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ABSTRACT 

 

This paper proposes an approach-based transit assignment model under the assumption 

of logit-based stochastic user equilibrium (SUE) with fixed demand. This model is 

proven to have a unique solution. A cost-averaging version of the self-regulated 

averaging method (SRAM) is developed to solve the proposed approach-based SUE 

transit assignment problem. It is proven that the algorithm converges to the model 

solution. Numerical examples with discussions are presented to investigate the model 

properties, a paradoxical phenomenon due to the stochastic nature of the model, 

capacity paradox, and the performance of the proposed algorithm. The sensitivity 

analysis of different model and algorithm parameters are performed. A performance 

comparison between the cost-averaging SRAM, the flow-averaging SRAM, and the 

method of successive averages is made. The proposed methodology is demonstrated 

to be able to solve the Winnipeg transit network. 

 

Keywords: transit assignment; logit-based stochastic user equilibrium; paradox; 

approach-based formulation. 

 

1. INTRODUCTION 

 

The transit assignment problem has received considerable attention, as finding solutions 

to this problem is essential for planning, designing, controlling, and managing transit 

networks and evaluating transit system performance. This problem requires 

determining passenger flows in transit networks, which depends on the underlying 

assumptions of the route choice behavior of passengers. Earlier transit assignment 

models assume that passengers select routes based on Wardrop’s user equilibrium (UE) 

principle. Most of the transit assignment models in the literature are also user 

equilibrium-based models (e.g., Wu et al., 1994; Poon et al., 2004; Hamdouch et al., 

2011; Schmöcker et al., 2011; Sun et al., 2013; Trozzi et al., 2013; Verbas et al., 2016; 

Binder et al., 2017).  



 

Daganzo and Sheffi (1977) and Fisk (1980) extended Wardrop’s UE principle to the 

stochastic user equilibrium (SUE) principle to capture the random effect in travelers’ 

route choice behavior. In contrast with the perfect information assumption in the UE 

principle, the SUE principle assumes that passengers may not know the precise travel 

time of available routes and make route choice decisions based on their perceived travel 

time. This extension is more realistic and leads to the development of SUE transit 

assignment models (e.g., Nielsen, 2000; Nielsen and Frederiksen, 2006; Liu and Meng, 

2014). 

 

Traditionally, transit assignment problems are either formulated as link-based models 

(e.g., Wu et al., 1994; Kurauchi et al., 2003; Cepeda et al., 2006; Hamdouch and 

Lawphongpanich, 2008; Hamdouch et al., 2014; Codina and Rosell, 2017) or path-

based models (e.g., Lam et al., 1999; Wu and Lam, 2003; Teklu, 2008; Li et al., 2010; 

Szeto et al., 2011, 2013; Cats et al., 2016; Nuzzolo et al., 2016) depending on the 

presented form of passenger flows (i.e., link flow or path flow variables). Link-based 

models can be solved without knowing the path set and hence path set generation 

heuristic and time-consuming path enumeration procedures can be avoided during 

solution processes. Solving the link-based formulations directly can also be quicker 

than solving path-based formulations with path enumeration and guarantee 

convergence to obtain solutions to transit assignment models for practical size networks. 

However, path flow information cannot be obtained using link-based formulations. This 

information is useful to determine the impact of path-specific cost (or cost-saving) for 

a group of passengers. For example, it is common in Hong Kong that there is a fare 

discount when a passenger transfers from one specific transit line to another. This fare 

discount can be modeled to be a path-specific cost saving. 

 

In contrast to link-based models, path-based models can provide path flow information 

for passengers’ route choice behavior modeling which allows the modeler to evaluate 

the impact of path-specific cost to a specific group of passengers. Moreover, solution 

methods for logit-based stochastic assignment problems with a considerably faster 

convergence rate than those for deterministic counterparts can be easily applied to solve 

the path-based formulations. However, the use of path-based methods requires an 

explicit path set, which can be obtained by path enumeration. The process of path set 

enumeration can be very time-consuming for practical size transit networks. As a result, 

the path set generation approach is commonly used instead of path set enumeration to 

solve most of the path-based models. This approach only generates paths when needed 

and unused paths are deleted. However, this approach is heuristic and cannot guarantee 



convergence. Recently, efficient methods, such as event dominance (Florian, 1998, 

2004) or equilibrated choice sets (Watling et al., 2015; Rasmussen et al., 2015), have 

been developed to overcome these issues and have been applied to commercial software 

packages (e.g., Emme).  

 

In order to retain the advantages of link-based models while retaining the path choice 

information used in traffic assignment models, Long et al. (2013) proposed an 

alternative methodology. They proposed the approach-based formulation for their 

deterministic dynamic traffic assignment problem. In their formulation, approach 

proportions are used to describe traffic movements in the network and are used as 

decision variables. (An approach proportion associated with a link emanated from a 

node is defined as the probability of the link chosen by traffic flows at that node.) In 

this approach-based formulation, the path flow information is implicitly included in 

the formulation and can be obtained through a forward pass method. This formulation 

approach has only been applied to very limited transit assignment studies. For example, 

Szeto and Jiang (2014) proposed the approach-based formulation of the UE transit 

assignment problem; Jiang and Szeto (2016) also formulated their reliability-based 

stochastic transit assignment problem as an approach-based transit assignment 

problem. However, extensions to SUE transit assignment have not been found.  

 

In this paper, we propose an approach-based logit SUE transit assignment model, 

which can be formulated as a fixed-point (FP) problem in terms of approach 

proportions (or namely approach probabilities). In our proposed model, the approach 

proportions are destination specific. Compared with an origin-destination based model, 

the number of decision variables in our model is reduced significantly. We also prove 

that our model has a unique solution.  

 

SUE transit assignment models are usually solved by the techniques for FP problems 

including the method of successive averages (MSA) (e.g., Wu and Lam, 2003; Nielsen 

and Frederiksen, 2006; Sumalee et al., 2009). The MSA adopts a fixed and 

predetermined step size during the solution process and is known to have a slow 

convergence rate. Regarding this issue, Liu et al. (2009) proposed a self-regulated 

averaging method (SRAM) for traffic assignment problems, which in contrast adopted 

varying step sizes during the solution process to improve the convergence rate. Long et 

al. (2014) further reformed the traditional flow-averaging SRAM into a cost-averaging 

version to solve their traffic assignment model. In contrast with the original flow-

averaging version of the SRAM, the cost-averaging version solves the FP problem 

formulated in terms of link costs instead of passenger flows. However, the application 



of this cost-averaging method for solving transit assignment problems, including our 

approach-based problems, has not been reported in the literature. It is unclear whether 

the cost-averaging SRAM is more efficient than the traditional flow-averaging SRAM 

and the traditional MSA to solve transit assignment problems and whether the cost-

averaging SRAM is convergent to the solution of the proposed approach-based model. 

 

In this paper, in order to improve computational efficiency, the convergent cost-

averaging version of the SRAM is proposed to solve the approach-based SUE transit 

assignment model. Moreover, in this paper, the effect of the algorithmic parameters on 

the speed of convergence is examined. In addition, a performance comparison among 

the cost-averaging and flow-averaging SRAM and the MSA is made based on 

numerical examples. The Winnipeg transit network is used to demonstrate the 

convergence of the cost-averaging SRAM. 

 

The proposed approach-based SUE transit assignment model can be used to evaluate 

network design strategies and identify possible paradox occurrences. In the literature, 

limited effort has been spent on the identification and analysis of paradoxical 

phenomena of transit assignment problems. Cominetti and Correa (2001) presented a 

paradox on the demand side of transit assignment, showing that a certain range of 

demand increments may not affect the transit time of the system. Szeto and Jiang (2014) 

and Jiang and Szeto (2016), on the other hand, presented the Braess-like and capacity 

paradoxes on the supply side of transit assignment, showing that providing a new 

transit line or increasing service frequency may not necessarily enhance the system 

performance in terms of expected total system cost or network capacity/throughput. 

However, in the aforementioned models, they assume that passengers follow the UE 

principle; little attention has been paid to the paradoxical phenomenon caused by the 

stochastic nature of SUE transit assignment. It is also unclear whether capacity 

paradox can still be observed under the SUE condition. 

 

In this paper, we illustrate the paradoxes associated with the stochastic nature of the 

model as well as passengers’ non-cooperative behavior based on numerical examples: 

adding a new transit line to the network or improving the frequency of an existing 

transit line in a transit network can cause an increase in expected total system cost and 

a reduction in network throughput. The occurrences of the two paradoxes are also 

investigated. We also examine the effect of passengers’ perception of travel cost 

(measured by the value of θ) on the paradoxical phenomena. 

 

Overall, this paper presents an alternative methodology to solve large-scale SUE 



transit assignment based on the approach-based formulation and the cost-averaging 

SRAM. This paper also revisits two types of paradoxes that have been found in the UE 

traffic or transit assignment literature but have not been discussed in the SUE transit 

assignment literature. This paper enriches the literature by extending the approach-

based theory and concept as well as the discussion of paradoxes to SUE transit 

assignment. Specifically, this paper makes the following contributions. 

 It proposes an approach-based transit assignment model under logit-based 

stochastic user equilibrium; this model is not a simple or straightforward 

extension of the UE counterpart but is more general than the counterpart; the 

model is proven to have a unique solution. 

 It proposes to use the cost-averaging SRAM to solve the FP problem; the cost-

averaging SRAM is proven to be convergent and can solve large transit 

networks. 

 It illustrates the existence of the paradoxes caused by the stochastic nature of 

the model and passengers’ non-cooperative behavior in transit networks in the 

context of stochastic user equilibrium. It shows that improving a transit route 

in the network or adding a new transit route to the network may not 

necessarily improve the performance of the transit system in terms of 

expected total system cost and network capacity. 

 It investigates the occurrences of the two paradoxes and provides insights and 

suggestions on transit network design to avoid both the occurrence of these 

paradoxes. 

 It demonstrates the effects of different parameters in the proposed model and 

algorithm. 

 

The remainder of this paper is organized as follows: Section 2 introduces the notations 

and network presentation used in this paper, followed by the assumptions. Then, the 

approach-based logit SUE transit assignment model is presented. The solution 

algorithm proposed to solve the model is detailed in Section 3. In Section 4, various 

numerical studies are carried out to show the model properties, the occurrence of the 

two paradoxes as well as the performance of the proposed algorithm. Finally, Section 

5 gives the conclusion. 

 

 

2. MODEL FORMULATION 

 

2.1. Notations 

 



The following notations are used throughout this paper. 

 

L the set of lines in the transit network; 

l the line index; 

S the set of links; 

s the link index; 

b the approach index; 

A
s the set of attractive lines associated with link s; 

iA
 the set of links emanating from node i or the set of approaches 

associated with node i; 

iA
 the set of links going into node i; 

N the set of nodes (i.e., stops) in the transit network; 

i the node index; 

t(s), h(s) the tail and head nodes of link s; 

u(b) the underlying link of approach b; 

R the set of origins; 

r the origin index; 

D the set of destinations; 

d the destination index; 

P
rd

 the set of paths associated with origin-destination (O-D) pair rd; 

p the path index;  

S
p
  the set of links on path p; 

S
id

 the set of links on efficient paths connecting node i and destination d; 

st , s , s  the in-vehicle travel time, waiting time, and perceived congestion time 

of link s; 

l

st ,
l

sw  the in-vehicle travel time and relative frequency of line l associated with 

link s; 

lf , l  the frequency and capacity of a single vehicle of line l; 

id

sL  the likelihood of passengers who use link s and travel from node i to 

destination d; 

d

bL  the likelihood of passengers who use approach b and travel to 



destination d; 
id  the minimum travel cost for passengers from node i to destination d; 

id

s  the minimum travel cost for passengers from node i to destination d 

using link s; 

id

sW  the weight for passengers who enter link s and travel from node i to 

destination d; 

d

bW  the weight for passengers who choose approach b and travel to 

destination d; 

rdq  passenger demand from origin r to destination d; 

sv  passenger flow on link s; 

rd

py  passenger flow on path p associated with O-D pair rd; 

d

slv  passenger flow on link s to destination d through line l; 

sv  passenger flow on the competing links of link s; 

id

sv  passenger flow on link s from node i to destination d; 

d

sv  passenger flow on link s towards destination d; 

v the vector  d

sv  with a dimension of S D ; 

id

sa  the choice probability of link s chosen by passengers traveling from 

node i to destination d; 

d

sa  the choice probability of link s chosen by passengers traveling to 

destination d; 

a the vector  d

sa  with a dimension of S D ; 

d

b  the approach probability of passengers using approach b and traveling 

to destination d; 



rd

p   the probability of passengers using path p traveling from origin r to 

destination d; 

α  the vector  d

b  with a dimension of S D ; 

sc  the total expected travel cost of link s; 

pc  the total expected travel cost of path p; 

c the vector  sc  with a dimension of S ; 

T ( W ) the value of in-vehicle travel time (waiting time); 

  a unit conversion parameter; 

  , ε, n the parameters of the congestion cost function; 

s  the parameter of the congestion cost function associated with link s; 

  the positive dispersion parameter that reflects an aggregate measure of 

passengers’ perception of travel cost, the parameter of logit-based SUE 

model; 

k the iteration number in the SRAM; 

 ,   the parameters of step sizes in the SRAM; 

k  the parameter of the step size at the k-th iteration in the SRAM; 

k  the step size at the k-th iteration in the SRAM; 

hk the vector of descent directions at the k-th iteration in the SRAM. 

 

 

2.2. Network representations 

 

A transit network consists of a set of nodes (i.e., transit stops) and a set of transit routes 

(i.e., transit lines) serving the network. Passengers can board or alight at transit stops. 

Following the definition of attractive lines specified by De Cea and Fernández (1993), 

passengers at each stop are classified into groups according to their alighting stops. 

Then, a link (also called route section) is created for passengers boarding and alighting 

at the same pair of transit stops. Transit routes providing direct services between that 

pair of stops (i.e., common lines) are associated with the link connecting the pair of 

stops. As a result, a link-route representation of the transit network is developed. 



 

For illustration purposes, a small sample transit network is presented in Figure 1(a). 

The link-route representation of this network is shown in Figure 1(b). There are four 

transit stops (i.e., nodes A, B, X, and Y) and four transit lines (i.e., L1 to L4) in the 

network. There are 6 different pairs of stops in total (i.e., A-B, A-X, X-Y, Y-B, A-Y, 

and X-B) which are connected by links S1-S6, respectively. Take S1 and S3 as 

examples, only L1 provides a direct service between nodes A and B, and therefore L1 

is associated with S1 as marked in the brackets next to S1 in Figure 1(b). For S3 

connecting nodes X and Y, both L2 and L3 provide direct services, and therefore they 

are both associated with S3 as marked in the brackets next to S3 in Figure 1(b) and 

they are common lines of S3. This link-route representation considers only attractive 

lines (i.e., excluding routes with exceptionally high cost). The set of attractive lines 

associated with each link can be determined by a method proposed by Chriqui and 

Robillard (1975).  

 

 

(a) A small transit network   (b) Link-route representation 

Figure 1. A small transit network and its link-route representation (De Cea and 

Fernández (1993)) 

 

2.3. Assumptions 

 

As in the literature (e.g., Spiess and Florian, 1989; De Cea and Fernández, 1993; Lam 

et al., 1999), the following classical assumptions are made throughout this paper. A1) 

Passengers are assumed to arrive at transit stops randomly. A2) A passenger waiting at 

a transfer node considers a set of attractive lines before boarding, and he/she boards the 

first arriving bus if possible. A3) The waiting time for a transit line on a link is 

independent of the waiting times for other lines on the same link. A4) Vehicle headways 

are assumed to follow an exponential distribution. A5) Passengers’ route choice 

behaviors are in a stochastic manner, which means that the stochastic user equilibrium 

condition is assumed. Passengers make their route choice according to their perception 

of the total expected travel cost of each feasible route (path). A6) The travel demand 

between each origin-destination (OD) pair in the system is assumed to be known and 



fixed. This assumption is reasonable for strategic planning when the day-to-day 

variation, especially during the peak hour period, is small or negligible. A7) For 

simplicity, the capacity of each transit vehicle is assumed to be the same. However, 

there is no conceptual difficulty in extending the formulation to a scenario in which 

vehicles of different capacities traverse different routes. A8) When passengers making 

route choice decisions, only “efficient paths” as defined by Ran and Boyce (1996) are 

considered. The definition of “efficient paths” is given by the following: 

 

Definition D1. A path between an OD pair is efficient if it includes only links that take 

travelers closer to the destination. 

 

It has been proved by Long et al. (2015) that, under this assumption, the sub-network 

between each OD pair is acyclic. 

 

2.4. Cost components 

 

Based on the preceding notations, link-route representation, and assumptions, the cost 

components, and the formulations are presented below. 

 

Three cost components are included in the expected total cost: mean in-vehicle travel 

time cost, mean waiting time cost, and perceived congestion cost. For link s, the 

expected total travel cost is given by 

T W W ,   s s s sc t s S         , (1) 

where T  and W  are the corresponding values of time.  

 

The formulations of the three cost components are described individually in the 

following subsections. 

 

2.4.1. Mean in-vehicle travel time cost  

 

The mean in-vehicle travel time of link s is defined to be the weighted sum of the in-

vehicle travel time of all the attractive lines associated with link s as 

,   ,
s

l l

s s s

l A

t w t s S


    (2) 

where 
l

sw  is defined by 



,   ,

s

l
l

s sj

j A

f
w s S l A

f


   


. (3) 

 

The value of in-vehicle travel time T  is multiplied by st  to obtain the mean in-

vehicle travel time cost. 

 

2.4.2. Mean waiting time cost  

 

The mean waiting time of link s is defined to be the waiting time for the first arriving 

vehicle from the set of attractive lines associated with link s. Under assumptions A1) 

– A4), the mean waiting time of link s is given by  

,   

s

s l

s

l A

s S
f






  


. (4) 

 

In this case, the unit of frequency is veh/hr; and that of waiting time is in minutes. σ = 

60 min/hr. Based on Eq. (4), we can obtain the mean waiting time cost W s  . 

 

2.4.3. Perceived congestion cost  

 

The congestion cost function approach is one of the main approaches in the literature 

used to model the additional waiting time caused by insufficient vehicle capacity on a 

link. The perceived congestion delay of link s is given by a function of its link flow as 

well as link flows from a set of its competing links. 

 

The set of competing links of link s consists of links associated with two groups of 

passengers. One group of passengers is the group of passengers who board before the 

tail node of link s, t(s), and alight after the head node of link s, h(s), using at least one 

of the attractive lines associated with link s. These passengers occupy vehicle spaces 

of the attractive lines of link s and therefore contribute to congestion delays 

experienced by passengers on link s. As a result, links associated with this group of 

passengers are included in the set of competing links of link s. 

 

The other group of passengers is the group of passengers who board at t(s) and alight 

after h(s), using at least one of the attractive lines associated with link s. These 



passengers directly compete with passengers on link s for boarding vehicles from the 

attractive lines. Therefore, links associated with this group of passengers are included 

in the set of competing links of link s. 

 

Let vs be the passenger flow on link s in pass/hr, and sv  be the passenger flow 

contributed by the competing links of link s in pass/hr. Then, vs and 
sv  can be 

respectively calculated by 

,   
s

d

s sl

d D l A

v v s S
 

    and (5) 

,

,   
ms

m d

s s ml

d D m S m s l A A

v v s S
    

     , (6) 

where 1m

s   if m is a competing link of link s, = 0 otherwise. 

 

Passenger flows on link s and competing links of link s are contributed by flows on 

attractive lines associated with link s and competing links of link s using attractive 

lines of link s toward all destinations as described in Eqs. (5) and (6), respectively. 

 

The line flow 
d

slv  is calculated by 

,   , ,d d l

sl s s sv v w s S l A d D     . (7) 

 

Eq. (7) states that the flows on link s are distributed to the transit lines on that link 

based on the relative frequencies determined by Eq. (3). 

 

The additional waiting time of link s due to congestion can be calculated by the 

congestion cost function proposed by Szeto and Jiang (2014) as 

,   

s

n

s s
s s l l

l A

v v
s S

f

 
 




 
  

   
 
 


, (8) 

where the denominator is interpreted as the capacity of link s; the parameters   ,  , 

s , and n are calibration parameters used to model different effects contributed by 

various passenger flows. These parameters are related to the passengers’ perceptions 

of the level of congestion. A larger value means that the congestion level has a higher 



effect on the travel cost of passengers, leading to a higher congestion cost for a given 

ratio of flow to capacity. Based on Eq. (8), the congestion cost function can be 

expressed as W s  . 

 

2.5. The approach-based SUE transit assignment model 

 

Traditionally, transit assignment problems are either formulated as link-based models 

(e.g., Cepeda et al., 2006; Hamdouch and Lawphongpanich, 2008; Hamdouch et al., 

2014) or path-based models (e.g., Lam and Zhou, 1999; Poon et al., 2004; Szeto et al., 

2013), in which the link- and path-based models adopt link and path flows as decision 

variables, respectively. This section develops a link-based model for SUE transit 

assignment based on the theory of Dial’s (1971) STOCH algorithm and reformulates 

the link-based model into an approach-based model. 

 

2.5.1. The link-based model 

 

Based on the theory of Dial’s (1971) STOCH algorithm, the likelihood of a link s to be 

chosen by a passenger traveling from node i to destination d is expressed as 

 ( ) ( )exp ( ) ,    if 
,   , ,

0,     if 

t s d t s d id

sid

s
id

s S
L s S i N d D

s S

    
    



, (9) 

where  

( ) ( ) ,   ,t s d h s d

s sc s S d D      . (10) 

 

A backward pass method is used to calculate the weight of each link: 

( )

( ) ,   , ,

h s

id id d id

s s h s m

m A

W L W s S i N d D


 
      

 
 

 , (11) 

where ( )

d

h s = 1 if h(s) = d; ( )

d

h s = 0 otherwise. 

 

The choice probability of a link s chosen by passengers traveling from node i to 

destination d is given as 

( )

,   , ,

t s

id
id s
s id

m

m A

W
a s S i N d D

W


    


. (12) 



Note that the likelihoods, weights, and choice probabilities of all unused links are equal 

to zero. According to Eq. (12), we have 0 1id

sa   and 

( )

1

t s

id

s

s A

a


  for 

, ,s S i N d D    . 

 

The passenger flow of link s from node i towards destination d equals the choice 

probability of this link multiplied by the total inflow rate of the tail node, given by 

( )

( ) ,   , ,

t s

id id t s d id

s s m

m A

v a q v s S i N d D


 
      

 
 

 , (13) 

and the passenger flow of link s, vs, can be calculated by = id

s s

i N d D

v v
 

  . Note that 

( ) 0t s dq   if ( )t s R . 

 

Based on (9), (11), and (12), we can prove the following. 

 

Proposition 1. Under assumption A8, 
id jd

s sa a  for , , ,id jds S S i j N d D     . 

 

The proof can be found in the appendix. 

 

According to Proposition 1, link choice probability is independent of the start point. 

Then, Eq. (9), (11) to (13) can be rewritten as  

 ( ) ( )exp ( ) ,    if 
,   ,

0,     if 

t s d t s d d

sd

s
d

s S
L s S d D

s S

    
   



, (14) 

( )

( ) ,   ,

h s

d d d d

s s h s m

m A

W L W s S d D


 
     

 
 

 , (15) 

( )

,   ,

t s

d
d s
s d

m

m A

W
a s S d D

W


   


, and (16) 

( )

( ) ,   ,

t s

d d t s d d

s s m

m A

v a q v s S d D


 
     

 
 

 , (17) 

where 
d

sv  is given by =d id

s s

i N

v v


 . Note that 
( ) 0t s dq   if ( )t s R . 



 

The link choice probability 
d

sa  in (17) is a function of link travel costs, which in 

turns are functions of link flows. Therefore, the link-based SUE assignment problem 

can be formulated as an FP problem: to find  d

svv  such that  

( )v f v , (18) 

where f is the mapping function defined by Eqs. (1) to (8), (10), (14) to (17).  

 

The FP problem (18) satisfies the solution existence conditions pointed out by Theorem 

1 in the study of Cantarella (1997): at least one route is available to each passenger; 

passenger demand is non-negative; the link cost-flow functions described by Eqs. (1) 

to (8) are defined over the non-empty set of link flows and take values in the non-

empty, compact, and convex set of link costs; the network loading map defined by Eqs. 

(14) to (17) is defined over the non-empty set of link costs and take values in the non-

empty, compact, and convex set of link flows; the link cost-flow functions described 

by Eqs. (1) to (8) are continuous; the network loading map defined by Eqs. (14) to 

(17) is an upper semicontinuous point-to-set map. Therefore, the FP problem (18) has 

at least one solution. 

 

The FP problem (18) also satisfies the solution uniqueness conditions mentioned in 

Theorem 2 in the study of Cantarella (1997): the link cost-flow functions described by 

Eqs. (1) to (8) are strictly monotone increasing; the network loading map defined by 

Eqs. (14) to (17) is monotone non-increasing. There is exactly one solution to the 

problem. 

 

2.5.2. The approach-based model 

 

The outputs of the link-based model are in terms of passenger link flows, which do not 

allow determining path flows easily. The path flow information is useful to determine 

the impact of path-specific cost (or cost-saving) for a group of passengers such as fare 

discounts resulting from transfers between specific transit lines. In order to overcome 

this problem while retaining the advantages of the link-based model, we propose to use 

approach probabilities to formulate the problem. Following Szeto and Jiang (2014), an 

approach of a node is defined by a link coming out from that node. An approach is a 

link but must be associated with one node. (A link is defined by two nodes but an 

approach only concerns the tail node.) The approach probability is defined as the 

probability of an approach to be chosen by passengers leaving the node via that 



approach. To illustrate the concept of approaches associated with a node, Figure 2 

shows the three approaches of node A in the example network shown in Figure 1. 

 

 

Figure 2. Three approaches of node A in the example network shown in Figure 1 

 

The likelihood of an approach b to be chosen by a passenger traveling to destination d 

is expressed as 

 ( ( )) ( ( ))

( )exp ( ) ,    if ( )
,   , ,

0,     if ( )

t u b d t u b d d

u bd

b i
d

u b S
L b A i N d D

u b S

  


  
    



. (19) 

 

A backward pass method is used to calculate the weight of each approach as follows:  
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 , (20) 

where ( ( ))

d

h u b = 1 if h(u(b)) = d; ( ( ))

d

h u b = 0 otherwise. 

 

The approach probability of passengers using an approach b and heading towards 

destination d is given as 

( ( ))

,   , ,

t u b

d
d b
b id
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m A

W
b A i N d D
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. (21) 

 

Note that the likelihoods, the weights, and the choice probabilities of all unused 

approaches are equal to zero. According to Eq. (21), we have 0 1d

b   and 

1

i

d

b

b A




  for ,i N d D   .  

 

The passenger flow of link s towards destination d equals the approach probability of 

the approach using this link towards destination d multiplied by the total inflow rate 

of the tail node, given by 



 
( ) ( )

( ) ,   ,

t s t s

d b d t s d d

s s b m

b A m A

v q v s S d D 
  

 
      

 
 

  . (22) 

where 
b

s = 1 if u(b) = s; 
b

s = 0 otherwise. Note that 
( ) 0t s dq   if ( )t s R . 

 

The link flow function  d

svv   defined by Eq. (22) is bijective, and v can be 

unilaterally determined by the approach probability vector  d

bα  . Therefore, 

passenger flows are functions of approach probabilities; link travel costs are functions 

of link flows as described by Eqs. (1) to (8); approach probabilities are functions of 

minimum travel costs towards destinations according to Eqs. (10), (19) to (21), 

which in turns are functions of link travel costs. Therefore, approach probabilities are 

functions of themselves, and the approach-based SUE problem can be formulated as 

an FP problem: to find α  such that  

( )α g α , (23) 

where g is the mapping function defined by (1)-(8), (10), (19)-(21). 

 

As shown in (23), the approach-based SUE transit assignment formulation uses 

approach proportions as the decision variables that take values between zero and one. 

This formulation is different from the link-based SUE transit assignment formulation 

(18), which uses link flows as the nonnegative decision variables. The approach-based 

problem has a unique solution as stated below. 

 

Proposition 2. The FP problem (23) has exactly one solution.  

 

The proof can be found in the appendix. 

 

A path flow probability can be obtained by multiplying the approach probabilities of 

their associated links on the path. Let S
p
 be the set of links on path p. According to this 

definition, the path cost cp and the probability of path p between O-D pair rd being 

used 
rd

p  can be respectively expressed as 

,   , ,
rd

p

p s

s S

c c p P r R d D


      and (24) 
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 . (25) 



where 
b

s = 1 if u(b) = s; 
b

s = 0 otherwise. With the preceding notations, we can state 

the following proposition: 

 

Proposition 3. The solution to the approach-based SUE problem (23) satisfies the 

logit-based SUE condition: 
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. 

The proof of Proposition 3 can be found in the appendix. With the result of Proposition 

3, it is logical to have the following finding: 

 

Proposition 4. The approach-based SUE problem (23) is equivalent to the link-based 

SUE problem (18). 

 

The proof of Proposition 4 can be found in the appendix. 

 

3. SOLUTION ALGORITHM: COST-AVERAGING SRAM 

 

The MSA is a classic solution method for FP problems. However, the most commonly 

used flow-averaging version of the MSA, which updates passenger flows with a 

predetermined step size at each iteration, is known to have a slow convergence rate. 

Cantarella (1997) presented the cost-averaging version of the MSA that updates link 

costs at each iteration and discussed its convergence. Liu et al. (2009) proposed the 

flow-averaging version of the SRAM, which adopted varying step sizes during 

solution process to improve the convergence rate of the MSA. Long et al. (2014) 

further reformed the flow-averaging SRAM into a cost-averaging version. In this paper, 

we propose to use the cost-averaging SRAM (c-SRAM) for solving the proposed 

approach-based SUE transit assignment problem. The convergence rate of the 

proposed c-SRAM will be compared with the other three methods for FP problems 

mentioned above. 

 

As shown in Eq. (19), the likelihoods of approaches to be chosen by passengers 

traveling to a specific destination are functions of link travel costs. Following Eqs. (20) 

and (21), the corresponding weights and approach probabilities are also functions of 

link travel costs. Therefore, we can express the approach probability vector α  as a 

function of the link travel cost vector c , written as 

( )α X c , (26) 

where X is the mapping function. 



 

According to Eq. (22), passenger flows are functions of approach probabilities; 

according to Eq. (8), the link travel costs are functions of passenger flows and thus 

are also functions of link approach probabilities. The vector form can be written as 

( )c Y α , (27) 

where Y is the mapping function. 

 

Substituting Eq. (26) into Eq. (27), we can obtain an FP problem in terms of link 

travel costs for the SUE transit assignment problem, expressed as 

( ( ))c Y X c . (28) 

The solution existence and uniqueness of the FP problems (18) and (23) also ensure 

the solution existence and uniqueness of the FP problem (28) as discussed by 

Cantarella (1997). 

 

The descent direction denoted by h can be applied to solve the problem (28), given by 

( ( )) h Y X c c . (29) 

 

The cost-averaging version of the SRAM is outlined as follows: 

 

1) Set the initial expected link travel cost equal to its free flow travel cost. Set 

1k  , 1  , 0 1  , 
0 1  , and the convergence tolerance 0  . 

2) Calculate the interim link approach probability vector ˆ ( )k kα X c  and the 

interim expected link travel cost vector ˆ( )k kc Y α , and obtain the descent 

direction k k k h c c . 

3) Obtain the step size 1/k k  , where 

1 1

1

,  if ,

,  otherwise.

k k k

k

k

 


 

 



  
 



h h
 

4) Update the expected link travel cost by 1k k k k  c c h . 

5) If k h , stop; otherwise, let k = k +1, and go to step 2). 

 

The proof of convergence of the proposed c-SRAM for solving the approach-based 

SUE transit assignment problem is similar to Cantarella’s (1997) cost-averaging 



algorithm with the following differences: our problem is approach-based and therefore 

the convergence is derived based on link cost-approach probability functions instead 

of link cost-flow functions; the step size of the SRAM is adaptive. Following Theorem 

4 in Cantarella (1997), the convergence conditions for the proposed c-SRAM are listed 

as follows: 1) the link cost-approach probability functions are defined over a non-

empty, compact, and convex set; 2) the approach-based FP problem (23) satisfies the 

solution existence and uniqueness conditions (see Proposition 2); 3) all the choice 

maps of the problem are additive, probabilistic, continuous with continuous first 

derivatives over an approach probability space. These three conditions are satisfied by 

the proposed approach-based SUE transit assignment problem. Moreover, the 

sequence of step sizes of the SRAM satisfies k

k

    and lim 0k

k



 . Therefore, 

the cost-averaging SRAM guarantees convergence for solving the proposed SUE 

transit assignment model. 

 

 

4. NUMERICAL EXAMPLES 

 

4.1. Model properties 

 

In this section, the properties of the proposed approach-based SUE transit assignment 

model are illustrated based on the example network as shown in Figure 3. The link 

characteristics of the example network are listed in Table 1. The following values of 

parameters are used in this section: the congestion function parameters    = ε = n = 

1, s = 10, T  = W  = 0.5 HK$/min. 

 

Figure 3. Small example network I 

  



 

Table 1. The link characteristics of the example network I 

 In-vehicle time (min) Waiting time (min) Capacity (pass/hr) 

S1 67.00 6.00 100 

S2 30.00 7.50 80 

S3 15.00 3.33 180 

S4 10.00 4.29 140 

S5 32.50 3.75 160 

S6 12.50 5.00 120 

 

4.1.1. Equivalency between the approach-based and path-based solutions 

 

In this example, we show that the solution obtained from the approach-based SUE 

model is equivalent to that of the path-based SUE model under the same network 

setting. The values of parameters used in this example are given as follows: demand 

from A to B = 300 pass/hr; the dispersion parameter 0.5   . The solution of the 

approach-based SUE model is shown in Table 2: 

 

Table 2. The solution of the approach-based SUE model 

Link No. 1 2 3 4 5 6 

Approach probability 0.35 0.31 0.34 0.10 0.90 1.00 

Flow (pass/hr) 105.21 93.03 101.76 10.59 91.17 103.62 

Congestion delay 

(min) 
10.52 17.28 16.67 9.84 12.56 11.48 

Total cost (HK$) 41.76 27.39 17.50 12.07 24.41 14.49 

 

The path cost pc  and the path use probability 
rd

p  can be calculated using Eqs. (24) 

and (25), and the path flow 
rd

py  between O-D pair rd can, therefore, be calculated by 

,   , ,
rdrd rd rd

p py q p P r R d D      , (30) 

where 
rdq  is the passenger demand between O-D pair rd. The path flow solution is 

shown in Table 3. The solution shown in Table 3 satisfies the path-based logit SUE 

condition given by 
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. (31) 

Therefore, the approach-based SUE model is equivalent to the path-based SUE model. 

 

Table 3. The path flow solution 

Path No. 1 2 3 4 

Link 

sequence 
1 2-6 3-4-6 3-5 

Flow 

(pass/hr) 
105.21 93.03 10.59 91.17 

Total cost 

(HK$) 
41.76 41.885 44.055 41.9 

 

 

4.1.2. The effect of passengers’ perception of travel cost 

 

In this example, we illustrate the effect of the parameter of passengers’ perception of 

travel cost θ on passengers’ route choice behavior. In this example, the demand from 

A to B 
ABq  = 300 pass/hr. 

 

The results of expected total system cost obtained by varying θ are shown in Figure 4. 

As shown in this figure, as θ increases, the expected total system cost decreases and 

approaches a certain limit. It is because when θ is large, the stochastic effect of 

passengers’ perception of path travel time decreases and the stochastic user equilibrium 

condition approaches the user equilibrium condition. When passengers have perfect 

information about the network condition, they can choose the most efficient way to 

their destination, and therefore the expected total system cost drops as θ increases. The 

implication is that the transit network performance may be underestimated by 

assuming user equilibrium to be held when passengers have imperfect information 

about the component of travel cost, such as in-vehicle travel time and congestion costs, 

especially when they have a very inaccurate perception of travel times or low 

information quality on the in-vehicle congestion condition. 

 

The results of path flows obtained by varying θ are shown in Figure 5. As shown in 

this figure, the most attractive path switches from path 1 to path 2 as the value of θ 

increases. This example illustrates the importance of the choice of the θ value. Even 



under the same network settings, different θ values can result in different passenger 

flow patterns. It implies that it is important to accurately calibrate the θ value to 

determine the flow on each transit line and the utilization of each transit line in order 

to redesign transit services, e.g., adjusting the frequency of attractive lines, for 

improving system performance. 

 

  

Figure 4. Expected total system cost against θ 

 

 

Figure 5. Path flows against θ 

 

4.2. Paradoxical phenomena 

 

Sheffi and Daganzo (1978) discussed the paradoxical phenomenon arising from 

stochastic traffic assignment problems. They found that, under the assumption of 

constant link cost, an improvement of a route in a road network sometimes results in 

increased total system travel cost. Moreover, the total system cost may increase when 

a new link is added to the road network due to the stochastic nature of the problem. 
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Such kind of paradoxical phenomenon can also be observed in the proposed stochastic 

transit assignment model, in which the link cost is not a constant. 

 

Jiang and Szeto (2016) also discussed the capacity paradox arising from with their 

reliability-based user equilibrium transit assignment problem, in which the network 

maximum throughput may be reduced after new transit lines are added to a transit 

network or after the frequency of an existing line increases. A similar paradoxical 

phenomenon can also be observed using the proposed SUE transit assignment model. 

 

 

 

 

 

 

 

  

Figure 6. Small example network II 

 

In order to illustrate the aforementioned paradoxical phenomena, a small sample transit 

network is developed, as presented in Figure 6. The following values of parameters 

are used in this section: the congestion function parameters    = ε = n = 1, s = 10; 

the capacity of a single vehicle is 30 pass/veh; the demand from node 1 to node 4 is 

300 pass/hr; T  = W  = 0.5 HK$/min.  

 

The following scenarios are discussed to illustrate the paradoxical phenomena: 

1) Adding a new line to the network; 

2) Improving an existing line in the network. 

 

For the first scenario, two cases are developed: In case 1, L5 in the network (associated 

with S5) is not provided, while in case 2, L5 is provided with varying its frequency. 

The link characteristics of the example network II are shown in Table 4. For the second 

scenario, only case 2 is considered. 

  

  

 

 

S1(L1,L6) S2(L2) 

S3(L3) S4(L4) 

S5(L5) 1 

2 

3 

4 



 

Table 4. The link characteristics of the example network II 

 
In-vehicle time 

(min) 
Frequency (veh/hr) Capacity (pass/hr) 

S1 (L1, L6) 10 2+2 120 

S2 (L2) 60 3 90 

S3 (L3) 60 3 90 

S4 (L4) 10 4 120 

S5 (L5) 10 Varying Varying 

 

4.2.1. The paradox due to the stochastic nature of the problem 

 

The expected total system cost against the frequency of S5 (L5) is shown in Figure 7. 

In case 1, since the two available paths (i.e., S1-S2 and S3-S4) are symmetric, the 

expected total system cost remains unchanged (and equals 17500 HK$/hr) irrespective 

of the value of θ. In case 2, the expected total system cost first increases and then 

decreases as the frequency of L5 increases. The expected total system cost in case 2 

also depends on the value of θ.  

 

 

Figure 7. Expected total system cost against the frequency of L5 

 

For the first scenario, comparing the curves of case 1 and case 2 in Figure 8, we can 

see that providing the additional line can lead to an increase in expected total system 

cost. A paradox occurs when the expected total system cost obtained in case 2 is higher 

than the base value in case 1 (i.e., the shaded area in Figure 8). This result shows that 

when a new line is added to the network, the expected total system cost can increase. 
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The occurrence of the paradox is also affected by the frequency of the additional link 

S5 or line L5. When the additional link S5 is “good enough” (i.e., the cost of the path 

using S5 is lower than or close to the costs of competitive paths using S1-S2 and S3-

S4), the obtained expected total system cost in case 2 is smaller than the value obtained 

in case 1 (i.e., 17500 HK$/hr) and the network performance is improved; when the 

additional link S5 is not “good enough”, the paradox occurs.  

 

 

Figure 8. The paradox region of the first scenario 

 

For the second scenario, considering the curves of case 2 only (as shown in Figure 9), 

the expected total system cost first increases and then decreases as the frequency of S5 

increases (i.e., L5 is improved). Within the paradox region shaded in Figure 9, any 

improvement (i.e., an increase in line frequency) of L5 leads to an increase in expected 

total system cost. This result shows that an improvement of a part of the network can 

cause an increase in expected total system cost. 
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Figure 9. The paradox region of the second scenario 

 

For both scenarios, the paradox is affected by passengers’ perception of travel cost 

(measured by the value of θ). As shown in Figure 8 and Figure 9, the paradoxical 

phenomenon is obvious when the value of θ is small (i.e., passengers have little 

information about their travel costs). When the value of θ is sufficiently large (i.e., 

passengers have perfect information about their travel costs), the SUE condition 

approaches the UE condition, and such paradoxical phenomenon does not occur. 

 

This situation is analogous to the paradox in traffic assignment presented by Sheffi and 

Daganzo (1978). This paradoxical phenomenon is mainly caused by the stochastic 

nature of the problem. When a worse path is added, passengers can make the “wrong” 

choice. The stochastic nature of the problem ensures that some passengers select the 

worse path, and thus the expected total system cost increases. 

 

4.2.2. The paradox due to passengers’ non-cooperative behavior 

 

Following the network capacity defined by Yang and Bell (1998), the network capacity 

is the maximum throughput of the network at which all of the bottleneck links just reach 

their capacities under the equilibrium condition, and a bottleneck link is the link with 

the lowest capacity on a path. The network throughput against the frequency of S5 (L5) 

is shown in Figure 10. As mentioned in the previous example, in case 1, since the two 

available paths (i.e., S1-S2 and S3-S4) are symmetric, the network throughput remains 

unchanged (and equals 180 pass/hr) irrespective of the value of θ. In case 2, the network 

throughput first increases and then decreases as the frequency of L5 increases. The 

network throughput in case 2 depends on the value of θ. 
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Figure 10. Network throughput against the frequency of L5 

 

For the first scenario, comparing the curves of case 1 and case 2 in Figure 10, when a 

new line L5 is added to the network, the network throughput can be improved. 

However, when the additional link S5 is “good enough” (i.e., the cost of the path using 

S5 is significantly lower than the costs of the competitive paths using S1-S2 and S3-

S4), the obtained network throughput in case 2 is smaller than that obtained in case 1 

(i.e., 180 pass/hr) and the paradox occurs (i.e., the shaded area in Figure 11). This result 

shows that when a new line is added to the network, the network throughput can 

decrease.  

 

 

Figure 11. The paradox region of the first scenario 
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For the second scenario, considering the curves of case 2 only (as shown in Figure 12), 

the network throughput first increases and then decreases as S5 is improved (i.e., the 

frequency of L5 increases). Within the paradox region shaded in Figure 12, any 

improvement (i.e., an increase in line frequency) of L5 leads to a decrease in network 

throughput. This result shows that an improvement of a part of the network can cause 

a decrease in network throughput. 

 

 

Figure 12. The paradox region of the second scenario 

 

This paradoxical phenomenon is mainly caused by passengers’ non-cooperative route 

choice behavior. The addition of link S5 with a significantly low cost attracts 

passengers to use the new path S1-S5-S4. The passenger flow on the new path 

simultaneously occupies some capacities of the sharing bottleneck links in the original 

two paths (i.e., links S1 and S4), implying that the residual capacities of the two 

bottleneck links are not independent. As a result, the network throughput is not equal 

to the sum of the bottleneck capacity of each path. When the flow on the new path is 

sufficiently high, the network throughput is reduced. 

 

For both scenarios, the capacity paradox is affected by passengers’ perception of travel 

cost (measured by the value of θ). As shown in Figure 11 and Figure 12, the network 

throughput decreases more sharply within the paradox region when the value of θ is 

larger (i.e., passengers have more information about their travel costs). When 

passengers have more information about their travel cost, they are more willing to 

switch to the new better path. It can also be observed from Figure 11 and Figure 12 

that, for the first scenario, the range of frequency under which the paradox occurs is 

affected by the value of θ, while for the second scenario, the range of frequency is 
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independent of the value of θ. 

 

4.2.3. The occurrence of the two paradoxes 

 

The aforementioned paradoxes may not occur simultaneously. Figure 13 shows the 

expected total system cost and network throughput against the frequency of L5 when 

θ = 0.1. As shown in this figure, the paradox regions of the two paradoxes are not 

overlapping. Sheffi and Daganzo’s paradox occurs when the frequency of the 

additional line (i.e., L5) is low, while the network throughput paradox occurs when the 

frequency of the additional line is high. This result implies that, when considering 

adding new transit lines to the network or improving frequencies of existing lines in 

the network, the frequencies should be carefully designed to avoid the occurrences of 

the two paradoxes. Addressing one paradox issue does not imply that the other paradox 

issue has also been addressed. A bi-objective bilevel transit network design model is 

needed for such a purpose. 

 

 

Figure 13. The occurrences of the two paradoxes 

 

4.3. The performance of the cost-averaging SRAM 

 

4.3.1. The effect of step size parameters in the cost-averaging SRAM 

 

The effects of different algorithmic parameters are tested using the Sioux-Falls 

network as shown in Figure 14. Each number in the figure denotes the in-vehicle travel 

time of the link in seconds. Table 5 shows the frequency and stop sequence settings of 

the prefixed route structure. It is assumed that transit routes can pass a node without 
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stopping at that node in this example. There are 16 O-D pairs in the network with 

demand data shown in Table 6. θ is set to be 0.5 and T  = W  = 1 HK$/min in 

Section 4.3 unless otherwise specified. The algorithm was coded and compiled by 

Bloodshed Dev-C++.  

 

 

Figure 14. The Sioux-Falls network 

  



 

Table 5. The transit route setting of the Sioux-Falls network 

Route 

No. 

Headways 

(min) 
Stop sequence 

1 6 4 11 23 24      

2 6 1 3 12 13 24     

3 6 11 14 23 24 13     

4 5 8 20 21 22 23     

5 6 7 8 16 18 20     

6 6 14 15 19 20 22 23    

7 3 2 6 8 9 10 11 12   

8 3 4 5 9 10 17 19 20   

9 3 10 16 17 19 20 21 24   

10 3 1 3 4 5 9 10 15 19 20 

 

Table 6. The demand setting (pass/hr) of the Sioux-Falls network example 

Destination 

Origin 
13 20 21 24 

1 500 500 500 500 

2 400 400 400 400 

3 500 500 500 500 

4 400 400 400 400 

 

In order to investigate the effect of the step size parameters in the cost-averaging 

SRAM on the convergence speed, the Sioux-Falls network scenario was solved under 

different combinations of η and γ, and the number of iterations is used as the criterion 

for measuring computation speed. The results are shown in Table 7, with the 

convergence tolerance ε set to be 0.0001. As shown in the table, the smallest number 

of iterations evaluated at convergence occurs when η = 3 and γ = 0.3. It should be noted 

that when η = γ = 1, the SRAM is equivalent to the conventional MSA, and the number 

of iterations evaluated at convergence equals 83 using the conventional MSA. As we 

can see from the table, most of the combinations of η and γ in the SRAM give a smaller 

number of iterations than the conventional MSA. Therefore, the SRAM is more 

efficient than the MSA under the condition that the step size parameters are chosen 

properly.  

 



Table 7. The number of iterations at the convergence 

  η 

γ 
1 1.5 2 2.5 3 3.5 4 

1 83 75 72 58 64 75 91 

0.9 65 56 57 46 50 59 71 

0.8 52 45 46 37 40 65 80 

0.7 42 38 38 32 32 53 65 

0.6 36 33 31 37 26 43 53 

0.5 32 29 34 33 21 33 44 

0.4 30 27 29 31 20 28 37 

0.3 28 25 25 28 19 25 29 

0.2 32 28 22 26 21 21 25 

0.1 38 29 27 35 28 21 24 

 

4.3.2. A comparison of the cost-averaging SRAM, the cost-averaging MSA, the 

flow-averaging SRAM, and the flow-averaging MSA 

 

To illustrate the efficiency of the cost-averaging SRAM (c-SRAM), the convergence 

rate of the cost-averaging SRAM (c-SRAM) is compared with the cost-averaging MSA 

(c-MSA), the flow-averaging SRAM (f-SRAM), and the flow-averaging MSA (f-MSA) 

based on the Sioux-Falls network (Figure 14). For the c-SRAM, we set η = 3 and γ = 

0.3 (the best values obtained in the last example); for the f-SRAM, we set η = 1.8 and 

γ = 0.05 (the best values obtained from several trials). In this example, the error in 

expected total system cost is defined to be the difference between expected total system 

cost obtained at each iteration and that at convergence and is used as the convergence 

measure. 

 

The convergence curves are presented in Figure 15. As shown in the figure, the 

proposed c-SRAM, c-MSA, and f-SRAM converge quickly, but the curve of the f-

MSA has a very long tail. The f-MSA fails to meet the convergence criterion within 

10000 iterations. As shown in the figure, the convergence rate of the c-SRAM is the 

fastest among the four algorithms examined. Furthermore, the performance of cost-

averaging algorithms is better than that of the flow-averaging algorithms. At each 

iteration, the dimension of decision variables in both the flow-based versions of the 

SRAM and the MSA is S D , but the dimension of decision variables in both the 

cost-based versions of the SRAM and the MSA is only S  . Therefore, the cost-



averaging methods are more efficient than the flow-averaging methods, especially 

when the network is large. Moreover, the two SRAM algorithms are significantly faster 

than the two MSA algorithms. Since the f-MSA is a special case of the f-SRAM, we 

can always find out a step size setting such that the convergence rate of the f-SRAM 

is not worse than that of the f-MSA. A similar argument holds for the c-SRAM. 

 

 

 
Figure 15. The comparison of the convergence of the 4 algorithms 

 

4.3.3. The effect of demand levels 

 

It is also interesting to test the effect of demand levels on the solution speed of the 

proposed model. The demand level reflects the degree of in-vehicle congestion. The 

demand of the Sioux-Falls network is uniformly varied by multiplying the base 
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demand level by a constant demand scaling factor, where the factor represents the 

demand level relative to the base demand. In this example, the demand factor is set to 

be 0.2-2.0. The model was solved using the cost-averaging SRAM with the parameter 

setting as follows: η = 3 and γ = 0.3. 

 

The results of the number of iterations evaluated at convergence obtained by varying 

the demand scaling factor are shown in Figure 16. As shown in the figure, the number 

of iterations evaluated at convergence increases as the demand scaling factor increases. 

This result implies that, as the network gets crowded, the computation time required 

for convergence is long. It is mainly because when the network gets crowded, the 

changes in congestion cost between successive iterations increase, and therefore the 

convergence rate decreases. Moreover, as the demand level changes, the most suitable 

step size parameters also change, and the attractive path set changes as well. Therefore, 

the curve shown in Figure 16 is not smooth. 

 

 
Figure 16. The number of iterations evaluated at convergence against the demand 

scaling factor 

 

4.3.4. A large network experiment 

 

The performance of the proposed c-SRAM is also tested using the Winnipeg transit 

network data provided in the EMME/4 software. The Winnipeg transit network as 

shown in Figure 17 consists of 691 transit nodes and 133 transit lines. The total demand 

over the network is 77130 pass/hr. The number of links and the number of approaches 

of the network are both 43283. The algorithm was coded and compiled using Microsoft 

Visual Studio 2010 and run on a PC with a 3.6-GHz Core processor and 32 GB RAM. 
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We set η = 2 and γ = 0.1 (the best values obtained from several trials) for this example. 

 

 

Figure 17. The Winnipeg transit network 

 

The length of the vector of descent directions kh  at each iteration in the c-SRAM 

given by 

 
2

1= ,   1k k k

s s

s S

c c k



  h , (32) 

as well as the difference in expected total system cost between two adjacent iterations 

at each iteration are shown in Figure 18 and Figure 19, respectively. As shown in these 

figures, the proposed c-SRAM converges efficiently. The difference in expected total 

system cost between two adjacent iterations is reduced to below 0.5% within the first 

20 iterations. The average CPU time of each iteration is 607 seconds. To sum up, the 

proposed c-SRAM is capable of solving large-scale transit networks. 



 
          The no. of iterations 

Figure 18. The length of the vector of descent directions in the c-SRAM 

 

  

Figure 19. The difference in expected total system cost between two adjacent 

iterations 

 

5. CONCLUSION 

 

In this paper, an approach-based transit assignment model under the assumption of 

logit-based SUE with fixed demand is proposed. In-vehicle congestion cost is taken 

into account in the proposed model. It is proven that the model has exactly one solution. 

A cost-averaging SRAM is developed to solve the proposed model. The convergence 

of the algorithm is proven. 

 

Various numerical tests are carried out to examine the model properties and 

paradoxical phenomena. It is shown that the solution of the approach-based SUE 

transit assignment model is equivalent to that of the path-based SUE transit assignment 

model. It is also shown that Sheffi and Daganzo’s paradox or capacity paradox may 

occur when an additional transit line is introduced to the network, or the frequency of 

an existing transit line is improved. Sheffi and Daganzo’s paradox is caused by the 
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stochastic nature of the model and demonstrated to be obvious when the value of θ is 

small, while the capacity paradox is caused by passengers’ non-cooperative route 

choice behavior and demonstrated to be obvious when the value of θ is large. The two 

paradoxes may not occur simultaneously. The occurrences of the two paradoxes 

regarding expected total system cost and network throughput highly depend on the 

value of θ. It is therefore important to accurately calibrate the θ value for transit 

network design applications. The results also show that the two paradoxes can be 

avoided under certain frequency settings. These findings may call for a bi-objective 

bilevel transit network design formulation to determine the optimal frequency to 

improve the system performance. 

 

The performance of the cost-averaging SRAM, the c-SRAM, is illustrated and 

discussed. We find the following: 1) The speed of the c-SRAM can be optimized by 

choosing suitable values of step size parameters. 2) The c-SRAM is faster than the 

flow-averaging SRAM because the former has a smaller number of decision variables. 

3) The c-SRAM is faster than the traditional MSA when suitable values of step size 

parameters are chosen. 4) The c-SRAM converges efficiently and can solve large-scale 

transit networks such as the Winnipeg transit network. 5) The c-SRAM convergence 

rate decreases as demand or the in-vehicle congestion level increases. 

 

 

ACKNOWLEDGMENTS 

 

The work described in this paper was partially supported by a grant from the Research 

Grants Council of the Hong Kong Special Administrative Region of China 

(HKU17218916), and a grant from the University Research Committee of the 

University of Hong Kong (201611159067). The authors are grateful for the two 

reviewers for their constructive comments. 

 

 

REFERENCES 

 

Binder, S., Maknoon, Y., and Bierlaire, M., 2017. Exogenous priority rules for the 

capacitated passenger assignment problem. Transportation Research Part B: 

Methodological, 105, pp. 19–42. 

Cantarella, G. E., 1997. A general fixed-point approach to multimode multi-user 

equilibrium assignment with elastic demand. Transportation Science, 31(2), pp. 

107–128. 



Cats, O., West, J., and Eliasson, J., 2016. A dynamic stochastic model for evaluating 

congestion and crowding effects in transit systems. Transportation Research 

Part B: Methodological, 89, pp. 43–57. 

Cepeda, M., Cominetti, R., and Florian, M., 2006. A frequency-based assignment model 

for congested transit networks with strict capacity constraints: characterization 

and computation of equilibria. Transportation Research Part B: Methodological, 

40(6), pp. 437–459. 

Chriqui, C. and Robillard, P., 1975. Common bus lines. Transportation Science, 9(2), 

pp. 115–121. 

Codina, E. and Rosell, F., 2017. A heuristic method for a congested capacitated transit 

assignment model with strategies. Transportation Research Part B: 

Methodological, 106, pp. 293–320. 

Cominetti, R. and Correa, J., 2001. Common-lines and passenger assignment in 

congested transit networks. Transportation Science, 35(3), pp. 250–267. 

Daganzo, C. F. and Sheffi, Y., 1977. On stochastic models of traffic assignment. 

Transportation Science, 11(3), pp. 253–274. 

De Cea, J. and Fernández, E., 1993. Transit assignment for congested public transport 

systems: an equilibrium model. Transportation Science, 27(2), pp. 133–147. 

Dial, R. B., 1971. A probabilistic multipath traffic assignment model which obviates 

path enumeration. Transportation Research, 5(2), pp. 83–111. 

Fisk, C., 1980. Some developments in equilibrium traffic assignment. Transportation 

Research Part B: Methodological, 14(3), pp. 243–255. 

Florian, M. 1998. Deterministic time table transit assignment.  Preprints of PTRC 

seminar on National models, Stockholm. 

Florian, M., 2004. Finding shortest time-dependent paths in Schedule-Based transit 

networks: a Label Setting algorithm. In: Schedule-based Dynamic Transit 

Modeling: Theory and Applications. Springer, pp. 43–52. 

Hamdouch, Y., Ho, H. W., Sumalee, A., and Wang, G., 2011. Schedule-based transit 

assignment model with vehicle capacity and seat availability. Transportation 

Research Part B: Methodological, 45(10), pp. 1805–1830. 

Hamdouch, Y. and Lawphongpanich, S., 2008. Schedule-based transit assignment 

model with travel strategies and capacity constraints. Transportation Research 

Part B: Methodological, 42(7), pp. 663–684. 

Hamdouch, Y., Szeto, W. Y., and Jiang, Y., 2014. A new schedule-based transit 

assignment model with travel strategies and supply uncertainties. 

Transportation Research Part B: Methodological, 67, pp. 35–67. 

Jiang, Y. and Szeto, W. Y., 2016. Reliability-based stochastic transit assignment: 

Formulations and capacity paradox. Transportation Research Part B: 



Methodological, 93, pp. 181–206. 

Kurauchi, F., Bell, M. G. H., and Schmöcker, J. D., 2003. Capacity constrained transit 

assignment with common lines. Journal of Mathematical Modelling and 

Algorithms, 2(4), pp. 309–327. 

Lam, W. H. K., Gao, Z. Y., Chan, K. S., and Yang, H., 1999. A stochastic user 

equilibrium assignment model for congested transit networks. Transportation 

Research Part B: Methodological, 33(5), pp. 351–368. 

Lam, W. H. K. and Zhou, J., 1999. Stochastic transit assignment with elastic demand. 

Journal of Eastern Asia Society for Transportation Studies, 3(2), pp. 75–87. 

Li, Z. C., Lam, W. H. K., Wong, S. C., and Sumalee, A., 2010. An activity-based 

approach for scheduling multimodal transit services. Transportation, 37(5), pp. 

751–774. 

Liu, H. X., He, X., and He, B., 2009. Method of successive weighted averages (MSWA) 

and self-regulated averaging schemes for solving stochastic user equilibrium 

problem. Networks and Spatial Economics, 9(4), pp. 485–503. 

Liu, Z. and Meng, Q., 2014. Bus-based park-and-ride system: a stochastic model on 

multimodal network with congestion pricing schemes. International Journal of 

Systems Science, 45(5), pp. 994–1006. 

Long, J. C., Huang, H. J., Gao, Z. Y., and Szeto, W. Y., 2013. An intersection-

movement-based dynamic user optimal route choice problem. Operations 

Research, 61(5), pp. 1134–1147. 

Long, J. C., Szeto, W. Y., and Huang, H. J., 2014. A bi-objective turning restriction 

design problem in urban road networks. European Journal of Operational 

Research, 237(2), pp. 426–439. 

Long, J. C., Szeto, W. Y., Huang, H. J., and Gao, Z. Y., 2015. An intersection-

movement-based stochastic dynamic user optimal route choice model for 

assessing network performance. Transportation Research Part B: 

Methodological, 74, pp. 182–217. 

Nielsen, O. A., 2000. A stochastic transit assignment model considering differences in 

passengers utility functions. Transportation Research Part B: Methodological, 

34(5), pp. 377–402. 

Nielsen, O. A. and Frederiksen, R. D., 2006. Optimisation of timetable-based, 

stochastic transit assignment models based on MSA. Annals of Operations 

Research, 144(1), pp. 263–285. 

Nuzzolo, A., Crisalli, U., Comi, A., and Rosati, L., 2016. A mesoscopic transit 

assignment model including real-time predictive information on crowding. 

Journal of Intelligent Transportation Systems: Technology, Planning, and 

Operations, 20(4), pp. 316–333. 



Poon, M. H., Wong, S. C., and Tong, C. O., 2004. A dynamic schedule-based model for 

congested transit networks. Transportation Research Part B: Methodological, 

38(4), pp. 343–368. 

Ran, B. and Boyce, D., 1996. Network Flow Constraints and Definitions of Travel 

Times. In: Modeling Dynamic Transportation Networks. Springer, pp. 69–85. 

Rasmussen, T. K., Watling, D. P., Prato, C. G., and Nielsen, O. A., 2015. Stochastic user 

equilibrium with equilibrated choice sets: Part II–Solving the restricted SUE for 

the logit family. Transportation Research Part B: Methodological, 77, pp. 146–

165. 

Schmöcker, J. D., Fonzone, A., Shimamoto, H., Kurauchi, F., and Bell, M. G., 2011. 

Frequency-based transit assignment considering seat capacities. Transportation 

Research Part B: Methodological, 45(2), pp. 392–408. 

Sheffi, Y. and Daganzo, C. F., 1978. Another “paradox” of traffic flow. Transportation 

Research, 12(1), pp. 43–46. 

Spiess, H. and Florian, M., 1989. Optimal strategies: a new assignment model for transit 

networks. Transportation Research Part B: Methodological, 23(2), pp. 83–102. 

Sumalee, A., Tan, Z., and Lam, W. H. K., 2009. Dynamic stochastic transit assignment 

with explicit seat allocation model. Transportation Research Part B: 

Methodological, 43(8), pp. 895–912. 

Sun, L., Meng, Q., and Liu, Z., 2013. Transit assignment model incorporating bus dwell 

time. Transportation Research Record, 2352, pp. 76–83. 

Szeto, W. Y. and Jiang, Y., 2014. Transit assignment: Approach-based formulation, 

extragradient method, and paradox. Transportation Research Part B: 

Methodological, 62, pp. 51–76. 

Szeto, W. Y., Jiang, Y., Wong, K. I., and Solayappan, M., 2013. Reliability-based 

stochastic transit assignment with capacity constraints: Formulation and 

solution method. Transportation Research Part C: Emerging Technologies, 35, 

pp. 286–304. 

Szeto, W. Y., Solayappan, M., and Jiang, Y., 2011. Reliability‐Based Transit 

Assignment for Congested Stochastic Transit Networks. Computer‐Aided Civil 

and Infrastructure Engineering, 26(4), pp. 311–326. 

Teklu, F., 2008. A stochastic process approach for frequency-based transit assignment 

with strict capacity constraints. Networks and Spatial Economics, 8(2–3), pp. 

225–240. 

Trozzi, V., Gentile, G., Bell, M. G. H., and Kaparias, I., 2013. Dynamic user equilibrium 

in public transport networks with passenger congestion and hyperpaths. 

Transportation Research Part B: Methodological, 57, pp. 266–285. 

Verbas, Ö., Mahmassani, H. S., and Hyland, M. F., 2016. Gap-based transit assignment 



algorithm with vehicle capacity constraints: Simulation-based implementation 

and large-scale application. Transportation Research Part B: Methodological, 

93, pp. 1–16. 

Watling, D. P., Rasmussen, T. K., Prato, C. G., and Nielsen, O. A., 2015. Stochastic user 

equilibrium with equilibrated choice sets: Part I–Model formulations under 

alternative distributions and restrictions. Transportation Research Part B: 

Methodological, 77, pp. 166–181. 

Wu, J. H., Florian, M., and Marcotte, P., 1994. Transit equilibrium assignment: a model 

and solution algorithms. Transportation Science, 28(3), pp. 193–203. 

Wu, Z. X. and Lam, W. H. K., 2003. Network equilibrium for congested multi‐mode 

networks with elastic demand. Journal of Advanced Transportation, 37(3), pp. 

295–318. 

Yang, H. and Bell, M. G., 1998. A capacity paradox in network design and how to avoid 

it. Transportation Research Part A: Policy and Practice, 32(7), pp. 539–545. 

  

APPENDIX 

 

This appendix gives the proofs of Propositions 1-4. 

 

Proposition 1. Under assumption A8, 
id jd

s sa a  for , , ,id jds S S i j N d D     . 

Proof: Following Long et al. (2015), it can be proved that under assumption A8, the 

topological distances of a common node in two sub-networks are the same. Therefore, 

under definition D1, for the common node of the two sub-networks formed by idS  

and jdS , their topological orders are the same.  

 

According to Eq. (9), when id jds S S  , we have 

 ( ) ( )exp ( ) ,   , ,id jd t s d t s d

s s sL L i j N d D        . (33) 

 

The following equation can be proved using mathematical induction. 

id jd

s sW W .  (34) 

Let the sequence of the common nodes of sub-networks formed by idS  and jdS  be 

{in, in-1, …, ik, …, i2, i1}, and 1i d , where the subscript of node i  is the topological 

order of that node. We assume that ,
k

id jd

s s iW W s A    is true for the kth node and 



its succeeding nodes (i.e., ' , 'ki k k ) in the sequence. Then for the (k+1)th node in the 

sequence, according to Eq. (33), we have 

( ') ( ')

' ' ( ') ' ( ') ' ,   , ,

h s h s

id id d id jd d jd jd

s s h s m s h s m s

m A m A

W L W L W W i j N d D 
  

   
          

   
   

  ,  

where '( ') , 'kh s i k k   and 1( ') kt s i  . Therefore, it is also true for the (k+1)th node 

and its succeeding nodes in the sequence. 

 

When 1k  , we have * * * * ,   , ,id id jd jd

s s s sW L L W i j N d D      , where 1( *)h s i d  . 

Therefore, 
id jd

s sW W  is true for id jds S S   . 

 

By Eqs. (12) and (34), we have 

( ) ( )

,   , ,

t s t s

id jd
id jds s
s sid jd

m m

m A m A

W W
a a i j N d D

W W
  

     
 

, id jds S S  . (35) 

This completes the proof. □ 

 

Proposition 2. The FP problem (23) has exactly one solution.  

Proof: As discussed in Section 2.5.1, a solution to the FP problem (18) exists. 

Moreover, according to (17), 
d

sv  is a function of 
d

sa . Thus, we can let a solution to 

the FP problem (18) be 
* *( )v a  with the elements 

*d

sv , where *a =  *d

sa ; let α* be 

the corresponding approach probability vector with the elements *d

b  calculated by 

* *

( )

d d

b u ba  . Then, α* satisfies Eqs. (19) to (21) and  * * *( )v a α  satisfies Eq. (22). 

Thus, α* is a solution to the FP problem (23); i.e., a solution to the FP problem (23) 

also exists. 

 

We assume that there is more than one solution to the FP problem (23). Let 

 #d

b#
α  be another solution to the FP problem (23) (α* #α ) and # ( )#v α  with 



the elements 
*d

sv  be the corresponding link flow vector calculated by Eq. (22); let a# 

be the corresponding link choice probability vector with the elements 
#d

sa  calculated 

by 

( )

# #

t s

d b d

s s b

b A

a  


  , where b

s = 1 if u(b) = s; b

s = 0 otherwise. Then, a# satisfies 

Eqs. (14) to (16) and  ( )# # #
v α a  satisfies Eq. (17). Thus, a# is a solution to the FP 

problem (18). This solution is different from 
* *( )v a  because we assume (α* #α ) and 

the relationship between link flow and approach probability is bijective. However, 

* *( )v a  ( ) # # #v α a  contradicts the solution uniqueness of the FP problem (18) as 

discussed in Section 2.5.1. As a result, the FP problem (23) has only one solution. 

Therefore, the FP problem (23) has exactly one solution. This completes the proof. □ 

 

Proposition 3. The solution to the approach-based SUE problem (23) satisfies the 

logit-based SUE condition: 
 
  '

'

exp
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Proof: Combining Eqs. (19) to (21), when ( *) * pu b s S  , , ,rdp P r R d D   , 

and ( *)t s r , we have 
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, (36) 

where ( *) 0d

h s  . 

 

When 
# #( ) pu b s S  , ,  ,  rdp P r R d D   , and 

#( )h s d , we have 
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where 
# #( ') ' pu b s S   is the preceding link of link s# and 

# #( ) ( ')t s h s ; #( )
1d

h s
  .  

 

For all the other approaches b using intermediate links ( ) pu b s S  , ,  ,rdp P r R   

and d D , we have 
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 (38) 

where ( ') ' pu b s S   is the preceding link of link s and ( ) ( ')t s h s ; ( ) 0d

h s  . 

 

Combining Eqs. (24), (25), and (36) to (38) and canceling out the repeated terms, 

we have 
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Moreover, by definition and Eq. (39), we have 
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Therefore, 
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       . (41) 

 

Combining Eqs. (39) and (41), we have 
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. (42) 



This completes the proof. □ 

 

Proposition 4. The approach-based SUE problem (23) is equivalent to the link-based 

SUE problem (18). 

Proof: First, we can let the solution to the FP problem (18) be 
* *( )v a   with the 

elements 
*d

sv , where *a =  *d

sa ; let α* be the corresponding approach probability 

vector with the elements 
*d

b  calculated by * *

( )

d d

b u ba  . Then, α* satisfies Eqs. (19) 

to (21) and  * * *( )v a α  calculated using Eq. (13) satisfies Eq. (22). Thus, α* is a 

solution to the FP problem (23).  

 

Secondly, let the solution to the FP problem (23) be 
# #( )v α  with the elements 

#d

sv , 

where #α =  #d

b ; let #α  be the corresponding link choice probability vector with 

the elements 
#d

sa  calculated by 

( )

# #

t s

d b d

s s b

b A

a  


  , where b

s = 1 if u(b) = s; b

s = 

0 otherwise. Then, #a  satisfies Eqs. (9) to (12), and  # # #( )v α a  calculated using 

Eq. (22) satisfies Eq. (13). Thus, #a  is a solution to the FP problem (18). 

 

Based on the above and the solution existence and uniqueness of the FP problems (18) 

and (23), we can conclude that the approach-based SUE problem (23) is equivalent 

to the link-based SUE problem (18). 

 

 


