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Abstract

Microcanonical thermodynamics studies the operations that can be performed on systems with well-
defined energy. So far, this approach has been applied to classical and quantum systems. Here we
extend it to arbitrary physical theories, proposing two requirements for the development of a general
microcanonical framework. We then formulate three resource theories, corresponding to three
different sets of basic operations: (i) random reversible operations, resulting from reversible dynamics
with fluctuating parameters, (ii) noisy operations, generated by the interaction with ancillas in the
microcanonical state, and (iii) unital operations, defined as the operations that preserve the
microcanonical state. We focus our attention on a class of physical theories, called sharp theories with
purification, where these three sets of operations exhibit remarkable properties. Firstly, each set is
contained into the next. Secondly, the convertibility of states by unital operations is completely
characterised by a majorisation criterion. Thirdly, the three sets are equivalent in terms of state
convertibility if and only if the dynamics allowed by theory satisfy a suitable condition, which we call
unrestricted reversibility. Under this condition, we derive a duality between the resource theories of
microcanonical thermodynamics and the resource theory of pure bipartite entanglement.

1. Introduction

In recent years, developments in the field of nanotechnology have raised questions about thermodynamics away
from the thermodynamic limit [1-17]. One way to address this new regime is to adopt a resource-theoretic
approach [18, 19], which starts from a subset of operations that are regarded as ‘free’ or ‘easy to implement’
[20-23]. Anumber of results in quantum thermodynamics have been obtained through this approach [24-35],
unveiling new connections between thermodynamics and information theory [36—-42].

The most basic instance of thermodynamics is for systems with definite energy. There, the natural choice of
free state is the microcanonical state, i.e. the uniform mixture of all states with the same energy. In situations
where the experimenter lacks control over the preparation of the system, it is natural to expect that the system’s
state will fluctuate randomly from one experiment to the next, so that the overall statistics is described by the
microcanonical state. The choice of free operations is less obvious. The three main choices considered in the
literature on quantum thermodynamics are:

1. random unitary channels [43—45], arising from unitary dynamics with randomly fluctuating parameters;

2. noisy operations [46—48], generated by preparing ancillas in the microcanonical state, turning on a unitary
dynamics, and discarding the ancillas;

3. unital channels [49, 50], defined as the quantum processes that preserve the microcanonical state.
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These three sets are strictly different: the set of random unitary channels is strictly contained in the set of noisy
operations [51], and the latter is strictly contained in the set of unital channels [52]. In spite of this, the three sets
are equivalent in terms of state convertibility [48]. This means that all the natural candidates for the sets of free
operations induce the same notion of resource. This resource is generally called purity, and plays a fundamental
role in many quantum protocols [53].

In this paper we extend the paradigm of microcanonical thermodynamics from quantum theory to arbitrary
physical theories [54—61]. We propose two minimal requirements a probabilistic theory must satisfy in order to
supporta microcanonical description, and, when these requirements are satisfied, we provide a general
operational definition of random reversible, noisy, and unital operations. We then focus on a special class of
theories, called sharp theories with purification, which are appealing for the foundations of thermodynamics [62],
and have also been studied for their computational power [63, 64] and interference properties [65]. In sharp
theories with purification, we show that the three sets of operations satisfy the same inclusion relations as in
quantum theory, with random reversible operations included in the set of noisy operations, and noisy
operations included in the set of unital operations. For unital operations, we characterise the convertibility of
states completely in terms of a suitable majorisation criterion. Thanks to this fact, one can take advantage of
majorisation theory and develop quantitative measures of resourcefulness under unital operations. We call these
measures unital monotones and show that they are in one-to-one correspondence with Schur-convex
functions [66].

Majorisation is a necessary and sufficient condition for state convertibility under unital operations. For
random reversible and noisy operations, however, majorisation is only necessary, as we illustrate explicitly with a
counterexample. Majorisation becomes sufficient if and only if the dynamics allowed by the theory satisfy a
suitable requirement, which we call unrestricted reversibility. When this is the case, the sets of random reversible,
noisy, and unital operations define the same notion of resource. Moreover, one can prove the validity of an
entanglement-thermodynamics duality [67], which connects the three resource theories of purity and the
resource theory of pure bipartite entanglement. All these results identify sharp theories with purification and
unrestricted reversibility as a privileged spot in the space of all possible physical theories. In this spot,
thermodynamic and information-theoretic features interact in a very similar way as they do in quantum
mechanics.

The paper is structured as follows. In section 2 we briefly review the framework, and in section 3 we
introduce constrained theories, a natural setting where to develop microcanonical thermodynamics. In section 4
we propose two basic requirements for a well-posed microcanonical thermodynamics in general physical
theories, and in section 5 we extend the three resource theories of random reversible, noisy, and unital
operations from quantum theory to arbitrary probabilistic theories. In section 6 we introduce the axioms and
discuss their basic consequences for the class of theories we study. The implications of the axioms for
microcanonical thermodynamics are examined in section 7. In section 8 we establish majorisation as a necessary
and sufficient condition for the convertibility of states under unital operations, and we characterise the
corresponding monotones in terms of Schur-convex functions. Remarkably, majorisation is not a sufficient
criterion for convertibility under random reversible channels; we show a counterexample in section 9. In
section 10 we determine when the three resource theories are equivalent in terms of state convertibility. Finally,
in section 11 we establish the duality between the three resource theories of microcanonical thermodynamics
and the resource theory of entanglement. Conclusions are drawn in section 12.

2. Framework

Toy models of physical theories beyond classical and quantum mechanics can be formulated in the language of
general probabilistic theories [54—61], an umbrella term used to describe frameworks dealing with the notions of
state, transformation, and measurement, along with a set of rules to assign probabilities to measurement
outcomes. Specifically, this paper adopts the framework known as operational-probabilistic theories (OPTs)
[57-59,61, 68-71]. The OPT framework differs from other frameworks for general probabilistic theories, such
as the convex set framework [55, 72-74], in the particular way it treats the composition of systems. While in the
convex set framework one generally starts from convex sets associated with individual systems, and builds
composites from them, the OPT framework takes the composition of physical processes as primitive.
Mathematically, the ‘top-down’ approach of the OPT framework is underpinned by the graphical language of
circuits [75-80]. In this section we give an informal presentation, referring the reader to the original articles fora
more in-depth discussion.
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2.1. States, transformations, and measurements

OPTs describe the experiments that can be performed on a given set of systems by a given set of physical
processes. The framework is based on a primitive notion of composition, whereby every pair of physical systems
A and B can be combined into a composite system, denoted by A ® B. Physical processes can be connected in
sequence or in parallel to build circuits, such as

A @A/@A”@ (l)

aaliee D)
In thisexample, A, A/, A”, B, and B’ are systems, p is a bipartite state, A, A’ and B are transformations, a and b

are effects. Note that inputs are on the left and outputs are on the right.
For generic systems A and B, we denote by

+ St(A) the set of states of system A,
« Eff(A) theset of effectson A,

+ Transf(A, B) the set of transformations from A to B, and by Transf(A) the set of transformations from A
to A,

+ Bo A(or BA, for short) the sequential composition of two transformations .4 and 3, with the input of B
matching the output of A,

+ T, theidentity transformation on system A, represented by the plain wire 5

+ A ® B theparallel composition (or tensor product) of the transformations .4 and B.

Among the list of valid physical systems, every OPT includes the trivial system I, corresponding to the degrees of
freedom ignored by theory. The trivial system acts as a unit for the composition of systems: for every system A,
onchasI® A=A ®1=A.

States (resp. effects) are transformations with the trivial system as input (resp. output). Circuits with no
external wires, like the circuit in equation (1), are called scalars. We will often use the notation (a|p) to denote the
scalar

(alp) = Afa), )

and of the notation (a|C|p) to denote the scalar

(alClp) = . 3)

In the OPT framework, the scalar (a|p) is identified with a real number in the interval [0, 1], interpreted as the
probability of a joint occurrence of the state p and the effect a in an experiment consisting of a state preparation
(containing p as one of the possible states), followed by a measurement (containing a as one of the possible
effects).

The fact that scalars are real numbers induces a notion of sum for transformations, so that the sets St(A),
Transf(A, B), and Eff(A) become spanning sets of real vector spaces. By dimension of the state space St(A), we
mean the dimension of the vector space spanned by the states of A.

2.2. Tests and channels

In general, a physical process can be non-deterministic, i.e. it can result into a set of alternative transformations,
heralded by different outcomes, which can (at least in principle) be accessed by an experimenter. General non-
deterministic processes are described by fests: a test from A to B is a collection of transformations {C;};cx from A
to B, where Xis the set of outcomes. If A (resp. B) is the trivial system, the test is called a preparation-test (resp.
observation-test). If the set of outcomes X contains a single element, we say that the test is deterministic, because
one, and only one transformation can take place. We will denote the sets of deterministic states, transformations,
and effects as DetSt(A), DetTransf(A, B), and DetEff(A) respectively. We refer to deterministic transformations
as channels.

A transformation U from A to B is called reversible if there exists another transformation &/~! from B to A
such that Y~ = Z, and UL{~! = Z3.Itis not hard to see that reversible transformations are deterministic, i.e.
they are ‘channels’. If there exists a reversible transformation transforming A into B, we say that A and B are
operationally equivalent, denoted by A =~ B. Physically, this means that every experiment performed on system
A can be (atleast in principle) converted into an experiment on system B, and vice versa. The composition of

3
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systems is required to be symmetric, meaning that A ® B ~ B ® A.Physically, this means that for every pair of
systems A and B there exists a reversible transformation that swaps A with B.

2.3.Pure transformations
The notion of pure transformation plays centre stage in our work. Intuitively, pure transformations represent
the most fine-grained processes allowed by the theory. To make this intuition precise, we need a few definitions.
The first definition is coarse-graining—the operation of joining two or more outcomes of a test into a single
outcome: the test {C;};cx is a coarse-graining of the test { D;}jcv if there exists a partition {Y;};ex of Y such that
Ci=> D, VieX 4)
jey;
We say that the test { D;}icy is a refinement of the test { C;}jcx. A transformation D; with jin the set Y; is a refinement
of the transformation C;.
Pure transformations are the most refined transformations:

Definition 1. A transformation C € Transf(A, B) is pureif it has only trivial refinements, namely refinements
{D;} of the form D; = p; C,where { p} is a probability distribution.

We denote the sets of pure transformations, pure states, and pure effects as PurTransf(A, B), PurSt(A), and
PuUrEff(A) respectively. As usual, non-pure states are called mixed.

2.4. Purification
Another key notion in our paper is the notion of purification [57, 59]. Consider a bipartite system A ® Binthe
state p, 5. The state of system A alone is obtained by discarding system B—that is, by applying a channel that
transforms system B into the trivial system. Discarding operations are represented by deterministic effects, i.e.
deterministic transformations with trivial output. In quantum theory, every system has one and only one
deterministic effect, corresponding to the partial trace on the Hilbert space of the system.

Given a deterministic effect e € DetEff(B), the corresponding marginal state is

A

pA FA— = [ paB : (5)
.
or,informula, p, = (Zy ® €)p,p-
When p, is pure and equation (5) is satisfied for some deterministic effect e, we say that p,  is a purification
of p, and we call B the purifying system [57, 59].

Definition 2. A purification ¥ € PurSt(A ® B) is essentially unique [59] if for every pure state
¥’ € PurSt(A ® B)and every deterministic effect ¢/ € DetEff(B) satisfying the purification condition

A
\IJ’B:A (©)
e/

A _
:E 7
and

A - A {uA (D), ®

for some reversible transformation /.

In a completely general theory, there may be different ways to discard a system, corresponding to different
deterministic effects. The deterministic effect is unique in causal theories, that is, theories where no signal can be
sent from the future to the past [57].

2.5. Finiteness, closure, and convexity

In this paper we will make three standing assumptions. The first assumption is that our OPT describes finite
systems, 1.e. systems for which the state space is finite-dimensional. Operationally, this means that the state of
each system is uniquely determined by the statistics of a finite number of finite-outcome measurements.

4
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Our second assumption is that the space of transformations (and the spaces of states and effects, in
particular) is closed under limits. Physically, this expresses the fact that a limit of operational procedures is itself
an operational procedure, whereby the target transformation can be implemented with arbitrary accuracy.
Mathematically, a sequence of transformations { 7,,},cn from A to B converges to the transformation
T € Transf(A, B)iffor every reference system R, every state p € St(A ® R),and everyeffect E € Eff(B ® R)
the probabilities (E|7,, ® Zg|p) converge to the probability (E|7 ® Zg|p).

The third standing assumption made throughout the paper is that the space of transformations Transf(A, B)
is convex for every A and B. Mathematically, this means that one has the implication

7T, S € Transf(A, B), p € [0, 1]
= pT+ (1 — p)S € Transf(A, B). )

Physically, this means that the experimenter can perform arbitrary randomised operations. Note that convexity
is a natural assumption in every non-deterministic theory: provided that some experiment yields random
outcomes, one can always repeat that experiment many times and approximate every probability distribution
[57]. Then, the closure assumption guarantees that the limit probability distribution is also achievable within the
theory. Thanks to this fact, the experimenter can perform arbitrary randomised tests.

3. Theories of systems with constraints

The language of general probabilistic theories is largely interpretation-independent. As such, it has the flexibility
to model very different physical scenarios, or even to model different fragments of the same physical theory. In
this paper we use the framework to model scenarios of microcanonical thermodynamics, where the systems
under consideration have a well-defined energy. More generally, the microcanonical approach can be applied to
systems with additional constraints—e.g. to systems of particles confined in a given volume, or constrained to
have a fixed value of the angular momentum. In these scenarios, the microcanonical state is interpreted as the
state of ‘minimum information’ compatible with the constraints. In this section we outline how the OPT
framework can be used to describe physical systems subject to constraints.

3.1. Constrained systems in quantum theory

Before delving into general theories, it may help to analyse the example of quantum theory. Let us consider first
the case of a quantum system S constrained to a fixed value of the energy. The constraint is implemented by
specifying the system’s Hamiltonian Hg and by restricting the allowed states to (mixtures of) eigenstates of the
Hamiltonian for a fixed eigenvalue, say E. The quantum states compatible with the constraint are the density
matrices p satisfying the condition

PrpPg = p, (10)

where Py is the projector on the eigenspace of Hg with eigenvalue E.

For example, the system S could be an electron in a hydrogen atom, in the absence of external fields. In
general, the basis states of the electron are labelled as |, I, m, my), where n, I, m, and m;are the principal,
orbital, magnetic, and spin quantum number respectively. The electron may be constrained to the lowest energy
shell, correspondington = 1and ! = m = 0. In this case, the allowed states are contained in a two-
dimensional subspace, spanned by the ‘spin-up’ and ‘spin-down’ states [n = 1, Il = 0, m = 0, m, = 1/2)and

[n=1,1=0, m =0, my = —1/2), Under this restriction, the electron’s spin can be regarded as an effective
qubit.
Constraints other than energy preservation can be treated in a similar way. We consider constraints of the form
L(p) =0, an

where L is alinear map on the state space of the system. This form is suggested by equation (10), where the linear
mapis L£(-) = Pg(-)Pg — Zs(+), Zs being the identity channel on system S.

Given a set of constraints { £;}, one can define an effective system, whose states are the density matrices p
satisfying the conditions £;(p) = 0 for every i. The constrained quantum system can be denoted as
A = (Sa, {La; }f—‘zl), where S, is the original system and { La; }5—‘:1 are the linear maps representing the
constraints. The physical transformations of the effective system are the physical transformations of S that send
every input state satisfying the constraint into an output state satisfying the constraints. For the energy
constraint (10), this means that the transformations of the effective systems should be energy-preserving.

A familiar example of effective system is the polarisation of a single photon. At the fundamental level, the
single photon is just an excitation of the electromagnetic field, e.g. corresponding to the wave vector k. One can
regard the single photon as an effective system by restricting the attention to the two-dimensional space spanned
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by the states [k, H, 1)and |k, V, 1), corresponding to vertical and horizontal polarisation, respectively. In this
case, we can see two constraints working together: a constraint on the wave vector and a constraint on the energy
of the field. Note that the effective description in terms of single photons is accurate only as long as the dynamics
of the field is confined into the ‘single-photon subspace with wave vector k’.

So far, we have defined effective systems at the single-system level. An important question is how to define
the composition of effective systems. Consider two effective systems A = (Sy, {£a;}5_,) and
B = (Sg, {Lg; }§'=1)’ where Sy and Sg are the original, unconstrained systems. A natural way to define the
effective composite system A ® B is to select the states of the unconstrained composite system Sy ® Sg that
satisfy both constraints—i.e. to select the density matrices p such that

(Lai ® Isp)(p)=0 Vie{l,...,k},
Ts, ® Ly)(p) =0 Vi€ (1,...0). (12)

When the effective systems A and B result from an energy constraint, the effective system A ® B describesa
system consisting of two parts, each of which with its own, well-defined energy. In this case, the constraints (12)
can be summarised in a single equation, namely

(Pg, ® Qg) p(PE, ® Qg) = p» (13)

where E, and Ep are the energies of the two local systems, and Pg, and Qg are the projectors on the
corresponding eigenspaces.

One might be tempted to define the composite system A ® B in a different way, without imposing that each
individual part has a definite energy. Indeed, one could imagine that, when the two systems S, and Sg are
brought into contact, they start exchanging energy, with the only constraint that the total energy has to remain
constant. The resulting states would be density matrices that satisfy the (generally) weaker condition

Uk, + g, pHE B = ps (14)

where I, | g, is the projector on the eigenspace of Hg, + Hg, with eigenvalue E5 + Eg. The reason why we do
not make such a choice can be illustrated with a simple example. Suppose that S, and Sg are two spatial modes of
the electromagnetic field, with wave vectors k, and kg, respectively. Systems A and B could be single photons,
i.e. effective systems corresponding to states of the field in the first excited level. Now, if the energy of the two
modes is the same, an energy-preserving evolution could transform the initial state |k, H, 1) |kg, H, 1) into the
state

_ |kA) H) 2> |kB; H: 0> + |kA) H) 0> |kB) H) 2>
V2 '

States of this kind cannot be interpreted as states of two single photons. Note that, instead, the constraint (12)

correctly identifies the correct set of states—including, among others, entangled states such as the Bell state

_ |kAa H) 1> |kB) H) 1) + |kA) V: 1> |kB) V) 1>
Nl .
Motivated by this and by similar examples, we reserve the notation A ® B for effective systems defined by

the constraint (12). Other effective systems, like the system defined by the constraint (14), can be treated in our
framework, but will be regarded as different from the product system A ® B.

W) (15)

) (16)

3.2. Constrained systems in general theories

The construction outlined in the quantum case can be easily extended to arbitrary physical theories. A constraint
for system S can be defined as an element £ of the real vector space Transfr(S) spanned by the physical
transformations in Transf(S). The constraint is satisfied by the states p such that

L(p) = 0. (17)
For a given set of constraints { £;}*_,, one can define an effectivesystem A: = (S, Ly, ..., L). The states of the
effective systems are defined as
St(A) ={peStS)| Li(p) =0,i=1,..., k}. (18)

The transformations of the effective system A are those transformations of S that send states of A to states of
A.The measurements on A are just the measurements on S, restricted to the states in St(A).

For two effective systems, A = (Sy, {£La; }f-‘: pand B = (Sg, {Lg; }é-: 1), we define the composite system
A ® Btobe the effective system

A®B = (S @Sy (Lu® Ty U {Ta ® Ly (19)
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This definition is consistent with interpretation of system A ® B asa composite system made of two,
independently addressable parts A and B. For example, local measurements on one side of a bipartite state of
A ® Binduce states of the correct system (either A or B) on the other side.

3.3. Effective theories

Given a theory and a set of constraints composed as in equation (19), one can build a new effective theory, which
consists only of effective systems. For example, one can build an effective theory where every system has definite
energy, and where every composite systems consist of subsystems with definite energy. For a given system A in
such a theory, all the states in St(A) have—by fiat—the same energy. Likewise, all the transformations in
Transf(A) will be—by fiat—energy-preserving. For every pair of systems A and B, the composite system A ® B
consists of two parts, each of which with its own, well-defined energy. The joint transformations in

Transf(A ® B)will be interpreted as operations that preserve the energy of the first part and the energy of the
second part.

One benefit of the effective picture is that one does not need to specify the constraints—in principle, every
linear constraint can fit into the framework. In this way, we can circumvent the thorny issue of defining the
notion of Hamiltonian in general probabilistic theories (see [62]): in the effective description, we can simply
regard each effective system as a system with trivial Hamiltonian, which assigns the same energy to all states of
the system.

4. The microcanonical framework

In this section we build a microcanonical framework for general physical theories. We will adopt the effective
description, wherein every system is interpreted as the result of a constraint—typically, but not essentially, a
constraint on the energy.

4.1. The principle of equal a priori probabilities

The starting point of the microcanonical approach is the principle of equal a priori probabilities, stating that one
should assign the same probability to all the microstates of the system compatible with a given macrostate. In our
language, the ‘microstates’ are the deterministic pure states, representing those preparations of the system that
are both deterministic and maximally fine-grained. The ‘macrostate’ is specified by a constraint, such as the
constraint of fixed energy. The principle of equal a priori probabilities states that the system should be described
by a uniform mixture of all deterministic pure states satisfying the constraint. For example, the microcanonical
state of a (finite-dimensional) quantum system at energy E is described by the density matrix

Xg = j; i pe(d) ) (¢, (20)

where Sg is the manifold of pure states in the eigenspace of the system’s Hamiltonian corresponding to the
eigenvalue E, and p; (dt)) is the uniform probability distribution over Sg. In the effective picture, the
microcanonical state is nothing but the maximally mixed state

xa = [ 1) (l, @1

where di is the uniform probability distribution over the pure states of the system.

A traditional problem in the foundations of statistical mechanics is to determine the conditions under which
the principle of equal a priori probabilities holds. Here we will not delve into this problem, which involves a great
deal of detail about the physics of the system and of its dynamics. Instead, we will focus on the general conditions
that must be satisfied in order to formulate the principle of equal a priori probabilities in physical theories other
than classical and quantum mechanics.

In general probabilistic theories, the key problem is to define what we mean by ‘equal a priori probabilities’.
In quantum mechanics, there is a canonical choice: the unitarily invariant probability distribution on the pure
states of the system. The obvious extension to general theories is to consider the probability distributions that are
invariant under all reversible transformations. The problem is, however, that there may be more than one
invariant probability distribution. This point is illustrated in the following example:

Example 1. Consider a toy theory where the space of the deterministic states of one of the systems is a half-disk in
the two-dimensional plane, as in figure 1(a). For this system, the pure states are the states on the half-circle (in
green in the figure), and can be parameterised with a polar angle  between 0 and 7. Now, the reversible
transformations send deterministic states into deterministic states and, therefore, must be symmetry
transformations of the state space. For the half-disk, the only symmetry transformations are the identity

7
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(a) (b)

Figure 1. Two different sets of deterministic states. For the set in figure 1(a), the pure states form a half-circle (in green). Owing to the
limited symmetry of the state space, there is no canonical notion of equal a priori probability on the manifold of pure states. For the set
in figure 1(b), the pure states form a full circle, and the notion of uniform probability distribution is uniquely defined.

transformation and the reflection around the symmetry axis (in black in the figure). Hence, every probability
distribution that assigns the same probability distribution to the points § and 7—6 is guaranteed to be invariant
under reversible transformations. This means that the notion of ‘equal a priori probabilities’ is not uniquely
defined. The situation would be different if the state space of the system were a full disk, as illustrated in
figure 1(b). In this case, every rotation of the disk could be (at least in principle) a reversible transformation of the
system. The invariant probability distribution would be unique, and given by the probability density p(0) = i

Note that in the above examples we only specified the state space and the transformations of a single system,
without giving the full-blown OPT. It is easy to see that such a theory does indeed exist. In general, one can
always build a ‘minimal OPT’ that includes a given system with a given state space, a given set of transformations,
and a given set of measurements. The construction was shown in [81, example 2]. In the minimal OPT, the
composite systems are made of many copies of the given system, and their allowed states, transformations, and
operations are (mixtures of) product states, product transformations, and product operations.

The above example shows that there exist probabilistic theories where the notion of ‘equal a priori
probabilities’ on pure states is not uniquely defined. In order to formulate the principle of equal a priori
probabilities, we put forward the following requirement:

Requirement 1. For every (finite) system there exists a unique invariant probability distribution on the
deterministic pure states.

This requirement is far from trivial. In fact, it is equivalent to an important property, independently
considered in the literature on the axiomatisation of quantum theory [54, 82—-84]:

Theorem 1. For every finite system A, the following are equivalent:

1. There exists a unique invariant probability distribution on the deterministic pure states of system A.

2. Every deterministic pure state of system A can be obtained from every other deterministic pure state of the same
system through a reversible transformation.

Proof. The idea of the proof is that the set of deterministic pure states of system A can be decomposed into a
disjoint union of orbits generated by the group of reversible transformations. More formally, for every two
(deterministic) pure states w and o, one can define the equivalence relation & ~, ' if @' = Ua for some
reversible transformation /. In this way, the set of deterministic pure states is partitioned into equivalence
classes, known as homogeneous spaces. Moreover, each homogeneous space is a closed set, because the group of
reversible transformations is closed [57] and has a finite-dimensional representation on the state space of system
A.Now, one can define an invariant probability distribution for every equivalence class. Indeed, it is enough to
define the invariant measure on the pure states induced by the invariant measure on the group of reversible
transformations. Hence, the condition that there is only one invariant probability distribution implies that there
must be only one equivalence class. In other words, every two pure states are connected by a reversible
transformation.

Conversely, if there is only one equivalence class for the relation ~., there is only one invariant probability
distribution. This is because the normalised invariant measure on a homogeneous space is uniquely defined. W
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The mutual convertibility of pure states under reversible transformations was introduced by Hardy [54] as
an axiom for the derivation of quantum theory and has been assumed, either directly or indirectly, in all the
recent derivations inspired by quantum information theory (see [68, 70, 82, 83] and the contributed volume [60]
for an overview). Theorem 1 provides one more motivation for the convertibility of pure states, identified as the
necessary condition for the formulation of the principle of equal a priori probabilities.

4.2. The microcanonical state

Every theory satisfying requirement 1 has a canonical notion of ‘uniform distribution over the pure states of the
system’. We can then apply the principle of equal a priori probabilities and define the microcanonical state as the
uniform mixture

o= [e@d v, 22)

where p, (dv)) the invariant probability distribution over the deterministic pure states of system A.

The convexity of the state space guarantees that the microcanonical state is indeed a state. Moreover, since
the state space is finite-dimensional, it is possible to replace the integral in equation (22) with a finite sum. This
means that the microcanonical state can (in principle) be generated by picking deterministic pure states at
random from a finite set.

The microcanonical state has two important properties, proved in appendix A:

1. itis invariant under arbitrary reversible dynamics of the effective system;

2. it can be generated from every other deterministic pure state of the effective system through a random reversible
dynamics.

Property 1 expresses the fact that the microcanonical state is an equilibrium state, in the sense that it does not
evolve under any of the reversible dynamics compatible with the constraints. Note that the notion of equilibrium
here is different from the notion of thermal equilibrium, which refers to interactions with an external bath.
Instead of thermal equilibrium, we consider here a dynamical equilibrium, consisting in the fact that the
probability assignments made by the microcanonical state are stable under all possible evolutions of the system.

Property 2 refers to the fact that the system can—at least in principle—be brought to equilibrium. Physically,
we can imagine a situation where the experimenter has no control on the system’s preparation, but has control
on the system’s dynamics through some classical control fields. In this picture, property 2 guarantees that the
experimenter can prepare the microcanonical state by drawing at random the parameters of her control fields.
Further along this line, one can also imagine scenarios where the randomisation occurs naturally as a result of
fluctuations of the fields. Property 2 is important from the resource-theoretic approach, where the
microcanonical state is often regarded as free, or ‘easy to prepare’.

4.3. Composition of microcanonical states

At the level of single systems, requirement 1 guarantees the existence of a microcanonical state. But how does the
microcanonical state behave under the composition of systems? Traditionally, this question is not addressed in
textbook presentations, where the microcanonical state is associated with isolated systems, i.e. systems that do
not interact with other systems. From the operational point of view, however, it is natural to consider scenarios
where the experimenter has more than one system at her disposal.

Composition is especially important in the context of resource theories, where it is natural to ask how
resources interact when combined together. To illustrate this point, it is useful to consider the quantum resource
theory of noisy operations [46—48]. There, the microcanonical states are treated as free. Since the experimenter
can generate the microcanonical states x, and ; at no cost, then she can generate the product state y, ® xpat
no cost too. If we insist that the microcanonical states are the only free states in the resource theory of noisy
operations, the product state x,, ® X must be the microcanonical state of the composite system A ® B—in
formula,

Xa ® X = Xap (23)

Equation (23) is consistent with the intuitive interpretation of the microcanonical state as ‘the state of minimum
information compatibly with the constraints’. Indeed, equation (23) amounts to saying that, if one has minimum
information on the parts of a system, then one has minimum information about the whole. This is indeed the
case in quantum theory, where the product of two maximally mixed states is maximally mixed. Recall that here
we are dealing with effective systems, which exist only as long the corresponding constraints are enforced. For
energy constraints, the composite of two effective systems A and B is defined as a system consisting of two parts,
each constrained to a specific value of the energy. Consistently with this interpretation, the microcanonical state
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of system A ® B is the ‘maximally mixed state’ in the manifold of quantum states with fixed local energies, as
defined in equation (13).

Following the example of quantum mechanics, we require that minimum information about the parts imply
minimum information about the whole:

Requirement 2. The microcanonical state of a composite system is the product of the microcanonical states of its
components. In formula:

XaB = Xa @ Xp (24)

for every pair of effective systems A and B.

We call equation (24) the condition of informational equilibrium. Note that, again, here we are not referring to
thermal equilibrium between the two subsystems. This is clear from the fact that we do not allow an energy flow
between the two systems A and B. Instead, we allow a flow of information, implemented by the joint dynamics
of the composite system A ® B.

Itis natural to ask which physical principles guarantee the condition of informational equilibrium. One such
principle is local tomography [54, 55, 57], namely the requirement that the state of multipartite systems be
determined by the joint statistics of local measurements. However, local tomography is not necessary for
informational equilibrium. For example, quantum theory on real Hilbert spaces violates local tomography, but
still satisfies the condition of informational equilibrium. In this paper, we will not assume local tomography in
our set of physical principles. Nevertheless, our principles will guarantee the validity of the condition of
informational equilibrium.

4.4. Microcanonical theories
We are now ready to extend the microcanonical framework from quantum and classical theory to general
physical theories.

Definition 3. An operational-probabilistic theory, interpreted as a theory of effective systems, is microcanonical
ifrequirements 1 and 2 are satisfied.

Physically, a microcanonical theory is a theory where (i) every system has a well-defined notion of uniform
mixture of all pure states, and (ii) uniform mixtures are stable under parallel composition of systems.
Microcanonical theories provide the foundation for the definition of three important resource theories,
analysed in the following sections.

5. Three resource theories

In this section we study three different notions of state convertibility in microcanonical theories. We adopt the
resource-theoretic framework of [20, 21], where one fixes a set of free operations, closed under sequential and
parallel composition. A basic question in the resource-theoretic framework is whether a given state p can be
transformed into another state o by means of free operations. When this is possible, p is regarded as ‘more
resourceful’ than o, denoted as p = o, where F is the set of free operations. Mathematically, the relation >= ¢ is
apreorder on the states.

In the following we define three resource theories and their corresponding preorders.

5.1. The random reversible (RaRe) resource theory
Our first resource theory is based on the notion of random reversible channel [67]:

Definition 4. A RaRe channel on system A isa channel R of the form R = Y, p.Uf;, where { p,} is a probability
distribution and, for every 7, I; is a reversible channel on system A.

Physically, RaRe channels are the operations that can be implemented with limited control over the
reversible dynamics of the system. Mathematically, it is immediate to check that RaRe channels have all the
properties required of free operations: the identity channel is RaRe, the sequential composition of two RaRe
channels is a RaRe channel, and so is the parallel composition. We call the resulting resource theory the RaRe
resource theory, and we denote by ’= rare the corresponding preorder.

Note that the RaRe resource theory can be formulated in every OPT, even in OPTs that do not satisfy
requirements 1 and 2. Such generality, however, comes at a price: the RaRe resource theory has no free states. This
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is because states are operations with trivial input, while the only free operations in the RaRe theory are
transformations where the input and the output coincide.

Despite not having free states, the RaRe resource theory can have minimally resourceful states, defined as
follows

Definition 5. In a resource theory with free operations F, a state p is minimally resourceful if the condition
p =f oimplieso = p.

In the RaRe resource theory, minimally resourceful states are easy to characterise:

Proposition 1. A state is minimally resourceful in the RaRe resource theory if and only if it is invariant under the
action of reversible transformations.

Proof. By definition, one has p = rage  Up for every state p and for every reversible transformation U. If pis
minimally resourceful, one must have p = Up. Hence, p must be invariant under arbitrary reversible
transformations.

Conversely, suppose that pis invariant, and that p =p,r. 0. By definition, this means that o = R p, for
some RaRe channel R. Since pis invariant, it must satisfy the relation Rp = p.Hence, 0 = p. |

For theories satisfying requirement 1, proposition 1 implies that the microcanonical state is minimally
resourceful: indeed, we know that the microcanonical state is invariant under reversible transformations.

5.2. The noisy resource theory

While the RaRe resource theory can be defined in every OPT, we now discuss a second resource theory that can
only be defined in physical theories satisfying requirements 1 and 2. In this resource theory, free operations are
generated by letting the system interact with ancillas in the microcanonical state. These operations, usually called
‘noisy’ [46—48], are defined as follows:

Definition 6. A channel 3, from system A to system A’, is a basic noisy operation if it can be decomposed as

A A

A A _ (25)
5] et

where E and E’ are suitable systems such that A ® E ~ A’ ® E/, U isareversible transformation, and eis a
deterministic effect, representing a possible way to discard system E’.

Note that here we only allow reversible transformations, instead of mixtures of reversible transformations.
In principle, one could consider arbitrary RaRe channels, as in the previous subsection. The main reason why we
stick to reversible transformations (without randomisation) is that we want to be consistent with the existing
literature [46—48]. Note also that definition 6 is interesting per se, because it does not rely on the availability of
external sources of randomness: instead, all the randomness is accounted for in the preparation of the
microcanonical state in the right-hand side of equation (25).

Definition 6 has a slightly unpleasant aspect: the set of basic noisy operations is generally not closed. In
quantum theory, for example, there exist counterexamples where the limit of a sequence of basic noisy
operations is not a basic noisy operation [51]. It is then convenient to take the closure of the set of basic noisy
operations:

Definition 7. A channel  is a noisy operation if it is the limit of a sequence of basic noisy operations { ,,}.

The set of noisy operations satisfies all the requirements for being a set of free operations: the identity isa
noisy operation, and the parallel and sequential composition of two noisy operations are noisy operations,
thanks to the condition of informational equilibrium (24). The resource theory where the set of free operations
is the set of noisy operations will be called the noisy resource theory. The corresponding preorder on states will be
denoted by = noisy-

5.3. The unital resource theory

In the third resource theory, the set of free operations includes all the operations that transform microcanonical
states into microcanonical states. The rationale for considering these transformations, called unital channels, is
their generality: if we insist that the microcanonical states are the only free states, unital channels are the most
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general transformations that send free states into free states. In other words, they are the most general operations
that do not create resources out of free states
Mathematically, the unital channels are defined as follows:

Definition 8. A channel D from system A to system A’ is called unitalif Dx,, = X,

Unital channels are the operational generalisation of doubly stochastic matrices in classical probability
theory[49, 50, 66].

The set of unital channels enjoys all the properties required of a set of free operations: the identity is a unital
channel, and thanks to the condition of informational equilibrium, the sequential and parallel composition of
unital channels is a unital channel. The resource theory where free operations are unital channels will be called
the unital resource theory. The corresponding preorder on states will be denoted by = ynitar-

5.4. Containment relations

Let us highlight the relations between the three sets of operations defined so far. First, RaRe channels are
examples of unital channels. This is clear because every RaRe channel can be decomposed as a mixture of
reversible transformations, each of which preserves the microcanonical state. Hence, we have the inclusion

RaRe C Unital. (26)

In classical probability theory, the inclusion is actually an equality, as a consequence of Birkhoff’s theorem

[66, 85]. Remarkably, in quantum theory there exist unital channels that are not random unitary, meaning that
the inclusion (26) is generally strict. The simplest example is due to Landau and Streater [49]: for a quantum
particle of spin j, they defined the map

]x(')]x + ]y()]y + ]z()]z
jG+1D

where J;, ], ], are the three components of the spin operator. It is easy to see that the map D; is trace-preserving

and identity-preserving—that is, it is a unital channel. On the other hand, Landau and Streater showed that the

map D; cannot be decomposed as a mixture of unitary channels unless j = 1,/2 [49].
We have seen that all RaRe channels are unital. Noisy operations are also unital, as shown by the following

Di() = (27)

Proposition 2. Every noisy operation is unital.

Proof. Suppose that B is a basic noisy operation, decomposed as in equation (25). Then, one has

) XA—A’

G E = 2 ul,
Ol B K

A A
- e Y

(28)

AR
FET

[
le3]

&
>
-

having used the condition of informational equilibrium (24), the invariance of the microcanonical state X,
under reversible transformations, and the condition (e|y;) = 1, following from the fact that both x; and eare
deterministic. Hence, every basic noisy operation is unital. Since the set of unital channels is closed under limits,
all noisy operations are unital. |

In summary, one has the inclusion
Noisy C Unital. 29)

The inclusion is strict in quantum theory, where Haagerup and Musat have found examples of unital channels
that cannot be realised as noisy operations [52].

It remains to understand the relation between RaRe channels and noisy operations. In quantum theory, the
set of noisy operations (strictly) contains the set of RaRe channels as a proper subset [51]. In a generic theory,
however, this containment relation may not hold. As a counterexample, consider the variant of quantum theory

12



10P Publishing

NewJ. Phys. 19 (2017) 123043 G Chiribella and C M Scandolo

where onlylocal operations are allowed: in this case, RaRe channels are not contained in the set of noisy
operations, because all the interactions are trivial.

The inclusions (26) and (29) are the most general result one can derive from the definitions alone. To go
further, we need to introduce axioms. In the next sections, we will introduce a set of axioms that imply deeper
relations between the RaRe, noisy, and unital resource theories. In addition, the axioms will imply a connection
with the mathematical theory of majorisation and with the resource theory of entanglement.

6. Four axioms

In this section we review the four axioms used in this paper. These axioms—causality, purity preservation, pure
sharpness, and purification—define a special class of theories, which we call sharp theories with purification.

6.1. Sharp theories with purification
Sharp theories with purification are defined by the following four axioms. The first axiom—causality—states
that no signal can be sent from the future to the past:

Axiom 1 (Causality [57, 59, 61, 68]). The probability that a transformation occurs in a test is independent of the
settings of tests performed on the output.

The second axiom—purity preservation—states that no information can leak to the environment when two
pure transformations are composed:

Axiom 2 (Purity preservation [86]). Sequential and parallel compositions of pure transformations yield pure
transformations.

The third axiom—pure sharpness—guarantees that every system possesses at least one elementary property,
in the sense of Piron [87]:

Axiom 3 (Pure sharpness [88]). For every system there exists at least one pure effect occurring with unit
probability on some state.

Axioms 1-3 are satisfied by both classical and quantum theory. Our fourth axiom, purification, characterises
all physical theories admitting a fundamental level of description where all deterministic processes are pure and
reversible.

Axiom 4 (Purification [57, 59, 61, 68]). Every state has a purification. Purifications are essentially unique, in the
sense of definition 2.

Quantum theory, both on complex and real Hilbert spaces, satisfies purification. Remarkably, even classical
theory can be regarded as a sub-theory of a larger physical theory where purification is satisfied [62].

Definition 9. An OPT is a sharp theory with purification if it satisfies axioms 1—4.

In the rest of the section we will outline the main kinematic properties of sharp theories with purification.

6.2. Well-defined marginal states

By definition, sharp theories with purification satisfy causality, which in turn is equivalent to the requirement
that, for every system A, there exists a unique deterministic effect uy € Eff(A) (or simply u, when no ambiguity
can arise) [57]. The uniqueness of the deterministic effect implies that the marginals of a bipartite state are
uniquely defined. For a bipartite state p € St(A ® B), we will denote the marginal on system A as

(30)

A
Trg [paB] == G By

in analogy with the notation used in quantum theory.
In a causal theory, it is immediate to see that a state p can be prepared deterministically if and only if it is
normalised, namely
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Tr(p] = (ulp) = 1. (D

We denote the set of normalised states of system A as St;(A): = DetSt(A).

6.3. Diagonalisation
In sharp theories with purification, one can prove that every state can be diagonalised, that is, decomposed as a
random mixture of perfectly distinguishable pure states.

Theorem 2 ([62, 88)). Every normalised state p € St;(A) of every system A can be decomposed as
p =2 P (32)
i=1

wherer is an integer (called therank of the state), p, > p, > ... > p. > 0 are probabilities (called the eigenvalues ),
and { «;}i_, is a set of perfectly distinguishable pure states (called the eigenstates).

It follows from the axioms that the eigenvalues are uniquely defined by the state (see [62] for the proof). The
uniqueness of the spectrum is a non-trivial consequence of the axioms: notably, [89, 90] exhibited examples of
theories (other than sharp theories with purification) where states can be diagonalised, but the same state can
have two different diagonalisations with two different spectra.

6.4. State-effect duality

Sharp theories with purification exhibit a duality between normalised pure states and normalised pure effects—a
normalised effect being an effect a such that (a|p) = 1 for some state. Denoting the set of normalised pure effects
by PurEffi(A), the duality reads as follows:

Proposition 3 ([88]). There is a bijective correspondence between normalised pure states and normalised pure effects.
Specifically, if « € PurSt(A), there exists a unique of € PurEffy(A) such that (af|a) = 1.

Physically, the meaning of the duality is that every pure state can be certified by a (unique) pure effect, which
occurs with unit probability only on that particular state. The duality between pure states and pure effects can be
lifted to a duality between maximal sets of perfectly distinguishable pure states and perfectly distinguishing
observation tests, defined as follows:

Definition 10. An observation-test {a;};icx is called perfectly distinguishing if there exists a set of states { p;}icx,
such that (a;| p) = i foralliandjin X. In this case the states { p; }icx are said perfectly distinguishable.

Definition 11. A set of perfectly distinguishable states { p; }icx is maximal if there is no state p, such that the states
{piYiex U {p,} are perfectly distinguishable.

A maximal set of perfectly distinguishable pure states will be called pure maximal set for short. With this
notation, the duality reads

Proposition 4 ([62)). The pure states { «; };cx are a maximal set if and only if the pure effects { o };cx form a perfectly
distinguishing observation-test.

As a consequence, the product of two pure maximal sets is a pure maximal set for the composite system:

Proposition 5. If {a;} | is a pure maximal set for system A and { 6]-}?1‘:1 is a pure maximal set for system B, then
{ai ® Blicq, .., dy),je (1, dy 1S a pure maximal set for the composite system A @ B.

Proof. By proposition 4, {Oc;r }?;1 and {ﬁ;}?‘;l are two observation tests for systems A and B, respectively. Now,
the product of two observation tests is an observation-test (physically, corresponding to two measurements
composite system A ® B. Moreover, each effect o] ® 3 }L is pure, due to purity preservation. Using proposition

4 again, we obtain that {a; ® Bjlic1, ..., du},je(1 ... dy) 15 @ pure maximal set. ]

.....

Itis possible to show that all pure maximal sets in a given system have the same cardinality [62]. For a generic
system A, we will denote the cardinality of the maximal sets by dy. We will refer to d as the dimension of system
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A. Westress that the dimension d4 should not be confused with the dimension of the normalised state space
St;(A): in quantum theory, the dimension dj is the dimension of the system’s Hilbert space, while the dimension
of the space of density matrices is dz — 1.

Proposition 5 shows that the dimension of a composite system is the product of the dimensions of the
components, namely

dag = dads, (33)

for every pair of systems A and B. This property has been dubbed information locality by Hardy [70, 71].

7. Microcanonical thermodynamics in sharp theories with purification

Here we show that sharp theories with purification satisfy our requirements 1 and 2 for the construction of the
microcanonical framework. Moreover, we will show that sharp theories with purification exhibit a simple
inclusion relation between RaRe and noisy operations.

7.1. The microcanonical state

We start by showing that every sharp theory with purification satisfies requirement 1, which enables the
formulation of the principle of equal a priori probabilities. Thanks to theorem 1, we only need to show that every
two pure states of the same system are connected by a reversible transformation. This fact is an immediate
consequence of purification:

Proposition 6 ([57]). For every theory satisfying purification, for every system A in the theory, and for every pair of
deterministic pure states & and o of system A, there exists a reversible transformation U such that o/ = Ua.

Proposition 6 guarantees that for every system A there exists a unique probability distribution p, (dv)),
which is invariant under all reversible dynamics. In turn, the probability distribution p, (d¢) canbe used to
define the microcanonical state x .

In sharp theories with purification, the microcanonical state enjoys a remarkable property: the state can be
decomposed into a uniform mixture of perfectly distinguishable pure states.

Proposition 7 ([62]). In sharp theories with purification, for every system A, and every pure maximal set { ay; }?;1 in
A, one has the decomposition

1 &
Xa=—. Qi (34)
dA i=1

In quantum theory, the decomposition of equation (34) is nothing but the expression

Iy
AT
where d, is the dimension of the system’s Hilbert space, and I isthe dy X dj identity matrix. Recall that here
we are interpreting the systems in our theory as effective systems. For a system with definite energy, the
decomposition of equation (35) reads

1 &
Xg = — > _|E, n)(E, nl, (36)
dg i=1

where {|E, n)}% | is any orthonormal basis for the eigenspace of the Hamiltonian with eigenvalue E.

It is worth noting that equation (36) is often chosen as the definition of the microcanonical state in quantum
statistical mechanics. Proposition 7 shows that a similar definition is possible in every sharp theory with
purification. One may be tempted to use equation (34) to define the microcanonical state in arbitrary physical
theories. However, the fact that the state is independent of the choice of maximal set is not guaranteed to hold in
every theory. For this reason, we prefer to define the microcanonical state as the uniform mixture of all pure
states with a given energy, rather than the uniform mixture of a particular maximal set of pure states. Physically,
the uniform mixture of all pure states represents the result of fully uncontrolled, but energy conserving
fluctuations in the experimental setup. From a subjective point of view, the uniform mixture represents the
complete lack of knowledge besides the knowledge of the value of the energy: not even the ‘energy eigenbasis’ is
assumed to be known.

15



10P Publishing

NewJ. Phys. 19 (2017) 123043 G Chiribella and C M Scandolo

7.2. The condition of informational equilibrium

We have seen that sharp theories with purification satisfy requirement 1—the uniqueness of the uniform
distribution over the pure states. We now show that requirement 2—the condition of informational equilibrium
—is satisfied too.

Proposition 8. For every pair of systems A and B, one has x,5 = X4 ® Xz
Proof. Pick two pure maximal sets for A and B, say {ai}fil and {8 j};?“: 1- Then, the product set

{ai @ Bilicqu, ..., dy),je(1 ... dp) is maximal for the composite system A ® B, by proposition 5. Using the
decomposition (34), we obtain

1 dA dB
XAB = _Z Z(Oéi ® Bj)
dap i=1j=1
1 (éa dy
= 0 a;i| @ Zﬂ]
Adp\i= i=1
= Xa ® Xp 37
having used the information locality condition dxg = dy dp. |

In summary, sharp theories with purification satisfy our two requirements for the general microcanonical
framework. In the following, we will show that sharp theories with purification also guarantee an important
inclusion relation between the set of RaRe channels and the set of noisy operations.

7.3. Inclusion of RaRe into noisy

In sharp theories with purification, one can establish an inclusion between RaRe channels and noisy operations.
To obtain this result, we first restrict our attention to rational RaRe channels, i.e. RaRe channels of the form

R = X, p,U; where each p;is a rational number. With this definition, we have the following lemma:

Lemma 1. In every sharp theory with purification, every rational RaRe channel is a basic noisy operation.

In quantum theory, this statement is quite immediate, as pointed out in [48]: a generic RaRe channel with
rational probabilities { p; = n;/n};_; and unitary gates { U;};_, can be realised as the basic noisy operation

B(p) = Tranc[U(p ® ﬁ) UT], (38)

n

where Tty is the partial trace on the n-dimensional system used as ancilla, and U'is the control-unitary gate

n
U:= Z Vi ® |k> <k|r (39)
k=1
{ Vi Ji= being a list of unitary gates, n; of which are equal to U}, 1, equal to U,, and so on.

The situation is in general more complicated in sharp theories with purification. The reason is that the
simple construction of equations (38) and (39) cannot be reproduced. The analogue of the control-unitary Uis a
control-reversible transformation, which performs a reversible transformation on the target system depending
on the state of a control system. However, later in the paper we will show that not every sharp theory with
purification admits control-reversible transformations. In fact, we will show that the existence of control-
reversible transformation is equivalent to a non-trivial property of the dynamics, which we will call ‘unrestricted
reversibility’.

The non-trivial content of lemma 1 is that the inclusion RationalRaRe C Noisy holds in every sharp theory
with purification, without the need of assuming unrestricted reversibility. To prove such a result we need a new
construction, more elaborate than the simple construction of equations (38) and (39). The details can be found
in appendix B.

Now, since rational RaRe channels are dense in the set of RaRe channels, and since the set of noisy operations
is closed (see definition 7), we obtain the following theorem:

Theorem 3. In every sharp theory with purification, RaRe channels are noisy operations.

The inclusion of RaRe channels in the set of noisy operations is generally strict: for example, in quantum
theory there exist noisy operations that are not RaRe channels [51]. In summary, we have the inclusions
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Figure 2. Inclusion relations between the sets of free operations in the three resource theories of purity.

RaRe C Noisy C Unital, (40)

illustrated in figure 2.

8. State convertibility and majorisation

In this section we investigate the convertibility of states in the RaRe, noisy, and unital resource theories. The
main result is that, in every sharp theory with purification, an input state can be converted into an output state by
a unital channel if and only if the vector of the eigenvalues of the output state is majorised by the vector of the
eigenvalues of the input state. Since the set of unital channels contains the sets of noisy operations, and RaRe
channels, our results establishes majorisation as a necessary condition for convertibility under noisy operations
and RaRe channels. Later in the paper, we will determine the physical condition under which majorisation is also
sufficient.

8.1. State convertibility
In sharp theories with purification, the inclusions (40) imply the relations

P 7FRaRe 0 = P FNoisy 0 = P FUnital O (41)

valid for every pair of states p and o of the same system. Note that the unital relation >=ypnita| is the weakest, i.e. the
easiest to satisfy. In the following we will provide a necessary and sufficient condition for the unital preorder.

8.2. Unital channels and doubly stochastic matrices
In a broad sense, unital channels are the generalisation of doubly stochastic matrices. In sharp theories with
purification, there is also a more explicit connection:

Lemma 2. Let D be a unital channel acting on system A and let { ;) and { o)}, be two pure maximal sets of
system A. Then, the matrix D with entries

Dy := (a]|D|a) (42)

is doubly stochastic.

Proof. Every entry Dj;is a probability and therefore it is non-negative. Moreover, one has

=1, Vje{l,..d (43)

having used the fact that the effects { /" }{_, form an observation-test and that D is a channel, and therefore
uD = u [57]. On the other hand, one has
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M=~
c:@

I
M&

(af|D]e)
=1

(@]Dlx)
(af1X)

1

d
=1, vie{l,...,d}, (44)

-
Il
—_

-
Il

I
U R

having used proposition 7 and the fact that unital channels leave  invariant. In conclusion, equations (43) and
(44) show that the matrix D is doubly stochastic. |

Vice versa, every doubly stochastic matrix defines a unital channel:

Lemma 3. Let D bead x d doubly stochastic matrix, and let { o; Y, and { o/} }le be two pure maximal sets of
system A. Then, the channel defined by

d d
D = ija;, with pj = ZDijag, (45)
j=1 i=1

is unital.

Proof. The transformation D is a channel of the measure-and-prepare form: it can be implemented by
performing the observation-test { a;f }?:1 and by preparing the state p; conditionally on outcome j. Moreover,
one has

d
Dx = p;(ajlx)
=1
d

> 2 Djaj

1i=1

QU=
-

_ !
= lo%
i=1

) (46)

1 d

=

the third equality following from the definition of doubly stochastic matrix, and the fourth equality following
from the diagonalisation of the state y (proposition 7). |

Lemmas 2 and 3 establish a direct connection between unital channels and doubly stochastic matrices. Using
this connection, in the following we establish a relation between the unital resource theory and the theory of
majorisation.

8.3. Majorisation criterion for state convertibility under unital channels
Here we show that the ability to convert states in the unital resource theory is completely determined by a

suitable majorisation criterion. Let us start by recalling the definition of majorisation [66]:

Definition 12. Let X and y be two generic vectors in R?. One says that x majorises y, denoted x > y, if, when
the entries of X and y are rearranged in decreasing order, one has

k k d d
Zx,-}Zyi, Vk<d and in:z)/i.
i=1 i=1 i=1 i=1

Majorisation can be equivalently characterised in terms of doubly stochastic matrices: one has x *= y ifand only
if y = Dx, where D is a doubly stochastic matrix [66, 91].

In every sharp theory with purification, majorisation is a necessary and sufficient condition for convertibility
under unital channels:
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Theorem 4. Let p and o be normalised states, and let p and q be the vectors of their eigenvalues, respectively. The
state p can be converted into the state ¢ by a unital channel if and only if p majorises q. In formula:

P F Unital 0 <P = q. (47)

The proofis provided in appendix C. Note that since RaRe channels and noisy operations are special cases of
unital channels, majorisation is a necessary condition for convertibility in the RaRe and noisy resource theories.

8.4. Characterisation of unital monotones

The majorisation criterion determines whether a state is more resourceful than another. To be more
quantitative, one can introduce monotones [19-21]—i.e. functions that are non-increasing under free
operations:

Definition 13. A monotone under the free operations F for system A is a function P: St(A) — R satisfying the
condition

P(p) 2 P(o)  Vp,0€SHA), p=F o. (48)

When F is the set of unital operations, we refer to P as unital monotones. In sharp theories with purification,
unital monotones have an elegant mathematical characterisation:

Proposition 9. A function on the state space P : Sty(A) — R is a unital monotone if and only if P(p) = f (p),
where p is the vector of eigenvalues of p and f : R% — R isa Schur-convex function—that is, a function satisfying
the condition f (p) > f(q) whenever p = q.

Proof. Theorem 4 shows that the convertibility of states under unital channels is fully captured by their
eigenvalues. Consequently, a unital monotone will be a function only of the eigenvalues of a state: there exists a
function f: R% — R such that P(p) = f (p), for every normalised state p. Now, suppose that p and q are two
probability distributions satisfying p = q. Then, theorem 4 implies that there is a unital channel transforming
the state p = Zf: | p;jinto the state o = Zf;l q; v, for any pure maximal set { c;; }?: 1- As aresult, we obtain the
relation

f(p)=P(p) > P(o) =f(g. (49)

This means that fis Schur-convex. Conversely, given a Schur-convex function fone can define a function Pyon
the state space, as Pr(p) := f(p), p being the spectrum of p. This function is easily proved to be a unital
monotone, thanks to theorem 4. [ |

A canonical example of Schur-convex function is the negative of the Shannon entropy, namely the function
d
f)=-H@P),  Hp = —) plogp,. (50)
i=1
The corresponding purity monotone is the negative of the Shannon—von Neumann entropy [62, 92—94]

P(p) == =S(p), S(p) == H(p). (€29

Other important examples are the negatives of the Rényi entropies [62, 94].

9. The counterexample of doubled quantum theory

We have seen that majorisation is a necessary and sufficient condition for state convertibility in the unital
resource theory. Is majorisation sufficient also for convertibility in the RaRe resource theory? Now we show that
the answer is negative by constructing a counterexample, which we call ‘doubled quantum theory’.

9.1. Individual systems

Consider a theory where every non-trivial system is the direct sum of two identical quantum systems with
Hilbert spaces H and H;, respectively. Physically, we can think of the two Hilbert spaces as two superselection
sectors. We associate each ‘doubled quantum system’ with a pair of isomorphic Hilbert spaces (H,, Hy), with
Ho == 'Hi. We define the states of the doubled quantum system to be of the form
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p=1pp,® 1A —p)p, (52)

where p, and p, are two density matrices in the two sectors, respectively, and p is a probability. Likewise, we
define the effects to be all quantum effects of the form e = ey @ e;, where e, and e; are two quantum effects in
the two sectors. The allowed channels from the input system (H,, Hj) to the output system (Ko, K;) are the
quantum channels (completely positive trace-preserving maps) that

1. send operators on Hy @ H; to operatorson Ky @ K

2. map block diagonal operators to block diagonal operators.

The set of allowed tests is defined as the set of quantum instruments {C; };cx where each quantum operation
C; sends operators on Hy @ H, to operators on Ky @ K, mapping block diagonal operators to block diagonal
operators.

Remark. Note that the set of allowed channels includes quantum channels of the form C = Cy & C;, where C,
and C, are quantum channels acting on the individual sectors. However, not all allowed channels are of this
form. For example, our definition includes unitary channels, of the form U(-) = U - UT, with

where Uy and U are unitary operators acting on the subspaces H, and Hj, respectively.

The unitary channel U is different from the non-unitary channel C = Cy @ C;, with Co(-) = U - UJ and
G =1 - Uf, even though the two channels act in the same way on every input state of the form (52).
Operationally, the difference between the channels ¢/ and C will become visible when the channels are applied
locally on one part of a composite system.

The existence of different physical transformations that are indistinguishable at the single-system level is
made possible by the fact that doubled quantum theory does not satisfy the local tomography axiom, as we show
inappendix D.1. The inability to distinguish transformations at the single-system level is a fairly generic trait of
theories where the local tomography axiom does not hold. Quantum theory on real Hilbert spaces also exhibit
this trait [57, 59] (but only for non-pure transformations [57]).

9.2. Composite systems
The peculiarity of doubled quantum theory is the way systems are composed. The product of two doubled
quantum systems (', M) and (Hg, H;) is the doubled quantum system (H4®, H:*P) defined by

Hy" = (Hy © Hy) ® (M @ HY),
HP = (HY @ HD) @ (MY @ H). (54)

As an example, consider the composite system of two doubled qubits, corresponding to
HY ~ HE ~ HE ~ HP ~ C2. An example of state of the composite system is the pure state

— |0’ 0>A|0) 0>B + |1) 0>A|1> 0>B

|lI]> \/E >

(55)

where {[0, 0), |0, 1)}isan orthonormal basis for Hyand {|1, 0), |1, 1)}isan orthonormal basis for 7. Note
that, when one of the two systems is traced out, the remaining local state has the block diagonal form

p= %|0, 0)(0, 0| ® %| 1, 0) (1, 0|. This means that the coherence between the two summands in the state (55)
is invisible at the single-system level.

From a physical point of view, doubled quantum theory can be thought of as ordinary quantum theory with
asuperselection rule on the total parity. Every system is split into two identical sectors of even and odd parity,
respectively. When systems are composed, the sectors are grouped together based on the total parity, so that
superpositions between subspaces with the same parity are allowed.

9.3.In doubled quantum theory, majorisation is not sufficient for convertibility under RaRe channels

In appendix D we summarise a few operational features of doubled quantum theory. In particular, we show that
doubled quantum theory is a sharp theory with purification. Nevertheless, now we show that majorisation does
not guarantee the convertibility of states under RaRe channels.
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Consider the following states of a doubled qubit:
1
p= 5(|0, 0) (0, 0| + |0, 1){0, 1]) (56)
and
1 1
o= 5|0, 0)(0, 0| ® E|l, 0)(1, 0|, (57)

where {|0, 0), |0, 1)} is an orthonormal basis for Hyand {|1, 0), |1, 1)} an orthonormal basis for H,. The key
point here is that the state p is fully contained in one sector (the even parity sector), while the state o is a mixture
of two states in two different sectors.

The two states have the same spectrum, and therefore they are equivalent in terms of majorisation. However,
there is no RaRe channel transforming one state into the other. To see this, we use the following lemmas:

Lemma 4 ([95]). If any two states p and o are interconvertible under RaRe channels, then there exists a reversible
transformation U such that o = U(p).

Lemma 5. No unitary matrices in doubled quantum theory are such that o = UpU, where p and o are defined in
equations (56) and (57) respectively.

Proof. The proof is by contradiction. Suppose that one has ¢ = UpU™. Then, define the vectors
leo) == U0, 0)and|y,) := UJ0, 1). With this definition, we have

UPUJr = %(|<P0> <<Po| + |<P1> <§01|)- (58)

Now, UpU " must be an allowed state in double quantum theory. This means that there are only two possibilities:
either |,) and |¢,) belong to the same sector, or they do not. But o is a mixture of states in both sectors. Hence,
|o) and |¢,) must belong to different sectors, if the relation UpU" = o is to hold. At this point, there are only
two possibilities: either

Ul0,0) =10,0) and U0, 1) = |1, 0), (59)
or

Ul0,0) =1,0) and U0, 1) = [0, 0). (60)
However, none of these conditions can be satisfied by a unitary in double quantum theory: every unitary matrix
satisfying either condition would map the valid state [0, +) = %(|O, 0) + 10, 1)) into the invalid state
%(|O, 0) + |1, 0)), which is forbidden by the parity superselection rule. -

Since unitary channels are the only reversible transformations in doubled quantum theory, we conclude that no
RaRe channel can convert p into . Summarising: majorisation is #ot sufficient for the convertibility via RaRe channels.

10. Equivalence of the three resource theories

In this section we will determine when the RaRe, noisy, and unital resource theories are equivalent in terms of
state convertibility.

10.1. Unrestricted reversibility
The condition for the equivalence of the RaRe, noisy, and unital resource theories can be expressed in three,
mutually equivalent ways, corresponding to three axioms independently introduced by different authors:

Axiom 5 (Permutability [70, 71]). Every permutation of every pure maximal set can be implemented by a
reversible transformation.

Axiom 5’ (Strong symmetry [84]). For every two pure maximal sets, there exists a reversible transformation that
converts the states in one set into the states in the other.

Axiom 5” (Reversible controllability [63]). For every pair of systems A and B, every pure maximal set {a;}{_ | of
system A and every set of reversible transformations {2;}7_, on system B, there exists a reversible transformation
U on the composite system A ® B such that
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an

<

Figure 3. Normalised states of the square bit. The two sets {a, o} (circled in black) and { oy, s} (circled in blue) consist of perfectly
distinguishable pure states. Permutability holds, because every permutation of every pair of perfectly distinguishable pure states can be
implemented by a reversible transformation, corresponding to a symmetry of the square. However, no reversible transformation can
transform o, into c; while leaving o unchanged. Hence, strong symmetry cannot hold for the square bit.

(8 a3

— A A a; A
: (61)

foreveryi € {1, ..., d}.

Permutability, strong symmetry, and reversible controllability are logically distinct requirements. For
example, strong symmetry implies permutability, but the converse is not true in general, as shown by the
example of the square bit [55] in figure 3 (see appendix E for more details).

Although different in general, permutability, strong symmetry, and reversible controllability become
equivalent in sharp theories with purification:

Proposition 10. I every sharp theory with purification, permutability, strong symmetry, and reversible
controllability are equivalent requirements.

The proofis presented in appendix F. The fact that three desirable properties become equivalent under our
axioms gives a further evidence that the axioms capture an important structure of physical theories.

Since permutability, strong symmetry, and reversible controllability are equivalent in the present context, we
conflate them into a single notion:

Definition 14. A sharp theory with purification has unrestricted reversibility if the theory satisfies permutability,
or strong symmetry, or reversible controllability.

10.2. When the three resource theories of purity are equivalent

‘We now characterise exactly when the RaRe, noisy, and unital resource theories are equivalent in terms of state
convertibility. Owing to the inclusions RaRe C Noisy C Unital, a sufficient condition for the equivalence is that the
convertibility under unital channels implies the convertibility under RaRe channels. The characterisation is as follows:

Theorem 5. In every sharp theory with purification, the following statements are equivalent:

1. the RaRe, noisy, and unital resource theories are equivalent in terms of state convertibility

2. the theory has unrestricted reversibility.

Proof. The implication 2 = 1 was already proven in [88] To prove the implication 1 = 2, we show that
condition 1 implies the validity of strong symmetry. Let {o;}¢_, and { o/} }le be two pure maximal sets, and let
{p.}__, be a probability distribution, with p, > p,> ... > p, > 0. Consider the two states pand o defined by
p=3%, pajando = >4 p; o’ Since the two states p and o have the same eigenvalues, the majorisation
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criterion guarantees that p can be converted into o by a unital channel, and vice versa (theorem 4). Now, our
hypothesis is that convertibility under unital channels implies convertibility under RaRe channels. The mutual
convertibility of p and o under RaRe channels implies that there exists a reversible transformation U such that
o = Up [67,95). Applying the effect o] to both sides of the equality o = Up, we obtain

p, = (o)

d
= ij(afluloa,—)

j=1
d
=2_Dyp,
j=1
g Pl)

(62)
having used the fact that Dj; := (a,{TW |c;) are the entries of a doubly stochastic matrix (lemma 2). The above
condition is satisfied only if (aml/{ |a) = 1. By the state-effect duality (proposition 3), this condition is
equivalent to the condition

Uay = of. (63)

Now, decompose the states pand o as

d
Zi:zpiai

p=poa+ (1 —=p)pp p= g — (64)

d
Zi:zpi

and

d
Zi:2pia;

o :pla{ + 1 - p)oy, o = (65)
Zi:zp i
Combining equation (63) with the equality Up = o, we obtain the condition Up, = o7. Applying to p, and oy
the same argument we used for p and o, we obtain the equality Ua, = a. Iterating the procedure d — 1 times,

we finally obtain the equality Uc; = o foreveryi € {1, ..., d}. Hence, every two maximal sets of perfectly
distinguishable pure states are connected by a reversible transformation. [

Theorem 5 gives necessary and sufficient conditions for the equivalence of the three resource theories of
microcanonical thermodynamics. In addition, it provides a thermodynamic motivation for the condition of
unrestricted reversibility.

10.3. The equivalence in a nutshell
The results of this section can be summed up in the following theorem:

Theorem 6. In every sharp theory with purification and unrestricted reversibility, the following are equivalent

1. p #RarRe T
2. p PNoisy O
3. p Funital

4pFq
for arbitrary normalised states p and o, where p and q are the vectors of eigenvalues of p and o, respectively.

Proof. The implications1 = 2and 2 = 3 follow from the inclusions (40). The implication 3 = 4 follows
from theorem 4. The implication 4 = 1 follows from the equivalence between majorisation and unital
convertibility, combined with theorem 5. [ |

Theorem 6 tells us that the RaRe, noisy, and unital resource theories are all equivalent in terms of state
convertibility. It is important to stress that the equivalence holds despite the fact that the three sets of operations
are generally different.

An important consequence of the equivalence is that the RaRe, noisy, and unital resource theories have the
same quantitative measures of resourcefulness:
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Proposition 11. Let P : Sty(A) — R bea real-valued function on the state space of system A. If P is a monotone
under one of the sets RaRe, Noisy and Unital, then it is a monotone under all the other sets.

Since the preorders =RaRe, =Noisy> a1d =Unital coincide, we can say that the RaRe, noisy, and unital resource
theories define the same notion of resource, which one may call purity. Accordingly, we will talk about ‘the
resource theory of purity’ without specifying the set of free operations.

11. The entanglement-thermodynamics duality

We conclude the paper by showing that sharp theories with purification and unrestricted reversibility exhibit a
fundamental duality between the resource theory of purity and the resource theory of entanglement [67]. The
entanglement-thermodynamics duality is a duality between two resource theories: the resource theory of purity
(with RaRe, or noisy, or unital channels as free operations) and the resource theory of pure bipartite
entanglement (with local operations and classical communication as free operations). The content of the duality
is that a pure bipartite state is more entangled than another if and only if the marginal states of the latter are purer
than the marginal states of the former. More formally, the duality can be stated as follows [67]:

Definition 15. A theory satisfies the entanglement-thermodynamics duality if for every pair of systems A and B,
and every pair of pure states @, ¥ € PurSt;(A ® B) the following are equivalent

1. @ can be converted into ¥ bylocal operations and classical communication
2. the marginal of U on system A can be converted into the marginal of ® on system A by a RaRe channel

3. the marginal of U on system B can be converted into the marginal of  on system B by a RaRe channel.

Our earlier work [67] showed that the entanglement-thermodynamics duality can be proved from four
axioms: causality, purity preservation, purification, and local exchangeability—the latter defined as follows:

Definition 16. A theory satisfies local exchangeability if for every pair of systems A and B, and for every pure state
U € PurSt(A ® B)there exist two channels C € DetTransf(A, B)and D € DetTransf(B, A) such that

A B
Ul =]y | suar ], (66)

where SWAP is the channel that exchanges system A and system B.

Since causality, purity preservation, and purification are already assumed among our axioms, proving the
entanglement-thermodynamics duality is reduced to proving the validity of local exchangeability. The proofis
presented in appendix G, which backs the following claim:

Theorem 7. Every sharp theory with purification and unrestricted reversibility satisfies the entanglement-
thermodynamics duality.

As a consequence of the duality, the purity monotones characterised in the previous subsection are in one-
to-one correspondence with measures of pure bipartite entanglement. For example, Shannon—von Neumann
entropy of the marginals of a pure bipartite state can be regarded as the entanglement entropy [96-98], an
entropic measure of entanglement that is playing an increasingly important role in quantum field theory
[99, 100] and condensed matter [101].

12. Conclusions

In this work we developed a microcanonical framework for general physical theories. The framework is based on
two requirements: the uniqueness of the invariant probability distribution over pure states, needed to define the
microcanonical state, and the stability of the microcanonical state under composition. Under these
requirements, we defined three resource theories, where free operations are random reversible channels, noisy
operations, and unital channels, respectively. We explored the connections between these three sets of
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operations in a special class of physical theories, called sharp theories with purification, which enable a
fundamentally reversible description of every process. In sharp theories with purification, the sets of random
reversible channels is contained in the set of noisy operations, which in turn is contained in the set of unital
channels. Convertibility under unital channels is equivalent to majorisation, which is a necessary condition for
convertibility under the other sets of operations. Majorisation becomes a sufficient condition for convertibility
under all sets of operations if and only if the dynamics allowed by the theory have a property, called unrestricted
reversibility. In this case, one obtains the entanglement-thermodynamics duality, which connects the
entanglement of pure bipartite states with the purity of their marginals.

Our results identify sharp theories with purification and unrestricted reversibility as the natural candidate
for the information-theoretic foundation of microcanonical thermodynamics. At the same time, it is interesting
to go beyond the microcanonical scenario, and develop a general probabilistic framework for the canonical
ensemble. Some steps in this direction can be found in a companion paper [62], where we give an operational
definition of the Gibbs state, and use it in an information-theoretic derivation of Landauer’s principle. These
results are only the surface of a deep operational structure, where thermodynamic and information-theoretic
features are interwoven at the level of fundamental principles. Many interesting directions of research remain
open, including, for example, an extension of the notion of thermomajorisation [25], a derivation of the
monotonicity of the relative entropy [102], and a derivation of the ‘second laws of thermodynamics’ [26] from
operational axioms.
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Appendix A. Properties of the microcanonical state

Proposition 12. For every theory satisfying requirement 1 and for every finite system A in the theory, the
microcanonical state x , is invariant under all reversible transformations of system A.

Proof. For every reversible transformation I/, one has

Uxs = [ @t
= [ @ty
= [ pt@ww
=X (AD

the second equality following from the definition ¢/’ := U}, and the third equality following from the
invariance of the probability distribution p, . [ |

Proposition 13. For every theory satisfying requirement 1 and for every finite system A in the theory, there exists a set
of reversible transformations {U;},_, and a probability distribution { p,};_, such that
T
Zpiu,'oz = Xa» (A2)
i=1

for every deterministic pure state o of the system.
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Proof. The group of reversible transformations on system A has a finite-dimensional representation on the state
space of system A. This representation defines a group of finite-dimensional matrices, call it Gy. Note that the
group Gy is compact, because it is closed and finite-dimensional. Hence, one can construct the invariant
measure dif and define the transformation

Th = | duu (A3)

Ga

By construction, the transformation 7, maps every deterministic pure state cvinto the microcanonical state:
indeed, one has

Taa= | dUUa
Ga

— [ pawrv
= Xa> (A4)

the second equality following from the fact that p, (dv)) is the probability distribution induced by the invariant

measure on éA. Finally, since the matrices in éA are finite-dimensional, the integral in equation (A3) can be
replaced by a finite sum. u

Appendix B. Proof of lemma 1

Proof. Let R € DetTransf(A) be arational RaRe channel, written as

with n; > 0and }_; n; = n.Let B bean n-dimensional system, and pick the pure maximal set { 3, J,_,. Let C be
the channel from A ® Bto A defined by

=3V, w4l (B2)

x=1

where { ), }J;_, are reversible transformations on A, chosen so that 7, of the channels are equal to 4}, n, are equal
to U, and so on. Since the theory satisfies Purification, the channel C has a reversible extension [57, 58], meaning
that one has

A

A A
L lc = B u : (B3)
arel em

where C and C' are suitable systems, +is a suitable pure state, and U/ is a reversible transformation. Now, by
construction we have

|

A /1A

A A
(Be P u = c
(B }2 (B4)

@c_c’@

forevery x € {1, ..., n}. The above condition implies the relation [58]
A —1 A
A A
Ve
aly| o TR @

G e W
for some pure state , of system C’. Composing both sides with V! on the left, and with Z/~! on the right we
obtain
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A Vl_l A A A
2 = U (B6)
Yo & ¢

= Q= ]

Combining equations (B5) and (B6) we obtain the relation

A1 A Ay, 4
B u v :
= . (B7)
@ ey -
A A A ly-1| A
e |
At this point, we define the pure transformation
A —1 A
A A
B |y B
Bl ptB .= , . (B8)
A A
From equation (B7) we obtain that P satisfies the relation
A A AV, 2
(B B P B = B : (BY)
A A A V71 A

for all values of x. Using this relation and the expression of xj in terms of the 3,’s, we can reconstruct R from P:

171,
QP D =25, (P T
Cln A e A g

A [y, LA
v
=Y (B} (B10)
=1
Ayt A

:AA’

where we have used the factthat >-7_, V, = >, n;U;. Finally, let us show that P is a channel. To this end, itis
enough to show that 4P = u [57]. This property is satisfied if and only if (u|P|x) = 1, because every state lies in
some convex decomposition of x [57]. By the condition of informational equilibrium and equation (B10), we have
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>
>

JEE

QA AT
& P (T
—al |a (B11)
- QHRP-®

=1

>
=

)

so P isa channel. Since every pure channel on a fixed system (here A ® B ® A)isreversible [57], P is
reversible. Hence, equation (B10) shows that R is a basic noisy operation, with environment E = B ® A. |

Appendix C. Proof of theorem 4

Proof.Let p = Z‘j: 1P,y ando = E‘;:l q; oz; be diagonalisations of p and o, respectively. We first show that
P Zunitat o implies p = q. Suppose that one has ¢ = Dp, where D is a unital channel. Then

d
22 ;%) = X pDay. (CD)
j=1 j=1
Applying o/} to both sides, we obtain

d
;=Y p(ai’[Dlaj

j=1

[

= Dip;, Dj = (a}|D]ay). (C2)
1

-
Il

Now, the Dj;’s are the entries of a doubly stochastic matrix D (lemma 2). Hence, equation (C2) implies that p
majorises q.

Conversely, suppose that p = q andlet D be a doubly stochastic matrix such that @ = Dp. Define the
measure-and-prepare channel

d d
D= Z pjoﬂ; pj = Z D,'jaﬁ. (C3)

j=1 i=1

By construction, one has

= 0. (C4

Now, the channel D is unital by lemma 3. Hence, p can be converted into o by a unital channel. [ |

Appendix D. Operational features of doubled quantum theory
Here we summarise the key operational features of doubled quantum theory.

D.1. Doubled quantum theory violates local tomography

An equivalent formulation of local tomography is that the dimension of the vector space spanned by the states of
a composite system is equal to the product of the dimensions of the vector spaces spanned by the states of the
components [54, 57]. The equality fails to hold in doubled quantum theory, where the dimension of the global
vector space is strictly larger than the product of the dimensions of the individual vector spaces. To see why this is
the case, note that the block diagonal states of the form (52) span a vector space of dimension D := 2d?, where d
is the dimension of the Hilbert spaces H, and H;. Given two systems A and B, the product of the individual
dimensions is
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DyDg = (2d}) - (2d3)
= (ZdAdB)z. (D1)

On the other hand, each of the Hilbert spaces 4" and H:*® in equation (54) has dimension dxg = 2d d5.
Hence, the vector space spanned by the states of the composite system has dimension

Dyp = 2d3
= 2(2dadg)?, (D2)

that is, twice the dimension of the vector space spanned by product states.

D.2. Doubled quantum theory satisfies purification
A generic state of a generic system (H,, H;) can be diagonalised as

d d
p= (Z/\il%& <%-ol) b [Zujlzbjo <wﬂl], (D3)
j=1

i=1

where {|¢,) Jo_| is an orthonormal basis for H, and { [41) }?:1 is an orthonormal basis for H;. The state can be
purified e.g. by adding one copy of system (Hg, Hj). Since the composite system has two superselection sectors,
there will be two types of purification: purifications in the even subspace H4® and purifications in the odd
subspace Hi*®. A purification in the subspace " will have the form

d d
[Wo) = (Z\/T,—Iw,& |Oéio>) + [Z\/EWJ]'O |5j1>], (D4)
i=1 j=1

where {|ao) }2_, is an orthonormal basis for H and {| Bj1) }?:1 is an orthonormal basis for ;. A purification in
the subspace H;*® will have the form

d d
0) = (ZJX- o) Ia§1>) + (Zmlwo |5;0>]) (D5)

where {|a/,)}2_, is an orthonormal basis for ; and {| ﬁ;o> }?:1 is an orthonormal basis for H,. Note that any two

such purifications are equivalent under local unitary transformations: indeed, one has
) = I ® U)|[¥), (D6)

where U'is the unitary matrix defined by
d d
U= [Z|a§1> <aio|) + [ >°18%) (Bl | (D7)
i=1 =1

The same arguments apply to purifications within the same sector and to purifications where the purifying
system is not a copy of the original system. In summary, every state can be purified and every two purifications
with the same purifying system are equivalent under local unitaries.

D.3. Doubled quantum theory satisfies causality, pure sharpeness, and purity preservation

Causality is immediate: for every system, the only deterministic effect is the identity matrix. Pure sharpness is
also immediate: every rank-one projector is a pure sharp effect. As to purity preservation, note that the only pure
transformations are quantum operations of the single-Kraus form Q(-) = Q - Q. Clearly, the composition of
two single-Kraus operations (both in parallel and in sequence) is a single-Kraus operation. In other words, the
composition of two pure transformations is pure.

Appendix E. Permutability versus strong symmetry: the example of the square bit

Consider the square bit [55]. Here the state space is a square, and the pure states are its vertices. The group of
reversible transformations is the symmetry group of the square, which is the dihedral group D,. Every pair of
vertices is a set of perfectly distinguishable pure states. Figure 3 shows the situation for the pure states
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—1 —1 1
a =11 a =|—1 az=|—1}, (ED)
1 1 1

where the third component gives the normalisation. The pure observation-test {a;, a,}, where
1 1
o= 5(0 1D &= 5(0 -1 1), (E2)

is the perfectly distinguishing test for the two sets { o, a,} and {ay, a3}.

Now, since every set of perfectly distinguishable pure states has two elements, the only non-trivial
permutation of the elements of such a set is the transposition. This permutation can be implemented by
considering the reflection through the axis of the segment connecting the two points. Hence the square bit
satisfies permutability. On the other hand, the square bit does not satisfy strong symmetry. A counterexample is
shown in figure 3. Consider the two maximal sets { v, @} and {ay, a3}. There are no reversible transformations
mapping the former to the latter because no symmetries of the square map a side to a diagonal.

Appendix F. Proof of proposition 10

Proof. The implication ‘strong symmetry = permutability’ follows immediately from the definitions. The
implication ‘strong symmetry = reversible controllability’ was proved by Lee and Selby [63] using causality,
purification, and the property that the product of two pure states is pure, which is guaranteed by our purity
preservation axiom. Hence, we only need to prove the implications ‘permutability = strong symmetry’ and
‘reversible controllability = strong symmetry’

Let us prove that permutability implies strong symmetry. The first part of the proof is similar to the proof of
theorem 30 of [70]. Consider two maximal sets of perfectly distinguishable pure states { ¢;}?_; and {¢;}¢_,.
Assuming permutability, we will show that there exists a reversible channel ¢/ such that v; = U, for all
i=1, ..., d.Firstof all, note that the states { ;; ® 1);} are pure (by purity preservation) and perfectly
distinguishable. Then permutability implies there exists a reversible transformation ¢/ such that for all
i=1,...,d[71]

(o A2 (o1 -4

U = . (F1)

@A—A Vi A

Applying the pure effect @T to both sides of the equation we obtain

i FA{pF2— = (i |2, (F2)

with

A —1 A t
AplA = U . (F3)

Ol B

By construction, P is pure (by purity preservation) and occurs with probability 1 on all the states {¢;}_;.

Moreover, the diagonalisation x = ézg’lzl , implies that P occurs with probability 1 on every state because
(u|P|x) = 1[57]. Since P is a pure deterministic transformation on A, it must be reversible [57]. Hence,
equation (F2) proves that the states { ¢, }?:1 can be reversibly transformed into the states {1); }le. In short,
permutability implies strong symmetry.

Let us prove now that reversible controllability implies strong symmetry. Let { ¢, ¥ and {¢;}{_, be two pure
maximal sets of a generic system A. Since reversible transformations act transitively on pure states, for every
i € {1, ..., d}, onecan find areversible transformation /; that maps v, into 15, in formula

Uih = ;. (F4)

Moreover, reversible controllability implies that we can find a reversible transformation U such that

(oi FA & A

AUl A = A gga )
L] U;
foreveryi € {1, ..., d}. Likewise, forevery i € {1, ..., d}, one can always find a reversible transformation V

that transforms ¢; into ¢, in formula
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Vie, = ¢r. (Fo)
And again, one can find a reversible transformation V such that
A —1 A A A
Vi
Y - . (F7)

@7 @

foreveryi € {1, ..., d}. Combining equations (F4)—(F7), we obtain

Coi A2 2 (o1 |2
U % = (F8)

A A A A
(o A 21
for every i. Hence, one has

i apa— = (v 2, (F9)

with

A1 A 1A ¢t
A A U v ) (F10)
@ A A A
By the same argument used in the first part of the proof, we conclude that P is a reversible transformation.

Hence, equation (F9) implies that the set { ¢, Jo_| can be reversibly converted into the set {1;}¢_,. In short,
reversible controllability implies strong symmetry. [

Appendix G. Proof that sharp theories with purification and unrestricted reversibility
satisfy the local exchangeability axiom

The aim of this appendix is to prove the following proposition:
Proposition 14. Every sharp theory with purification and unrestricted reversibility satisfies local exchangeability.

Proof of proposition 14. Let ¥ € PurStj(A ® B) be a generic pure state and let p, and pj, its marginal states,
diagonalised as

r r
Pa = ZP,'OQ and Py = Zpiﬁi) (G1)
i=1 i=1
where p, > Oforalli = 1, ..., r,and r < min{d,, dg}. Here we are invoking a result of [62], where we showed
that the marginals of a pure bipartite state have the same spectrum (up to vanishing elements). Now, we extend
the set of eigenstates of p, and pj to two pure maximal sets. Withoutloss of generality assume dy < dg. By the
permutability axiom, there must exist a reversible transformation I/ € DetTransf(B @ A, A ® B) such that

UL @ ) = @ Bis Vi€ {1,...,da}. (G2)
Similarly, there must exist a reversible transformation V € DetTransf(B ® A, A ® B) such that
VBi ® o) = a; @ B Vi€ {1,...,dp}. (G3)

At this point, we define the pure transformations

(Bre A
A B = U 3 (G4)
A B
B 1A
B A
o = vV . (GS5)
= Gl e I

and the pure state

B AfplB
@L::EBAj (G6)
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where the purity of P, @, and V' follows from purity preservation. Like in the proof of proposition 10, we can
prove that P and Q are in fact channels, so ug P = u, and uy @ = ug. Hence ¥’ and SWAP W have the same
marginals. Then, the uniqueness of purification applied to both systems A and B (viewed as purifying systems of
one another) implies that there exist two reversible transformations W, and WWs such that

@B swe |, = [w| — - (@)

A W B WB B
_ [y [ 775 ] (G8)
B @ A WA A
Hence, we have shown that there exist two local pure channels C := WgPand D := W), Q thatreproduce
the action of the swap channel on the state U. |

Note that local exchangeability is implemented in this setting by pure channels.
In passing, we also mention that the validity of local exchangeability implies that every state admits a
symmetric purification, in the following sense:

Definition 17. [67] Let p be a state of system A and let U be a pure state of A ® A. We say that W is a symmetric
purification of pif

A

= A (G10)

With the above notation, we have the following

;

5

Proposition 15. In every sharp theory with purification and unrestricted reversibility, every state of every finite system
admits a symmetric purification.

The existence of a symmetric purification for every state is guaranteed by theorem 3 of [67].
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