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1 Introduction

1.1 History of the problem

Public transit systems always face the conflicting objectives of cost-efficient operations and high

quality service – in delivering customers from/to their desired origin/destination at the desired

time. Scheduled bus or train services can carry a large number of passengers (and thus are cost

efficient), but travel on fixed routes at scheduled times to which passengers must adjust their

travel plans accordingly. Scheduled bus services are often not provided (or very infrequent) for

rural communities because the cost of running the service cannot be justified by the low demand.

Taxi services offer door-to-door services on request, but the cost of this service is high, both

in monetary terms and in impact to the environment. Thus, there has been much interest in

on-demand public transit services that combine cost-efficiency and customisable service. On-

demand transit vehicles do not have fixed routes or schedules but are dispatched based on the

transport requests received; unlike taxi services, passengers may share the use of the vehicles

and thus may not be taken along the most direct route from their origin to destination. A

comparison of these three types of public transportation services is given in Table 1.

Table 1: A comparison between three public transportation services

Bus On-demand transit Taxi

Route fixed flexible customised

Schedule fixed by request by request

Speed slow medium fast

Cost low medium high

Mode shared shared non-shared

Capacity high medium low

Reservation not needed often needed not needed

The first trial of an on-demand public transit service, called Dial-A-Ride (since customers

phone in their transport requests) was offered in Mansfield, Ohio, USA in 1970. The first

demand-responsive service in the United Kingdom was offered in Abingdon in 1972 by the City

of Oxford Motor Services. The feasibility of such Dial-a-Ride (DAR) services was demonstrated

and similar schemes sprang up elsewhere (see Oxley, 1980). DAR services are particularly

valuable to disabled persons and the elderly who may have difficulties using standard public

transit services. The Americans with Disabilities Act (ADA), signed into law in 1990, requires

all public transport agencies to provide specialized transportation comparable to public transit

bus services (sometimes called paratransit) for individuals with disabilities. As a consequence,
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many demand-responsive systems have evolved from general public service to focused paratransit

services. The complexities of operating DAR services (e.g., tight time-windows, last-in-first-out

due to vehicle layout) mean that computerized planning and scheduling is necessary for systems

of realistic size.

Early solution approaches for the planning and scheduling of DAR systems were heuristic

methods, e.g., those developed at MIT for the DAR systems in Rochester, New York, USA (see

Wilson et al., 1971). Stein (1978) presented the first models for the planning and scheduling

problem of DAR systems, i.e., the Dial-a-Ride Problem (DARP), and obtained bounds for both

the static and dynamic versions. Psaraftis (1980) developed a dynamic-programming exact

algorithm for both the static and dynamic versions of the DARP with a single vehicle. In the

past 40 years, research into the DARP has been growing steadily. For a survey of the models

and algorithms developed up to 2007, the reader is referred to Cordeau and Laporte (2007).

1.2 Applications

DARPs are always motivated by real-life applications. Each addresses various realistic features

that lead to specific constraints or objectives and yields further insights. Below, we highlight

several major application areas since 2007.

A traditional application is non-profit DAR services for the elderly and disabled, which often

have cost minimization as the objective. Operational constraints include ride and waiting time,

pickup/delivery time-windows, vehicle capacity, and equipment layout within the vehicle (e.g.,

Karabuk, 2009; Qu and Bard, 2013; Qu and Bard, 2015). Some DAR systems use heterogeneous

fleets (e.g., Häll and Peterson, 2013; Häll et al., 2015). Others may allow transfers from one

vehicle to another, e.g., for mentally disabled but ambulant passengers (Masson et al., 2014).

With different stakeholders, DAR systems often have multiple (and sometimes conflicting) goals,

necessitating multi-criteria models (e.g., Paquette et al., 2013; Lehuédé et al., 2014).

Many airports offer dedicated transportation for injured, elderly, weak, and disabled passen-

gers with reduced mobility (PRMs). There are very tight time-windows for pick-ups (exactly

when alighting upon arrival) and drop-offs (seated in aircraft well before departure when board-

ing), and the PRMs may not be left unsupervised. These constraints often originate from a

service contract among the service provider, the airport, and the airlines (Reinhardt et al., 2013).

Another major application area is in health care. In this application, time urgency and

equipment/staff compatibilities are important. Staff and maintenance scheduling concerns also

add considerable complexity. For intra-hospital transportation, which involves the movement of

patients, supplies, and equipment for diagnostic or therapeutic reasons, additional constraints

may include non-sharing of ambulances of isolation patients, accompanying staff/equipment,

specific pickup and delivery sequence of doctors and patients, and prioritization (urgent vs.

normal) of requests (Hanne et al., 2009; Beaudry et al., 2010). For non-urgent patient trans-
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portation to/from hospitals, the vehicle may be re-configured to provide for staff seats, patient

seats, stretchers, and wheelchairs. Constraints include mode-dependent capacities, driver-vehicle

assignments, maximum shift lengths, and mandatory driver breaks. Parragh (2011), Parragh

et al. (2012), and Schilde et al. (2011; 2014) studied the Austrian Red Cross in Graz. For the

Hong Kong Hospital Authority (HKHA), each ambulance interior must be disinfected between

consecutive trips to avoid the spread of disease. The choice not to serve some clients is allowed

(Zhang et al., 2015; Liu et al., 2015; Lim et al., 2017). In Molenbruch, Braekers, Caris and

Berghe (2017), restrictions on particular user-user and user-driver combinations are considered.

In the application in Tuscany studied by Detti et al. (2017), a patient can choose the transport

provider among different non-profitable organizations.

An emerging application area is in public transportation. When scheduled public transit is

unavailable for low demand periods (e.g., night time) or locations (e.g., rural areas), it may be

replaced by demand responsive transportation (DRT). In a pilot project serving young people

to/from night clubs in Porto (Parragh et al., 2015), the DRT was operated by a private company

and therefore the objective is to maximize profit. Moreover, group requests can be split. For

some systems, the parties involved – Transportation Authorities, local taxi companies, subcon-

tractor hauliers, and passengers – may have conflicting concerns. The on-demand transportation

system in the rural Doubs region in France adopted the objective of maximizing occupancy rate

to encourage people meeting during transportation for social cohesion (Garaix et al., 2011).

In an integrated system for the elderly and disabled in Sweden, regular public transportation

services are used as the trunk services of their journeys and flexible dial-a-ride services are used

as feeders for the first and last mile (Häll et al., 2009; Posada et al., 2017). Integrated service

can reduce the operation cost and increase utilization of the dial-a-ride vehicles, but transfers

may lead to long waits and passenger discomfort. This type of mixed-mode operation is being

considered by many public transit authorities, and also points to new research directions for the

DARP. See Section 6 for further discussions.

1.3 Motivation and objectives of this survey

In the last few years, there has been a resurgence of interest in demand-responsive shared-ride

systems for the general public. This has been fueled in part by concerns for the environment;

each commuter using a separate car leaves a large carbon footprint and also causes congestion

in central business districts. Thus, the notion of a sharing economy that advocates a shift

from car ownership to “mobility as a service” is gaining popularity. Technological developments

(e.g., web and mobile communications, cloud computing, data analytics), enabling new ways of

operating DAR systems, have also contributed to the revitalization. Coming full circle, the Ford

Motor Company – being a partner of some of the earliest DAR systems in the 1970’s – launched

the Dynamic Shuttle system in 2015, which offers on-demand ride-sharing for employees in
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Dearborn, Michigan, USA. Other car manufacturers are also investing in various forms of car-

sharing systems.

The resurgence of DAR systems has also provided much impetus into research investigations

into the DARP. This paper provides a classification and summary of 86 papers published since

2007. The key contributions are the following:

1. a comprehensive survey of the journal papers published since 2007,

2. an overview of application areas of DARPs,

3. a detailed taxonomy of the problem variants, and discussion on subtleties of the classifi-

cation,

4. a systematic review of exact and meta-heuristic solution methodologies,

5. full references to benchmark instances, with valid hyperlinks and computational compar-

isons,

6. identification of potential research gaps, and

7. discussion of emerging technologies and their impacts on future research directions.

Compared with the most recent review by Molenbruch et al. (In press), our taxonomy and iden-

tified research directions are different (see Section 4.1 and the last section, respectively) and we

have more emphasis on emerging technologies (information and communications technologies,

autonomous vehicles, electric vehicles), societal changes (sharing economy, changing travel pat-

terns, promotion of green transport), computational results (instances and comparisons), and

applications. We focus more on the first two aspects as they enable new modes of operations,

leading to new research directions. We also focus more on the third aspect because the latest

summary of computation results allow researchers to evaluate the performance of their developed

algorithms. We emphasize on applications because one of the new directions can be formulating

and solving new applications. These four important aspects have not been mentioned in the

previous review.

In the remainder of this paper, we begin with the research methodology in Section 2 and

a description of the DARP in Section 3. Section 4 gives a classification of the many variants

of the problem studies in the literature. Section 5 surveys the solution methods and references

to benchmark instances. In the last section, we discuss some future trends, challenges, and

opportunities for future research.

5



2 Research methodology

We first searched Scopus for journal publications using the keyword dial-a-ride. In addition,

the databases of ISI Web of Science and Google Scholar were also used to identify any other

relevant publications that were missed from Scopus. This survey includes mainly publications

since 2007, with a few publications published earlier to recall the history and for comparison pur-

poses. A total of 86 publications since 2007 are considered with around half of these published

in Computers & Operations Research (nine papers), Transportation Research Part B (eight pa-

pers), Transportation Science (eight papers), European Journal of Operational Research (seven

papers), Operations Research Letters (four papers), Public Transport (four papers), and Trans-

portation Research Part C (four papers). Figure 1 summarizes the number of papers published

since 2007.

Figure 1: Number of papers per year on the dial-a-ride problem since 2007

3 Problem description

3.1 Problem features

In the DARP, multiple users make their requests for transportation from their specific origins to

destinations (known as pick-up and drop-off/delivery points, respectively). The transportation

service provider receives the requests and then arranges with its fleet of vehicles for the delivery

service. The transportation service is shared in the sense that multiple users (with different

requests) may be in the same vehicle at the same time.

The typical features of the DARP include the following:

1. Visit: Each user has to be delivered from the origin to the destination if rejections of
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requests are not allowed. If rejections are allowed, the service provider can make selective

visits and decides which requests to accommodate.

2. Time window: Each user can specify the earliest and latest times of pick-up and/or drop-off

(i.e., the departure time from the origin and the arrival time at the destination).

3. Depot(s): The starting and ending location(s) of a trip (or route) of a vehicle.

4. Trip: A vehicle finishes a trip once it returns to the depot. A vehicle finishes multiple trips

if it leaves from and returns to a depot more than once in a single day.

5. Vehicle capacity: The maximum number of users in a vehicle at the same time. The

number of users in the vehicle is known as load.

6. Ride time: The time a user spends in a vehicle (i.e., the difference between the scheduled

times of pick-up and delivery).

7. Route duration: The time a vehicle travels for a trip (i.e., the difference between the times

of leaving from and returning to a depot).

A typical DARP assigns the vehicles to the requests and determines the vehicle routes for

transportation services, with the above features taken into account. The objective of the prob-

lem depends on the application. Typical objectives adopted are from the operator’s perspective

and/or the users’ perspective. However, the objectives from the two perspectives can be conflict-

ing to each other – improving users’ experience (e.g., reducing the total ride time and waiting

time) may need to increase the operating cost (e.g., hiring more vehicles). The goal is to op-

timize the objective function (which can consist of just a single measure or multiple measures)

subject to constraints related to the above features such as capacity or time window constraints.

A more detailed discussion on DARP objectives will be provided in Section 3.2.

We refer the reader to Cordeau (2006) for the basic mathematical model of the DARP,

which has been studied extensively by other authors as well and has formed the basis for other

problem extensions. For tighter formulations, we refer the reader to Ropke et al. (2007). In the

literature, several variants of DARPs have been studied, as summarized in Tables 5–8 in the

Appendix according to the typical features considered (i.e., time window, vehicle capacity, ride

time, route duration, and selective visits), the degree of fleet heterogeneity (i.e., homogenous

vs. heterogeneous fleet), the number of vehicles used (i.e., single vs. multiple vehicles), and

the number of objective functions considered (i.e., single vs. multiple objectives), the number

of depots considered, and numbers of trips allowed in a single day. More detailed discussions

on these variants will also be provided in Section 4 of this survey, based on the classification

introduced in that section.
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3.2 Objective functions of DARPs

The most popular objectives of DARPs are to minimize service provider’s operating costs (e.g.,

total transportation time, total distance travelled by the vehicles, total route duration, the

number of vehicles required, and driver working time) and/or users’ inconvenience metrics (e.g.,

total ride time, user waiting time, and deviations from requested pick-up/drop-off time windows).

A small proportion of work considers vehicle emissions as well (e.g., Atahran et al., 2014; Chevrier

et al., 2012). Other more problem-specific objectives include optimizing passenger occupancy

rate (Garaix et al., 2011), cost-effectiveness metric (D’Souza et al., 2012), operator’s profit

(Parragh et al., 2015), staff workload (Lim et al., 2017), and the reliability of the system (Pimenta

et al., 2017).

As shown in Tables 5–8, while a significant number of DARPs optimize only a single objective,

some consider multiple objectives where the decision-maker has to determine an optimal solution

among different goals. The research that deals with multi-objective DARPs can be mainly

categorized into three types. The first type is to treat the multiple objectives as a weighted

sum of different measures (e.g., Jorgensen et al., 2007; Kirchler and Wolfler Calvo, 2013; Mauri

et al., 2009; Melachrinoudis et al., 2007). The weighted sum of objectives is appropriate for

problems that have well-defined and straightforward evaluations of the weights of the different

objectives. For example, one may consider the monetary value of each measure per unit as its

weight, such as cost per vehicle and cost per mile travelled. If only a single solution is required

for implementation (particularly for those applications that require a prompt single solution for

a real-time recommendation), this approach takes advantage of reducing the post-solution efforts

to making the final decision. However, this approach is not applicable to problems where the

relative importance of each objective is unknown or unquantifiable. Furthermore, the solutions

are also highly sensitive to the objective weights.

The second type considers lexicographic objective functions in the order of the importance,

where a higher-level objective must be optimized first and a lower-level objective is then further

optimized if possible. For example, Garaix et al. (2010) first minimized the operating cost and

then maximized the service quality measure; Schilde et al. (2011; 2014) considered three levels

of objectives: first maximizing the service quality measure and then minimizing operating costs

at two different levels. The approach of having lexicographic objective functions applies to

problems having one objective significantly dominating the others but the relative importance

of the different measures cannot be represented by the same unit. This approach is particularly

suitable for DARPs where the operating cost is substantially more important than the users’

experience, or vice versa. However, the hierarchical structure prevents the decision maker from

examining the tradeoffs between different objectives.

The third type aims to obtain the Pareto frontier of the problem. The Pareto frontier
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consists of the solutions that are not dominated by any of the other solutions, in terms of the

concerned criteria. Similar to the lexicographic approach, the assignment of a weight to each

objective and the conversion of the different objectives to the same unit are not required (Zidi

et al., 2012). In addition, the full set of non-dominated solutions can be generated for the decision

maker to choose the right plan for the final implementation (e.g., Núñez et al., 2014; Parragh

et al., 2009). The Pareto solution approach provides the decision maker with the full picture of

all the possible optimal solutions, which is especially favorable when he/she is uncertain about

the relative importance of each criterion. It also helps to analyze the tradeoffs between opposing

objectives at a tactical level (Paquette et al., 2013). However, this approach requires computing

the full set of optimal solutions and human beings to make the final decision from this generally

huge set. Thus, it may not be suitable for online DARPs where transportation plans are required

to be automatically revised in a timely and frequent fashion (e.g., the applications where user

requests can arrive unexpectedly).

The aforementioned multi-objective approaches consider different performance metrics inde-

pendently. Lehuédé et al. (2014) is the only paper in this survey that considers the importance

of each metric and the interaction between each pair of metrics.

4 Problem classification

4.1 Taxonomy

We classify DARPs broadly according to two aspects: (1) whether decisions are made a priori

(i.e., static) or if the decision maker is allowed to modify existing plans in response to new infor-

mation received (after the start of operations, i.e., time 0) as execution proceeds (i.e., dynamic),

and (2) whether the information (when received) is known with certainty (i.e., deterministic)

or still undetermined when decisions are made (i.e., stochastic). This classification leads to

four basic DARP categories – static-deterministic, static-stochastic, dynamic-deterministic, and

dynamic-stochastic (see Table 2). This taxonomy is similar to that of Pillac et al. (2013) for

vehicle routing problems.

Table 2: Taxonomy of dial-a-ride problems

Information known with certainty (at time of decision)

Yes No

Decisions can be modified in

response to new information

received after time 0?

No Static and deterministic Static and stochastic

Yes Dynamic and deterministic Dynamic and stochastic
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The difference between a static and dynamic DARP is as follows. If all information relevant

to decision making is provided to the decision maker prior to the start of operations, a DARP

is static. In this case, even if the information available for decision making does evolve as time

passes, we assume that the decision maker develops a grand plan for a predetermined number

of users for the entire planning horizon prior to the start of operations. This plan is either a

routing policy or a set of specific routes and schedules, and it cannot be changed at a later time.

On the other hand, if some actionable information is revealed while operations are ongoing and

if the decision maker is allowed to respond to this new information, the problem is dynamic. For

example, if the decision maker is allowed to modify existing plans in response to (i) the sudden

appearance of new users, (ii) updated information concerning existing users, or (iii) unexpected

disturbances such as delays and/or vehicle breakdowns as operations unfold, the problem is

dynamic.

We now discuss the distinction between deterministic and stochastic DARPs. In a determin-

istic DARP, information is known with certainty at the time of decision. A stochastic DARP is

one where information is unknown or uncertain at the time when decisions are made, although

information about the uncertainty (e.g., range of values and probability distributions) may be

available to the decisions maker. The distinction between deterministic and stochastic DARPs

can also be viewed in terms of perfect vs. imperfect information. A DARP is deterministic if

decisions are made in the context of perfect information. In a static and deterministic DARP,

the decision maker has, at time 0, perfect information concerning all current and future opera-

tions. That is, at time 0 the decision maker knows (a) the set of all potential users; (b) whether

or not each potential user will actually show up; (c) the exact needs of users; and (d) the exact

duration of every operation – e.g., vehicle journey, user pick-up, and customer drop-off – that

could potentially take place in the future. This type of problem can approximate the actual

outcomes well if the information is not largely distorted from the expected. A DARP is consid-

ered dynamic and deterministic if, at every instant from time 0 onwards, the decision maker has

perfect information concerning all current and future operations except for the appearance of

new users and cancellations of users. That is, at every instant from time 0 onwards, the decision

maker has perfect information regarding (b)–(d) for the users who have already appeared. In

this DARP, the appearance of a new user and cancellations of users come as a surprise to the

decision maker, but the decision maker has perfect information regarding each the appearance

and cancellations and can modify previously planned (i.e., existing) routes accordingly.

A DARP is considered stochastic if decisions are made in the context of imperfect informa-

tion. A DARP is static and stochastic if the decision maker must decide everything at time 0

based on imperfect information (e.g., uncertainty), regarding items such as (b)–(d). The de-

cisions made at time 0 either consist of a set of vehicle routes or a routing policy, and they

cannot be changed at a later time. A DARP is considered dynamic and stochastic if, at every
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instant from time 0 onwards, the decision maker has imperfect information regarding (a) and

at least one other item such as (b)–(d). In this type of DARP, the decision maker is continually

confronted with uncertainty regarding not only the appearance of future users and cancellations

of users but also the operations concerning users who have already appeared. In this case, the

decision maker can change previously planned routes in response to new information, but such

information may still be imperfect at the time of the change decision.

Note that real-world DARPs are mostly stochastic because the processes are often unpre-

dictable due to human vagaries, changing circumstances, and other externalities; the exact

duration of each process (e.g., the pick-up of a handicapped passenger) remains unknown until

the process is completed. In a static and stochastic DARP, the (a priori) decisions may involve

routing plans and planned arrival times. As the operations proceed, actual travel and arrival

times will be realised that may be different than planned. If the sequence of requests served is

not changed (even though arrival times differ from expected), the problem is still considered a

static one. Only if routing, holding or vehicle assignment decisions are revised based on new

information would the problem be considered a dynamic one.

It should be noted that our classification differs slightly from that provided by some other

authors such as Pillac et al. (2013). The difference is that we allow for an environment with

imperfect information in which the decision maker is not provided with information regarding

the nature of the stochasticity. A DARP with such feature is classified as a stochastic DARP in

our classification but does not fall into any category in the classification of Pillac et al. (2013).

It should also be noted that unlike main classifiers used by Molenbruch et al. (In press), the

main classifiers used in this paper are static-dynamic and deterministic-stochastic because these

classifiers define the key features of the problems, and may lead to very different methodological

approaches to obtain solutions. For example, dynamic problems allow to accept or reject requests

in real time. Dynamic problems also allow readjustment of plans in response to new information

received. Dynamic problems, therefore, require fast solution algorithms, such as heuristics, for

real-time operations. Stochastic problems do not require that all information is known with

certainty. Extra solution procedures, such as Monte Carlo Sampling, are often needed to obtain

solutions. We now discuss the articles belonging to each of the four basic DARP categories –

static-deterministic, static-stochastic, dynamic-deterministic, and dynamic-stochastic.

4.2 Static and deterministic DARPs

The majority of articles in this survey consider static and deterministic DARPs. Among these ar-

ticles, the typical setting considers a homogeneous fleet of vehicles, passengers’ pick-up and drop-

off time windows, maximum passenger ride time, maximum route duration, and vehicle capacity.

This setting is particularly popular among those papers having their focus on algorithmic ad-

vancement (e.g., Parragh et al., 2010; Parragh and Schmid, 2013; Chassaing et al., 2016; Ritzinger
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et al., 2016). To impose the requirements, some papers include them as hard constraints in their

optimization models (e.g., Chassaing et al., 2016; Ritzinger et al., 2016), while others may allow

violations but such violations are penalized in the objective function so as to be avoided as much

as possible (e.g., Urra et al., 2015). Other than those papers focusing on algorithmic advance-

ment, most of the remaining papers focus on the modeling issues regarding new problem features

motivated by new applications of DARPs or real needs in practice. Very few focus on drawing

insights derived from computational experiments to assist DAR operations. In the following

four sub-sections, we highlight different key modeling aspects of the problem variants, followed

by the sub-section on the insights.

4.2.1 Heterogeneity of users and vehicles

User heterogeneity is mainly motivated by the real need for the specific application. For exam-

ple, users may have their individual requirement or expectation on the service provided (e.g.,

Ilani et al., 2014) or some combinations of users and drivers are more (or less) favorable (e.g.,

Molenbruch, Braekers, Caris and Berghe, 2017).

The existence of heterogeneous passengers has led to a growing number of papers consid-

ering heterogeneous vehicles. Interestingly, we observe that most of the studies that consider

heterogeneous vehicles are motivated by real-world applications of transferring people with lim-

ited mobility (e.g., patients and the elderly). This is mainly because the transportation service

providers require various combinations of equipment (e.g., wheelchairs and stretchers) for differ-

ent types of passengers. In these problems, the vehicles are differentiated by their equipment and

capacities. The joint consideration of heterogeneous users and heterogeneous vehicles imposes

further challenges on solving the problem. A typical setting is the necessity of respecting user-

vehicle compatibility (e.g., Parragh, 2011; Parragh et al., 2012; Carnes et al., 2013; Braekers

et al., 2014; Detti et al., 2017). For example, a patient can only be transferred by a vehi-

cle which is equipped with the full set of requested equipment. More specific challenges of

individual DARPs with both heterogeneous users and vehicles include the sequencing of pick-

ing up and dropping off different types of users in accordance with the layout of the vehicle

(e.g., Karabuk, 2009) and decisions on the vehicle configuration for each trip (e.g., Qu and

Bard, 2013; Qu and Bard, 2015). These problem features may require the introduction of ad-

ditional indices to the formulation (e.g., Qu and Bard, 2013; Braekers et al., 2014; Qu and

Bard, 2015; Braekers and Kovacs, 2016) and, therefore, can increase the problem complexity

and the time to obtain an optimal solution extensively.

We also notice that some studies consider regular and extra vehicles but the users are homo-

geneous. One of their goals is to minimize the fixed cost of extra vehicles needed (e.g., Guerriero

et al., 2013). However, these studies do not consider the user-vehicle compatibility since the

users are homogeneous.

12



4.2.2 Passenger transfers

In the conventional DARP, a user is transported in the same vehicle for the whole journey. Some

recent papers consider passengers’ transfers from one vehicle to another during their trip. These

papers were motivated by the needs in real-world applications such as transporting passengers

with reduced mobility at airports (e.g., Reinhardt et al., 2013). In many of these applications,

an additional set of constraints is needed to ensure that a user is dropped off at a transfer point

before he/she is picked up by another vehicle (e.g., Schönberger, 2017). The main challenge

of allowing passenger transfers in DARPs is to ensure the synchronization when a passenger

transfers between vehicles. More specifically, this area of research aims to minimize the impacts

of passenger transfers on users’ inconvenience (e.g., users’ waiting time).

Although users’ trips become less direct and may have to wait at transfer points, a number

of studies show the benefits of allowing such transfers. Cortés et al. (2010) showed that the

flexibility of having passenger transfers could improve the overall efficiency of the system, for

example, by reducing the total ride time. Masson et al. (2014) presented a generalization of the

DARP where passengers could make transfers at intermediate points and showed that significant

savings, in terms of total distance traveled, could be achieved when transfers were allowed.

While the DARP focuses on demand-responsive transportation services, some research (e.g.,

Posada et al., 2017) allows the use of a fixed route and scheduled public transit service during

the user’s journey. One of the benefits of the integration of on-demand transportation and

public transit services is that it can help reduce the operating cost of the overall system because

public transit is less expensive. The main challenge is, again, the synchronization of the demand-

responsive and the public transit services. If the public transit service has a very high frequency,

one may neglect the synchronization (Häll et al., 2009). However, as pointed out by Ronald et al.

(2015), the ignorance of the synchronization can be an issue if the frequency of public transit

services is low. To address the issue, Posada et al. (2017) proposed two models for an integrated

DARP that take into account public transit timetables.

4.2.3 Manpower requirements

The majority of DARPs that consider manpower requirements are motivated by the transporta-

tion of people with limited mobility. In these problems, there might be the preference of assign-

ing the same driver to a user in multiple periods (e.g., Braekers and Kovacs, 2016) or the users

might request to have accompanying staff members on the vehicle (e.g., Parragh, 2011; Parragh

et al., 2012). Additional concerns about manpower requirements in DARPs include the loads of

the accompanying staff members (e.g., Parragh et al., 2012; Zhang et al., 2015; Lim et al., 2017),

the schedules of meal breaks (e.g., Parragh et al., 2012; Liu et al., 2015; Zhang et al., 2015; Lim

et al., 2017), and the synchronization of vehicles and assistants (e.g., Liu et al., 2015). In addi-
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tion to the challenges arising from the modeling issues, the joint problem of the DARP and staff

scheduling, which are both NP-hard, imposes further complexity in finding optimal solutions.

4.2.4 Horizontal cooperation

Almost all existing DARP studies implicitly assume that only one DAR service provider exists

in a single operating area. In reality, multiple DAR service providers can exist in one operating

area. This characteristic was considered by Molenbruch, Braekers and Caris (2017a) who are the

pioneers to examine the operational benefit of the cooperation between multiple DAR service

providers. Based on a real-life case study, they found that the benefit was mainly due to the

empty trip reduction. However, because the variable cost associated with travel distance only

explained a small portion of the total cost (including driver wage) incurred by the provider, the

percentage of the reduction in the total cost was small.

4.2.5 Insights derived from DARPs

In addition to the contribution from modelling aspects, some papers draw managerial insights

from DARPs using computational experiments. With a simulation study of the ADA paratransit

services in Houston, Shen and Quadrifoglio (2013) reported that a centralized strategy (i.e., the

entire service region is a single zone) could reduce the number of routes required and the total

distance travelled by empty vehicles and increase the passenger trips per revenue hour, while a

decentralized strategy (i.e., the entire service region is divided into multiple zones to manage)

could decrease the average deviation time between requested and actual pickup times. Feng

et al. (2014) found that by allowing the same airport shuttle to drop off outbound and pick

up inbound passengers during the trip, significant savings (in terms of total number of vehicles

required, vehicle idle time, distance travelled, and total cost) could be achieved, compared with

the policies of (i) having two separate sets of vehicles to handle outbound and inbound trips

and (ii) restricting that all outbound passengers must get off before the same vehicle picks up

the inbound passengers. Molenbruch, Braekers and Caris (2017b) found that the reduction of

the service quality did not lead to significant cost savings when the service quality was bad to a

certain extent, and the variations in service level requirements had a greater impact on operating

costs for larger service providers.

Some papers aim to study the practical impacts of the modeling techniques of DARPs.

Garaix et al. (2010) discussed the problem of the graph representation of the road network

where arcs are computed according to only a single criterion, for example, travel time. This

practice could eliminate some possible routes from consideration. They introduced a multigraph

representation whose arcs were characterized by multiple attributes and demonstrated the cost

savings resulting from the multigraph model. Hu and Chang (2015) considered the fact that

travel times were time-dependent and used a traffic simulation model to examine DARPs with
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such travel times. They reported that the increase in the length of the time window could

reduce the total travel time and the number of vehicles used, and increase the CPU time,

average pickup/delivery delay time, and the average actual/direct ride time.

4.3 Static and stochastic DARPs

The research on static and stochastic DARPs is relatively inadequate, compared with the other

three categories. Only three papers in this line of research have been found. All the three

papers in this categories consider the stochasticity regarding the user arrivals – the number of

user requests follows a Poisson process (Hyytiä et al., 2010), a certain user requests the service

with a given probability (Ho and Haugland, 2011), and the users’ arrival times at the pick-

up points are stochastic (Heilporn et al., 2011). The common objective of the research is to

optimize the expectation of the objective function in the anticipation of future events (e.g., Ho

and Haugland, 2011; Heilporn et al., 2011) or to investigate the system performance under a

static and stochastic environment (e.g., Hyytiä et al., 2010).

4.4 Dynamic and deterministic DARPs

The papers in this survey on dynamic and deterministic DARPs can be categorized as theoretical

or experimental. Theoretical research on these DARPs has typically been characterized by the

presentation of (1) an online algorithm that has a proven competitiveness ratio versus its offline

counterpart and/or (2) a new lower bound for such a competitiveness ratio that is higher than

the previously established lower bound (e.g., Waisanen et al., 2008).

Experimental research on dynamic and deterministic DARPs has typically been characterized

by the presentation of a simulation or other dynamic model in which decisions that are made

in response to new information are fed back into the model so as to affect the future evolution

of the system state tracked by the model (e.g., Häll et al., 2015; Quadrifoglio et al., 2008).

The majority of research in this category considers new user requests as the events that trigger

the replanning procedure (e.g., Hanne et al., 2009; Berbeglia, Cordeau and Laporte, 2012; Häll

and Peterson, 2013; Häll et al., 2015; Wong et al., 2014; Marković et al., 2015). The goal is

to determine how the new request is accommodated, if not rejected. Some studies incorporate

pricing decisions when considering new user requests (e.g., Santos and Xavier, 2015; Sayarshad

and Chow, 2015). The research on dynamic and deterministic DARPs is mostly restricted to

the consideration of accommodation of new user requests. While, in reality, there could be other

types of events that may trigger a revision in the transportation plan, only one paper (Beaudry

et al., 2010) in this survey considered events such as vehicle breakdowns and unexpected rest

breaks.
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4.5 Dynamic and stochastic DARPs

Different types of stochasticity are considered in this category of papers, such as future user

requests (e.g., Xiang et al., 2008; Hyytiä et al., 2012; Schilde et al., 2011), stochastic travel

times (e.g., Xiang et al., 2008; Schilde et al., 2014), user no-shows (e.g., Xiang et al., 2008),

and desired drop-off times (e.g., Maalouf et al., 2014). The stochastic information could be

used to predict the scenarios that may happen in the future for optimal control (e.g., Núñez

et al., 2014; Muñoz-Carpintero et al., 2015). With the use of stochastic information about

unknown future events for decision-making in response to the recently realized events (also

known as a non-myopic approach (Hyytiä et al., 2012)), the solutions are expected to have a

higher quality than those produced by myopic methods.

Among the four categories of DARPs, dynamic and stochastic DARPs appear to be the most

challenging, regarding the difficulties arising from the modeling of a combination of stochastic

components, the evaluations of outcomes under a large number of scenarios, the integration

of stochastic processes and optimization algorithms, and the timely provision of high-quality

solutions for recovery.

5 Solution methods

Different solution approaches have been proposed for the DARP and its variants. Some solution

approaches can apply to more than one problem type. For example, heuristics or metaheuristics

can be applied to solve both static-deterministic DARPs and dynamic-deterministic DARPs.

Therefore, in this section, we classify different solution approaches by techniques.

5.1 Exact methods

Exact algorithms for DARPs are developed mainly based upon the concept of branch-and-bound

(B&B). These algorithms can be classified as branch-and-cut (B&C), branch-and-price (B&P),

and branch-and-price-and-cut (B&P&C) algorithms. For specific small DARPs, a reduction

approach was proposed.

The development of exact methods for DARPs is heavily inclined towards deterministic and

static problems. All the papers, except one, reviewed in this survey that developed exact meth-

ods for DARPs considered a deterministic and static environment; the remaining one considered

a stochastic and static setting. The main reasons are that many of the stochastic programming

problems are computationally intractable for realistic DARP instances and exact methods may

not be capable of providing timely solutions for dynamic DARPs. Moreover, exact methods can

provide solutions of the highest quality, which is the most concern in the planning phase (i.e.,

static problems). Another observation of exact methods reviewed is that they are for single
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objective DARPs. Exact algorithms for multi-objective DARPs have not been found in the

reviewed period.

Table 9 summarizes the largest instances that have been solved to optimality by exact meth-

ods. The largest instances are up to 8 vehicles and 96 requests for the basic DARP. For other

variants, the sizes are smaller because the variants are more complicated.

5.1.1 Branch-and-cut algorithms

A B&C algorithm is based on the B&B procedure, where cutting planes are added to the prob-

lems in the B&B tree. The addition of cuts tightens the LP-relaxations in the B&B tree, leading

to a higher chance of finding integer solutions and also providing stronger bounds for verifying

optimality. To the best of our knowledge, the first B&C algorithm for the DARP was introduced

by Cordeau (2006) who applied several families of valid inequalities as cuts for the three-index

mixed integer programming formulation. These are derived from well-known inequalities for

the travelling salesman problem and the vehicle routing problem (VRP). Ropke et al. (2007)

presented tighter DARP formulations for a two-index mixed integer programming model, by in-

troducing three new classes of valid inequalities – strengthened capacity, strengthened infeasible

path, and fork constraints – and adopting some previously identified cuts, including subtour

elimination and generalized order constraints from Cordeau (2006) and reachability constraints

from the VRP with time windows. Some of these inequalities were also applied in other studies

(e.g., Parragh, 2011; Braekers et al., 2014; Braekers and Kovacs, 2016). Other types of valid

inequalities are derived for problem-specific features such as trip number (e.g., Liu et al., 2015),

lunch breaks (e.g., Liu et al., 2015), symmetry breaking (e.g., Braekers and Kovacs, 2016), and

driver consistency (e.g., Braekers and Kovacs, 2016).

Another approach to solving deterministic DARPs in addition to the use of cuts was pro-

posed by Cortés et al. (2010), who developed a B&C method to solve the DARP that allows

passengers to transfer from one vehicle to another at specific locations. The method uses Ben-

ders Decomposition (Benders, 1962) that applies the Combinatorial Benders Cuts introduced

by Codato and Fischetti (2004). In this method, the set of constraints is decomposed into pure

integer and mixed constraints, and then a B&C procedure is applied to the resulting pure integer

problem, by using real variables and constraints related as cut generators (Cortés et al., 2010).

For a stochastic version of the DARP, Heilporn et al. (2011) incorporated an integer-L-shaped

algorithm within the B&C framework proposed by Cordeau (2006), where the non-linear term of

the stochastic customer delays at pick-up locations in the objective function is captured through

the construction of optimality cuts during the B&B procedure.

The effects of cuts on the efficiency of a B&C procedure heavily depends on (i) the strength

of the cuts and (ii) the choices of the cuts to be included at different nodes in the B&B tree. For

(i), while the majority of research aims to identify new or strengthened cuts and to prove their
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validity, it appears that there is a lack of theoretical research on studying the conditions as to

which of the cuts are strong (e.g., whether they are facet-defining under certain conditions). Such

theoretical investigation will contribute to a deeper understanding of the polyhedral structure

of the DARP, thereby leading to more compact DARP formulations and further strengthened

inequalities. For (ii), the numbers of valid inequalities of many of the classes can grow ex-

ponentially as the problem size increases. The inclusion of all these inequalities in the base

formulation can render the problem unmanageable. Thus, separation procedures were devel-

oped for the determination of effective cuts to be included during the B&B procedure (e.g.,

Ropke et al., 2007; Parragh, 2011; Liu et al., 2015) to ensure that the cuts are generated and

applied only when needed. At each node of the B&B tree, these separation procedures aim to

promptly identify those inequalities that are violated by the current fractional solution and de-

termine if they should be included in the formulation. When the separation procedure requires

the enumeration of a huge number of possibilities, it is a common practice to develop separation

heuristics to speed up the process.

5.1.2 Branch-and-price algorithms

Unlike B&C algorithms, B&P algorithms focus on column generation rather than generating

cuts for LP relaxations in a B&B procedure. B&P algorithms require the reformulation of

the problem into a restricted master problem and a pricing subproblem. In the restricted

master problem, a set of columns (i.e., variables) is excluded from the LP relaxation to reduce

computational efforts. At each node of the B&B tree, columns may be generated by solving

a pricing subproblem and added to the restricted master problem to tighten (improve) the LP

relaxation. The advantage of this method over the B&B method is the ability to handle larger

mixed-integer programs, while convergence to a global optimal solution can still be guaranteed.

For the DARP, the main difficulty is how to reformulate and decompose the original problem

to obtain the pricing subproblem that can be solved efficiently by existing algorithms, while

the global convergence of the B&P algorithm is assured. For the studies that developed B&P

algorithms for DARPs, the master problems were mainly to optimize the objective function

subject to the request constraints and the subproblem aimed to generate routes for the vehicles.

There are three main approaches to solve the subproblems: exact, heuristic, and a hybrid of

exact and heuristic.

The exact approach was used by Garaix et al. (2010; 2011). They solved the pricing subprob-

lem, referred to as the elementary shortest path problem with resource constraints, by dynamic

programming. The dynamic programming algorithm associated partial paths with labels and

extended these labels taking into account the resource constraints and the reduced cost of the

subproblem. It is worth noting that the B&P algorithm developed in Garaix et al. (2011) is able

to handle a linear fractional objective function. Feng et al. (2014) generated columns through
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a constraint programming framework to guide the search procedure for the routing decision

in a reduced search space. While the global convergence of the solutions is guaranteed when

applying an exact method to solve the pricing subproblem, the major drawback is that the

computational time can be long for identifying an optimal solution and verifying its optimality

for each subproblem throughout the procedure.

The heuristic approach was used by Hu and Chang (2015) who developed a B&P algorithm to

solve the DARP with the consideration of time-dependent travel times. The pricing subproblem

was solved by large neighborhood search. While the heuristic could identify good-quality solu-

tions for the subproblem in a much faster fashion, the limitation of this approach is that these

solutions may not be optimal and hence the global convergence of the overall B&P algorithm is

not guaranteed.

The hybrid approach was used by Parragh et al. (2015) who solved the subproblem by

both dynamic programming algorithm and heuristics as in the algorithm of Ropke and Cordeau

(2009) for the pick-up and delivery problem with time windows. The hybrid was incorporated

into their B&P framework for solving the DARP with split requests and profits, in which a

given transportation request may be served by multiple vehicles or by multiple trips of the

same vehicle. The hybrid approach can guarantee the global convergence while the computation

efficiency is enhanced compared with a standalone exact approach.

5.1.3 Branch-and-price-and-cut algorithms

B&P&C algorithms are B&P algorithms with cutting planes added to the LP relaxations

throughout the procedure. B&P&C algorithms can take advantage of both B&P and B&C

methods by (i) tackling the reduced problem of a significantly smaller size with columns gen-

erated through solving the subproblem and (ii) tightening the bounds for the LP relaxation.

In Qu and Bard (2015) and Gschwind and Irnich (2015), dominance rules were used to reduce

the number of paths to be enumerated for solving the subproblems. Qu and Bard (2015) ap-

plied subset-row inequalities in their B&P&C algorithm and showed the benefits of these cuts

on reducing the number of nodes to be visited in the B&B tree and the overall solution time

compared with only B&P. Gschwind and Irnich (2015) considered intra-route synchronization in

their problem and derived an effective column-generation formulation with the inclusion of these

intra-route constraints. They adopted several classes of inequalities from Cordeau (2006), Ropke

et al. (2007), and Ropke and Cordeau (2009) for their B&P&C procedure. They showed that

their algorithm outperforms (i) the B&C algorithm proposed by Ropke et al. (2007), and (ii)

the B&P&C algorithm by Ropke (2005) that is an earlier version of Ropke and Cordeau (2009)

for the pickup and delivery problem with time windows. As reported by Qu and Bard (2015),

while the inclusions of cuts are effective in reducing the number of nodes to be explored in the

B&B tree, the majority of the overall runtime of the B&P&C is spent solving the subproblems.
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This suggests that further research on faster algorithms to solve the subproblems are needed to

enhance the overall efficiency of B&P&C algorithms.

5.1.4 Reduction approach

A reduction approach was used by Ilani et al. (2014) who examined a two-campus transport

problem. They proposed an algorithm based on a reduction of an ordered-set partition problem

(Chakravarty et al., 1982) to a shortest-path problem, which can be solved in polynomial time.

However, this problem considers only one route (in two directions) and may not be applicable

to general DARPs.

5.1.5 Lessons learned

Most of the exact methods for the DARP are based on a B&B framework. B&B is designed for

general discrete and combinatorial optimization problems. It enumerates all possible solutions

for the problem. Thus, the computational time of a B&B procedure can be exponential in the

worst case. There has been much work on improving the bounds for the optimal objective value

by the use of cutting planes (which has been discussed in Section 5.1.1) and the generation

of promising feasible solutions using heuristics or metaheuristics (e.g., Parragh, 2011; Braekers

et al., 2014) (which will be discussed in detail in Section 5.2) in the hope of completing the

enumeration at an earlier stage. The recent development of B&P&C suggested that an integra-

tion of problem decomposition techniques and cutting planes can potentially significantly reduce

computational efforts for solving DARPs.

Other techniques that have considerable impact on the speed of a B&B framework include

preprocessing (e.g., Ropke et al., 2007; Parragh, 2011; Braekers et al., 2014; Liu et al., 2015;

Braekers and Kovacs, 2016) and branching rules (e.g., Ropke et al., 2007; Garaix et al., 2010;

Parragh, 2011; Qu and Bard, 2015; Gschwind and Irnich, 2015; Braekers and Kovacs, 2016).

The preprocessing steps adopted in these studies are mainly based on those proposed by Dumas

et al. (1991) and Cordeau (2006), while the branching schemes vary among applications. The

reasons are that DARPs share common features such that preprocessing routines can be similar

(e.g., time window tightening and arc elimination) but the benefits of branching priority can be

different according to their objective functions and problem-specific constraints.

The development of these exact methods based on a B&B framework benefits from the ease of

the implementation through off-the-shelf mixed-integer programming solvers such as IBM ILOG

CPLEX (which was adopted by almost all studies reviewed in this section as the solver, except

those without mentioning the solver used). The solvers can take charge of the B&B setting,

for example, branching schemes (e.g., Braekers et al., 2014; Liu et al., 2015). The performance

of these exact algorithms can also be enhanced by the advancement of the general discrete
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optimization techniques (e.g., more effective pre-solve procedures and branching schemes in a

B&B framework).

The main advantage of the adoption of exact methods for solving the DARP is that solution

optimality is guaranteed. This is particularly important for problems in the planning phase

where no adjustment is allowed once the plan is implemented. Thus, the exact methods were

applied to static DARPs. Computational times of hours may also be acceptable for planning

problems, where decisions are made infrequently (e.g., daily) and the information is provided

some hours in advance. Even if an optimal solution cannot be identified at termination, the

planner still has an idea of how good the solution is by measuring the optimality gap.

For problems that are not manageable by exact methods, for example, due to memory issues

or unacceptable solution time, heuristics and metaheuristics (which will be discussed in the next

sub-section) are essential. In this case, the bounds derived from exact methods can also serve

as a quality measure for solutions produced by heuristics and metaheuristics.

5.2 Heuristics and metaheuristics

As exact methods can only solve small-sized instances to optimality using a considerable amount

of computing time, and due to the NP-hardness of DARPs, the focus of much research has been

on developing efficient and effective heuristic techniques.

5.2.1 Construction insertion heuristics

Simple construction/insertion heuristics have been proposed in the last decade for solving the

basic DARP and its extensions. Although metaheuristics are more effective, construction heuris-

tics are useful when there is a need of quickly finding feasible solutions, e.g., in dynamic DARPs

(Xiang et al., 2008; Wong et al., 2014; Marković et al., 2015), to initialize a more complex

method (e.g. Braekers et al., 2014; Masmoudi et al., 2016), or to evaluate various operational

policies/strategies (Wong et al., 2014; Feng et al., 2014). These heuristics are usually inspired

from the greedy insertion heuristic by Jaw et al. (1986), where each request is assigned to a

position in the vehicle route by the cheapest insertion criterion. This heuristic is simple and

fast. For the details of more advanced construction heuristics, please see Luo and Schonfeld

(2007), Wolfler Calvo and Colorni (2007), and Häme (2011).

5.2.2 Tabu search

Tabu search (TS) follows the principle of local search that avoids revisiting previously visited

solutions by recording the search history in a tabu list. To avoid getting stuck in local optima,

non-improving solutions are accepted. Cordeau and Laporte (2003) were among the first ones

to present a TS algorithm for the DARP. Besides using a simple neighborhood operator (i.e.,
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relocating a request from one route to another) to generate the neighborhood, Cordeau and

Laporte have also incorporated several diversification strategies; penalizing frequently made

moves and temporarily accepting infeasible solutions. This heuristic has shown to be effective

and efficient. For that reason, many of the recent studies of TS on DARPs (Beaudry et al., 2010;

Ho and Haugland, 2011; Guerriero et al., 2013; Paquette et al., 2013; Kirchler and Wolfler Calvo,

2013; Detti et al., 2017) are in fact inspired from Cordeau and Laporte’s (2003) TS. These studies

are typically on DARPs with more complicated and real-life constraints. The authors adapted

Cordeau and Laporte’s (2003) TS to handle the more complex DARPs. Usually, the most time-

consuming task with the TS is the evaluation of the neighborhood. To speed up the evaluation,

some may only consider moves within a certain threshold (Kirchler and Wolfler Calvo, 2013)

while others do a random sampling (Detti et al., 2017). TS works well as a stand-alone method,

but it also shows to work well when incorporating into a multi-start heuristic (Guerriero et al.,

2013) or a multi-criteria framework (Paquette et al., 2013).

5.2.3 Simulated annealing

Simulated annealing (SA) is a stochastic local search based metaheuristic inspired by the physical

annealing process. A neighbor of the current solution is selected at each iteration. Usually, this

solution is randomly selected. To avoid getting stuck in local optima, non-improving solutions

are accepted with a probability. SA has not been as widely used to solve DARPs as the other

metaheuristic approaches. A few authors (Mauri et al., 2009; Zidi et al., 2012; Reinhardt et al.,

2013) have implemented a standard SA using simple neighborhood operators and obtained

reasonable results.

Recently, a highly effective and efficient variant of SA was proposed by Braekers et al. (2014).

It is a deterministic variant of SA, which is named deterministic annealing (DA), where non-

improving solutions are accepted as long as the deterioration of the objective value is smaller than

a deterministic threshold. Braekers et al. used more complicated neighborhood operators than

previous authors, and utilized a restart strategy whenever the search is stranded in unattractive

regions of the solution space. This combination turns out to be beneficial as the heuristic

provides very good results for different DARP variants.

5.2.4 Variable neighborhood search

Variable neighborhood search (VNS) proposed by Mladenović and Hansen (1997) is a meta-

heuristic based on a systematic change of neighborhoods in the descent and perturbation phases

of the local searches. Parragh et al. (2009) proposed the first VNS heuristic for the DARP. They

implemented a basic VNS for a bi-objective DARP, where four different neighborhood operators

are used in the shaking step. The shaking step of VNS involves introducing randomly generated

solutions from the neighborhoods. In the shaking step, the focus was to move requests between
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the routes whereas the focus in the local search was to re-assign the requests to different positions

within the route. To avoid getting stuck in local optima, they employed a simulated annealing

acceptance criterion. Improving solutions are always accepted while non-improving ones are ac-

cepted with a probability. This version of VNS lays the groundwork for the recent studies of VNS

on DARPs (Parragh et al., 2010; Parragh, 2011; Schilde et al., 2011; Parragh et al., 2012; Muelas

et al., 2013; Schilde et al., 2014; Muelas et al., 2015; Parragh et al., 2015; Detti et al., 2017).

Due to the great results achieved from the VNS for both the single-objective DARP (Parragh

et al., 2010) and the bi-objective DARP (Parragh et al., 2009), other authors have since adapted

their VNS to tackle richer DARPs. While a majority of the studies used the same operators

as Parragh et al. (2009) in the shaking phase, some have also employed other operators such

as greedy worst origin move and greedy best destination move (see Muelas et al., 2013; Muelas

et al., 2015). Besides performing well on its own, VNS also works well under a simulation

framework (Schilde et al., 2011; Schilde et al., 2014) or a distributed algorithm framework

(Muelas et al., 2015).

5.2.5 Large neighborhood search

At each iteration of the large neighborhood search (LNS), a part of the solution is destroyed (e.g.,

in DARPs, q requests are removed from the solution) and then this partial solution is rebuilt into

a complete solution (e.g., the q requests are reinserted back to the partial solution). The removals

are done by selecting one of the removal heuristics and the insertions are done by choosing one

of the insertion heuristics. The changes that are made to the solution are larger than those by

the typical neighborhood operators employed in other previously described metaheuristics. In

2006, Ropke and Pisinger published an article on an adaptive large neighborhood search heuristic

(ALNS) for the pickup and delivery problem with time windows. Ropke and Pisinger used simple

and fast heuristics that already existed in the literature for removing and inserting requests. The

removal heuristics include those based on Shaw (1997) and random and worst removal, while the

insertion heuristics include greedy and regret heuristics. The selection of the heuristic is guided

by the heuristic’s past performance. In addition, they used a simulated annealing acceptance

criterion to determine whether a solution should be accepted or not. This method is highly

effective and efficient, and lays the foundation for the recent studies of LNS on DARPs (Häll

and Peterson, 2013; Qu and Bard, 2013; Lehuédé et al., 2014; Masson et al., 2014; Braekers

and Kovacs, 2016; Gschwind and Drexl, 2016; Masmoudi et al., 2016; Molenbruch, Braekers and

Caris, 2017a).

Besides adapting Ropke and Pisinger’s (2006) operators to tailor for more complicated

DARPs, several authors (Masson et al., 2014; Braekers and Kovacs, 2016; Masmoudi et al., 2016)

also used operators from the pickup and delivery problem with transfers, the consistent vehicle

routing problem, and the pollution-routing problem. (A)LNS works well as a stand-alone proce-
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dure, but it can also be incorporated under the multi-criteria framework (Lehuédé et al., 2014)

as well as into a multi-start heuristic (Qu and Bard, 2013).

Gschwind and Drexl (2016) adopted Ropke and Pisinger’s (2006) ALNS and added three

more removal operators that were proposed by Masson et al. (2013) and Parragh et al. (2010)

for the pickup and delivery problem with transfers and the DARP, respectively. This version

of ALNS outperformed all algorithms in terms of solution quality except for the hybrid GA

by Masmoudi et al. (2017) on the instances for the standard DARP. To further improve the

solutions, after a solution is repaired, promising solutions are improved by the Balas-Simonetti

neighborhood (Balas and Simonetti, 2001). In addition, solutions are further improved by solving

a set-covering problem (with a limited running time of two minutes) at the end of the ALNS.

With the addition of two new improvement components, the algorithm even outperformed the

hybrid GA by Masmoudi et al. (2017).

5.2.6 Genetic algorithms

Genetic algorithms (GA) are population-based metaheuristics and are inspired by the evolu-

tion of species. GAs start with an initial population of individuals (i.e., solutions). At each

iteration, individuals are chosen to be the parents where individuals with better fitness have a

higher probability from being chosen. New individuals (i.e., offsprings) are created by applying

crossover and mutation operators on the parents. Then, some of the existing individuals may

be replaced by the new offsprings.

Both Jorgensen et al. (2007) and Cubillos et al. (2009) presented a cluster-first, route-second

approach where the method alternates between GA for constructing clusters of requests and a

greedy heuristic to construct the routes. Results indicate the latter is slightly better. GA have

also been successfully incorporated within a multi-objective framework (Atahran et al., 2014)

and a hybrid predictive control framework (Núñez et al., 2014; Muñoz-Carpintero et al., 2015).

5.2.7 Hybrid algorithms

Combining metaheuristics with other types of metaheuristics, mathematical programming, etc.

is a growing trend. Many of the state-of-the-art algorithms for solving combinatorial opti-

mization problems are indeed hybrid algorithms (Talbi, 2002; Jourdan et al., 2009). In the

literature, we find recent studies of hybrids of metaheuristics (Parragh et al., 2009; Chevrier

et al., 2012; Santos and Xavier, 2015; Zhang et al., 2015; Chassaing et al., 2016; Masmoudi

et al., 2016; Molenbruch, Braekers, Caris and Berghe, 2017; Pimenta et al., 2017; Lim et al.,

2017; Masmoudi et al., 2017; Schönberger, 2017), hybrids of metaheuristics with mathemati-

cal programming approaches (Parragh et al., 2012; Parragh and Schmid, 2013; Gschwind and

Drexl, 2016; Ritzinger et al., 2016), and hybrids of metaheuristics with constraint programming

(Berbeglia, Cordeau and Laporte, 2012).
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Hybrids of metaheuristics. Hybrids of metaheuristics usually come in two forms: (1) each

metaheuristic is executed sequentially, and (2) a metaheuristic is executed within another meta-

heuristic. Parragh et al. (2009), Santos and Xavier (2015), and Molenbruch, Braekers, Caris

and Berghe (2017) are examples of (1) where path relinking is applied after a VNS, GRASP,

and a multi-directional local search algorithm, respectively. Elite solutions are collected from

the respective searches, and the idea is to get even better solutions by exploring the trajectories

between the elite solutions.

A popular way to integrate metaheuristics is to embed a single-solution based metaheuristic

(e.g., local search, SA, TS, VNS, LNS) into a population-based metaheuristic (e.g., GA, bee

algorithms) (Chassaing et al., 2016; Chevrier et al., 2012; Zhang et al., 2015; Masmoudi et al.,

2016; Masmoudi et al., 2017; Schönberger, 2017) due to the population-based metaheuristic’s

ability for exploration and the single-solution based metaheuristic’s ability for exploitation. In

these publications, GA is the most widely used population-based method while local search is

the most used single-solution based method. For example, Masmoudi et al. (2017) presented a

hybrid GA algorithm that employed two crossover operators and four mutation operators. The

local search consists of five well-known operators from the routing literature and is applied to the

newly generated offsprings. This algorithm is highly effective as it is currently the best method

for solving the heterogeneous DARP. Two uncommon examples follow. Chassaing et al. (2016)

presented an evolutionary local search with elements from both evolutionary algorithms and

local search. At each iteration, several individuals are created by mutation and each individual

is improved by local search. The best of these individuals is used to restart the search. This

method is efficient and effective. Two hybrid bee algorithms are presented by Masmoudi et al.

(2016). Unlike the previous algorithms, a DA (Braekers et al., 2014) or SA is embedded within

a bee algorithm. These methods provide competitive results to the heterogeneous DARP with

multiple depots.

Another way to make hybrids is to replace the local search within a metaheuristic with a

ruin-and-recreate method in GRASP (Pimenta et al., 2017) or with a variable neighborhood

descent in iterated local search (Lim et al., 2017). The latter has shown to be effective as it also

provides competitive results for the vehicle routing problem with multi trips.

Hybrids of metaheuristics with mathematical programming approaches. A popular way to com-

bine a metaheuristic with a mathematical based approach is to embed a metaheuristic into a

mathematical based approach or vice versa. Parragh et al. (2012) and Parragh and Schmid

(2013) presented two hybrid column-generation approaches where the pricing of columns is car-

ried out by VNS. To further improve the solution, Parragh and Schmid (2013) also applied LNS

to a feasible solution that is obtained by solving a restricted set-covering problem, and the routes

generated are transformed into columns and added to the master problem. This hybrid method
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is effective as a few new best solutions are identified using much less computing time.

Ritzinger et al. (2016) and Gschwind and Drexl (2016) presented a different approach where

dynamic programming (DP) is used as building blocks within a LNS. Like Parragh and Schmid

(2013), they also used some (or all) operators from Ropke and Pisinger (2006). While Ritzinger

et al. (2016) presented some new removal/insertion operators based on DP, Gschwind and Drexl

(2016) presented an operator based on DP for intensification purposes and is currently the best

method for solving the standard DARP.

Hybrids of metaheuristics with constraint programming. Berbeglia, Cordeau and Laporte (2012)

presented a hybrid algorithm of tabu search and constraint programming (CP) for a dynamic

DARP. They adapted Cordeau and Laporte’s (2003) tabu search and used the CP algorithm

by Berbeglia et al. (2011). CP is a programming paradigm based on reasoning and search tech-

niques. TS is used for scheduling new requests and for improving the current feasible solution

while CP is used to determine whether the addition of a new request will result in feasibility

or not. Both TS and CP are run in parallel when a new request is received. The request is

accepted if either TS or CP finds a feasible solution. This hybrid method outperforms both TS

and CP on its own.

5.2.8 Lessons learned

Every heuristic exhibits elements from both diversification (e.g., multiple neighborhood op-

erators, perturbation, temporarily accepting infeasible solutions, randomness, and penalizing

frequently made moves) and intensification (e.g., neighborhood search, restarting the search

from the best solution, post-optimization). The diversification and intensification obtained de-

pends on the metaheuristic framework used. Clearly, single-solution based methods focus more

on intensification while population-based methods focus more on diversification. Hence, it is

important to balance the diversification and intensification search strategies. Here, we list a few

common search strategies in the DARP literature where authors have used to compensate for

the weaknesses in their chosen metaheuristic framework.

While employing multiple neighborhood operators is the main feature of VNS and

ALNS, other researchers have also utilized this in their SA, GA, and hybrid algorithms (e.g.,

Chassaing et al., 2016; Zhang et al., 2015; Masmoudi et al., 2016; Ritzinger et al., 2016; Lim

et al., 2017; Masmoudi et al., 2017; Molenbruch, Braekers, Caris and Berghe, 2017) in order to

explore different regions of the solution space. With the rise of using multiple neighborhood

operators and ALNS, more emphasis is also put on more complex neighborhood operators

that make big changes to a solution rather than only using simple moves. The VNS, (A)LNS,

DA, and hybrid algorithms reviewed in this paper employ several operators that make big

moves, while the TS and SA algorithms utilize more simple operators. Another trait of all
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reviewed algorithms except TS algorithms is the use of randomness. Random numbers are

used for different purposes, for example, (1) the shaking phase of VNS; (2) the Metropolis

condition (typically applied in SA, VNS, and (A)LNS algorithms); (3) the choice of removal

and insertion operators in (A)LNS; (4) the order the neighborhood operators (e.g., Braekers

et al., 2014; Chassaing et al., 2016; Lim et al., 2017; Masmoudi et al., 2016); and (5) mutation

and crossover operations in GA (e.g., Jorgensen et al., 2007; Masmoudi et al., 2017; Zhang

et al., 2015). A common strategy used in numerous algorithms is to temporarily accept

infeasible solutions by adding a penalty term to the objective function. With this strategy,

the search switches back and forth between two solution spaces to conduct a wider search. Most

of the reviewed TS and VNS algorithms as well as Braekers and Kovacs (2016), Chassaing et al.

(2016), and Masmoudi et al. (2016) use this strategy.

The above strategies are widely used because it is easy to implement them and their effects

can be seen relatively fast under the development of the methods. In the following, we present

a few search strategies that are only common for certain solution methods, but are rarely seen

in the reviewed DARP literature.

Discouraging frequently made moves is a long-term diversification strategy introduced

in connection with tabu search. This is however only used in the TS algorithms. Another

uncommon strategy is the addition of a noise term to the objective function, whose purpose

is to make the neighborhood search less myopic. Only a few algorithms applied this strategy (see

Lehuédé et al., 2014; Braekers and Kovacs, 2016; Gschwind and Drexl, 2016; Lim et al., 2017).

A simple intensification strategy is to restart the search with elite solutions. However,

this is one of the neglected search strategies (Glover and Laguna, 1997) and is only applied by

Braekers et al. (2014) and Chassaing et al. (2016).

5.3 Other methods

5.3.1 Algorithms for feasible solutions

The determination of the solution feasibility of a DARP is an important issue in real situations.

Such determination saves time for schedule planners from spending several hours for finding

solutions that do not exist (in a static setting), or helps to reject user requests in a much faster

fashion if the acceptance of such request results in problem infeasibility (in a dynamic setting).

In this line of research, the solution quality, in terms of objective value, is not a concern. The

most important aspects are the computational speed and the worst case complexity. A few

existing studies focus on developing algorithms to obtain feasible solutions, in terms of route

or schedule. For example, to determine a feasible route, Berbeglia et al. (2011) developed

a constraint-programming algorithm whereas Häme and Hakula (2013) introduced a modified

version of hyperlink-induced topic search. Häme and Hakula (2015) developed a maximum
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cluster algorithm based upon dynamic programming for this purpose. Meanwhile, to determine

whether a feasible schedule for a given route exists, Tang et al. (2010) proposed a revised

algorithm in an O(n2) worst-case time, where n is the number of users’ requests, to correct

the flaw of the three-pass algorithm proposed by Hunsaker and Savelsbergh (2002). Haugland

and Ho (2010) introduced a correct algorithm for the same purpose in linearithmic time. Firat

and Woeginger (2011) analyzed a more general setting compared with Hunsaker and Savelsbergh

(2002) and presented a simple linear time algorithm. While these studies do not consider solution

quality, but only feasibility, they can play an important role in optimizing DARPs. For example,

the feasible solutions generated can provide bounds for optimal values in exact methods and

construct the solution pool in heuristics and metaheuristics. In particular, Gschwind and Drexl

(2016) proposed a constant-time feasibility test for the DARP and adopted the test for request

insertions in an adaptive large neighborhood search. They demonstrated that their approach

outperforms other state-of-the-art DARP heuristics. A shortcoming of this line of research is

that the algorithms developed may not be applicable to DARPs with problem-specific features

(e.g., manpower requirements) since the solution feasibility depends on the set of constraints.

Thus, additional efforts may be needed when moving from one application to another.

5.3.2 Approximation algorithms and approximate reasoning

Because static and deterministic DARPs have all the required information for decisions be-

ing given, researchers could derive some nice theoretical results about their computational

complexities from this aspect and then developed approximated algorithms from them. For

example, Gupta et al. (2010) studied the approximability of the DARP and proved that,

when there are k vehicles, if there exists an α-approximation algorithm for the k-forest prob-

lem (whose goal is to find a minimum cost subgraph that connects at least k node pairs),

then there is an O(α log2 n)-approximation algorithm for the DARP. They then provided an

O(min{
√
n,

√
k} log2 n)-approximation algorithm for the DARP. Their results are comparable

with those provided by Charikar and Raghavachari (1998) and are even better when the vehi-

cle capacity is larger. The development of approximation algorithms provides bounds for the

solution quality and the ideas of conditions under which the algorithms are effective. How-

ever, for the sake of theoretical results, this line of research typically considers the basic DARP

where the features of variants are not taken into account and the objective function is fixed.

When additional features or objectives are considered, the approximability may not be guaran-

teed. Furthermore, since these algorithms consider the worst-case scenarios, exact or heuristic

approaches may have better average performance for general instances.

To the best of our knowledge, only a minority of studies focused on developing approximate

reasoning approaches to obtain solutions to DARPs. For example, Maalouf et al. (2014) de-

veloped a fuzzy logic algorithm to solve a dynamic capacitated DARP with multiple vehicles,
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impression on customers’ request, and uncertainty in travel time. Their approach also takes

advantage of the flexibility of fuzzy rules to be incorporated into the DARP. While there is lack

of the theoretical development of approximate reasoning approaches to solving DARPs, they

can have more practical applications as many realistic factors can be captured. Due to the

inadequacy of research in this area, there is much room to explore how approximate reasoning

approaches can be further applied to DARPs where uncertainty or imperfect information arises

in the system.

5.4 Benchmark instances

Researchers have used both artificially-generated and real-life data to evaluate the quality of

the developed algorithms. Some of the artificially-generated data are publicly accessible on the

Internet. These are listed in Table 3 by problem type and in chronological order. The instances

by Ropke et al. (2007) are an extension of the instances by Cordeau (2006). These two sets divide

the instances into two categories: a (small vehicle capacities) and b (large vehicle capacities).

Only benchmark instances solved by at least two algorithms are compared with each other

in Table 4. Hence, a comparison of the last five sets of benchmark instances is not included

in the table. Gap denotes the average deviation (in %) from the best known solution (see

Tables 10–13), Gap* denotes the minimal deviation (in %) from the best known solution, and

CPU denotes the average computing times (in minutes) for running the respective algorithms.

The algorithms are run on different machines using different programming languages, compilers,

parameter settings, etc., and hence it is not possible to directly compare CPU times (and hence

efficiency) of the algorithms. The average results were obtained by running the algorithms five

times on each instance, except for the one by Ritzinger et al. (2016) and the one by Molenbruch,

Braekers and Caris (2017a) whose results were obtained with ten and twenty runs, respectively.

Currently, the hybrid ALNS by Gschwind and Drexl (2016) is the most efficient algorithm for

solving the DARP instances, with Masmoudi et al.’s (2017) hybrid GA as the first runner-up

and Gschwind and Drexl’s (2016) ALNS as the second runner-up. However, the hybrid GA is

not tailor-made for solving the basic DARP, but rather for solving a more complex DARP. The

hybrid GA by Masmoudi et al. (2017) is currently the most efficient and effective algorithm for

solving the heterogeneous DARP, while Masmoudi et al.’s (2016) hybrid bee algorithms obtained

the best results for the heterogeneous DARP with multiple depots and trips. Tables 3, 4, 10–13

are also available at https://sites.google.com/site/darpsurvey, and these tables will be

updated when necessary.
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Table 3: Benchmark instances

Problem First reference Number of Sizeb Link

typea instances

DARP Cordeau and Laporte (2003) 20 3-13/24-144 http://neumann.hec.ca/chairedistributique/data/darp/tabu/

DARP Cordeau (2006) 24 2-4/16-48 http://neumann.hec.ca/chairedistributique/data/darp/branch-and-cut/

DARP Ropke et al. (2007) 24 5-8/40-96 http://neumann.hec.ca/chairedistributique/data/darp/

HDARP Parragh (2011) 24d 2-4/16-48 http://prolog.univie.ac.at/research/DARP/

HDARP Braekers et al. (2014) 24d 5-8/40-96 http://alpha.uhasselt.be/kris.braekers/

MD-HDARP Braekers et al. (2014) 72 2-8/16-96 http://alpha.uhasselt.be/kris.braekers/

R-DARP Liu et al. (2015) 42 2-2/16-23 http://www.computational-logistics.org/orlib/topic/R-DARP/

DARPSRP Parragh et al. (2015) 75 2-6/8-72 http://prolog.univie.ac.at/research/DARP/

MTDARP Zhang et al. (2015) 80 2-11/29-185 http://www.computational-logistics.org/orlib/topic/MTDARP/

DC-HDARP Braekers and Kovacs (2016) 1296 2-186/16-888c http://alpha.uhasselt.be/kris.braekers/

MTPDPTW-MP Lim et al. (2017) 365 3-17/26-214 http://www.computational-logistics.org/orlib/topic/MTPDPTWMP/

a HDARP: Heterogeneous DARP; MD-HDARP: HDARP with multiple depots; R-DARP: realistic DARP; DARPSRP: DARP with split requests and profits; MT-

DARP: multi-trip DARP; DC-HDARP: HDARP with driver consistency; MTPDPTW-MP: multitrip pickup and delivery problem with time windows and man-

power planning

b min-max number of vehicles/requests

c Number of requests over the multi-period

d Data sets E and I

http://neumann.hec.ca/chairedistributique/data/darp/tabu/
http://neumann.hec.ca/chairedistributique/data/darp/branch-and-cut/
http://neumann.hec.ca/chairedistributique/data/darp/
http://prolog.univie.ac.at/research/DARP/
http://alpha.uhasselt.be/kris.braekers/
http://alpha.uhasselt.be/kris.braekers/
http://www.computational-logistics.org/orlib/topic/R-DARP/
http://prolog.univie.ac.at/research/DARP/
http://www.computational-logistics.org/orlib/topic/MTDARP/
http://alpha.uhasselt.be/kris.braekers/
http://www.computational-logistics.org/orlib/topic/MTPDPTWMP/


Table 4: A comparison of recent algorithms on the benchmark instances

DARPa DARPb DARPc HDARPd HDARPe MD-HDARPe

Gap Gap* CPU Gap Gap* CPU Gap Gap* CPU Gap Gap* CPU Gap Gap* CPU Gap Gap* CPU

VNS (Parragh et al., 2010) 1.77 1.00 133.30 - - - - - - - - - - - - - - -

VNS (Parragh, 2011) - - - 0.34f 0.15f 1.86f - - - 0.37 0.18 1.85 - - - - - -

CG+LNS (Parragh and Schmid, 2013) 1.77 0.82 21.84 0.17 0.06 2.26 0.12 0.06 2.25 - - - - - - - - -

MS-ALNS (Qu and Bard, 2013) - - - - - - - - - 0.25f 0.11f 2.52f - - - - - -

DA (Braekers et al., 2014) 1.16 0.81 1.39 0.01 0.00 0.52 0.01 0.00 0.51 0.01 0.00 0.28 0.21g 0.17g 0.68g 0.21 0.14 0.46

ALNS (Masson et al., 2014) 1.34 0.72 40.12 - - - - - - - - - - - - - - -

ELS (Chassaing et al., 2016) 1.04 0.64 9.87 0.07 0.00 1.02 0.05 0.02 1.02 - - - - - - - - -

ALNSh(Gschwind and Drexl, 2016) 0.88 0.50 0.91 0.28 0.15 0.28 0.21 0.11 0.27 - - - - - - - - -

H-ALNSi(Gschwind and Drexl, 2016) 0.50 0.32 3.49 0.05 0.01 0.63 0.05 0.01 0.65 - - - - - - - - -

LNS+DP (Ritzinger et al., 2016) 3.64 2.35 66.72 0.21 0.10 5.01 0.30 0.17 4.51 - - - - - - - - -

ALNS (Masmoudi et al., 2016) - - - - - - - - - - - - - - - 0.15 0.07 2.92

BA-DA (Masmoudi et al., 2016) - - - - - - - - - - - - - - - 0.07 0.00 6.19

BA-SA (Masmoudi et al., 2016) - - - - - - - - - - - - - - - 0.09 0.03 6.83

GA+LS (Masmoudi et al., 2017) 0.65 0.37 1.77 0.01 0.00 0.74 - - - 0.01 0.00 0.43 0.07 0.01 1.06 - - -

LNS (Molenbruch, Braekers and Caris, 2017a) 1.19 0.46 88.44 0.03 0.00 6.23 - - - - - - - - - 0.15j 0.06j 5.92j

a Cordeau and Laporte (2003) b Cordeau (2006) and Ropke et al. (2007): Category a c Cordeau (2006) and Ropke et al. (2007): Category b

d Parragh (2011) e Braekers et al. (2014) f They only solved 12 of the instances g The results are available from http://hdarp-results.e-monsite.com h Number of ALNS iterations: 50,000

i Number of ALNS iterations: 75,000. Also used two improvement procedures. j They only solved 24 of the instances

http://hdarp-results.e-monsite.com


6 Future challenges and opportunities

The previous sections have given a synopsis of the research on DARPs since 2007. There have

been substantial advances in the research on DARPs – in the richness of the problem and model

variations investigated, in the development of new solution methods (especially meta-heuristics),

and in the breadth of applications. In this final section, we indicate some promising areas for

future research on DARPs. We begin by discussing some technological trends that might impact

how DAR systems operate, leading to new research directions.

6.1 New technologies and trends

6.1.1 Developments in information and communications technologies

The explosion of Big Data and Telemetrics has definitely changed the landscape of DAR systems

and DARP research. The technical advances in remote sensing and communications channels

have made the quantity and quality of information available substantially different from a decade

ago. DAR systems have traditionally depended on centralized planning requiring advanced book-

ing of trips; yet often the planned schedule must be adjusted “on-the-fly” due to unexpected

delays and other events. In the era of Big Data, travel times can be estimated much more accu-

rately by, for example, machine learning and deep learning approaches and updated dynamically;

faster algorithms and more powerful hardware will allow “real-time” planning and dispatching.

This may strengthen the need for dynamic and deterministic DARP models, especially when

the impacts of the sources of other uncertainties are small and negligible. This trend may shift

research on solution methodologies to focus more on fast on-line algorithms for dynamic and

deterministic models to facilitate “real-time” re-optimization. When optimization is done peri-

odically using “snapshot” data, deterministic models may suffice. This may also raise the need

for algorithms that not just minimize costs but minimize deviation from a “pre-set” schedule

when new requests are incorporated. Meanwhile, large volumes of different types of historical

data allow researchers to consider and capture the critical sources of stochasticity in the sys-

tems during real-time planning and dispatching, enabling the development of better dynamic

and stochastic DARP models and algorithms for practical applications. On the other hand, the

advancement of information and communications technologies can impose a tremendous compu-

tational burden on the delivery of solutions due to several reasons: the growing number of users

across diverse DAR platforms, the very frequent re-optimization necessitated by continuous in-

formation updates from multiple sources, and the high granularity of spatio-temporal stochastic

modeling.

The keys to bridging the research and the practice include effective modeling (an optimal

selection of the most suitable components to capture the problem characteristics) and the de-

termination of the events that should trigger re-optimization. The focus for stochastic DARP
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research may be directed towards incorporating more realistic aspects into the models and to-

wards the use of stochastic models for performance evaluation and for longer-term manpower

planning purposes.

6.1.2 The sharing economy and changing travel patterns

Millenials own fewer cars than previous generations. As evidenced by the meteoric rise of

Uber, Lyft, and similar service platforms, and on-demand mobility (especially coupled with ease

of payment), DAR systems will be much more prevalent in the future. However, the modus

operandi might be very different than before. The DAR vehicle fleet need not be centrally

owned, and individual drivers can bid to take on the trip assignments (Uber and some taxi

services operate in this way). This distributed and game-theoretic mode of operation opens up

exciting new avenues for DARP research.

Travel patterns may also change as more people (especially non-car-owners) rely on public

transit for commuting. As indicated in Section 1.2, commuting trips in the future may be of

mixed-mode consisting of travel on different transport modes (see Häll et al., 2009; Posada

et al., 2017). DAR systems may serve as feeders to long-haul public transit (e.g., trains). The

co-ordination of the schedule and capacity between scheduled public transit and DAR feeders

is a research topic that has not been much explored. An emerging trend is also for commuters

to bring their personal mobility devices (PMDs) – e-bikes, Segways, e-scooters – onto public

transit. Since December 2016, Singapore commuters can carry foldable bicycles and other PMDs

onto the public transit system (Today, 2017). This may change the model of the DAR feeder

systems, since the trip may not be point-to-point but zone-to-zone, because the commuter has

the flexibility to travel to meet up with the DAR vehicle. Such zone-to-zone DARP model may

be a new direction of research.

6.1.3 Green transport and autonomous vehicles

For large cities, switching from individualized transport (e.g., cars) to public mass transit is

better for the environment due to higher energy efficiency (person-km per kW) and reduced

congestion. Thus, concern for the environment is also an impetus for the trend of integrating

DAR systems with public transport, even for elderly (but relatively mobile) passengers. As

noted above, this trend leads to new research directions for the DARP where synchronization

of schedules and capacities between the public transit and the DAR system becomes important.

Districting and location of transfer points are also issues of concern.

With the global concern for the environment, the world of transport is under pressure to

develop greener technologies and energy-efficient operations. 2015 was a significant year; the

number of electric vehicles in use in the world exceeds one million in that year. The use of electric

vehicles in transport fleets (including DAR systems) requires new models and algorithms. With
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the limited range of electric vehicles, visits to charging stations (for battery swapping or charging)

must be included in the route planning and scheduling. For DAR systems, there is the added

concern that passengers would prefer their trips not to be interrupted by stops at or detours to

charging stations.

Although the technology for autonomous vehicles is still in the experimental stage, many

expect that the use of driverless cars will be prevalent in the not too distant future. New tech-

nologies will bring new ways of operating. Transport systems with electric and/or autonomous

vehicles may be zone-based for the ease of control (for learning and adaption for the vehicles).

This brings the new problem of districting and assignment of vehicles to zones. The use of

a mixed fleet (using traditional petrol-based, electric and hybrid propulsion, manually and/or

autonomously controlled) will require developments in integrated models for DARPs.

Autonomous vehicles may bring increased mobility to the elderly or the disabled, thus re-

ducing the need for the many DAR systems currently in use for elderly/disabled transport. On

the other hand, might the Internet of Things develop to a stage where autonomous vehicles can

“self-organize” to provide “car-pooling” for their users? That would certainly be exciting and

opens up entirely new areas for DARP research. There may also be more research interests in

developing multi-objective models that include environmental concerns in addition to mobility

as goals.

6.2 Research gaps and opportunities

In this subsection, we discuss possible extensions and new directions for DARP research.

6.2.1 Models

Analysis of mixed-mode operations under a stochastic and dynamic setting. As indicated, many

DAR systems have evolved from the canonical modus operandi. There is a growing interest in

mixed-mode operations, with DAR systems acting as feeders to regularly-scheduled public tran-

sit. For example, a DAR vehicle may pick up several passengers from diverse remote locations

and bring them to a transit point where the passengers continue their journey on regularly-

scheduled public transit, and finally complete the last part of their journey on a shared-ride

DAR vehicle.

A major challenge of the mixed mode operations is the synchronization of DAR systems

with public transit. The existing research on mixed-mode operations typically considers a static

and deterministic environment. However, when travel times are stochastic, a user may be left

behind at the transfer point, for example, due to the delay in drop-off time. This will be a

more common and important issue for an integrated DAR service with the use of public transit

that has infrequent service. The schedule planner may need to work out a more robust plan, for

example, by reserving sufficient waiting times at the transfer points. In case of transfers not being
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realized as planned, it is essential to recover the plan by deploying additional vehicles or making

adjustments in the plans of other vehicles. This will be a more practical and interesting direction

to investigate how decisions are made in a stochastic environment and adjusted dynamically for

DARPs with passenger transfers.

Another way of mixing is the so-called “share-a-ride” problem, where passenger transport is

combined with the pickup and delivery of goods in the same vehicle. There may be a difference

in priority and urgency in servicing passenger rather than goods delivery trips. Therefore, new

models will be needed to investigate such integrated systems.

Stochastic and dynamic modeling for disruption management. As every transport operator

knows, things never go according to plan. For DAR systems, as for other transport systems,

disruption management is essential. In Section 4.4, we observe that most DARPs consider

only new user requests under a dynamic and deterministic environment; these problems rarely

consider other types of events (e.g., long delays in vehicle arrival times and accidents) that require

modifications of existing plans or affect the synchronization of vehicles. New modeling techniques

and frameworks should be proposed to capture these factors in disruption management.

Consideration of staff rostering. We observe that there has been a growing number of papers

which consider manpower requirements in their DARPs, as suggested in Section 4.2.3. While

these applications assumed that the staff work shift is given, an integrated DARP that simulta-

neously optimizes both staff rostering decisions across multiple days and routing decisions within

the day can potentially lead to a more efficient roster, reduced cost, and enhanced service qual-

ity, in particular for problems with high variations in daily user demands. The determination

of the joint decisions will require the consideration of a more complicated and larger integrated

problem. Therefore, research on efficient modeling for problem size reduction is needed.

Modeling of worst-case scenarios and multiple sources of stochasticity under a static environ-

ment. As indicated by the small number of papers in the category of static and stochastic

DARPs in Section 4.3, there is much room for research in this direction. The existing research

on static and stochastic DARPs was developed heavily based on the assumptions of certain

probability distributions or very specific problem settings. In particular, only one dimension

of stochasticity was considered in the three papers reviewed in this category; all considered

stochastic arrivals only. Another type of stochasticity that commonly arises in practice is the

uncertain travel times, not to mention the added challenge due to the interaction of the multiple

dimensions of stochasticity – the number of user requests, the delays in the user arrival times at

the pick-up locations and the travel times. Moreover, when most models use an expected value

as the objective, some realized outcomes can be unacceptably bad. The exploration of robust
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models that capture worse-case scenarios and multiple sources of stochasticity using general

probability distributions is, therefore, an important research direction.

Modeling the competition between multiple DAR service providers. As mentioned in Section

4.2.4, multiple DAR service providers can exist in a single operating area in reality. Instead of

cooperation, they can compete with each other, by improving the level of service provided or

reducing the fares, to attract more customers. This realistic situation has not been modeled and

analyzed in the existing DARP studies, leading to one research gap for future research.

6.2.2 Algorithms

Theoretical investigation into the strengths of different classes of valid inequalities. As discussed

in Section 5.1.1, there is a lack of theoretical investigation into the strength of the classes of

valid inequalities for DARPs, in particular, the conditions whereby they are facet-defining. This

line of research can help design better separation procedures in a B&C algorithm and derive

strengthened inequalities.

Effectiveness of various branching schemes in B&B-based algorithms. It appears that there is

inadequate research on the performances of branching schemes in a B&B-based algorithm, as

suggested in Section 5.1.5. Most existing results on branching schemes focused on the problem-

specific applications. More comprehensive computational experiments may need to be conducted

for the examination of the effectiveness of these schemes with different DARP features.

Faster algorithms for solving subproblems. As discussed in Sections 5.1.2 and 5.1.3, B&P and

B&P&C are two of the most popular exact algorithms to solve DARPs. The essence of B&P and

B&P&C algorithms is the reformulation of the overall problem into a master and subproblems.

Their performance highly depends on the effectiveness of this decomposition. In particular, the

majority of the overall runtime is observed to be spent on solving the subproblems (Qu and

Bard, 2015). Research on new decomposition methods and efficient algorithms to solving the

subproblems will enhance the computational performance of these exact algorithms.

Integration of decomposition techniques into multi-objective exact algorithms. As mentioned in

Section 5.1, the exact algorithms reviewed are for single objective DARPs. However, multi-

objective DARPs are considered in the literature as shown in Tables 5–8 in the Appendix

but were only solved by meta-heuristics. A future research direction is, therefore, to integrate

decomposition techniques into multi-objective exact algorithms, to provide a benchmark for the

results obtained by the multi-objective heuristics.
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New metaheuristics and hybrids of exact methods and heuristics. It is no doubt that using

meta-heuristics to solve the DARP and its variants is a popular choice among the research

community. This is because models are becoming more complex and rich due to the need to

capture more and more realistic operational features and the increasing number of user requests.

There is also a need to react fast as users expect to get an answer/solution relatively quickly.

Figure 2 shows the number of publications per method published since 2007. Please note that a

publication might belong to more than one category if the publication describes more than one

solution method. We observe from the figure that using hybrid methodologies to solve DARPs

is the most popular in the survey period. According to the survey by Cordeau and Laporte

(2007), there were no publications on using hybrid algorithms to solve DARPs, implying that

using hybrid algorithms to solve DARPs is becoming increasingly popular. We also see from

the figure that variable neighborhood search comes in second. However, seven out of the ten

publications originate from the same research group. Moreover, no new meta-heuristics (e.g.,

artificial bee colony methods, chemical reaction optimization, etc.) have been used to solve

DARPs according to the figure. Certainly, we expect the body of research of applying meta-

heuristics to the DARP and its variants to continue to grow, particularly in the exploration of

new meta-heuristics and in hybrid methods combining exact and heuristic approaches to deal

with the specific features of DARPs.

Figure 2: Number of publications per solution method

The utilization of more simple neighborhood moves. As mentioned in Sections 5.2.5 and 5.2.7,

the hybrid ALNS algorithm by Gschwind and Drexl (2016) is currently the best algorithm for

solving the standard DARP. This outstanding performance is due to the two new improvement

components. However, these additional components rely on dynamic-programming and solv-

ing a set-covering problem. According to Cordeau et al. (2002), a good heuristic should also

37



be simple besides being accurate and fast. This leads to the question: Can these two compo-

nents be replaced by more simple neighborhood moves and the algorithm still exhibit a similar

performance?

New algorithms for feasible solutions to DARP variants. As stated in Section 5.3.1, only a few

studies focus on this line of research and solution feasibility depends on the set of constraints.

Different DARP variants have their own set of specific constraints that make existing algorithms

for feasible solutions cannot be directly used for specific applications. Additional efforts are

required to modify these existing algorithms for different DARP applications. A natural and

potential future research direction is therefore to develop new algorithms or modifying existing

algorithms for determining feasible solutions to DARP variants, especially for those with specific

constraints such as manpower requirement and transfers.

Novel approximation algorithms for new DARP variants. As shown in Section 5.3.2, approxi-

mation algorithms receive much less attention than heuristics and metaheuristics and focus on

solving the basic DARP. More research can be done on this line of research, especially those

approximation algorithms for new problem variants with special features.

Approximate reasoning approaches to solving more practical stochastic DARP applications. As

reflected in Section 5.3.2, only very little research on approximate reasoning approaches to solv-

ing DARPs. A lot more practical stochastic applications can be solved using these approaches

in the future. Moreover, these approaches can be further improved to suit specific applications

and compared with algorithms for stochastic DARPs.

Development of more algorithms using stochastic information. One interesting finding in our

survey of the literature is that relatively few papers – only seven by our count – have proposed

solution methods to stochastic and/or dynamic DARPs in which stochastic information is uti-

lized by the decision maker. Two such studies - by Ho and Haugland (2011) and Heilporn et al.

(2011) - considered static and stochastic DARPs. Two studies – by Schilde et al. (2011; 2014)

- considered dynamic and stochastic DARPs. Interestingly, we also found three studies - by

Hyytiä et al. (2012), Sayarshad and Chow (2015), and Muñoz-Carpintero et al. (2015) - that

considered dynamic and deterministic DARPs in which the proposed solution methods utilized

stochastic information concerning the appearance of future users. With more auto-sensed data

available, more detailed information will be available on the stochasticity of travel times and

other aspects of the DARP. Thus, we encourage future researchers to develop additional DARP

solution methods that utilize stochastic information.
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Effective and efficient solution methods for disruption management under a stochastic and dy-

namic environment. To support effective disruption management, new research is needed to

develop robust solution methods for stochastic and dynamic models for DARPs. Stochastic op-

timization algorithms can be developed to mitigate the risk of service disruptions. Fast recourse

methods are needed for real-time recovery after accidents and service interruptions. Hybrid

methods that combine exact and heuristic approaches may be particularly pertinent.

Unified methods for solving different DARP variants. Each DAR system may have problem-

specific constraints due to its underlying motivating application. DARP algorithms may need

to be adaptable to different problem variants. For example, modeling the DARP problem

with transfers of mental health patients requires precedence constraints related to transfers and

solving this problem requires a procedure for checking the feasibility of routes and heuristic

operators dedicated to transfers (Masson et al., 2014). It would be interesting to explore unified

DARP algorithms that work well on a variety of DARP models (and possibly other routing

problems as well). Thus far, the majority of research on the DARP has been on static and

deterministic models as well as their methods, it would be very interesting to explore extensions

of these models and methods to the dynamic and/or stochastic settings.

Development of fast on-line algorithms based on parallel computing and distributed bidding.

With advances in communications technologies, DAR system will evolve from being based on

advanced reservation to being based on “real-time” dispatch. Thus, fast on-line algorithms

are needed to be able to insert new trips into routes that are already on-going. To achieve

the computational speeds necessary, parallel computation (perhaps using meta-heuristics) is a

promising research direction. Further, as discussed above, for future DAR systems operating

in a distributed bidding mode, on-line competitive algorithms will be an exciting new research

area.

6.3 Conclusions

In this paper, we summarized the research on the DARP since 2007. We provided a taxonomy of

the problem variants studied and the algorithms developed. We also described the diverse areas

of applications for the DARP. Finally, with the recent emergence of new technologies, exciting

new avenues of research for the DARP are opening up, and we look forward to significant

advances in DARP research in meeting the challenges in the years to come.
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Marković, N., Nair, R., Schonfeld, P., Miller-Hooks, E. and Mohebbi, M. (2015). Optimizing
dial-a-ride services in Maryland: Benefits of computerized routing and scheduling, Trans-
portation Research Part C: Emerging Technologies 55: 156–165.

Masmoudi, M. A., Braekers, K., Masmoudi, M. and Dammak, A. (2017). A hybrid genetic
algorithm for the heterogeneous dial-a-ride problem, Computers & Operations Research
81: 1–13.

Masmoudi, M. A., Hosny, M., Braekers, K. and Dammak, A. (2016). Three effective metaheuris-
tics to solve the multi-depot multi-trip heterogeneous dial-a-ride problem, Transportation
Research Part E: Logistics and Transportation Review 96: 60–80.
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Mladenović, N. and Hansen, P. (1997). Variable neighborhood search, Computers & Operations
Research 24(11): 1097–1100.

Molenbruch, Y., Braekers, K. and Caris, A. (2017a). Benefits of horizontal cooperation in
dial-a-ride services, Transportation Research Part E: Logistics and Transportation Review
107: 97–119.

Molenbruch, Y., Braekers, K. and Caris, A. (2017b). Operational effects of service level variations
for the dial-a-ride problem, Central European Journal of Operations Research 25(1): 71–90.

Molenbruch, Y., Braekers, K. and Caris, A. (In press). Typology and literature review for
dial-a-ride problems, Annals of Operations Research pp. 1–31.

Molenbruch, Y., Braekers, K., Caris, A. and Berghe, G. V. (2017). Multi-directional local search
for a bi-objective dial-a-ride problem in patient transportation, Computers & Operations
Research 77: 58–71.

Muelas, S., LaTorre, A. and Peña, J.-M. (2013). A variable neighborhood search algorithm for
the optimization of a dial-a-ride problem in a large city, Expert Systems with Applications
40(14): 5516–5531.

Muelas, S., LaTorre, A. and Peña, J.-M. (2015). A distributed VNS algorithm for optimizing
dial-a-ride problems in large-scale scenarios, Transportation Research Part C: Emerging
Technologies 54: 110–130.
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A Problem overview
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Jorgensen et al. (2007) S S M HO X X X X M
Luo and Schonfeld (2007) S S M HO X X X S
Melachrinoudis et al. (2007) M S M HE X X M
Ropke et al. (2007) S S M HO X X X X S
Wolfler Calvo and Colorni (2007) S S M HO X X X S
Cubillos et al. (2009) S S M HO X X M
Häll et al. (2009) S S M HO X X X X S
Karabuk (2009) M S M HE X X X X S
Mauri et al. (2009) M S M HE X X X X M
Parragh et al. (2009) S S M HO X X X X M
Cortés et al. (2010) M S M HO X X S
Garaix et al. (2010) M S M HE X X X M
Gupta et al. (2010) S S S HO X S
Haugland and Ho (2010) S S S HO X X X S
Parragh et al. (2010) S S M HO X X X X S
Tang et al. (2010) S S S HO X X X S
Berbeglia et al. (2011) S S M HO X X X S
Firat and Woeginger (2011) S S S HO X X X S
Garaix et al. (2011) M S M HE X X X S
Häme (2011) S S S HO X X X X M
Parragh (2011) S S M HE X X X X S
Berbeglia, Pesant and Rousseau (2012) M S M HO X X S
Chevrier et al. (2012) S S M HE X X X X M
D’Souza et al. (2012) S S S HO X M
Parragh et al. (2012) S S M HE X X X X S
Zidi et al. (2012) S S M HE X X M
Carnes et al. (2013) M S M HE X X X X S
Guerriero et al. (2013) S S M HE X X X X S
Häme and Hakula (2013) S S M HO X X X X S
Kirchler and Wolfler Calvo (2013) S S M HO X X X X X M
Muelas et al. (2013) S S M HO X X X S
Paquette et al. (2013) S S M HE X X X X M
Parragh and Schmid (2013) S S M HO X X X X S
Qu and Bard (2013) S S M HE X X S
Reinhardt et al. (2013) M M M HE X X X X M
Shen and Quadrifoglio (2013) M S M HE X X X S
Atahran et al. (2014) S S M HE X X X M
Braekers et al. (2014) M S M HE X X X X S
Feng et al. (2014) S M M HE X X X X S
Ilani et al. (2014) M M M HE X X X S
Masson et al. (2014) M S M HO X X X X S
Lehuédé et al. (2014) M S M HO X X X X M
Gschwind and Irnich (2015) S S M HO X X X X S
Hu and Chang (2015) S S M HO X X X S
Liu et al. (2015) S M M HE X X X X S
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Table 5 – continued from previous page
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Muelas et al. (2015) S S M HO X X X S
Parragh et al. (2015) S M M HO X X X X X S
Qu and Bard (2015) S S M HE X X X X M
Urra et al. (2015) S S M HO X X X X M
Zhang et al. (2015) S M M HO X X X X X M
Braekers and Kovacs (2016) S S M HE X X X X S
Chassaing et al. (2016) S S M HO X X X X S
Gschwind and Drexl (2016) S S M HO X X X X S
Masmoudi et al. (2016) M M M HE X X X X S
Ritzinger et al. (2016) S S M HO X X X X S
Detti et al. (2017) M S M HE X X X M
Lim et al. (2017) S M M HE X X X X X M
Masmoudi et al. (2017) S S M HE X X X X S
Molenbruch, Braekers and Caris (2017a) M S M HE X X X X S
Molenbruch, Braekers and Caris (2017b) S S M HO X X X X S
Molenbruch, Braekers, Caris and Berghe (2017) S S M HO X X X X M
Pimenta et al. (2017) S M M HO X X S
Posada et al. (2017) S S M HE X X X S
Schönberger (2017) M M M HE X X X S
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Hyytiä et al. (2010) S S S HO X X
Heilporn et al. (2011) S S S HO X X X X S
Ho and Haugland (2011) S S M HE X X X S
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Table 7: Dynamic and deterministic DARPs
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Hanne et al. (2009) M S M HE X X X M
Beaudry et al. (2010) M S M HE X X X X M
Berbeglia, Cordeau and Laporte (2012) S S M HO X X X X X S
Häll and Peterson (2013) M S M HE X X X S
Wong et al. (2014) S S M HO X X X M
Häll et al. (2015) M S M HE X X X M
Häme and Hakula (2015) S S M HO X X X X S
Marković et al. (2015) S S M HE X X X X M
Santos and Xavier (2015) M S M HE X X X X X M
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Waisanen et al. (2008) M S M HO S
Xiang et al. (2008) S S M HE X X X X X S
Schilde et al. (2011) S S M HO X X X X M
Hyytiä et al. (2012) S S M HO M
Maalouf et al. (2014) S S M HO X X X X M
Núñez et al. (2014) M S M HO X M
Schilde et al. (2014) S S M HO X X X X M
Muñoz-Carpintero et al. (2015) M S M HO X S
Sayarshad and Chow (2015) S S M HO X S
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B The largest solved instances by exact methods

Table 9: The largest solved instances by exact methods

Problem Solution methodology & reference Size of the largest CPU (sec)
typea solved instanceb

DARP B&P&C (Gschwind and Irnich, 2015) 8/96 898.8
HDARP B&C (Braekers et al., 2014) 8/96c NAe

MD-HDARP B&C (Braekers et al., 2014) 8/64d 1331
DARPSRP B&P (Parragh et al., 2015) 4/40; 5/20d 5605.18; 312.89
HPDP-CVC B&P&C (Qu and Bard, 2015) 11/38d; NAe/50d 885.22; 893.08
DC-HDARP B&C (Braekers and Kovacs, 2016) 4/40 578f

R-DARP B&C (Liu et al., 2015) 2/22d 2094
PDPT B&C (Cortés et al., 2010) 2/6 119.531
S-DARP Integer-L-shaped algorithm (Heilporn et al., 2011) 1/26d 6913

a HDARP: Heterogeneous DARP; MD-HDARP: HDARP with multiple depots; DARPSRP: DARP with
split requests and profits; HPDP-CVC: Heterogeneous pickup and delivery problem with configurable ve-
hicle capacity; DC-HDARP: HDARP with driver consistency; R-DARP: Realistic DARP; PDPT: Pickup
and delivery problem with transfers; S-DARP: Single-vehicle DARP with stochastic customer delays
b Number of vehicles/requests
c The results are available from http://hdarp-results.e-monsite.com
d There were some smaller instances unable to solve to optimality
e Not reported in the paper/website
f This is the running time for solving one of the 108 instances to optimality

C Benchmark results

Table 10: Best known results for the DARP instances by Cordeau and Laporte (2003)

Instance BKS Instance BKS

R1a 190.02 R1b 164.46
R2a 301.34 R2b 295.66
R3a 532.00 R3b 484.83
R4a 570.25 R4b 529.33
R5a 625.64 R5b 573.56
R6a 783.78 R6b 725.22
R7a 291.71 R7b 248.21
R8a 487.84 R8b 458.73
R9a 653.94 R9b 592.23
R10a 845.47 R10b 783.81
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Table 11: Optimal results for the DARP instances by Cordeau (2006) and Ropke et al. (2007)

Instance Optimal Instance Optimal

a2-16 294.25 b2-16 309.41
a2-20 344.83 b2-20 332.64
a2-24 431.12 b2-24 444.71
a3-18 300.48 b3-18 301.64
a3-24 344.83 b3-24 394.51
a3-30 494.85 b3-30 531.44
a3-36 583.19 b3-36 603.79
a4-16 282.68 b4-16 296.96
a4-24 375.02 b4-24 371.41
a4-32 485.50 b4-32 494.82
a4-40 557.69 b4-40 656.63
a4-48 668.82 b4-48 673.81
a5-40 498.41 b5-40 613.72
a5-50 686.62 b5-50 761.40
a5-60 808.42 b5-60 902.04
a6-48 604.12 b6-48 714.83
a6-60 819.25 b6-60 860.07
a6-72 916.05 b6-72 978.47
a7-56 724.04 b7-56 823.97
a7-70 889.12 b7-70 912.62
a7-84 1033.37 b7-84 1203.37
a8-64 747.46 b8-64 839.89
a8-80 945.73 b8-80 1036.34
a8-96 1229.66 b8-96 1185.55
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Table 12: Best known results for the HDARP instances by Parragh (2011) and Braekers et al.
(2014)

Instance Best known Instance Best known

E I
a2-16 331.16 a2-16 294.25
a2-20 347.03 a2-20 355.74
a2-24 450.25 a2-24 431.12
a3-18 300.63 a3-18 302.17
a3-24 344.91 a3-24 344.83
a3-30 500.58 a3-30 494.85
a3-36 583.19 a3-36 618.15
a4-16 285.99 a4-16 299.05
a4-24 383.84 a4-24 375.02
a4-32 500.24 a4-32 486.93
a4-40 580.42 a4-40 557.69
a4-48 670.52 a4-48 670.72
a5-40 500.06 a5-40 507.18
a5-50 693.77 a5-50 690.99
a5-60 828.90 a5-60 816.15
a6-48 614.36 a6-48 604.12
a6-60 847.58 a6-60 829.23

a6-72 949.17 a6-72 936.32*

a7-56 740.63 a7-56 727.20

a7-70 946.32 a7-70 916.06*

a7-84 1092.90 a7-84 1035.11
a8-64 762.81 a8-64 748.04

a8-80 982.71 a8-80 956.98*

a8-96 1265.36 a8-96 1222.03*

Results with * are the best feasible results, while results without * are
the optimal results.
The best lower bounds for a6-72, a7-70, a8-80, and a8-96 (Set I ) are
935.52, 903.43, 954.52, and 1218.84, respectively.
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Table 13: Best known results for the MD-HDARP instances by Braekers et al. (2014)

Instance Best known Instance Best known Instance Best known

U E I
a2-16 284.18 a2-16 327.67 a2-16 284.18
a2-20 343.43 a2-20 345.59 a2-20 358.88
a2-24 427.17 a2-24 445.88 a2-24 439.29
a3-18 289.67 a3-18 289.67 a3-18 292.41
a3-24 348.30 a3-24 348.61 a3-24 348.54
a3-30 469.16 a3-30 471.43 a3-30 486.04
a3-36 592.42 a3-36 593.84 a3-36 626.96
a4-16 262.44 a4-16 262.44 a4-16 285.4
a4-24 355.72 a4-24 365.54 a4-24 357.51
a4-32 461.65 a4-32 476.59 a4-32 471.54
a4-40 540.34 a4-40 562.86 a4-40 542.56
a4-48 631.75 a4-48 633.49 a4-48 637.58
a5-40 482.19 a5-40 483.84 a5-40 496.36
a5-50 664.54 a5-50 674.19 a5-50 669.30
a5-60 789.87 a5-60 813.96 a5-60 800.10
a6-48 586.08 a6-48 599.76 a6-48 586.08
a6-60 776.63 a6-60 802.49 a6-60 789.40
a6-72 883.78 a6-72 915.03 a6-72 910.24
a7-56 680.08 a7-56 703.62 a7-56 688.51

a7-70 854.22 a7-70 910.91 a7-70 867.47*

a7-84 1007.33 a7-84 1059.12 a7-84 1006.32*

a8-64 713.11 a8-64 731.11 a8-64 713.11

a8-80 885.91* a8-80 925.72 a8-80 908.30*

a8-96 1172.98* a8-96 1215.87* a8-96 1172.90*

Results with * are the best feasible results, while results without * are the optimal results.
The best lower bounds for
Set U : a8-80: 885.45; a8-96: 1170.91
Set E : a8-96: 1215.38
Set I : a7-70: 865.36; a7-84: 1005.13; a8-80: 904.73; a8-96: 1169.75
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