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Quantum benchmarks are routinely used to validate the experimental demonstration of quantum
information protocols. Many relevant protocols, however, involve an infinite set of input states, of which
only a finite subset can be used to test the quality of the implementation. This is a problem, because the
benchmark for the finitely many states used in the test can be higher than the original benchmark calculated
for infinitely many states. This situation arises in the teleportation and storage of coherent states, for which the
benchmark of 50% fidelity is commonly used in experiments, although finite sets of coherent states normally
lead to higher benchmarks. Here, we show that the average fidelity over all coherent states can be indirectly
probed with a single setup, requiring only two-mode squeezing, a 50-50 beam splitter, and homodyne
detection. Our setup enables a rigorous experimental validation of quantum teleportation, storage,
amplification, attenuation, and purification of noisy coherent states. More generally, we prove that every
quantum benchmark can be tested by preparing a single entangled state and measuring a single observable.
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Introduction.—Quantum information processing offers
compelling advantages over its classical counterpart.
However, realistic implementations suffer from unavoid-
able noise and imperfections. To demonstrate a quantum
advantage, one needs to ensure that, despite the imperfec-
tions, such implementations achieve performances that
could not be achieved classically.
For every given task, such as the transmission of infor-

mation or its storage in a quantummemory, the limit that has
to be surpassed in order to demonstrate a quantum advantage
is called the quantum benchmark [1]. Quantum benchmarks
are routinely used in experiments of quantum teleportation
[2–6] and in the realization of quantum memories [7–10].
The theoretical values of the benchmarks have been deter-
mined in a variety of scenarios, including the teleportation
and storage of finite-dimensional quantum systems [11,12],
coherent states [1,13], and squeezed states [14–16].
Benchmarks for the amplification of coherent states are
important for assessing the realization of deterministic [17]
as well as probabilistic [18–21] amplifiers, and have been
theoretically studied in Refs. [22,23]. Many benchmarks are
fidelity based, meaning that they use the fidelity [24,25]
as the figure of merit. Other benchmarks are entanglement
based, meaning that the figure of merit is (a measure of) the
ability to preserve entanglement [26–29].

In theory, quantum benchmarks provide rigorous criteria
of quantumness. In practice, the application of these criteria
can be problematic. The benchmarks often rank quantum
devices based on their average performance on an infinite
set of input states, such as the set of all coherent states
[1,2,4,5,7–10,13,17–23]. In a real experiment, however,
only a finite subset of inputs can be tested. The evaluation
of the performance on each input requires many sessions of
data collection, often amounting to a full tomography of
the state [19]. Now, the problem is that the value of the
benchmark for the finite subset of states used in the
experiment can be much larger than the theoretical bench-
mark. For example, the fidelity benchmark for the tele-
portation of uniformly distributed coherent states is 50%
[1,13], while the benchmark for just two coherent states
is at least 93.3%, the minimum value over all pairs of
coherent states [30]. Comparing the experimental fidelity
with the theoretical benchmark requires additional assump-
tions on the device—e.g., assumptions on how it would
have worked if it had been tested on other inputs. But
making such assumptions is in contradiction to the purpose
of quantum benchmarks, i.e., to certify quantum advan-
tages without having to trust the devices. An alternative
approach would be to perform a full tomography of the
device [31–36], but this would require a large number of
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measurement settings (or even an infinite number in the
case of continuous variable systems).
In this Letter, we show that every quantum benchmark

can be tested by preparing a single entangled state and
performing a single measurement on the output. More
broadly, we develop a unified framework for quantum
benchmarks, including fidelity-based and entanglement-
based benchmarks as special cases. We observe that the same
benchmark can be tested in multiple equivalent ways, among
which one can choose the most experimentally friendly one.
Using the idea of equivalent tests, we propose a benchmark
setup for the demonstration of continuous-variable quantum
memories [7–10] and for the demonstration of quantum-
enhanced amplification [17–21]. Our proposal allows one to
measure the average fidelity over all possible coherent states,
using only two-mode squeezing, a 50-50 beam splitter, and
homodyne detection. The same approach can be applied to
benchmarks for quantum attenuation [22,37–40] and cloning
[41–43] of coherent states, as well as the purification of
displaced thermal states [39,44,45].
General benchmark framework.—The scenario of quan-

tum benchmarks can be conveniently viewed as a game
between an experimenter and a verifier [46]. The experi-
menter builds a device performing a quantum task, such as
teleportation or cloning. The verifier sets up a test in order
to determine whether the device offers a quantum advan-
tage. The test consists in sending inputs to the device and
performing measurements on the outputs.
Let us start from the case of a deterministic device, which

generates an output whenever it receives an input. Such a
device can be described by a quantum channel (completely
positive trace-preserving linear map), transforming states of
the input system into states of the output system. Let us
denote by A (A0) the input (output) system, and by C a
generic channel with input A and output A0.
In order to rate the performance of the channel C, the

verifier could use the setup described in Fig. 1. First, the
verifier prepares system A in an input state ρx, randomly
drawn from some set fρxg with probability px. Then, the
verifier submits the input to the experimenter, who returns
the output CðρxÞ. Finally, the verifier performs a measure-
ment, described by a positive operator-valued measure

(POVM) fPðxÞ
y g where x labels the measurement setting

and y labels the measurement outcome. For every setting x,
the outcome y is assigned a score ωðx; yÞ. The average
score

SðdetÞ ¼
X
x

X
y

ωðx; yÞpxTr½PðxÞ
y CðρxÞ�; ð1Þ

is then used as a figure of merit. The typical example of
Eq. (1) is that of the fidelity-based benchmarks [1–3,
11–16,19,22,23,47], where the goal is to transform an
unknown input state ρx into a pure target state jϕxi.
Fidelity benchmarks are expressed in terms of the average
fidelity

FðdetÞ ≔
X
x

pxhϕxjCðρxÞjϕxi; ð2Þ

which can be viewed as the special case of Eq. (1) where

each POVM fPðxÞ
y g has an outcome yx associated to the

projector PðxÞ
yx ¼ jϕxihϕxj and the score ωðx; yÞ is either 1 or

0, depending on whether or not y is equal to yx.
The benchmark for a genuine quantum implementation

has the form Fdet > Fdet
C , where Fdet

C is the classical fidelity
threshold, namely, the maximum fidelity achievable by
measure-and-prepare channels [1]. The direct way to
evaluate the score (1)—or the average fidelity (2)—is to
test the action of the channel C on all the input states fρxg
and to use the experimental data to compute the average.
However, this approach is not viable when the set of input
states is infinite. Now, we show that many indirect ways
to experimentally measure the average score (1) or the
average fidelity (2) exist. Among these indirect measure-
ments, some can be dramatically simpler than the direct
approach of Fig. 1.
First of all, we note that every test with random input states

can be reformulated as a test with a single, mixed, input state
σAR. This is because one can regard the preparation of the
state ρx with probability px as the preparation of a single
quantum-classical state σ ¼ P

xpxρx ⊗ jxihxjR, where R is
an auxiliary system keeping track of the index x. Likewise,
one can formally write down a single quantum observable

O¼P
x;yωðx;yÞPðxÞ

y ⊗ jxihxjR, so that the average score (1)
takes the form

SðdetÞ ≔ Tr½OðC ⊗ IRÞðσARÞ�: ð3Þ

Per se, this reformulation does not make the problem
easier. The merit of Eq. (3) is that it reveals a general
structure, suggesting new ways to measure the average
score. This reformulation also offers a unified approach,
which can be adopted not only for fidelity-based bench-
marks, but also for other types of quantum benchmarks,
such as the entanglement-based benchmarks [26–29].
The single-input setup for testing quantum channels is

depicted in Fig. 2. Now, the key observation is that many
different tests are equivalent, meaning that they assign the

FIG. 1. Input-output test of a quantum device. To test the device
C, the verifier prepares an input state, randomly drawn from the
set fρxg. Upon receiving the input, the device generates an
output, which is then measured by the verifier with the POVM

fPðxÞ
y g. The outcome is assigned a score and the average score is

used as a measure of performance.
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same average score to all possible channels. This obser-
vation is important because, among the many equivalent
tests, one can choose the easiest to realize experimentally.
Now, we develop a framework that captures the equiv-
alence of tests and facilitates the search for the most
convenient realization. The framework is based on the
Jamiołkowski operator [48], defined as

C ≔
X
ij

CðjiihjjÞ ⊗ jjihij; ð4Þ

where fjiig is a fixed orthonormal basis for system A.
In terms of the Jamiołkowski operator, the average score
can be written as [49]

SðdetÞ ¼ Tr½ΩC�; ð5Þ

where Ω is the operator on A0A defined by

Ω ≔ TrR½ðOA0R ⊗ IAÞðIA0 ⊗ σARÞ�: ð6Þ

Here, it is understood that the Hilbert spaces are rearranged
in the appropriate order, so that the operators in the right
hand side can be multiplied.
We call Ω the performance operator of the test. For

fidelity-based benchmarks, the performance operator is
simply the average input-output state

Ω ¼
X
x

pxjϕxihϕxj ⊗ ρx: ð7Þ

where ρx is the input and jϕxi is the target output.
Canonical tests for deterministic devices.—Clearly, two

tests with the same performance operator are equivalent,
even if they correspond to totally different testing proce-
dures. Now, we exploit the equivalence to realize every test
through the preparation of a single pure state and the
measurement of a single observable.
Theorem 1 [49].—Every test for deterministic devices is

equivalent to a canonical test of the following form.
Step 1: Choose a mixed state τA, with the property that

the operator IA0 ⊗ τA is invertible on the support of the

operator ΩTA, where TA denotes the partial transpose on
system A.
Step 2: Prepare a purification of τA, denoted by jΨiAR.
Step 3: Apply the channel C on system A.
Step 4: Measure systems A0 and R with the observable

O ¼ ðIA0 ⊗ τ−1=2R T†
ARÞΩTAðIA0 ⊗ TARτ

−1=2
R Þ: ð8Þ

where τR ¼ TrA½jΨihΨjAR� is the marginal of the state
jΨiAR on system R, and TAR is the partial isometry such
that T†

ARτATAR ¼ τR.
The best way to understand Theorem 1 is to use it in a

concrete example. Consider the problem of amplifying
coherent states [17,22,23]. Here, the task is to transform a
generic coherent state jαi ∝ P

nα
njni= ffiffiffiffiffi

n!
p

into the ampli-
fied coherent state jgαi, where g ≥ 1 is the gain of the
amplifier. For g ¼ 1, the problem is to teleport coherent
states [2,4,5] or to store them in a quantum memory [7–10].
Assuming that the inputs are Gaussian-distributed, the
average fidelity is

Fdet ¼
Z

d2α
π

λe−λjαj2hgαjCðjαihαjÞjgαi; ð9Þ

where λ ≥ 0 is the inverse of the variance. In practice, the
average cannot be evaluated directly, because this would
require sampling over an infinite set of input states.
Moreover, in the actual experiments [19], the fidelity is
evaluated through a full tomography of the output state,
meaning that each value of α requires a large (ideally
infinite) number of experimental settings, making the
evaluation of the average fidelity prohibitively expensive.
Luckily, Theorem 1 offers a way out. Instead of sampling
over all coherent states, it is enough to prepare a two-mode
squeezed vacuum state

jΨiAR ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p X
n

xn=2jniA ⊗ jniR; ð10Þ

where the squeezing parameter x can be any number in the
interval (0,1). Instead of evaluating the fidelity on each
coherent state, it is enough to measure a single observable,
given by Eq. (8) with the performance operator

Ω ¼
Z

d2α
π

λe−λjαj2 jgαihgαj ⊗ jαihαj: ð11Þ

Now, we take advantage of the fact that every value of
the squeezing parameter x is allowed, and therefore, one
can choose the most convenient x. Specifically, we notice
that the observable (8) takes a simple form when
x ¼ 1=ð1þ λÞ. For g2 ≤ λþ 1, we find [49]

O ¼ S†θðI ⊗ GθÞSθ; ð12Þ

FIG. 2. Test with a single input and a single observable. A
composite system AR in a joint state σ. Then, system A is sent to
the device C, which transforms it into the output system A0.
Finally, systems A0 and R undergo a joint measurement, described
by the observable O. The expectation value of O is then used as
the figure of merit.
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where Sθ ¼ exp½θðab − a†b†Þ� is a two-mode squeezer
with tanh θ ¼ g=

ffiffiffiffiffiffiffiffiffiffiffi
λþ 1

p
, and Gθ is the Gaussian observ-

able Gθ ¼
P

nðtanh θÞ2njnihnj. In practice, this means that
the observable O can be measured by sending the two
output modes A0 and R through a two mode squeezer and
by measuring the observableGθ on the second port. In turn,
the observable Gθ can be measured by sending the mode
through a 50-50 beam splitter, measuring the quadratures
X ¼ ðaþ a†Þ=2 and P ¼ ðb − b†Þ=ð2iÞ on the two output
modes, respectively, and, finally, averaging the outcomes
with a Gaussian weight (see [49] for the exact expression).
The setup for g2 < λþ 1 is identical, except that one has to
set tanh θ ¼ ffiffiffiffiffiffiffiffiffiffiffi

λþ 1
p

=g and the observable Gθ is measured
on the first output port [49].
Our method makes the average fidelity (9) experimentally

accessible, thus, enabling a rigorous experimental test of the
quantum advantage. The same method can be used to test the
fidelity of attenuation [22,37,38,40], cloning [41–43], puri-
fication of displaced thermal states [39,44,45], and phase
conjugation [57], as shown in the Supplemental Material
[49]. A limitation of the present approach is that the verifier
should be able to preserve the reference mode from noise. In
the case of quantum memories, this means that the verifier
should possess a good quantum memory for the reference
mode. Basically, the test of Fig. 3 compares the untrusted
quantum memory implemented by the experimenter with a
trusted quantum memory in the verifier’s lab.
Canonical tests for nondeterministic devices.—Now, let

us consider the case of devices that return an output with
some nonunit probability. Examples of such devices are
the noiseless probabilistic amplifier [58], experimentally
realized in Refs. [18–21], and the noiseless probabilistic
attenuator of Refs. [37,38,40]. In general, a probabilistic
device can be described by a quantum operation C (com-
pletely positive trace-nonincreasing linear map). To test the
device, one can prepare a single input state σ and measure
an observable O on the output, as in Fig. 2. Sometimes, the
device will report failure instead of producing an output. The
probability that an output is produced is

psucc ¼ Tr½ðC ⊗ IRÞðσARÞ� ¼ Tr½CðσAÞ�; ð13Þ

where σA ¼ TrR½σAR� is the marginal of σAR on system A.
The average score is then

SðprobÞ ≔
Tr½OðC ⊗ IRÞðσARÞ�

Tr½CðσAÞ�
; ð14Þ

and can be expressed as

SðprobÞ ¼ Tr½CΩ�
Tr½CðIA0 ⊗ σAÞ�

; ð15Þ

where Ω is the performance operator (6) and C is the
Jamiołkowski operator. Note that, now, the score depends
both on the performance operator Ω and on the marginal
input state σA, which determines the probability of success
via Eq. (13).
It is easy to see that two tests are equivalent in terms

of score and success probability if and only if they have the
same pair of operators ðΩ; σAÞ. Leveraging on the equiv-
alence, we can construct a canonical realization.
Theorem 2.—Every test of probabilistic devices is

equivalent to a canonical test of the following form.
Step 1: Prepare a purification of the marginal input state

σA, denoted by jΦiAR.
Step 2: Apply the quantum operation C on system A.
Step 3: Measure systems A0 and R with the observable

O ¼ ðIA0 ⊗ σ̃−1=2R T†
ARÞΩTAðIA0 ⊗ TARσ̃

−1=2
R Þ: ð16Þ

where σ̃R is the marginal of the state jΦiAR on system R and
TAR is the partial isometry such that T†

ARσATAR ¼ σ̃R.
Theorem 2 offers the first rigorous way of testing the

fidelity benchmark for noiseless nondeterministic ampli-
fiers [18–21]. In this case, the marginal state σA is

σA ¼
Z

d2α
π

λe−λjαj2 jαihαj: ð17Þ

Its purification is a two-mode squeezed vacuum, given by
Eq. (10) with x ¼ 1=ð1þ λÞ. Then, one can obtain the
observable O from Eqs. (16) and (11). Again, the observ-
able has a simple experimental realization. In fact, this is
the same realization described in the deterministic case.
Using this realization, it is now possible to set up a
conclusive demonstration of quantum advantage for noise-
less amplifiers. The same holds for nondeterministic
attenuation [37,38,40].
The fully black box test.—We analyzed, separately, the

tests of deterministic devices and the tests of probabilistic
devices. In practice, however, we may not know the success
probability of the tested device. This would be a problem,
because the benchmark generally depends on the success
probability [46]: in general, the smaller the success prob-
ability, the higher the benchmark. A solution to the problem
would be to use the highest benchmark, calculated in the

FIG. 3. Canonical test for coherent state amplifiers. The input
mode and a reference are prepared in the two-mode squeezed
vacuum (TMSV). After the action of the amplifier, the output
mode and the reference are sent through a two mode squeezer Sθ,
followed by a 50-50 beam splitter and two quadrature measure-
ments on the output modes.
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limit of vanishing success probability. However, this could
set an unreasonably high bar for the experiment. Now, we
show that the verifier can devise a fully black box test,
where the value of the benchmark is independent of the
probability of success.
Theorem 3 [49].—Given a test T for deterministic

devices, one can construct a new test T 0 for probabilistic
devices, with the following properties.
Property 1:T 0 has the same performance operator as the

original test T . Therefore, T 0 assigns the same score as T
to all deterministic devices.
Property 2: For probabilistic devices, the benchmark for

T 0 is independent of the success probability.
The new test T 0 is described by a pair of operators

ðΩ; σAÞ, with the following properties: the performance
operator Ω is chosen to be the same as the performance
operator of the old test T . This choice guarantees that the
test T 0 assigns the same score as T when applied to
deterministic devices. The marginal state σA is chosen to
be the state that reduces the probabilistic benchmark to its
minimum: this means that σA minimizes the best score (15)
over all measure-and-prepare channels. The test for ampli-
fication or attenuation shown earlier in the Letter is an
example of a fully black box test: the same experimental test
and the same benchmark value can be used for both
deterministic and probabilistic devices. More examples of
this situation are shown in Sec. VI of [49], which focusses on
the scenario where the test T enjoys a symmetry with respect
to a group of physical transformations.
Conclusions.—In this Letter, we showed that a verifier

can experimentally evaluate the performance of a quantum
device on an infinite set of inputs by preparing a single
entangled input and measuring a single joint observable. As
an application, we constructed a test for the realization of
quantum memories, amplifiers, and attenuators of coherent
states, and purifiers of displaced thermal states. The test can
be realized using two-mode squeezers, beam splitters, and
homodyne detection. Using these ingredients, one can
experimentally assess the average fidelity over all possible
coherent states (or all possible displaced thermal states),
thus, providing a fully rigorous demonstration of genuine
quantum advantage.
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