation times under general time-homogeneous diffusion processes. Further more, Li and
Zhou (2014) derived the joint Laplace transforms of occupation times over disjoint intervals
under SNLPs, by adopting a fairly new approach. Some recent papers considering SNLPs
include Yin and Yuen (2014) and Li et al. (2017).

The so-called loss-carry-forward taxation system (in a simplified version) was first intro-
duced into a compound Poisson process with drift by Albrecher and Hipp (2007). Mean-
while, Kyprianou and Zhou (2009) introduced a very general taxation structure into the
Lévy framework. Results regarding stochastic processes with loss-carry-forward taxation
can be found in Wang and Hu (2012), Wang et al. (2011), Ming et al. (2010), Albrecher
et al. (2008) and the references therein.

This paper aims to study the impact of a loss-carry-forward taxation system on the joint
Laplace transforms of occupation times in SNLPs. It is motivated by the increasing role of
occupation times on managing risks in risk theory. For 0 < a < b, the occupation times of
the surplus process being in intervals (0, a) and (a, b) prior to ruin can be used to evaluate
the performance of an insurance portfolio as well as monitoring the time an insurer’s
surplus remaining at critically low levels, which may help to measure the solvency risk.
By incorporating taxes into the suplus models will enable us to better examine the above
mentioned risks in a more real-life related environment. The obtained new occupation-time
functionals are of much interest on both theoretical and practical aspects.

2 Preliminary identities for SNLPs

In this section, we shall provide some preliminary scale function related results for SNLPs.
Then, we shall present our model, i.e., an SNLP imbedded with a general loss-carry-
forward taxation system. Some existing fluctuational and distributional identities on our
taxed model will also be given in this section.

2.1 SNLPs without tax

Let process X = {Xt; t ≥ 0} be an SNLP defined on a filtered probability space (Ω, {Ft; t ≥
0}, P ). We exclude the case of X being the negative of a subordinator. Denote by Px the
probability law of X given X0 = x, and by Ex its corresponding expectation operator. The
Laplace exponent of X is defined as

ψ(θ) = logEx[eθ(X1−x)],

which is finite at least for θ ∈ [0,∞), where it is strictly convex and infinitely differentiable.
The scale functions {W (q); q ≥ 0} ofX are defined such that for each q ≥ 0, W (q) : [0,∞)→
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[0,∞) is the unique strictly increasing and continuous function with a Laplace transform
satisfying

´∞
0
e−λxW (q)(x)dx = 1

ψ(λ)−q , λ > Φ(q), where Φ(q) is the larger solution of

the equation ψ(λ) = q (there are at most two). Let W (q)′(x) be its density and we let
W (q)(x) = 0 for x < 0.

Define the first up-crossing and down-crossing times of X as follows,

T+
b = inf{t ≥ 0; Xt ≥ b}, T−a = inf{t ≥ 0; Xt < a}

with the convention that inf φ =∞. In addition, define for q ≥ 0,

Z(q)(x) =

{
1 + q

´ x
0
W (q)(y)dy, x ≥ 0,

1, x < 0.

According to Kyprianou (2014) we know that, for x ≤ b,

Ex
[
e−qT

+
b ;T+

b < T−0

]
=
W (q)(x)

W (q)(b)
, Ex

[
e−qT

−
0 ;T−0 < T+

b

]
= Z(q)(x)− W (q)(x)

W (q)(b)
Z(q)(b).

Furthermore, it has been verified by Li and Zhou (2014) that, for q1, q2 ≥ 0, a, x ∈ [0, b]
and b ∈ (0,∞), we have,

g1(x, b) := Ex
[

exp
{
− q1

ˆ T−0

0

1(0,a)(Xs)ds− q2

ˆ T−0

0

1(a,b)(Xs)ds
}

;T−0 < T+
b

]
= Z(q1,q2)

a (x)− W
(q1,q2)
a (x)Z

(q1,q2)
a (b)

W
(q1,q2)
a (b)

, (2.1)

g2(x, b) := Ex
[

exp
{
− q1

ˆ T+
b

0

1(0,a)(Xs)ds− q2

ˆ T+
b

0

1(a,b)(Xs)ds
}

;T−0 > T+
b

]
=

W
(q1,q2)
a (x)

W
(q1,q2)
a (b)

. (2.2)

Here, for q1, q2 ≥ 0 and 0 ≤ a ≤ x,

W (q1,q2)
a (x) := W (q1)(x)− (q1 − q2)

ˆ x

a

W (q1)(y)W (q2)(x− y)dy,

Z(q1,q2)
a (x) := Z(q1)(x)− (q1 − q2)

ˆ x

a

Z(q1)(y)W (q2)(x− y)dy.

2.2 SNLPs with tax

Following the ideas in Albrecher and Hipp (2007) and Kyprianou and Zhou (2009), we are
interested in how the loss-carry-forward tax payments will affect the quantitative behavior
of the driven SNLP. Assume that the cumulative tax payments by time t are given by

ˆ t

0

γ(SXw )dSXw ,
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where γ : [0,∞)→ [0, 1) is a measurable function such that
´∞

0
(1− γ(s))ds =∞, {SXt :=

sup
0≤w≤t

Xw; t ≥ 0} is the running maximum process of X, and X is the surplus process

without tax. The net aggregate surplus process is then given by

Ut = Xt −
ˆ t

0

γ(SXw )dSXw . (2.3)

Define the first up-crossing and down-crossing times of {Ut; t ≥ 0}, respectively, as,

τ+
b = inf{t ≥ 0; Ut ≥ b}, τ−a = inf{t ≥ 0; Ut < a}.

We further define ρ+
SU
τ−a

= inf{t > τ−a ; Ut ≥ SU
τ−a
} with SUt := sup

0≤w≤t
Uw. Actually, ρ+

SU
τ−a

is

the first time such that the driven SNLP X is taxed again after the first down-crossing
time τ−a . For the purpose of simplification, we shall define two auxiliary functions. The
first one is

ξ(q)
x (y; a) := exp

{
−
ˆ y

x

W (q)′(w − a)

W (q)(w − a)(1− γ(γ̄−1(w)))
dw
}

with its first derivative w.r.t. y in the form of ξ
(q)′
x (y; a) = − ξ

(q)
x (y)

1−γ(γ̄−1(y))
W (q)′(y−a)

W (q)(y−a)
, where

γ̄−1(·) denotes the inverse function of γ̄(s) = x +
´ s
x

(1 − γ(y))dy. Let ξ
(q)
x (y)=̂ξ

(q)
x (y; 0).

As mentioned in Kyprianou and Zhou (2009), when γ ∈ (0, 1) is a constant and a = 0, we

have γ̄(s) = s(1− γ) + γx and ξ
(q)
x (y) =

(
W (q)(x)

W (q)(y)

)1/(1−γ)

. The second auxiliary function is

ζ
(q)
x (y) = W (q)′(x− y)− W (q)′ (x)

W (q)(x)
W (q)(x− y), which has ζ

(q)′
x (0) = W (q)′ (x)2

W (q)(x)
−W (q)′′(x).

Theorems 1.1 and 1.3 in Kyprianou and Zhou (2009) give that:

• for a ≤ x ≤ b,

Ex[e−qτ
+
b ; τ+

b < τ−a ] = ξ(q)
x (b; a); (2.4)

• for z > 0, θ − a ≥ y ≥ 0 and θ ≥ x ≥ a,

Ex
[
e−qτ

−
a ;SU

τ−a
∈ dθ, Uτ−a − ∈ a+ dy,−Uτ−a ∈ −a+ dz

]
=

ξ
(q)
x (θ; a)

1− γ(γ̄−1(θ))

[
υ(y + dz)1{y<θ−a}ζ

(q)
θ−a(y)dy +W (q)(0+)υ(θ − a+ dz)δθ−a(dy)

]
dθ;(2.5)

• and for θ ≥ x ≥ a,

Ex[e−qτ
−
a ;SU

τ−a
∈ dθ, Uτ−a = a] =

σ2ξ
(q)
x (θ; a)

2[1− γ(γ̄−1(θ))]
ζ

(q)′

θ−a(0) dθ, (2.6)

where σ is the Gaussian coefficient in the Lévy-Itô decomposition of X, υ denotes
the Lévy measure of −X and δθ−a(dy) is the Dirac measure which assigns unit mass
to the point θ − a.
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3 Main results

First of all, we shall define the joint Laplace transforms of the occupation times of the
disjoint sets (0, a) and (a, b) for the process given in (2.3) prior to its two-sided exit from
the set [0, b], which are the two primary objects in this paper:

f1(x) := Ex
[

exp
{
− q1

ˆ τ−0

0

1(0,a)(Us)ds− q2

ˆ τ−0

0

1(a,b)(Us)ds
}

; τ−0 < τ+
b

]
,

f2(x) := Ex
[

exp
{
− q1

ˆ τ+
b

0

1(0,a)(Us)ds− q2

ˆ τ+
b

0

1(a,b)(Us)ds
}

; τ−0 > τ+
b

]
.

Let h0(x) = Ex[e−qτ
−
0 ; τ−0 <∞]. To calculate f1(x) and f2(x), we need the following lemma.

Lemma 1. (Two-sided exit problem) For any q > 0 and x < b, we have,

Ex
[
e−qτ

−
0 ; τ−0 < τ+

b

]
= h0(x)− ξ(q)

x (b)h0(b), (3.1)

where, for x ≥ 0,

h0(x) =

ˆ ∞
x

ξ
(q)
x (θ)

1− γ(γ̄−1(θ))

[ ˆ θ−

0

ζ
(q)
θ (y)υ((y,∞))dy +W (q)(0+)υ((θ,∞))

]
dθ

+
σ2

2

ˆ ∞
x

ξ
(q)
x (θ)

1− γ(γ̄−1(θ))
ζ

(q)′

θ (0) dθ. (3.2)

Proof. The proof of this lemma is straightforward so it is omitted.

Remark. When γ ∈ (0, 1) is a constant and a = 0, we have ξ
(q)
x (θ) =

(
W (q)(x)

W (q)(θ)

)1/(1−γ)

and

h0(x) =
1

1− γ

ˆ ∞
x

(
W (q)(x)

W (q)(θ)

) 1
1−γ [ ˆ θ−

0

ζ
(q)
θ (y)υ((y,∞))dy +W (q)(0+)υ((θ,∞))

]
dθ

+
σ2

2(1− γ)

ˆ ∞
x

(
W (q)(x)

W (q)(θ)

) 1
1−γ

ζ
(q)′

θ (0) dθ. (3.3)

Within the rest of this section we shall present our main results.

Theorem 1. (1) For 0 ≤ x ≤ a, we have,

f1(x) = Ex[e−q1τ
−
0 ; τ−0 < τ+

a ] + Ex[e−q1τ
+
a ; τ+

a < τ−0 ]f1(a), (3.4)

f2(x) = Ex[e−q1τ
+
a ; τ+

a < τ−0 ]f2(a), (3.5)

with Ex[e−q1τ
+
a ; τ+

a < τ−0 ] and Ex[e−q1τ
−
0 ; τ−0 < τ+

a ] given by (2.4) and (3.1), respectively.

(2) For a ≤ x ≤ b, we have,

f1(x) =

ˆ b

x

h2(y; a) exp
{
−
ˆ y

x

h1(w; a)dw
}
dy, (3.6)

f2(x) = exp
{
−
ˆ b

x

h1(y; a)dy
}
. (3.7)
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Here,

h1(x; a) =
1

1− γ(γ̄−1(x))

[
W (q2)′(x− a)

W (q2)(x− a)
− σ2

2
g2(a, x)ζ

(q2)′

x−a (0)

−
ˆ a

0

g2(a− z, x)

(ˆ (x−a)−

0

ζ
(q2)
x−a(y)υ(y + dz)dy +W (q2)(0+)υ(x− a+ dz)

)]
,

h2(x; a) =
1

1− γ(γ̄−1(x))

[
σ2

2
g1(a, x)ζ

(q2)′

x−a (0)

+

ˆ ∞
0

g1(a− z, x)

(ˆ (x−a)−

0

ζ
(q2)
x−a(y)υ(y + dz)dy +W (q2)(0+)υ(x− a+ dz)

)]
,

with g1(·, ·) and g2(·, ·) being the two binary functionals given by (2.1) and (2.2).

Proof. The proof is given in Appendix.

Remark. When γ(x) ≡ 0, the net aggregate surplus process U agrees with the SNLP X,
and so Theorem 1 provides some new expressions of the Laplace transforms of the joint
occupation times, which are different in form from the results given in Theorem 3.1 of Li
and Zhou (2014). The equivalence can be shown in special cases, eg Brownian motion with
drift and compound Poisson processes, but not in general.

4 Two Special Cases

In this section, we shall examine two special cases of our model, i.e. a Brownian Motion
with drift and a compound Poisson model. Explicit results are derived in respect of the
joint Laplace transforms of the occupation times discussed in previous section.

Example 1. Let Xt = x + µt + σBt (µ 6= 0, σ > 0) be a Brownian motion with drift. It
is worth mentioning that its associated Lévy measure is identically zero. One can verify
that it has the scale function

W (q)(x) = κ(q)
[
eλ1(q)x − eλ2(q)x

]
, x ≥ 0, (4.1)

where κ(q)=̂(2qσ2 + µ2)−
1
2 , λ1(q)=̂

−µ+
√

2qσ2+µ2

σ2 and λ2(q)=̂
−µ−
√

2qσ2+µ2

σ2 . This is a well-
known result and can be found in many references including Kuznetsov et al. (2012).
Hence, by the aforementioned definition of the function Z(q)(·), we have, for x, q ≥ 0,

Z(q)(x) = 1− qκ(q)
[ 1

λ1(q)
− 1

λ2(q)

]
+ qκ(q)

[eλ1(q)x

λ1(q)
− eλ2(q)x

λ2(q)

]
.

In addition, for q1, q2 ≥ 0 and 0 ≤ a ≤ x, by some algebraic manipulations we have

W (q1,q2)
a (x) = l12e

λ1(q2)x + l22e
λ2(q2)x,
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where

l12 =
[κ(q1) + κ(q2)]eλ1(q1)a − [κ(q1)− κ(q2)]eλ2(q1)a

2eλ1(q2)a
,

l22 =
[κ(q1)− κ(q2)]eλ1(q1)a − [κ(q1) + κ(q2)]eλ2(q1)a

2eλ2(q2)a
.

Define

l11 =
[κ(q1) + κ(q2)]eλ1(q1)a + [κ(q1)− κ(q2)]eλ2(q1)a

2eλ1(q2)a
,

l21 =
[κ(q1)− κ(q2)]eλ1(q1)a + [κ(q1) + κ(q2)]eλ2(q1)a

2eλ2(q2)a
.

Then for x ≥ a ≥ 0, Z
(q1,q2)
a (x) = k12e

λ1(q2)x + k22e
λ2(q2)x, where k12 = µ

2
l12 + 1

2κ(q1)
l11

and k22 = µ
2
l22 + 1

2κ(q1)
l21. By (2.1) and (2.2), it can be verified that, for q1, q2 ≥ 0 and

a, x ∈ [0, b] with b ∈ (0,∞),

g1(x, b) =
2∑
i=1

ki2e
λi(q2)x −

( 2∑
i=1

ki2e
λi(q2)b

)∑2
i=1 li2e

λi(q2)x∑2
i=1 li2e

λi(q2)b
(4.2)

and

g2(x, b) =
l12e

λ1(q2)x + l22e
λ2(q2)x

l12eλ1(q2)b + l22eλ2(q2)b
. (4.3)

Finally, combining (4.1), (4.2) and (4.3) we have

h1(x; a) =
λ1(q2)eλ1(q2)(x−a) − λ2(q2)eλ2(q2)(x−a) − 2(µ

2

σ2 + 2q2)κ(q2)e−
2µ(x−a)

σ2 g2(a, x)

[1− γ(γ̄−1(x))][eλ1(q2)(x−a) − eλ2(q2)(x−a)]

and

h2(x; a) =
2(µ

2

σ2 + 2q2)κ(q2)e−
2µ(x−a)

σ2 g1(a, x)

[1− γ(γ̄−1(x))][eλ1(q2)(x−a) − eλ2(q2)(x−a)]
.

Also, by (3.2) we have,

h0(x) =

ˆ ∞
x

exp
{
−
´ θ
x

λ1(q)eλ1(q)w−λ2(q)eλ2(q)w

(eλ1(q)w−eλ2(q)w)(1−γ(γ̄−1(w)))
dw
}

1− γ(γ̄−1(θ))

2(µ
2

σ2 + 2q)κ(q)e−
2µθ

σ2

eλ1(q)θ − eλ2(q)θ
dθ.

Particularly, for γ(·) ≡ γ ∈ (0, 1), (3.3) yields

h0(x) =
1

1− γ

ˆ ∞
x

(
eλ1(q)x − eλ2(q)x

eλ1(q)θ − eλ2(q)θ

) 1
1−γ 2(µ

2

σ2 + 2q)κ(q)e−
2µθ

σ2

eλ1(q)θ − eλ2(q)θ
dθ.

Having obtained the explicit expressions of h0(x), h1(x) and h2(x), by Theorem 1 we can
calculate f1(x) and f2(x), which are the main objects of this paper.

Let µ = 1, σ = 3, a = 2, b = 10 and γ(x) ≡ 0.1. Using the above results we calculate f1(x)
and f2(x) numerically with the software Mathematica. To better demonstrate the results,
we let x vary from 0 to b with a step of 0.1 for different choices of (q1, q2) values. The
results are summarised in Figures 1-2.
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• The patterns of f1(x), 0 ≤ x ≤ b, in Figure 1 show that when x is either too close
to 0 or too close to b, the occupation times of the Brownian Motion for intervals
(0, a) and (a, b) are all very small. This is because the former case leads to an early
down-crossing of level 0 and the latter one causes a very quick up-crossing of the
boundary b, i.e. f1(0) = 1 and f1(b) = 0. A trend that f1(x) decreases when q1, q2

increase is also evident. Also, Figure 1 demonstrates a relationship that when x < a,
changing the value of q1 has much bigger impact on the shape of f1(x) than changing
the value of q2 and vice versa when x ≥ a.

• Figure 2 shows the shape of f2(x), 0 ≤ x ≤ b, for the same choices of q1 and q2.
Interestingly, changing values of q1 nearly has no impact on f2(x), with only minor
effect when x is small. It is because under the definition of f2(x), when τ−0 > τ+

b , the
Brownian motion shall spend most time in interval (a, b) before up-crossing b. On
the contrary, different values of q2 generate dramatically different shapes of f2(x) for
the same reason.

(a) q2 = 1 with various q1 values (b) q1 = 1 with various q2 values

Figure 1: The graph of f1(x) with a = 2 and b = 10

(a) q2 = 1 with various q1 values (b) q1 = 1 with various q2 values

Figure 2: The graph of f2(x) with a = 2 and b = 10

Example 2. Let Xt = x + ct − St with x ≥ 0, where St is a compound Poisson process
with rate λ > 0 and an exponential jump distribution F (x) = 1 − e−µx, µ > 0. It can be
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verified that υ(dx) = λF (dx) and it has the scale function

W (q)(x) =
A1(q)

c
eθ1(q)x − A2(q)

c
eθ2(q)x, x ≥ 0, (4.4)

where A1(q) = µ+θ1(q)
θ1(q)−θ2(q)

, A2(q) = µ+θ2(q)
θ1(q)−θ2(q)

, θ1(q) = λ+q−cµ+K(q)
2c

, θ2(q) = λ+q−cµ−K(q)
2c

and

K(q) =
√

(cµ− λ− q)2 + 4cqµ. So W (q)(0+) = 1
c
. Further, for x, q ≥ 0,

Z(q)(x) = 1 +
qA1(q)

cθ1(q)

(
eθ1(q)x − 1

)
− qA2(q)

cθ2(q)

(
eθ2(q)x − 1

)
.

In addition, for q1, q2 ≥ 0 and 0 ≤ a ≤ x, by some algebraic manipulations we have

W (q1,q2)
a (x) =

A1(q2)(q1 − q2)

c2

[
A1(q1)

e[θ1(q1)−θ1(q2)]a

θ1(q1)− θ1(q2)
− A2(q1)

e[θ2(q1)−θ1(q2)]a

θ2(q1)− θ1(q2)

]
eθ1(q2)x

−A2(q2)(q1 − q2)

c2

[
A1(q1)

e[θ1(q1)−θ2(q2)]a

θ1(q1)− θ2(q2)
− A2(q1)

e[θ2(q1)−θ2(q2)]a

θ2(q1)− θ2(q2)

]
eθ2(q2)x

=̂ β12e
θ1(q2)x + β22e

θ2(q2)x,

Z(q1,q2)
a (x) =

q1(q1 − q2)A1(q2)

c2

{ A1(q1)e[θ1(q1)−θ1(q2)]a

θ1(q1)[θ1(q1)− θ1(q2)]
− A2(q1)e[θ2(q1)−θ1(q2)]a

θ2(q1)[θ2(q1)− θ1(q2)]

}
eθ1(q2)x

−q1(q1 − q2)A2(q2)

c2

{ A1(q1)e[θ1(q1)−θ2(q2)]a

θ1(q1)[θ1(q1)− θ2(q2)]
− A2(q1)e[θ2(q1)−θ2(q2)]a

θ2(q1)[θ2(q1)− θ2(q2)]

}
eθ2(q2)x

=̂ χ12e
θ1(q2)x + χ22e

θ2(q2)x.

As a result, for q1, q2 ≥ 0 and a, x ∈ [0, b] with b ∈ (0,∞), we have

g1(x, b) =
2∑
i=1

χi2e
θi(q2)x −

2∑
i=1

χi2e
θi(q2)b

∑2
i=1 βi2e

θi(q2)x∑2
i=1 βi2e

θi(q2)b
, (4.5)

g2(x, b) =
β12e

θ1(q2)x + β22e
θ2(q2)x

β12eθ1(q2)b + β22eθ2(q2)b
. (4.6)

From Theorem 1 and the above results we have

h1(x; a) =
1

1− γ(γ̄−1(x))

[
A1(q2)θ1(q2)eθ1(q2)(x−a) − A2(q2)θ2(q2)eθ2(q2)(x−a)

A1(q2)eθ1(q2)(x−a) − A2(q2)eθ2(q2)(x−a)

−λµ
c

B(x− a; q2) + e−µ(x−a)∑2
i=1 βi2e

θi(q2)x

2∑
i=1

βi2
eθi(q2)a − e−µa

θi(q2) + µ

]
.

where

B(x; q2) =
A1(q2)A2(q2)[θ1(q2)− θ2(q2)]e(θ1(q2)+θ2(q2))x

A1(q2)eθ1(q2)x − A2(q2)eθ2(q2)x

[1− e−(θ2(q2)+µ)x

θ2(q2) + µ
− 1− e−(θ1(q2)+µ)x

θ1(q2) + µ

]
.
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Similarly,

h2(x; a)=
1

1− γ(γ̄−1(x))

λµ

c

(
B(x− a; q2) + e−µ(x−a)

) [ 2∑
i=1

2∑
j=1

χij
(
eθi(qj)a − e−µa

)
θi(qj) + µ

+
χ0 (1− e−µa) + e−µa

µ
−
χ0 +

∑2
i=1

∑2
j=1 χije

θi(qj)x∑2
i=1

∑2
j=1 βije

θi(qj)x

2∑
i=1

2∑
j=1

βij
(
eθi(qj)a − e−µa

)
θi(qj) + µ

]
.

In addition, by the expression of h0(x) we get,

h0(x)=
λ

c

ˆ ∞
x

exp
{
−
´ θ
x

A1(q)θ1(q)eθ1(q)w−A2(q)θ2(q)eθ2(q)w

(A1(q)eθ1(q)w−A2(q)eθ2(q)w)(1−γ(γ̄−1(w)))
dw
}

1− γ(γ̄−1(θ))

(
B(θ, q) + e−µθ

)
dθ.

Particularly, when γ(·) ≡ γ,

h0(x)=
λ

c(1− γ)

ˆ ∞
x

(
A1(q)eθ1(q)x − A2(q)eθ2(q)x

A1(q)eθ1(q)θ − A2(q)eθ2(q)θ

) 1
1−γ (

B(θ, q) + e−µθ
)
dθ.

Again, we shall present some numerical results. Let λ = 1, µ = 1, c = 1.2, a = 2, b = 10
with a constant tax rate γ = 0.1. Similar to Example 1, we let initial surplus x to vary from
0 to b with a step of 0.1 for different choices of (q1, q2) values. The results are summarised
in Figures 3-4.

• The patterns of f1(x), 0 ≤ x ≤ b shown in Figure 3 are quite different from those in
Figure 1. Bear in mind that for the compound Poisson model with a positive safety
loading, there is a positive probability that the process will never down-cross a when
x = a. It makes x = a an obvious divisor on the shape of f1(x), 0 ≤ x ≤ b.

• In Figure 3(a), when q2 is fixed, x = 0 gives the biggest possibility of τ−0 < τ+
a .

The proposed various q1 values lead to significantly spread-out f1(0) values. On the
contrary, fixing q1 and changing q2 shall have minimal impact on f1(0) which is shown
in Figure 3(b). This is because the only component in f1(x), 0 ≤ x < a, that depends
on q2 is f1(a).

• When q1 < q2, the impact of increasing x on Ex[e
−q1τ−0 ;τ−0 <τ

+
a ] (negative impact) is

bigger than the impact on Ex[e
−q1τ+

a ;τ−0 >τ
+
a ] (positive impact), so the overall impact

is negative and f1(x), 0 ≤ x < a, displays a clear downward trend. When q1 > q2,
the overall impact of increasing x is initially negative, but when x→ a, τ+

a decreases
faster and so the positive impact over-performs the negative one, which causes the U
shape at the end of interval [0, a). These arguments are confirmed by Figure 3.

• Figure 4 shows the shape of f2(x), 0 ≤ x ≤ b, for the same choices of q1 and q2. We
have similar finds as in Example 1, except the significantly different shapes seen for
x < a in Figure 4(a). Again, changing q1 nearly has no significant impact on f2(x)
but different values of q2 lead to dramatically different shapes of f2(x) for 0 ≤ x ≤ b.
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(a) q2 = 1 with various q1 values (b) q1 = 1 with various q2 values

Figure 3: The graph of f1(x) with a = 2 and b = 10

(a) q2 = 1 with various q1 values (b) q1 = 1 with various q2 values

Figure 4: The graph of f2(x) with a = 2 and b = 10

A Appendix

Proof of Theorem 1. For the purpose of convenience, we shall define

D1(t1, t2) =

ˆ t2

t1

1(0,a)(Us)ds, D2(t1, t2) =

ˆ t2

t1

1(a,b)(Us)ds,

which are the total duration of our process Us in the interval (0, a) and (a, b) between times
t1 and t2 respectively. Then we have:

(1) For 0 ≤ x ≤ a, we have

f1(x) = Ex
[
e−q1D1(0,τ−0 )−q2D2(0,τ−0 ); τ−0 < τ+

a

]
+ Ex

[
e−q1D1(0,τ−0 )−q2D2(0,τ−0 ); τ+

a < τ−0 < τ+
b

]
= Ex

[
e−q1τ

−
0 ; τ−0 < τ+

a

]
+ Ex

[
Ex
[
e−q1D1(0,τ−0 )−q2D2(0,τ−0 ); τ+

a < τ−0 < τ+
b

∣∣Fτ+
a

]]
= Ex

[
e−q1τ

−
0 ; τ−0 < τ+

a

]
+ Ex

[
e−q1τ

+
a ; τ+

a < τ−0
]
f1(a),

f2(x) = Ex
[
Ex
[
e−q1D1(0,τ+

b )−q2D2(0,τ+
b ); τ−0 > τ+

b > τ+
a

∣∣∣Fτ+
a

]]
= Ex

[
e−q1τ

+
a ; τ+

a < τ−0
]
f2(a).
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(2) For a ≤ x < b, we have

f1(x) = Ex
[
e−q1D1(0,τ−0 )−q2D2(0,τ−0 ); τ−a < ρ+

SU
τ−a

< τ−0 < τ+
b

]
+Ex

[
e−q1D1(0,τ−0 )−q2D2(0,τ−0 ); τ−a ≤ τ−0 < ρ+

SU
τ−a

< τ+
b

]
= Ex

[
e−q2D2(0,τ−a )Ex

[
exp

{
− q1D1(τ−a , ρ

+
SU
τ−a

)− q2D2(τ−a , ρ
+
SU
τ−a

)
}

×Ex
[
e
−q1D1(ρ+

SU

τ−a

,τ−0 )−q2D2(ρ+

SU

τ−a

,τ−0 )

; τ−0 < τ+
b

∣∣∣Fρ+

SU

τ−a

]
; ρ+

SU
τ−a

< τ−0

∣∣∣Fτ−a ];SUτ−a < b

]
+Ex

[
Ex
[
e−q1D1(0,τ−0 )−q2D2(0,τ−0 ); τ−a ≤ τ−0 < τ+

b , ρ
+
SU
τ−a

> τ−0 |Fτ−a
]]

= Ex
[
e−q2τ

−
a

(
Eũ
[
e−q1

´ T+
ū

0 1(0,a)(Xs)ds−q2
´ T+
ū

0 1(a,b)(Xs)ds;T+
ū < T−0

]∣∣∣ū=SU

τ−a
ũ=U

τ−a

)
f1(SU

τ−a
);SU

τ−a
< b

]

+Ex
[
e−q2τ

−
a

(
Eũ
[
e−q1

´ T−0
0 1(0,a)(Xs)ds−q2

´ T−0
0 1(a,b)(Xs)ds;T−0 < T+

ū

]∣∣∣ū=SU

τ−a
ũ=U

τ−a

)
;SU

τ−a
< b

]

= Ex
[
e−q2τ

−
a g2(Uτ−a , S

U
τ−a

)f1(SU
τ−a

);SU
τ−a
< b
]

+ Ex
[
e−q2τ

−
a g1(Uτ−a , S

U
τ−a

);SU
τ−a
< b
]
. (A.1)

The above equalities are based on the fact that Uτ−a , SU
τ−a

and f1(SU
τ−a

) are all Fτ−a -measurable.

Also, the trajectories of the process {Ut; t ≥ 0} restricted on the time interval [τ−a , ρ
+
SU
τ−a

]

evolve in the same way as those of {Xt; t ≥ 0} since no taxes are paid during this time
period. Further, from (2.5) and (2.6) we have

Ex
[
e−q2τ

−
a g2(Uτ−a , S

U
τ−a

)f1(SU
τ−a

);SU
τ−a
< b
]

=

ˆ b

x

ξ
(q2)
x (θ; a)f1(θ)

1− γ(γ̄−1(θ))
dθ

{ˆ (θ−a)−

0

ζ
(q2)
θ−a(y)

ˆ a

0

g2(a− z, θ)υ(y + dz)dy

+W (q2)(0+)

ˆ a

0

g2(a− z, θ)υ(θ − a+ dz)

}
+

ˆ b

x

g2(a, θ)
ξ

(q2)
x (θ; a)f1(θ)

1− γ(γ̄−1(θ))

σ2

2
ζ

(q2)′

θ−a (0)dθ.

Similarly, the second term in the right-hand side of (A.1) can be re-expressed as,

Ex
[
e−q2τ

−
a g1(Uτ−a , S

U
τ−a

);SU
τ−a
< b
]

=

ˆ b

x

ˆ ∞
0

ξ
(q2)
x (θ; a)g1(a− z, θ)

1− γ(γ̄−1(θ))

[ˆ (θ−a)−

0

ζ
(q2)
θ−a(y)υ(y + dz)dy +W (q2)(0+)υ(θ − a+ dz)

]
dθ

+
σ2

2

ˆ b

x

g1(a, θ)

1− γ(γ̄−1(θ))
ξ(q2)
x (θ; a)ζ

(q2)′

θ−a (0)dθ.

Substituting them into (A.1) and differentiating with respect to x yields

f ′1(x) = h1(x; a)f1(x)− h2(x; a). (A.2)
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Using the boundary condition f1(b) = 0 to solve (A.2), we get, for a ≤ x ≤ b,

f1(x) =

ˆ b

x

h2(y; a) exp
{
−
ˆ y

x

h1(w; a)dw
}
dy.

In a similar manner, we can obtain the closed-form expression for f2(x), for a ≤ x ≤ b, as
given in Theorem 1. This completes the proof of Theorem 1. �
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