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contributes information from paired organs to the data analysis, and
the measurements from such paired organs are generally highly corre-
lated. Various statistical methods have been developed to tackle intra-
class correlation on bilateral correlated data analysis. In practice, it is
very important to adjust the effect of confounder on statistical infer-
ences, since either ignoring the intra-class correlation or confounding
effect may lead to biased results. In this article, we propose three
approaches for testing common risk difference for stratified bilateral
correlated data under the assumption of equal correlation. Five con-
fidence intervals (CIs) of common difference of two proportions are
derived. The performance of the proposed test methods and CI es-
timations is evaluated by Monte Carlo simulations. The simulation
results show that the score test statistic outperforms other statistics
in the sense that the former has robust type I error rates with high
powers. The score CI induced from the score test statistic performs
satisfactorily in terms of coverage probabilities with reasonable inter-
val widths. A real data set from an otolaryngologic study is used to
illustrate the proposed methodologies.
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1 Introduction

Paired correlated data are often collected from all participants in med-
ical studies of group comparisons. For instance, in an ophthalmologic
study, researchers are interested in the comparison of two treatments.
Participants are randomly administrated into one of the two treatment
groups. It is of great interest to investigate if or not the two treat-
ments are clinically equivalent. The efficacy of treatment is evaluated
by comparing the numbers of cured eyes at the end of the trials of the
two treatment groups. The possible outcomes can be summarized in a
contingency table (the recorded outcome would be bilateral cured, uni-
lateral cured or none cured). It is noteworthy that the measurements
of both eyes from each participant are likely to be correlated.

Under this framework, various test methods for assessing the equal-
ity of proportions and various confidence interval (CI) construction ap-
proaches for parameters of interest have been developed. Rosner [1]
proposed a so-called "constant R model" based on dependency by as-
suming that the probability of a response at one side given a response
at the other side is proportional to the prevalence rate of corresponding
group for the ophthalmologic data. Tang et al. [2], Ma et al. [3], Shan
and Ma [4], and Liu et al. [5] have developed asymptotic and exact
testing methods for this model, which was empirically shown to per-

form well. However, Dallal [6] pointed out one drawback of Rosner’s
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model; i.e.; it could lead a poor fit if the characteristic is almost to
occur bilaterally with widely varying group-specific prevalence. Later,
Donner [7] suggested an alternative model by assuming that all treat-
ment groups share an intra-class correlation coefficient ("p model").
Thompson [8] evaluated this "p model" by simulation and confirmed
that this model is robust for paired data. Furthermore, various asymp-
totic and exact testing methods have been proposed by Tang et al. [9],
Pei et al. [10], and Ma and Liu [11]. In addition, CI estimation for
risk difference of two proportions based on aforementioned two mod-
els has received considerable attentions in statistical literature. For
instance, Tang et al. [12] and Pei et al. [13] investigated asymptotic
CI construction in two pre-specified models for the difference of pro-
portions between two groups. Recently, Yang et al. [14] constructed
asymptotic Cls for many-to-one comparisons of proportion differences
with multiplicity adjustment.

However, one important feature for practical consideration is the
stratification factor or confounding effect. Many randomized controlled
trials (RCTs) recruit patients to multiple centers or hospitals, rather
than to a single center, and we expect that the patients in the same cen-
ter tend to have correlated outcomes. It is often necessary to account
for the center-effect in the data analysis, since ignoring the stratifica-
tion factor will lead to incorrect assumptions in the study, and will

result in invalid inference [15] [16][17]. In addition, in some RCTs with
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large number of confounders, some confounders, by chance, could ap-
pear imbalanced with treatment arms, making it desirable to adjust
for the stratification factors in the analysis to obtain valid inferences.
For these reasons, it has been emphasized that extra care should be
taken in the analysis of the stratified data.

With the aforementioned models in hand, computational methods
for testing or constructing Cls on the stratified data analysis for bi-
lateral binary observations have evolved dramatically in recent years.
Pei et al. [18] proposed a homogeneity test of proportion ratios for
stratified bilateral data based on Donner’s model. Tang and Qiu [19]
applied Rosner’s model on common difference test of two proportions,
in which they specified the common difference being zero. Moreover,
Shen and Ma [20] introduced three alternative testing procedures based
on maximum likelihood estimates (MLEs) for testing homogeneity of
difference of two proportions for stratified correlated bilateral data un-
der a common intra-cluster correlation assumption. Particularly, if we
fail to reject the null hypothesis that the differences of two proportions
are equal among strata, the problem of interest may shift to explore
what is the equivalent value. Therefore, in this article, we develop sev-
eral procedures for testing equality of difference of two proportions in
a stratified bilateral design under a common intra-cluster correlation
model with the condition that the MLEs are derived from the restric-

tion of equal common difference, and construct asymptotic CIs for that
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common difference.

The rest of this article is organized as follows. In Section 2, we
briefly delineate the data structure. Then the MLEs, three different
test procedures and CI estimators are derived in Section 3. Simulation
studies are conducted to investigate the performance of the three tests
and five CIs in Section 4. A real example from otolaryngologic study is
used to illustrate our proposed methods in Section 5. Some concluding

remarks and future works are discussed in Section 6.

2 Data Structure

Suppose that our purpose is to test if or not two treatments of some eye
disease are clinically equivalent among different age strata in a medical
comparative study. The data structure of interest is shown in Table 1.
A total of IV; patients are randomly allocated into one of two treatment
groups for the j'* age stratum (j = 1,...,J). Let my;; represent
the number of patients having I (I = 0,1,2) eyes with improvement
response(s) in the i (i = 1,2) group from the j* stratum, and m.;; =
Z?:o my;; be the total number of patients in the i*" group from the
jth stratum. Define Znijr = 1 if there exists an improvement for the
hth (h = 1,2) eye of the k'" (k = 1,...,m.;;) patient in the i*" group
from the j** stratum, and 0 otherwise.

We assume that the probability of improvement at one eye for the
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patient in the i*" group from the j**

stratum is Pr(Zpijr = 1) = 75
10 (0 <m; <1, h=1,2,i=1,2). For the "p model" (Donner [7]),
12 the constant p;; (-1< pij < 1) denotes a measure of within-subject
14 correlation. It is easy to show that the improvement probabilities for
16 none, one, and both eyes in the i** group from the j** stratum are
18 (L=m35) (L= mij+pijmiz), 235 (1= pij ) (1 —mi5), and 73+ pymij (1 —mi;),
20 respectively. Note that we assume intra-cluster correlation coefficients
22 from two groups are equal within each stratum, whereas they are dif-

24 ferent among strata. In what follows, we replace p;; with p;.

26 Table 1: Data structure for the j*(j = 1,...,.J) stratum in a stratified
bilateral design

30 Group (1)

Number of responses (1) 1 2 Total

35 0 mo1;  Moz2;  Soj
37 1 mi1;  mig; Sty

39 2 ma1;  Magz; S

Total m.lj m.gj Nj
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3 Proposed Methods

3.1 Testing Methods

We want to test if the risk differences between two groups among all
strata are equal to a common dg; i.e., the considered null hypothesis is
Hy: di=---=dj 2 d=dy, versus H,: d # dy, where dj = mo; — ;.
Let m; = {m01j,m11j,mglj;mogj,mlgj,mggj} denote the observed
data for the j*" stratum as shown in Table 1. Then, the log-likelihood

of parameters of interest based on m; is

2

(15,725, p5) mj) = > {moizlog[(1 — mi5) (pjmi; — mij + 1)]
=1

—l—muj 10g[27'('”(1 — p])(]. — Wij)] + mgij log[ﬂfj + p]’ﬂ'ij(l — Wij)]} + constant,

so that the overall log-likelihood function is

1=> 1

j=1

(a) Global MLEs

We first derive the MLEs of parameters from a global setup. Setting
the partial differentiation of [; with respect to m;;’s and p;’s equal

to zero yields the MLEs of the parameters, denoted by 7;; and p;,
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respectively, where

1 oL (2my—1) may | maiy (pj +2mi; — 2p;mij)
Omij mij (mij = 1) mij (pj + mij — pj i)
_moi (p] + 271'1‘]' — ij T — 2)
15 (mij = 1) (pj mij — mij + 1)
2
16 ol Z {( My (mij — 1) may; + Tij Toij

18 dp; — L(pj =) (pj+mi; —pjmiz)  (pjmi; — mij + 1)

’Z.:172’

There are no closed form solutions for 7;; and p;. Therefore, clas-
sical techniques such as the Newton—Raphson or the Fisher scoring
algorithms are usually recommended in these cases. However, for the
current problem with high-dimensional parameters there are computa-
tional challenges. Therefore, these MLLEs can be computed by repeat-
ing the following steps derived by Ma and Liu [11] and Shen and Ma
[20]. We can simplify the first equation into a cubic equation,

36 (4pj72pj272)m¢j7rgj+[3p?mijfpj (5m07;j+6m1ij+7mgij)+2m0ij+3m1ij+4mgij]7ri2j

40 +(4p; — pF)mij — 2pjmoi; — magj — 2maijlmi; — pj(maij + maij) =0,

43 and obtain the MLE of 7;; by solving the real root of it. Then p; can

45 be updated by the Fisher scoring algorithm. The (¢+1)" approximate

47 of p; is

)

op3

® 0. OV 7 gp(r® 1, o)y
Ip;

50 p(.t"’l) _ p(t) B [62Z(W1j 1y T4 3 P Tij>Tois P
J J
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where j = 1,...,J. The (¢ +1)"" update of m;; can be assessed by the

solution of the cubic equation by replacing p; with p(‘tﬂ)

) . Repeat the

. . 2 . . .
above steps until convergence. The expression of g—pé is given in the
j

Appendix A.1.

(b) Unconstrained MLEs

We now consider the unconstrained MLEs. Based on the alternative
hypothesis, we can see that mp; can be expressed as mi; + d, where
d # do. Thus, the parameters here only involve p;, 715, and a common
given d. Differentiating [; with respect to (p;, 715, d) and setting them
equal to zero yield the MLEs of the parameters p;, 71; and d.
Closed-form solutions of (p;, 1, (i) are not available. Similarly, we
can employ the two-step approach of Shen and Ma [20] by updating
the common d via the Newton—-Raphson algorithm. Then, we apply
the Fisher scoring algorithm to estimate 71, and p; with a given d from
each stratum. The iteration procedure is described as follows:
1. The initial values of d and 71, are set as d(©) = % ijl dj, 7752) =
z ijl 14, p§-0) =3 ijl pj, where 71; and p; are global MLEs,

and de £ ﬁgj — 7~T1j.
2. Update

b

L (e () () (&) ‘ 2 (o (B (8 g0
WhereV(t):E}]:la’(m’ d A )andll()zz‘] 9 ’(m’ad’f’ 47

ad j=1

10
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See Appendix A.2 for the more details.

3. Update

al(ﬂ'lj(t)mg (t)’d(t))

14 iy (Y ;" e

15 - +I2_1 (ﬂlj (t)’ Pi (t), d(t)) (t) () gt
p (t+1) p (t) Ol ,p;M,d\")
J J opj

19 where I5 is the Fisher information matrix for m; and p;. The
21 formula of Iy and the corresponding differential equations with

23 respect to d are given in Appendix A.2.
25 4. Repeating Steps 2—-3 until convergence.

We denote the MLEs of parameters under the alternative hypothesis

29 by (F11s .o F103 P1s - s d).-

33 (c) Constrained MLEs

Finally, we investigate the constrained MLEs. Under the null hy-
pothesis Hy: di = --- = d;j & d = dy, the parameter Tg; can
be expressed as mi; + dy, where dy is a known value. The param-
eters here only involve p; and ;. Therefore, we can simply uti-
lize the Step 3 in solving unconstrained MLEs with a given dy. Let
(T11Hy» - - - s TLIHo; P1H, s - - - » PTH, ) D€ the constrained MLEs of the nui-

sance parameters (m11,...,71J;p01,.-.,07). With all MLEs obtained,

we consider the following test procedures and CI estimation approaches.

60 https://mc.manuscriptcentral.com/smmr
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3.1.1 Likelihood ratio test (77)

The likelihood ratio test (LRT) statistic is given by

Tr, = 2[l(7r11, a1y« o s W1y, T273 P1y -+ -5 P)

— U1 Hy s T11H + dos -+ s T1THy > T1THe + A0 P1HG s - - -2 PTHG))s

which asymptotically follows a chi-square distribution with one degree

of freedom under the null hypothesis.

3.1.2 Wald-type test (Ty)

First, we rewrite the null hypothesis as Hy: di = --- = d; £ d = dy
versus H,: d # dy, where d; = ma;—m1;. Let 8= (d, w11, p1,--.,m11,p5)7,
the corresponding unconstrained MLE is 8= ( 711, P17y, pr)T.

Then, the MLE of d is d = K x 3, where K = (1,0,...0)1x(2741) is a

row vector. The Wald-type test statistic is

(d — do)>? _ (d — do)*
Var(d) KVar(B)KT

Tw =

Based on asymptotic normality of the MLEs, one can show that Var(83) =
f,l_ L where I;! is the inverse of the Fisher information matrix for 3,

and I, is the MLE of I;;!. Therefore, we can rewrite the Wald-type

statistic as

_ (d — dp)?
YTy
12
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where I,71(1,1) stands for the (1,1)*" entry of I,;!. Under the null hy-
10 pothesis, Ty is asymptotically distributed as a chi-square distribution

12 with one degree of freedom.

3.1.3 Score test (Tsc)

18 The score test statistic Tsc utilizes the MLESs of parameters under Hy.

; . _ (o _al o ol ol
20 The score is a row vector: U(d, w, p) = <@, B Dor " Treg? aTJ) ,

22 where m = (w11, 7m12,...,m1) and p = (p1,p2,...ps). Then Tgc for

24 testing the equality of proportion difference is expressed as
28 Tsc =UI U |y,

where I is the information matrix for 8 = (d, w1, p1,...,717,p5)%.
Here, d is the parameter of interest, while m; and p; are nuisance
parameters. Therefore, the score function is U = (%7 0,0,...0)|d=do-

The test statistics can be simplified as

40 J 2

Tso= (Y 35| L',
42 = od

45 where I71(1,1) represents the (1,1)!" entry of I-!, and the formula
47 of % is given in Appendix. Under the null hypothesis, Ts¢ is asymp-
49 totically distributed as a chi-square distribution with one degree of

51 freedom.

60 https://mc.manuscriptcentral.com/smmr
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3.2 Confidence Interval Estimation

3.2.1 Global Wald-type CI and alternative Wald-type
CI (GW, AW)

Recall that we have derived the MLE of B = (711, 721, p1, - - -, 1.7, 27, p) T~

from the global setup and alternative hypothesis, and denoted them by

B = (F11, %21, 1, - - -, T1g, 2y, py) - and B = (R11, fo1, p1, - - -, 1, 2y, )t

)

respectively, where 7p; = 71; + J, and 7rg; = 7y + a?, forj=1,...,J.
Intuitively, we consider that there exist weights {w;} assigned to

each stratum satisfying d = ijl w;d; and Z;’:l w; = 1, where j =

1,...,J. The choice of weights is not trivial. Here, we suggest two

ways. (1) Uniformly weights: w; = % (2) Sample size weights: w; =

%, where Nj; is the sample size of the jth stratum and N = Z;’Zl N;

is the total number of patients.

We apply the algorithm to construct CI for dy by a row vector

W = (w1,...,wy) and a constant matrix,

Jx3J

14
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Thus, the MLEs of d from both setups can be obtained by a simple

linear transformation:

J
d=> w;d; =CB,
j=1
and
A J A A
d=> w;d; = CB,
j=1
where C =W - K = (—wy, w1, 0, —wa, w2,0, ..., —wj, wj,0)1x37.
It is straightforward to show that (‘HOZ and “”02 are asymp-
& \/Var(d) V/Var(d) yinp

totically distributed as the standard normal distribution as the sample
size is large. In addition, according to the asymptotic normality of
the MLE, we can express the variance of the d in terms of C' and the
information matrix of B3; that is Var(CB) = CI-'CT, where I is the
information matrix of 3.

Therefore, the 100(1 — )% CI of dy based on above two setups are

respectively, given by
[max (—1, d— Zi_aj2V C’I~_1C'T) ,min (1,(24— Zi_aj2V Cf_lcT)] ,

and

[max (—1,02— Zi—aj2V Cf_lCT> ,min (1,0?4— Zi—aj2V Cf_lCT>] ,

15
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where Z;_, /5 is the (1 — a/2) quantile of the standard normal distri-

bution.

3.2.2 Complete Wald-type CI (W)

As aforementioned Wald-type test in Section 3.1.2, \(/d%‘(g) asymp-

totically follows the standard normal distribution, where Var(d) =
I71(1,1), I7(1,1) is the (1,1)™ element of the inverse of informa-
tion matrix under H,. Therefore, the 100(1 — a)% CI for dy € [—1,1]

is defined as

[max (—1,02— Z1 oo In (1, 1)) , min <1,c2+ Z1 oo\ In (1, 1))} )

3.2.3 Profile likelihood CI (PL)

With the pre-specified common test in Section 3.1.1, we intuitively
propose an approach to assess the CI estimation from y? distribution
by inverting the LRT of Hy: dy = --- = dj £ d = d versus H,: d # do,
where d; = mp; — mi;. Since the LRT statistic follows a chi-square
distribution with one degree of freedom under the null hypothesis, the

100(1 — )% CT satisfies

Q[I(dAOv’frljvaj) - l(d()vﬁleo’ﬁjHo)] < X%,l—av

16
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where Xika is the 1 — a quantile of the chi-square distribution with
one degree of freedom.

The bisection method can be used to obtain the lower/upper limits
of above inequality (Yang, Tian, Liu, and Ma [14]). To assess the upper

limit, the iteration procedure can be performed as follows.

1. Start with the initial values d(© = d, stepsize=0.1, and flag=1,

where d is unconstrained MLE of d.

2. Update dt+1) = d® 4stepsizexflag, and compute constrained
MLE for (m11,..., 7105 p1,- ., ps)D. Then, the log-likelihood
function can be calculated according to the constrained MLEs
and the data, denoted by {(¢+1),

3. Evaluate the aforementioned requirement of CI. If the condition
of 2x flag x[I(d, 11, ..., %1y p1,. .., pg) — LTV < flagxx? |,
is satisfied, return to Step 2. Otherwise, we change the direction
to search the bound. That is, set flag = — flag, step size = 0.1x

step size, then return to Step 2.

4. Repeating the iteration process 2-3 until convergence (that is, the

stepsize is sufficiently small, say, 107°).

Similarly, we repeat the iteration procedure with flag=—1 to assess the

lower limit of CI.

17
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3.2.4 Score CI (SC)

Since the score test statistic also follows a chi-square distribution with
one degree of freedom under the null hypothesis, one can assess the

100(1 — @)% CI by including all —1 < dy < 1 which satisfies

2
Tse < XT1-as

where Tsc is the test statistics given in Section 3.1.3. Similarly, the

bisection method is used to search the lower and upper limits.

4 Simulation Studies

4.1 Common risk difference test

We now investigate the performance of the proposed three statistics for
testing the equality of risk differences. We first evaluate the behavior
of the type I error rate under various parameter settings, where m =
mi1 =M.o] =...=m.1y = m.o;=25, 50 or 100 in J=2, 4 or 8 strata,
respectively. The parameter setups are displayed in Table 2, and we
consider three values for common differences across strata under Hy
1 dg = 0, 0.1 or 0.2, with various sets of parameters under different
sample sizes. For each setup, 10,000 samples are randomly generated
under null hypothesis and empirical type I error rates are computed

by dividing the number of times of rejecting the null hypothesis with

18
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10,000. All tests are conducted at 5% significance level.

Table 2: Parameter setups for computing empirical type I error rates and

powers
Number of strata
Cases J=2 J=4 J=28

I (0.2,0.4) (0.2,0.4,0.2,0.4) (0.2,0.4,0.2,0.4,0.2,0.4,0.2,0.4)

p II (0.3,0.3) (0.3,0.3,0.3,0.3) (0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3)
111 (0.3,0.5) (0.3,0.5,0.3,0.5) (0.3,0.5,0.3,0.5,0.3,0.5,0.3,0.5)

1A (0.6,0.6) (0.6,0.6,0.6,0.6) (0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6)

a (0.2,0.4) (0.2,0.4,0.2,0.4) (0.2,0.4,0.2,0.4,0.2,0.4,0.2,0.4)

m b (0.3,0.3) (0.3,0.3,0.3,0.3) (0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3)
C (0.4,0.4) (0.4,0.4,0.4,0.4) (0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4)

Following Tang et al. [21], at 0.05 nominal level, we define a test is
liberal if the empirical type I error is greater than 0.06, conservative
if the type I error is less than 0.04, and otherwise robust. The results
(Tables 3-5) show that the score test and the LRT are robust in terms
of satisfactory type I error for all scenarios. The Wald-type test mostly
works well at larger sample size (m = 50 or 100), but becomes inflated
at smaller sample scenario (m = 25) and lower strata scenario (J = 2).
Additionally, a set of boxplots (Figure 1) showed the distribution for
the empirical type I error rates for all tests when we have balanced
data for J=2, 4 or 8, respectively. We can observe that the score test
behaves satisfactorily, in the sense that its type I error rate is close to
the pre-determined nominal level 0.05 for any configuration. The LRT
is inflated, while the Wald-type test is even worse. However, as the

sample size increases, both the LRT and the Wald-type test perform

19
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better.

Next, we investigate the performance of power for proposed test
statistics under various parameters settings. To be specific, we consider
the same sample sizes and parameter setups as we did for computing
empirical type I error. Tables 6-8 report empirical power associated
with three proposed tests for various configurations. Since powers pro-
duced by three tests under different dy perform similarly, results from
one case (dg = 0.1) are presented. We can also observe that, under
the same parameter settings, the powers of different test statistics are
very close. The Wald-type test tends to produce larger power than
other two tests. Powers produced by all three tests increase when the
difference between the true d (denoted by d,;) and dy increases. Powers
increase when the number of strata J goes larger. Overall, the score
test is highly recommended, since it is satisfactory on type I error

control and has a good performance on power.

4.2 Confidence interval estimation

In this subsection, we compare the proposed five CI estimators with one
existing CI estimator from balanced to unbalanced designs in terms of
empirical coverage probability (ECP) and mean interval width (MIW).
The ECP is defined as the proportion of events that dg falls within the
constructed CI, and the MIW is calculated by dividing the sum of all

widths with 10,000. Following Yang et al. [14], CI can be constructed
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with pooling data, where the objective of interest is only the treatment
group variable. We only present the result of this marginal CI for score
method (MSC). In addition, we construct global Wald-type Cls with
uniformly weighted adjustment and sample size weighted adjustment,
respectively, namely GW1 and GW2, and also construct alternative
Wald-type Cls with uniformly weighted adjustment and sample size
weighted adjustment, respectively, namely AW1 and AW2. The pa-
rameter setup is given in Table 9. Under each configuration, 10,000
Monte Carlo samples are generated, and 95% CI is constructed for
each replicate. Results are shown in Tables 10-12. Accordingly, we
display a set of boxplots to investigate the distribution of ECPs and
MIWs for unbalanced cases (Figure 2). Generally, CIs based on strata
assumption outperform Cls based on marginal model since the ECPs
of those are closer than pre-determined CI. Among those Cls consider-
ing strata assumption, score Cls behave satisfactorily, since the ECPs
are the closest to the pre-determined confidence level, and MIWs are
reasonable short. It is hence recommended. Likelihood ratio statistic
produces Cls with shorter MIWs, but it yields deflated ECPs. Wald-
type statistic (without weighted correction) can hardly well control its
ECP, but produces the shortest MIW. The Cls based on global Wald
statistics with weighted correction (GW1 and GW2) and alternative
Wald statistics with weighted correction (AW1 and AW2) appear to

perform poorly, especially when the number of strata is large (J = 4

21
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or J = 8). Therefore, CI produced from the score statistic is strongly

recommended in practice.

Table 9: Parameter setups for computing interval estimation.

Number of strata

Cases J=2 J=4

J=38

p A (02,03) (0.2,0.3,0.20.3)

B (0.6,0.6) (0.6,0.6,0.6,0.6)

(0.2,0.3,0.2,0.3,0.2,0.3,0.2,0.3)

(0.6,0.6,0.6,0.6,0.6,0.6, 0.6, 0.6)

m a (03,05 (0.3,0.5,0.3,0.5)

b (0.4,0.4). (0.4,0.4,0.4,0.4)

(0.3,0.5,0.3,0.5,0.3,0.5,0.3,0.5

(0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4)

5 A Real Example

We analyze a real example in this section to further evaluate the perfor-

mance of aforementioned methods. Mandel et al [22] reported a data

set from a double-blind randomized clinical trial to compare cefaclor

and amoxicillin for the treatment of otitis media with effusion (OME)

in children with bilateral tympanocentesis. Children with OME were

randomized into two groups, and children in each group received a 14-

day course with one of two antibiotics (amoxicillin or cefaclor). After

the treatment, the number of cured ears for each child was recorded.

We first classify the children as three age groups, and then discuss

22
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whether the cured rates between the amoxicillin or cefaclor among age
10 are clinically equivalent. We summarize the observed data in Table 13.

12 Table 13: Number of children whose ears have improvement across different
strata. (Group 1: Cefaclor; Group 2: Amoxicillin)

16 Age groups Age < 2yrs Age 2-5 yrs Age > 6yrs

Number of responses 1 2 1 2 1 2

o 0 8 11 6 3 0o 1

Total 18 15 22 9 4 7

31 Based on the data given above, all MLEs of parameters are reported
33 in Table 14. First, we consider testing homogeneity proposed by Shen
35 and Ma [20]. For the homogeneity test, the null hypothesis is Hy:
37 dy = dy = d3 £ d versus H,: some of d;s are not equal for j € {1,2,3},
39 values of the three test statistics are T, = 2.83, Tyw = 2.93, Tsc = 2.76
41 and the corresponding p-values are 0.24, 0.23, 0.25, respectively. We
43 note that all p-values are greater than the nominal level a = 0.05,
45 indicating that the differences of cured ears between two groups are
47 not correlated to the age effect. Next, we consider a common test to
49 check whether or not d = 0. The corresponding values of common test

51 statistics and their p-values are presented in Table 15. In addition, CI
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estimators are given in Table 16. These results imply that there are
no significant differences between two groups among age strata (i.e.,
the cured rates between the amoxicillin and cefaclor among age are
clinically equivalent).

Table 14: MLEs of parameters based on observed data

Page 24 of 46

Global MLEs Unconstrained MLEs

Constrained MLEs

Age groups 17 T d D sl d

pAHo 7}1H0 dHo

Age < 2yrs 0.7112 0.5000 —0.2904 0.7282 0.4017 —0.0945
Age 2-5 yrs  0.5307 0.5881  0.0323 0.5330 0.6205 -

Age > 6yrs  0.6153 0.8341  0.0499 0.6332 0.8982 -

0.7381 0.3636 0

0.5308 0.5968 -

0.6140 0.8636 -

Table 15: The values of statistics and p-values for three different tests.

17, Tw Tsc

Statistic  0.8845 0.9372 0.8537

p-value  0.3470 0.3330 0.3555

24
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Table 16: 95% Cls for common risk difference (d = —0.0945).

1 CI

13 W [-0.2859,0.0969]
PL  [-0.2938,0.1015]
18 SC  [-0.3039,0.1018]
20 GW1 [-0.2622,0.1234]
22 GW2  [-0.3005,0.0863]
AW1  [-0.2885,0.0994]
27 AW2  [-0.2939,0.1048]

29 MSC  [—0.3138,0.1016]

34 6 Conclusions

37 In this article, we first consider test for common risk difference of
39 two proportions on stratified bilateral correlated data. Three MLE-
41 based test procedures (LRT, Wald-type test and score test) are in-
43 vestigated. Classical algorithms, such as the Fisher scoring and the
45 Newton—Raphson methods are usually criticized for computational dif-
47 ficulty in high-dimensional cases. We derived the two-step approaches
49 for obtaining the unconstrained and constrained MLEs, which are

51 very efficient. Then, we proposed five CIs of common difference of

55 25
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two proportions on stratified bilateral correlated data, which include
two weight-adjusted approaches (global Wald-type CI and alternative
Wald-type CI) and three test-based approaches.

Simulation studies show that (i) statistics derived from the score
test behave satisfactorily in the sense that it has robust type I error,
and reasonable power regardless of number of strata, sample size or
parameter configurations. The Wald-type test and LRT yield inflated
type I error when sample size is relatively small. (ii) CI estimation
derived from the score test performs well in the sense that its ECP
is very close to pre-determined confidence level and MIW is short.
As we expected, interval based on marginal model performs worse,
since ignorance of the strata (confounding) effect may lead to incorrect
inference. For these reasons, we highly recommend the score test in
practical use for stratified bilateral-sample designs.

For correlated data with binomial distributions, there are many
well-built model-based methods to calculate the MLE iteratively or
perform statistical analysis, e.g. “GENMOD” and “GLIMMIX” proce-
dure in SAS. Ying et al. [23] described and demonstrated appropriate
linear regression analysis involving both eyes, including mixed effects
and marginal models under various covariance structures to account
for inter-eye correlation. These methods also offered the flexibility
to incorporate covariates in the model. However, those model-based

methods fail to provide a closed-form solution for either MLEs or test
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statistics. The explicit form of solutions improves computational effi-
10 ciency, especially when we further develop exact test for small sample
12 situation in the future. All proposed methods are asymptotic, and do
14 not perform well at relatively small sample sizes. Thus, exact tests are
16 necessary to overcome inflated type I error rate as future work. To
18 perform exact test, extensive calculations will be required, which make
20 it very difficult using model-based methods.

22 In this article, we consider the scenario in which we treat strata as
24 nominal categories. In clinical trials, one interesting research goal is
26 to test if there is a trend among the strata. Some information among
28 strata may be ignored when there exists ordinal classification relation-
30 ship. We can further develop either asymptotic or exact trend test as
32 an interesting future work.

34 A user-friendly online calculator is available via the link

36 http://www.buffalo.edu/ cxma/CommonRiskDifferenceRhoModelStrafified.htm.
38 Readers can simulate data by user-specified parameters, or input their

40 own data to perform tests or construct Cls proposed in the article.
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Appendix A Information matrix and formula

derivation

A.1 Information matrix for computing global MLEs

The second order differential equations from the j** stratum with re-

spect to m;; (i =1,2) and p; yield

Ll @ T = 2w 4 Dmagg (2p2 75 — 2,2 mig + pi? — 4 py i+ 2 pj w4 275 )maij

2 2 2
oms; my (mi; — 1) w5 (pj + mig — pj Tij)

(2p;2 73 = 2p mig + pi? —ApymE +6p5 iy —2p; + 27 — Amig + 2)mo;
(mi — 1)2 (pj mij — mij + 1)2

i

%1 — M0i; M2
- 5 — -
Omij0p; (pjmiy —miz +1)° (pj mij — mij — pj)
9?1
a- o 03 i k7
87Tij8ﬂ'k»j ! ?é
2 2 2 » 2
04l Z M55 n 55 Toij i (7Tij — 1) maij
2 - 2 p) 2
9p; = Ly =1 (pjmy —miz +1)° (pj +mij — pj i)

Then from the j* stratum, we have,

Ing 0 Tiag)
Li(mijipi) = | 0 Iogyy Iasgy |

Ny Tasi)  Issg)
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where

)

1; I - _821 m.ij5 (—4pj277i2j+4pj27rij—pj2+6pj7ri2j—6pj7rij+2pj—2771-2j+27rij)
" or; mij (1= mij) (pj +mij = pj miz) (pj ™y — mij + 1)

Tonr - E (_ 821 ) o m.i;pPj (27‘(‘@' - 1)
15 2 Omij0p; (pj +mij — pj i) (pj mij — mij + 1)

16
17 Ly = E Al _ 22: m.ij iy (pj +1) (1 —myj)
v 9p3 ) = (L=p;) (pj +mij — pjmij) (pjmij — mij +1)

21 Therefore, the information matrix for J strata has the form

24 I (71, p1)

26 I(mi2, p2)

30 I;(mig,p)
31 - d3Jx3J

33 The inverse of the information matrix is

36 I1(7Ti17/71)71

38 Iy(mi2, p2) !

42 Ly(mig, pa)~?
43 L 13yx37

47 where Ij_l(mj,pj) = ﬁ x z(7),
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Lys()? = Taa(j) Tsa() —Ii3(5) L2s(j) Ira(5) Tha(j)
0= | —hsgylsgy  hsg) — g Lsg) Tug) Tsg) |
Ira5) T1s(j) Iy Iasj) —I1gj) L22(5)

k(j) = Tnagj) Tus)” + Ty Tosn® — Tiag) Toa(s) T330)-

i=1,2j=1,...,J

A.2 Information matrix for computing unconstrained

and constrained MLEs

Let mp; = m; +d, j = 1,...,J. The first order and second order

differential equations from the j** stratum with respect to d are

Ol _ moz; (2majpj — pj = 2maj +2) | mag;(2me; — 1) | mag; (27a;p; — 2ma5 — pj)
8d (7T2jpj_7r2j+1)(7r2j_1) 7T2j(7T2j—1) ﬂgjpj—ﬂgjpj—ﬂ'%j

)

and

62lj . _mogj(ngjp? — 47T§jpj + 27’(% — 2772jp§ + 67T2j,0j — 4’/T2j -l—p? - 2pj + 2)

ad> (2505 — maj +1)%(ma; — 1)
mlgj(—Qﬂ'gj + 2mo; — 1)_m22j(2ﬂ§jp? - 27T§jpj + 27T%j - 271‘2]*[)? + 2maipj + p?)
5 (may — 1)? 75 (Tajpj — Taj — pj)?

Moreover, with a given d, information matrix I for 71; and p; is
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iy Iios
10 11(5)  +12(4)
I(ﬂ—ljapja d) =

12 Doy Ta2()
14 Thus, the inverse of the information matrix can be expressed as
1 I o)

18 I_l(ﬂ-l'ap',d) =
19 Y & Ty X Taag) — 1122(]‘)

Loy —Tag)

22 where

25 7 _ g 621 _i:m.ij (—47Ti2jpj2—|—67ri2jpj—27Ti2j+47rijpj2—67rijpj+27rij—pj2+2pj)
26 Hor e Y mij (1 =) (mij pj = mig + 1) (i + pj — mij p;)

28 021 > 2 m.i; p; (2 — 1)
Lo = E[— N ij Pj ij ’
29 120 ( Om1;0p; 2 (i pj — mij + 1) (i + pj — 75 p5)

31 Iy = E ol :im_. 2mij (miy —1) w7 (mig — 1) LT (mi; — 1)°
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Figure 1: Box plots of empirical sizes.
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Table 3: Simulation results of the empirical sizes for two strata.
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Table 4: Simulation results of the empirical sizes for four strata

S
e,

m = 100

Tsc

Tsc

17,

Tw

Tsc

0.1

0.2

IT

11

v

IT

III

1Y

IT

III

v

O T ® 0 T 0T ® 0T 0T 0T 0T 00T 0T 0T 0T 0T

4.61
5.10
5.63
5.22
5.09
5.56
4.69
5.50
5.46
5.17
5.29
5.13
4.92
5.74
5.24
5.10
5.36
5.52
5.06
5.20
5.34
4.89
5.19
5.29
4.99
5.15
5.21
4.88
5.36
9.33
5.00
5.50
5.30
5.14
5.38
5.13

4.22
4.85
5.40
4.86
4.75
5.36
4.50
5.22
5.30
4.94
5.01
4.93
4.70
5.47
5.10
4.86
5.15
5.34
4.77
4.96
5.20
4.66
5.00
5.11
4.80
4.88
4.91
4.63
5.06
5.15
4.82
5.29
5.13
5.07
5.23
5.02

5.20
4.90
5.03
5.34
5.28
5.23
4.64
4.90
5.49
5.21
5.10
5.12
5.37
5.28
5.15
5.06
5.36
5.18
9.37
4.88
9.27
5.46
4.89
5.35
4.96
4.82
5.43
5.23
5.53
9.33
5.13
4.90
5.09
5.17
5.57
5.15

5.04
4.75
4.87
5.24
5.13
5.15
4.46
4.74
5.41
5.00
4.99
5.02
5.16
5.22
5.02
4.90
5.20
5.07
5.21
4.73
5.19
5.33
4.75
5.28
4.83
4.73
5.35
5.14
0.45
5.19
5.05
4.79
5.04
5.11
5.48
5.07

4.83
5.34
5.01
4.91
4.94
4.92
4.98
5.03
4.87
5.08
5.04
5.19
5.20
5.40
4.96
4.79
5.30
5.25
5.04
5.16
4.95
5.25
5.23
5.32
5.40
4.88
5.66
4.97
5.24
5.17
5.31
5.21
5.44
5.62
5.28
5.60

4.90
5.48
5.12
5.02
4.99
4.96
5.08
5.12
4.92
5.19
5.10
5.27
5.26
5.50
5.02
4.90
5.37
5.35
5.17
5.30
5.03
5.34
5.30
5.39
0.48
4.92
5.63
4.98
5.25
5.23
5.38
5.26
5.51
5.69
5.38
5.54

4.74
5.30
4.96
4.85
4.89
4.87
4.86
5.00
4.84
5.00
5.00
5.13
5.11
5.31
4.93
4.69
5.26
5.20
5.00
5.12
4.92
5.17
0.18
5.26
5.32
4.92
5.62
4.96
5.23
5.13
5.26
5.16
5.41
0.61
5.27
5.59
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1

2

3

4

5

6

7

8 Table 5: Simulation results of the empirical sizes for eight strata

9

10 m =25 m = 50 m = 100

11 d p m | Ty Tw Tsc| T Tw Tsc | T Tw Tsc
12 0 1 a |457 493 420|510 534 496 | 504 5.14 4.99
12 b | 501 534 480|565 581 555|514 520 5.06
s ¢ | 5.01 527 477|527 540 513|540 545 5.35
16 T a |48 514 444|502 524 481|542 556 5.34
17 b | 493 524 461|552 568 527|488 494 4.82
18 c | 529 552 502|485 500 475|536 543 5.31
19 I a | 527 556 491|522 538 506|535 544 525
20 b | 512 540 4.86|538 558 526|536 541 5.26
21 ¢ | 536 556 5.19|519 537 5.03|4.80 483 4.75
;g IV a | 477 525 448|524 550 5.09 | 508 519 5.00
py b | 552 584 523|508 519 493|561 568 5.51
55 ¢ | 539 556 531(494 506 490|504 509 5.04
2% 01 T a |48 524 456|511 522 492|521 525 5.12
27 b | 500 533 485|547 558 536|546 552 5.42
28 ¢ | 514 543 495|550 558 541|510 513 5.05
29 I a |518 543 492|531 546 513|475 481 4.71
30 b | 548 574 527|488 501 471|522 526 5.14
g; ¢ | 528 549 510|531 539 517|473 476 4.69
33 I a |514 549 491 | 541 554 524|520 527 5.13
34 b | 534 563 508|520 528 510|521 525 5.13
35 ¢ | 523 543 507|508 514 499 | 490 4.94 4.89
36 IV a | 526 562 500|475 487 463|500 506 4.95
37 b | 525 553 501|530 543 522|498 503 4.96
38 ¢ | 552 575 534|513 520 510|542 543 5.41
zg 02 I a |547 575 528|531 544 520|507 514 5.00
a b | 599 6.02 546|515 522 501|488 498 4.85
4 c | 563 578 533|520 546 515|505 518 4.99
43 II a|512 538 481|498 507 490|558 563 5.50
44 b | 548 552 512|497 510 4.87|4.96 503 4.91
45 ¢ | 545 564 522|500 517 500|525 522 5.16
46 T a | 555 581 529|492 500 483|517 522 5.10
47 b | 540 555 5.16 | 5.31 5.32 5.24 | 494 4.93 4.91
jg ¢ | 546 559 527|535 546 523|524 529 523
i IV a |512 539 487|519 530 512|531 540 5.28
o1 b | 512 536 503|516 522 506|504 505 4.96
52 ¢ | 5.07 522 494|504 514 498|503 501 4.93
53

54

o 39

56

57

58

59
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Table 6: Part of simulation results of the empirical powers for two strata
(where Hy : dy = 0.1, Hy : d, = 0.05,0.15 or 0.25)

d

2

m = 100

Tsc

17,

Tw

Tsc

a
0.05

0.15

0.25

IT

III

vV

IT

11

v

IT

I1I

vV

O T O T Y 0T 0T 0T 0T o0 oTY 0T o0 T 0T o T o0

0.109
0.106
0.101
0.109
0.109
0.106
0.111
0.108
0.099
0.099
0.099
0.094
0.098
0.111
0.101
0.102
0.102
0.101
0.100
0.100
0.098
0.097
0.092
0.091
0.502
0.492
0.483
0.513
0.490
0.482
0.468
0.481
0.449
0.435
0.409
0.402

0.105
0.103
0.100
0.105
0.106
0.102
0.108
0.106
0.097
0.095
0.096
0.093
0.092
0.105
0.095
0.096
0.097
0.096
0.095
0.096
0.094
0.092
0.087
0.086
0.490
0.481
0.471
0.500
0.480
0.471
0.458
0.469
0.438
0.425
0.399
0.391

0.172
0.159
0.155
0.174
0.163
0.169
0.148
0.147
0.137
0.148
0.138
0.129
0.162
0.155
0.146
0.160
0.153
0.153
0.151
0.147
0.147
0.141
0.136
0.129
0.792
0.780
0.762
0.799
0.773
0.775
0.746
0.758
0.737
0.714
0.686
0.675

0.170
0.158
0.154
0.172
0.161
0.167
0.147
0.147
0.137
0.147
0.138
0.129
0.158
0.150
0.142
0.156
0.149
0.149
0.147
0.144
0.143
0.137
0.133
0.125
0.788
0.773
0.757
0.794
0.767
0.769
0.742
0.753
0.731
0.709
0.680
0.669

0.292
0.267
0.247
0.286
0.281
0.269
0.252
0.241
0.223
0.244
0.231
0.212
0.271
0.264
0.246
0.275
0.254
0.255
0.239
0.244
0.225
0.225
0.223
0.213
0.979
0.970
0.969
0.978
0.971
0.971
0.960
0.967
0.954
0.946
0.930
0.922

0.293
0.267
0.246
0.286
0.283
0.269
0.252
0.240
0.222
0.246
0.231
0.211
0.275
0.271
0.252
0.281
0.260
0.262
0.244
0.249
0.232
0.229
0.230
0.220
0.980
0.971
0.969
0.979
0.972
0.972
0.962
0.968
0.956
0.949
0.933
0.925

0.292
0.267
0.247
0.284
0.281
0.269
0.252
0.242
0.223
0.243
0.231
0.213
0.267
0.261
0.243
0.272
0.251
0.252
0.234
0.241
0.222
0.223
0.220
0.211
0.978
0.970
0.967
0.977
0.970
0.970
0.959
0.966
0.953
0.945
0.929
0.921
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Table 7: Part of simulation results of the empirical powers for four strata
(where Hy : dy = 0.1, Hy : d, = 0.05,0.15 or 0.25)

d

2

m = 100

Tsc

17,

Tw

Tsc

a
0.05

0.15

0.25

IT

III

vV

IT

11

v

IT

I1I

vV

O T O T Y 0T 0T 0T 0T o0 oTY 0T o0 T 0T o T o0

0.176
0.159
0.151
0.180
0.171
0.163
0.154
0.152
0.146
0.155
0.143
0.129
0.152
0.160
0.154
0.158
0.142
0.160
0.142
0.145
0.145
0.137
0.137
0.129
0.794
0.774
0.777
0.799
0.777
0.773
0.742
0.767
0.745
0.707
0.693
0.680

0.170
0.156
0.148
0.173
0.165
0.159
0.151
0.151
0.145
0.150
0.141
0.129
0.145
0.154
0.148
0.150
0.135
0.153
0.136
0.141
0.140
0.133
0.132
0.124
0.787
0.768
0.770
0.792
0.770
0.766
0.735
0.759
0.738
0.699
0.685
0.673

0.292
0.272
0.241
0.284
0.277
0.275
0.254
0.245
0.228
0.258
0.229
0.209
0.272
0.265
0.252
0.276
0.255
0.258
0.245
0.245
0.228
0.231
0.219
0.212
0.977
0.970
0.970
0.975
0.969
0.971
0.961
0.966
0.954
0.945
0.936
0.932

0.288
0.270
0.239
0.281
0.274
0.272
0.253
0.244
0.228
0.255
0.228
0.209
0.268
0.260
0.247
0.269
0.250
0.254
0.241
0.241
0.224
0.226
0.216
0.209
0.976
0.968
0.969
0.975
0.967
0.970
0.960
0.964
0.953
0.944
0.935
0.930

0.512
0.473
0.436
0.504
0.482
0.470
0.452
0.430
0.400
0.434
0.411
0.368
0.479
0.453
0.429
0.471
0.447
0.452
0.428
0.427
0.401
0.399
0.379
0.357
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.999
0.999
0.998
0.998

0.515
0.473
0.435
0.505
0.483
0.470
0.452
0.429
0.399
0.437
0.411
0.367
0.484
0.457
0.434
0.477
0.452
0.457
0.432
0.431
0.406
0.404
0.385
0.362
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.999
0.999
0.998
0.998

0.510
0.471
0.436
0.503
0.481
0.469
0.452
0.430
0.401
0.432
0.411
0.368
0.475
0.450
0.426
0.468
0.444
0.449
0.424
0.424
0.398
0.396
0.377
0.354
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.999
0.999
0.998
0.998
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Table 8: Part of simulation results of the empirical powers for eight strata
(where Hy : dy = 0.1, Hy : d, = 0.05,0.15 or 0.25)

d

2

m = 100

Tsc

17,

Tw

Tsc

a
0.05

0.15

0.25

IT

III

vV

IT

11

v

IT

I1I

vV

O T O T Y 0T 0T 0T 0T o0 oTY 0T o0 T 0T o T o0

0.308
0.287
0.252
0.297
0.291
0.286
0.268
0.248
0.237
0.249
0.228
0.209
0.256
0.259
0.243
0.263
0.254
0.258
0.241
0.251
0.231
0.232
0.228
0.214
0.973
0.971
0.964
0.971
0.968
0.969
0.961
0.964
0.950
0.946
0.932
0.927

0.300
0.280
0.249
0.291
0.283
0.279
0.262
0.245
0.234
0.243
0.223
0.208
0.248
0.251
0.236
0.255
0.245
0.250
0.234
0.243
0.226
0.226
0.221
0.211
0.972
0.970
0.961
0.969
0.967
0.968
0.960
0.963
0.949
0.944
0.929
0.925

0.519
0.484
0.440
0.504
0.484
0.490
0.449
0.435
0.418
0.436
0.402
0.363
0.476
0.456
0.435
0.477
0.451
0.450
0.434
0.435
0.401
0.406
0.381
0.355
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.999
0.999
0.999
0.998

0.514
0.481
0.438
0.500
0.479
0.488
0.447
0.433
0.417
0.433
0.399
0.363
0.471
0.450
0.430
0.470
0.446
0.444
0.429
0.431
0.397
0.402
0.377
0.352
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.999
0.999
0.999
0.998

0.804
0.770
0.716
0.792
0.773
0.764
0.728
0.713
0.676
0.700
0.670
0.621
0.771
0.730
0.709
0.768
0.734
0.736
0.714
0.705
0.669
0.678
0.649
0.609
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.806
0.771
0.716
0.794
0.774
0.764
0.729
0.713
0.676
0.702
0.670
0.620
0.774
0.734
0.712
0.771
0.738
0.740
0.718
0.708
0.673
0.680
0.653
0.613
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.802
0.770
0.716
0.791
0.771
0.763
0.727
0.713
0.677
0.699
0.669
0.621
0.770
0.728
0.707
0.766
0.732
0.733
0.712
0.703
0.666
0.676
0.646
0.607
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
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