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Abstract
Microcanonical thermodynamics studies the operations that can be performed on systemswithwell-
defined energy. So far, this approach has been applied to classical and quantum systems.Here we
extend it to arbitrary physical theories, proposing two requirements for the development of a general
microcanonical framework.We then formulate three resource theories, corresponding to three
different sets of basic operations: (i) random reversible operations, resulting from reversible dynamics
withfluctuating parameters, (ii)noisy operations, generated by the interactionwith ancillas in the
microcanonical state, and (iii)unital operations, defined as the operations that preserve the
microcanonical state.We focus our attention on a class of physical theories, called sharp theories with
purification, where these three sets of operations exhibit remarkable properties. Firstly, each set is
contained into the next. Secondly, the convertibility of states by unital operations is completely
characterised by amajorisation criterion. Thirdly, the three sets are equivalent in terms of state
convertibility if and only if the dynamics allowed by theory satisfy a suitable condition, whichwe call
unrestricted reversibility. Under this condition, we derive a duality between the resource theories of
microcanonical thermodynamics and the resource theory of pure bipartite entanglement.

1. Introduction

In recent years, developments in the field of nanotechnology have raised questions about thermodynamics away
from the thermodynamic limit [1–17]. Oneway to address this new regime is to adopt a resource-theoretic
approach [18, 19], which starts from a subset of operations that are regarded as ‘free’ or ‘easy to implement’
[20–23]. A number of results in quantum thermodynamics have been obtained through this approach [24–35],
unveiling new connections between thermodynamics and information theory [36–42].

Themost basic instance of thermodynamics is for systemswith definite energy. There, the natural choice of
free state is themicrocanonical state,i.e. the uniformmixture of all states with the same energy. In situations
where the experimenter lacks control over the preparation of the system, it is natural to expect that the system’s
state willfluctuate randomly fromone experiment to the next, so that the overall statistics is described by the
microcanonical state. The choice of free operations is less obvious. The threemain choices considered in the
literature on quantum thermodynamics are:

1. randomunitary channels [43–45], arising fromunitary dynamics with randomly fluctuating parameters;

2. noisy operations [46–48], generated by preparing ancillas in the microcanonical state, turning on a unitary
dynamics, and discarding the ancillas;

3. unital channels [49, 50], defined as the quantumprocesses that preserve themicrocanonical state.
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These three sets are strictly different: the set of randomunitary channels is strictly contained in the set of noisy
operations [51], and the latter is strictly contained in the set of unital channels [52]. In spite of this, the three sets
are equivalent in terms of state convertibility [48]. Thismeans that all the natural candidates for the sets of free
operations induce the same notion of resource. This resource is generally called purity, and plays a fundamental
role inmany quantumprotocols [53].

In this paperwe extend the paradigmofmicrocanonical thermodynamics fromquantum theory to arbitrary
physical theories [54–61].We propose twominimal requirements a probabilistic theorymust satisfy in order to
support amicrocanonical description, and, when these requirements are satisfied, we provide a general
operational definition of random reversible, noisy, and unital operations.We then focus on a special class of
theories, called sharp theories with purification, which are appealing for the foundations of thermodynamics [62],
and have also been studied for their computational power [63, 64] and interference properties [65]. In sharp
theories with purification, we show that the three sets of operations satisfy the same inclusion relations as in
quantum theory, with random reversible operations included in the set of noisy operations, and noisy
operations included in the set of unital operations. For unital operations, we characterise the convertibility of
states completely in terms of a suitablemajorisation criterion. Thanks to this fact, one can take advantage of
majorisation theory and develop quantitativemeasures of resourcefulness under unital operations.We call these
measures unital monotones and show that they are in one-to-one correspondencewith Schur-convex
functions [66].

Majorisation is a necessary and sufficient condition for state convertibility under unital operations. For
random reversible and noisy operations, however,majorisation is only necessary, as we illustrate explicitly with a
counterexample.Majorisation becomes sufficient if and only if the dynamics allowed by the theory satisfy a
suitable requirement, whichwe call unrestricted reversibility.When this is the case, the sets of random reversible,
noisy, and unital operations define the same notion of resource.Moreover, one can prove the validity of an
entanglement-thermodynamics duality [67], which connects the three resource theories of purity and the
resource theory of pure bipartite entanglement. All these results identify sharp theories with purification and
unrestricted reversibility as a privileged spot in the space of all possible physical theories. In this spot,
thermodynamic and information-theoretic features interact in a very similar way as they do in quantum
mechanics.

The paper is structured as follows. In section 2we briefly review the framework, and in section 3we
introduce constrained theories, a natural setting where to developmicrocanonical thermodynamics. In section 4
we propose two basic requirements for awell-posedmicrocanonical thermodynamics in general physical
theories, and in section 5we extend the three resource theories of random reversible, noisy, and unital
operations fromquantum theory to arbitrary probabilistic theories. In section 6we introduce the axioms and
discuss their basic consequences for the class of theories we study. The implications of the axioms for
microcanonical thermodynamics are examined in section 7. In section 8we establishmajorisation as a necessary
and sufficient condition for the convertibility of states under unital operations, andwe characterise the
correspondingmonotones in terms of Schur-convex functions. Remarkably,majorisation is not a sufficient
criterion for convertibility under random reversible channels; we show a counterexample in section 9. In
section 10we determinewhen the three resource theories are equivalent in terms of state convertibility. Finally,
in section 11we establish the duality between the three resource theories ofmicrocanonical thermodynamics
and the resource theory of entanglement. Conclusions are drawn in section 12.

2. Framework

Toymodels of physical theories beyond classical and quantummechanics can be formulated in the language of
general probabilistic theories [54–61], an umbrella termused to describe frameworks dealingwith the notions of
state, transformation, andmeasurement, alongwith a set of rules to assign probabilities tomeasurement
outcomes. Specifically, this paper adopts the framework known as operational-probabilistic theories (OPTs)
[57–59, 61, 68–71]. TheOPT framework differs fromother frameworks for general probabilistic theories, such
as the convex set framework [55, 72–74], in the particular way it treats the composition of systems.While in the
convex set framework one generally starts from convex sets associatedwith individual systems, and builds
composites from them, theOPT framework takes the composition of physical processes as primitive.
Mathematically, the ‘top-down’ approach of theOPT framework is underpinned by the graphical language of
circuits [75–80]. In this sectionwe give an informal presentation, referring the reader to the original articles for a
more in-depth discussion.
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2.1. States, transformations, andmeasurements
OPTs describe the experiments that can be performed on a given set of systems by a given set of physical
processes. The framework is based on a primitive notion of composition, whereby every pair of physical systems
A and B can be combined into a composite system, denoted by ÄA B. Physical processes can be connected in
sequence or in parallel to build circuits, such as

ð1Þ

In this example, A, ¢ A , A , B, and ¢B are systems, ρ is a bipartite state,,¢ and  are transformations, a and b
are effects. Note that inputs are on the left and outputs are on the right.

For generic systems A and B, we denote by

• St( )A the set of states of system A,

• Eff( )A the set of effects on A,

• Transf( )A, B the set of transformations from A to B, and by Transf( )A the set of transformations from A
to A,

•  ◦ (or , for short) the sequential composition of two transformations  and  , with the input of 
matching the output of,

• A the identity transformation on system A, represented by the plainwire

•  Ä the parallel composition (or tensor product) of the transformations  and  .

Among the list of valid physical systems, everyOPT includes the trivial system I, corresponding to the degrees of
freedom ignored by theory. The trivial system acts as a unit for the composition of systems: for every system A,
one has Ä = Ä =I A A I A.

States (resp. effects) are transformations with the trivial system as input (resp. output). Circuits with no
external wires, like the circuit in equation (1), are called scalars.Wewill often use the notation r( ∣ )a to denote the
scalar

ð2Þ

and of the notation  r( ∣ ∣ )a to denote the scalar

ð3Þ

In theOPT framework, the scalar r( ∣ )a is identifiedwith a real number in the interval [ ]0, 1 , interpreted as the
probability of a joint occurrence of the state ρ and the effect a in an experiment consisting of a state preparation
(containing ρ as one of the possible states), followed by ameasurement (containing a as one of the possible
effects).

The fact that scalars are real numbers induces a notion of sum for transformations, so that the sets St( )A ,
Transf( )A, B , and Eff( )A become spanning sets of real vector spaces. By dimension of the state space St( )A , we
mean the dimension of the vector space spanned by the states of A.

2.2. Tests and channels
In general, a physical process can be non-deterministic, i.e. it can result into a set of alternative transformations,
heralded by different outcomes, which can (at least in principle) be accessed by an experimenter. General non-
deterministic processes are described by tests: a test from A to B is a collection of transformations X Î{ }i i from A
to B, where X is the set of outcomes. If A (resp. B) is the trivial system, the test is called a preparation-test (resp.
observation-test). If the set of outcomes X contains a single element, we say that the test is deterministic, because
one, and only one transformation can take place.Wewill denote the sets of deterministic states, transformations,
and effects asDetSt( )A ,DetTransf( )A, B , andDetEff( )A respectively.We refer to deterministic transformations
as channels.

A transformation  from A to B is called reversible if there exists another transformation -1 from B to A
such that   =-1

A and  =-1
B. It is not hard to see that reversible transformations are deterministic, i.e.

they are ‘channels’. If there exists a reversible transformation transforming A into B, we say that A and B are
operationally equivalent, denoted by A B. Physically, thismeans that every experiment performed on system
A can be (at least in principle) converted into an experiment on system B, and vice versa. The composition of
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systems is required to be symmetric, meaning that Ä ÄA B B A. Physically, thismeans that for every pair of
systems A and B there exists a reversible transformation that swaps A with B.

2.3. Pure transformations
The notion of pure transformation plays centre stage in ourwork. Intuitively, pure transformations represent
themostfine-grained processes allowed by the theory. Tomake this intuition precise, we need a fewdefinitions.

Thefirst definition is coarse-graining—the operation of joining two ormore outcomes of a test into a single
outcome: the test X Î{ }i i is a coarse-graining of the test Y Î{ }j j if there exists a partition Y XÎ{ }i i of Y such that

X
Y

 å= " Î
Î

( )i, . 4i
j

j

i

We say that the test Y Î{ }j j is a refinement of the test X Î{ }i i . A transformation j with j in the set Yi is a refinement
of the transformation i.

Pure transformations are themost refined transformations:

Definition 1.A transformation Transf Î ( )A, B is pure if it has only trivial refinements, namely refinements
{ }j of the form  = pj j , where { }pj is a probability distribution.

We denote the sets of pure transformations, pure states, and pure effects as PurTransf( )A, B , PurSt( )A , and
PurEff( )A respectively. As usual, non-pure states are calledmixed.

2.4. Purification
Another key notion in our paper is the notion of purification [57, 59]. Consider a bipartite system ÄA B in the
state rAB. The state of system A alone is obtained by discarding system B—that is, by applying a channel that
transforms system B into the trivial system.Discarding operations are represented by deterministic effects, i.e.
deterministic transformationswith trivial output. In quantum theory, every systemhas one and only one
deterministic effect, corresponding to the partial trace on theHilbert space of the system.

Given a deterministic effect DetEffÎ ( )e B , the correspondingmarginal state is

ð5Þ

or, in formula, r rÄ≔ ( )eA A AB.
When rAB is pure and equation (5) is satisfied for some deterministic effect e, we say that rAB is a purification

of rA andwe call B the purifying system [57, 59].

Definition 2.Apurification PurStY Î Ä( )A B is essentially unique [59] if for every pure state
PurStY¢ Î Ä( )A B and every deterministic effect DetEff¢ Î ( )e B satisfying the purification condition

ð6Þ

one has

ð7Þ

and

ð8Þ
for some reversible transformation  .

In a completely general theory, theremay be different ways to discard a system, corresponding to different
deterministic effects. The deterministic effect is unique in causal theories, that is, theories where no signal can be
sent from the future to the past [57].

2.5. Finiteness, closure, and convexity
In this paper wewillmake three standing assumptions. Thefirst assumption is that ourOPTdescribes finite
systems, i.e. systems forwhich the state space isfinite-dimensional. Operationally, thismeans that the state of
each system is uniquely determined by the statistics of afinite number offinite-outcomemeasurements.

4

New J. Phys. 19 (2017) 123043 GChiribella andCMScandolo



Our second assumption is that the space of transformations (and the spaces of states and effects, in
particular) is closed under limits. Physically, this expresses the fact that a limit of operational procedures is itself
an operational procedure, whereby the target transformation can be implementedwith arbitrary accuracy.
Mathematically, a sequence of transformations  Î{ }n n from A to B converges to the transformation

Transf Î ( )A, B if for every reference system R , every state Str Î Ä( )A R , and every effect EffÎ Ä( )E B R
the probabilities   rÄ( ∣ ∣ )E n R converge to the probability   rÄ( ∣ ∣ )E R .

The third standing assumptionmade throughout the paper is that the space of transformations Transf( )A, B
is convex for every A and B.Mathematically, thismeans that one has the implication

Transf

Transf

 

 

Î Î
+ - Î

( ) [ ]
⟹ ( ) ( ) ( )

p

p p

, A, B , 0, 1

1 A, B . 9

Physically, thismeans that the experimenter can perform arbitrary randomised operations. Note that convexity
is a natural assumption in every non-deterministic theory: provided that some experiment yields random
outcomes, one can always repeat that experimentmany times and approximate every probability distribution
[57]. Then, the closure assumption guarantees that the limit probability distribution is also achievable within the
theory. Thanks to this fact, the experimenter can perform arbitrary randomised tests.

3. Theories of systemswith constraints

The language of general probabilistic theories is largely interpretation-independent. As such, it has the flexibility
tomodel very different physical scenarios, or even tomodel different fragments of the same physical theory. In
this paper we use the framework tomodel scenarios ofmicrocanonical thermodynamics, where the systems
under consideration have awell-defined energy.More generally, themicrocanonical approach can be applied to
systemswith additional constraints—e.g. to systems of particles confined in a given volume, or constrained to
have afixed value of the angularmomentum. In these scenarios, themicrocanonical state is interpreted as the
state of ‘minimum information’ compatible with the constraints. In this sectionwe outline how theOPT
framework can be used to describe physical systems subject to constraints.

3.1. Constrained systems in quantum theory
Before delving into general theories, itmay help to analyse the example of quantum theory. Let us consider first
the case of a quantum system S constrained to afixed value of the energy. The constraint is implemented by
specifying the system’sHamiltonian HS and by restricting the allowed states to (mixtures of) eigenstates of the
Hamiltonian for afixed eigenvalue, sayE. The quantum states compatible with the constraint are the density
matrices ρ satisfying the condition

r r= ( )P P , 10E E

where PE is the projector on the eigenspace of HS with eigenvalue E.
For example, the system S could be an electron in a hydrogen atom, in the absence of external fields. In

general, the basis states of the electron are labelled as ñ∣n l m m, , , s , where n l m, , , andms are the principal,
orbital,magnetic, and spin quantumnumber respectively. The electronmay be constrained to the lowest energy
shell, corresponding to n=1 and = =l m 0. In this case, the allowed states are contained in a two-
dimensional subspace, spanned by the ‘spin-up’ and ‘spin-down’ states = = = = ñ∣n l m m1, 0, 0, 1 2s and

= = = = - ñ∣n l m m1, 0, 0, 1 2s , Under this restriction, the electron’s spin can be regarded as an effective
qubit.

Constraints other than energy preservation canbe treated in a similarway.We consider constraints of the form

 r =( ) ( )0, 11

where  is a linearmap on the state space of the system. This form is suggested by equation (10), where the linear
map is  = -(·) (·) (·)P PE E S , S being the identity channel on system S.

Given a set of constraints { }i , one can define an effective system, whose states are the densitymatrices ρ
satisfying the conditions  r =( ) 0i for every i. The constrained quantum system can be denoted as

= =( { } )A : S , i i
k

A A 1 , where SA is the original system and  ={ }i i
k

A 1 are the linearmaps representing the
constraints. The physical transformations of the effective system are the physical transformations of S that send
every input state satisfying the constraint into an output state satisfying the constraints. For the energy
constraint(10), thismeans that the transformations of the effective systems should be energy-preserving.

A familiar example of effective system is the polarisation of a single photon. At the fundamental level, the
single photon is just an excitation of the electromagnetic field, e.g. corresponding to thewave vector k . One can
regard the single photon as an effective systemby restricting the attention to the two-dimensional space spanned
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by the states ñ∣ Hk, , 1 and ñ∣ Vk, , 1 , corresponding to vertical and horizontal polarisation, respectively. In this
case, we can see two constraints working together: a constraint on thewave vector and a constraint on the energy
of the field. Note that the effective description in terms of single photons is accurate only as long as the dynamics
of thefield is confined into the ‘single-photon subspacewithwave vector k ’.

So far, we have defined effective systems at the single-system level. An important question is how to define
the composition of effective systems. Consider two effective systems = =( { } )A S , i i

k
A A 1 and

= =( { } )B S , j j
l

B B 1 , where SA and SB are the original, unconstrained systems. A natural way to define the
effective composite system ÄA B is to select the states of the unconstrained composite system ÄS SA B that
satisfy both constraints—i.e. to select the densitymatrices ρ such that

 

 

r
r

Ä = " Î ¼
Ä = " Î ¼

( )( ) { }
( )( ) { } ( )

i k

j l

0 1, , ,

0 1, , . 12
i

j

A S

S B

B

B

When the effective systems A and B result from an energy constraint, the effective system ÄA B describes a
system consisting of two parts, each of whichwith its own, well-defined energy. In this case, the constraints(12)
can be summarised in a single equation, namely

r rÄ Ä =( ) ( ) ( )P Q P Q , 13E E E EA B A B

where EA and EB are the energies of the two local systems, and PEA
and QEB

are the projectors on the
corresponding eigenspaces.

Onemight be tempted to define the composite system ÄA B in a different way, without imposing that each
individual part has a definite energy. Indeed, one could imagine that, when the two systems SA and SB are
brought into contact, they start exchanging energy, with the only constraint that the total energy has to remain
constant. The resulting states would be densitymatrices that satisfy the (generally)weaker condition

r rP P =+ + ( ), 14E E E EA B A B

whereP +E EA B
is the projector on the eigenspace of +H HS SA B

with eigenvalue +E EA B. The reasonwhywe do
notmake such a choice can be illustratedwith a simple example. Suppose that SA and SB are two spatialmodes of
the electromagnetic field, withwave vectors kA and kB, respectively. Systems A and B could be single photons,
i.e. effective systems corresponding to states of the field in thefirst excited level. Now, if the energy of the two
modes is the same, an energy-preserving evolution could transform the initial state ñ ñ∣ ∣H Hk k, , 1 , , 1A B into the
state

Yñ =
ñ ñ + ñ ñ∣ ∣ ∣ ∣ ∣ ( )H H H Hk k k k, , 2 , , 0 , , 0 , , 2

2
. 15A B A B

States of this kind cannot be interpreted as states of two single photons. Note that, instead, the constraint(12)
correctly identifies the correct set of states—including, among others, entangled states such as the Bell state

F ñ =
ñ ñ + ñ ñ+∣ ∣ ∣ ∣ ∣ ( )H H V Vk k k k, , 1 , , 1 , , 1 , , 1

2
. 16A B A B

Motivated by this and by similar examples, we reserve the notation ÄA B for effective systems defined by
the constraint(12). Other effective systems, like the systemdefined by the constraint(14), can be treated in our
framework, butwill be regarded as different from the product system ÄA B.

3.2. Constrained systems in general theories
The construction outlined in the quantum case can be easily extended to arbitrary physical theories. A constraint
for system S can be defined as an element  of the real vector space Transf( )S spanned by the physical
transformations in Transf( )S . The constraint is satisfied by the states ρ such that

 r =( ) ( )0. 17

For a given set of constraints  ={ }i i
k

1, one can define an effective system  = ( )A: S, , ..., k1 . The states of the
effective systems are defined as

St St r r= Î = = ¼( ) { ( ) ∣ ( ) } ( )i kA S 0, 1, , . 18i

The transformations of the effective system A are those transformations of S that send states of A to states of
A. Themeasurements on A are just themeasurements on S, restricted to the states in St( )A .

For two effective systems, = =( { } )A S , i i
k

A A 1 and = =( { } )B S , j j
l

B B 1 , we define the composite system
ÄA B to be the effective system

   ÈÄ = Ä Ä Ä= =( ){ } { } ( )A B : S S , . 19i i
k

j j
l

A B A B 1 A B 1

6
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This definition is consistent with interpretation of system ÄA B as a composite systemmade of two,
independently addressable parts A and B. For example, localmeasurements on one side of a bipartite state of

ÄA B induce states of the correct system (either A or B) on the other side.

3.3. Effective theories
Given a theory and a set of constraints composed as in equation (19), one can build a new effective theory, which
consists only of effective systems. For example, one can build an effective theorywhere every systemhas definite
energy, andwhere every composite systems consist of subsystemswith definite energy. For a given system A in
such a theory, all the states in St( )A have—by fiat—the same energy. Likewise, all the transformations in
Transf( )A will be—by fiat—energy-preserving. For every pair of systems A and B, the composite system ÄA B
consists of two parts, each of whichwith its own, well-defined energy. The joint transformations in
Transf Ä( )A B will be interpreted as operations that preserve the energy of the first part and the energy of the
second part.

One benefit of the effective picture is that one does not need to specify the constraints—in principle, every
linear constraint canfit into the framework. In this way, we can circumvent the thorny issue of defining the
notion ofHamiltonian in general probabilistic theories (see [62]): in the effective description, we can simply
regard each effective system as a systemwith trivial Hamiltonian, which assigns the same energy to all states of
the system.

4. Themicrocanonical framework

In this sectionwe build amicrocanonical framework for general physical theories.Wewill adopt the effective
description, wherein every system is interpreted as the result of a constraint—typically, but not essentially, a
constraint on the energy.

4.1. The principle of equal a prioriprobabilities
The starting point of themicrocanonical approach is the principle of equal a priori probabilities, stating that one
should assign the same probability to all themicrostates of the system compatible with a givenmacrostate. In our
language, the ‘microstates’ are the deterministic pure states, representing those preparations of the system that
are both deterministic andmaximallyfine-grained. The ‘macrostate’ is specified by a constraint, such as the
constraint offixed energy. The principle of equal a priori probabilities states that the system should be described
by a uniformmixture of all deterministic pure states satisfying the constraint. For example, themicrocanonical
state of a (finite-dimensional) quantum system at energy E is described by the densitymatrix

S
òc y y y= ñá( )∣ ∣ ( )p: d , 20E E

E

where SE is themanifold of pure states in the eigenspace of the system’sHamiltonian corresponding to the
eigenvalue E, and y( )p dE is the uniformprobability distribution over SE. In the effective picture, the
microcanonical state is nothing but themaximallymixed state

òc y y yñá≔ ∣ ∣ ( )d , 21A

where yd is the uniformprobability distribution over the pure states of the system.
A traditional problem in the foundations of statisticalmechanics is to determine the conditions under which

the principle of equal a priori probabilities holds. Herewewill not delve into this problem,which involves a great
deal of detail about the physics of the system and of its dynamics. Instead, wewill focus on the general conditions
thatmust be satisfied in order to formulate the principle of equal a priori probabilities in physical theories other
than classical and quantummechanics.

In general probabilistic theories, the key problem is to definewhatwemean by ‘equal a priori probabilities’.
In quantummechanics, there is a canonical choice: the unitarily invariant probability distribution on the pure
states of the system. The obvious extension to general theories is to consider the probability distributions that are
invariant under all reversible transformations. The problem is, however, that theremay bemore than one
invariant probability distribution. This point is illustrated in the following example:

Example 1.Consider a toy theory where the space of the deterministic states of one of the systems is a half-disk in
the two-dimensional plane, as infigure 1(a). For this system, the pure states are the states on the half-circle (in
green in thefigure), and can be parameterisedwith a polar angle θ between 0 andπ. Now, the reversible
transformations send deterministic states into deterministic states and, therefore,must be symmetry
transformations of the state space. For the half-disk, the only symmetry transformations are the identity
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transformation and the reflection around the symmetry axis (in black in thefigure). Hence, every probability
distribution that assigns the same probability distribution to the points θ and p q– is guaranteed to be invariant
under reversible transformations. Thismeans that the notion of ‘equal a priori probabilities’ is not uniquely
defined. The situationwould be different if the state space of the systemwere a full disk, as illustrated in
figure 1(b). In this case, every rotation of the disk could be (at least in principle) a reversible transformation of the
system. The invariant probability distributionwould be unique, and given by the probability density q =

p
( )p 1

2
.

Note that in the above examples we only specified the state space and the transformations of a single system,
without giving the full-blownOPT. It is easy to see that such a theory does indeed exist. In general, one can
always build a ‘minimalOPT’ that includes a given systemwith a given state space, a given set of transformations,
and a given set ofmeasurements. The constructionwas shown in [81, example 2]. In theminimalOPT, the
composite systems aremade ofmany copies of the given system, and their allowed states, transformations, and
operations are (mixtures of) product states, product transformations, and product operations.

The above example shows that there exist probabilistic theories where the notion of ‘equal a priori
probabilities’ on pure states is not uniquely defined. In order to formulate the principle of equal a priori
probabilities, we put forward the following requirement:

Requirement 1. For every (finite) system there exists a unique invariant probability distribution on the
deterministic pure states.

This requirement is far from trivial. In fact, it is equivalent to an important property, independently
considered in the literature on the axiomatisation of quantum theory [54, 82–84]:

Theorem1. For every finite system A, the following are equivalent:

1. There exists a unique invariant probability distribution on the deterministic pure states of system A.

2. Every deterministic pure state of system A can be obtained from every other deterministic pure state of the same
system through a reversible transformation.

Proof.The idea of the proof is that the set of deterministic pure states of system A can be decomposed into a
disjoint union of orbits generated by the group of reversible transformations.More formally, for every two
(deterministic) pure statesα and a¢, one can define the equivalence relation a a~ ¢rev if a a¢ = for some
reversible transformation  . In this way, the set of deterministic pure states is partitioned into equivalence
classes, known as homogeneous spaces.Moreover, each homogeneous space is a closed set, because the group of
reversible transformations is closed [57] and has afinite-dimensional representation on the state space of system
A. Now, one can define an invariant probability distribution for every equivalence class. Indeed, it is enough to
define the invariantmeasure on the pure states induced by the invariantmeasure on the group of reversible
transformations. Hence, the condition that there is only one invariant probability distribution implies that there
must be only one equivalence class. In otherwords, every two pure states are connected by a reversible
transformation.

Conversely, if there is only one equivalence class for the relation~rev there is only one invariant probability
distribution. This is because the normalised invariantmeasure on a homogeneous space is uniquely defined. +

Figure 1.Two different sets of deterministic states. For the set infigure 1(a), the pure states form a half-circle (in green). Owing to the
limited symmetry of the state space, there is no canonical notion of equal a priori probability on themanifold of pure states. For the set
in figure 1(b), the pure states form a full circle, and the notion of uniformprobability distribution is uniquely defined.
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Themutual convertibility of pure states under reversible transformationswas introduced byHardy [54] as
an axiom for the derivation of quantum theory and has been assumed, either directly or indirectly, in all the
recent derivations inspired by quantum information theory (see [68, 70, 82, 83] and the contributed volume [60]
for an overview). Theorem1provides onemoremotivation for the convertibility of pure states, identified as the
necessary condition for the formulation of the principle of equal a priori probabilities.

4.2. Themicrocanonical state
Every theory satisfying requirement 1 has a canonical notion of ‘uniformdistribution over the pure states of the
system’.We can then apply the principle of equal a priori probabilities and define themicrocanonical state as the
uniformmixture

òc y y= ( ) ( )p: d , 22A A

where y( )p dA the invariant probability distribution over the deterministic pure states of system A.
The convexity of the state space guarantees that themicrocanonical state is indeed a state.Moreover, since

the state space isfinite-dimensional, it is possible to replace the integral in equation (22)with afinite sum. This
means that themicrocanonical state can (in principle) be generated by picking deterministic pure states at
random from afinite set.

Themicrocanonical state has two important properties, proved in appendix A:

1. it is invariant under arbitrary reversible dynamics of the effective system;

2. it can be generated from every other deterministic pure state of the effective system through a random reversible
dynamics.

Property 1 expresses the fact that themicrocanonical state is an equilibrium state, in the sense that it does not
evolve under any of the reversible dynamics compatible with the constraints. Note that the notion of equilibrium
here is different from the notion of thermal equilibrium, which refers to interactionswith an external bath.
Instead of thermal equilibrium, we consider here a dynamical equilibrium, consisting in the fact that the
probability assignmentsmade by themicrocanonical state are stable under all possible evolutions of the system.

Property 2 refers to the fact that the system can—at least in principle—be brought to equilibrium. Physically,
we can imagine a situationwhere the experimenter has no control on the system’s preparation, but has control
on the system’s dynamics through some classical control fields. In this picture, property 2 guarantees that the
experimenter can prepare themicrocanonical state by drawing at random the parameters of her control fields.
Further along this line, one can also imagine scenarioswhere the randomisation occurs naturally as a result of
fluctuations of the fields. Property 2 is important from the resource-theoretic approach, where the
microcanonical state is often regarded as free, or ‘easy to prepare’.

4.3. Composition ofmicrocanonical states
At the level of single systems, requirement 1 guarantees the existence of amicrocanonical state. But howdoes the
microcanonical state behave under the composition of systems? Traditionally, this question is not addressed in
textbook presentations, where themicrocanonical state is associatedwith isolated systems, i.e. systems that do
not interact with other systems. From the operational point of view, however, it is natural to consider scenarios
where the experimenter hasmore than one system at her disposal.

Composition is especially important in the context of resource theories, where it is natural to ask how
resources interact when combined together. To illustrate this point, it is useful to consider the quantum resource
theory of noisy operations [46–48]. There, themicrocanonical states are treated as free. Since the experimenter
can generate themicrocanonical states cA and cB at no cost, then she can generate the product state c cÄA B at
no cost too. If we insist that themicrocanonical states are the only free states in the resource theory of noisy
operations, the product state c cÄA B must be themicrocanonical state of the composite system ÄA B—in
formula,

c c cÄ = ( ). 23A B AB

Equation (23) is consistent with the intuitive interpretation of themicrocanonical state as ‘the state ofminimum
information compatibly with the constraints’. Indeed, equation (23) amounts to saying that, if one hasminimum
information on the parts of a system, then one hasminimum information about thewhole. This is indeed the
case in quantum theory, where the product of twomaximallymixed states ismaximallymixed. Recall that here
we are dealingwith effective systems, which exist only as long the corresponding constraints are enforced. For
energy constraints, the composite of two effective systems A and B is defined as a system consisting of two parts,
each constrained to a specific value of the energy. Consistently with this interpretation, themicrocanonical state
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of system ÄA B is the ‘maximallymixed state’ in themanifold of quantum states withfixed local energies, as
defined in equation (13).

Following the example of quantummechanics, we require thatminimum information about the parts imply
minimum information about thewhole:

Requirement 2.Themicrocanonical state of a composite system is the product of themicrocanonical states of its
components. In formula:

c c c= Ä ( ), 24AB A B

for every pair of effective systems A and B.

We call equation (24) the condition of informational equilibrium. Note that, again, herewe are not referring to
thermal equilibriumbetween the two subsystems. This is clear from the fact that we do not allow an energy flow
between the two systems A and B. Instead, we allow aflowof information, implemented by the joint dynamics
of the composite system ÄA B.

It is natural to askwhich physical principles guarantee the condition of informational equilibrium.One such
principle is local tomography [54, 55, 57], namely the requirement that the state ofmultipartite systems be
determined by the joint statistics of localmeasurements. However, local tomography is not necessary for
informational equilibrium. For example, quantum theory on real Hilbert spaces violates local tomography, but
still satisfies the condition of informational equilibrium. In this paper, wewill not assume local tomography in
our set of physical principles. Nevertheless, our principles will guarantee the validity of the condition of
informational equilibrium.

4.4.Microcanonical theories
Weare now ready to extend themicrocanonical framework fromquantum and classical theory to general
physical theories.

Definition 3.Anoperational-probabilistic theory, interpreted as a theory of effective systems, ismicrocanonical
if requirements 1 and 2 are satisfied.

Physically, amicrocanonical theory is a theory where (i) every systemhas awell-defined notion of uniform
mixture of all pure states, and (ii) uniformmixtures are stable under parallel composition of systems.
Microcanonical theories provide the foundation for the definition of three important resource theories,
analysed in the following sections.

5. Three resource theories

In this sectionwe study three different notions of state convertibility inmicrocanonical theories.We adopt the
resource-theoretic framework of [20, 21], where onefixes a set of free operations, closed under sequential and
parallel composition. A basic question in the resource-theoretic framework is whether a given state ρ can be
transformed into another stateσ bymeans of free operations.When this is possible, ρ is regarded as ‘more
resourceful’ thanσ, denoted as Fr s, where F is the set of free operations.Mathematically, the relation F is
a preorder on the states.

In the followingwe define three resource theories and their corresponding preorders.

5.1. The random reversible (RaRe) resource theory
Ourfirst resource theory is based on the notion of random reversible channel [67]:

Definition 4.ARaRe channel on system A is a channel of the form = å pi i i, where { }pi is a probability
distribution and, for every i, i is a reversible channel on system A.

Physically, RaRe channels are the operations that can be implementedwith limited control over the
reversible dynamics of the system.Mathematically, it is immediate to check that RaRe channels have all the
properties required of free operations: the identity channel is RaRe, the sequential composition of twoRaRe
channels is a RaRe channel, and so is the parallel composition.We call the resulting resource theory theRaRe
resource theory, andwe denote by RaRe the corresponding preorder.

Note that the RaRe resource theory can be formulated in everyOPT, even inOPTs that do not satisfy
requirements 1 and 2. Such generality, however, comes at a price: the RaRe resource theory has no free states. This
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is because states are operations with trivial input, while the only free operations in theRaRe theory are
transformationswhere the input and the output coincide.

Despite not having free states, the RaRe resource theory can haveminimally resourceful states, defined as
follows

Definition 5. In a resource theorywith free operations F, a state ρ isminimally resourceful if the condition

Fr s implies s r= .

In the RaRe resource theory,minimally resourceful states are easy to characterise:

Proposition 1.A state isminimally resourceful in the RaRe resource theory if and only if it is invariant under the
action of reversible transformations.

Proof.By definition, one has r rRaRe for every state ρ and for every reversible transformation  . If ρ is
minimally resourceful, onemust have r r= . Hence, ρmust be invariant under arbitrary reversible
transformations.

Conversely, suppose that ρ is invariant, and that r sRaRe . By definition, thismeans that s r= , for
someRaRe channel. Since ρ is invariant, itmust satisfy the relationr r= . Hence, s r= . +

For theories satisfying requirement 1, proposition 1 implies that themicrocanonical state isminimally
resourceful: indeed, we know that themicrocanonical state is invariant under reversible transformations.

5.2. The noisy resource theory
While the RaRe resource theory can be defined in everyOPT,we nowdiscuss a second resource theory that can
only be defined in physical theories satisfying requirements 1 and 2. In this resource theory, free operations are
generated by letting the system interact with ancillas in themicrocanonical state. These operations, usually called
‘noisy’ [46–48], are defined as follows:

Definition 6.A channel  , from system A to system ¢A , is a basic noisy operation if it can be decomposed as

ð25Þ

where E and ¢E are suitable systems such that Ä ¢ Ä ¢A E A E ,  is a reversible transformation, and e is a
deterministic effect, representing a possible way to discard system ¢E .

Note that herewe only allow reversible transformations, instead ofmixtures of reversible transformations.
In principle, one could consider arbitrary RaRe channels, as in the previous subsection. Themain reasonwhywe
stick to reversible transformations (without randomisation) is that wewant to be consistent with the existing
literature [46–48]. Note also that definition 6 is interesting per se, because it does not rely on the availability of
external sources of randomness: instead, all the randomness is accounted for in the preparation of the
microcanonical state in the right-hand side of equation (25).

Definition 6 has a slightly unpleasant aspect: the set of basic noisy operations is generally not closed. In
quantum theory, for example, there exist counterexamples where the limit of a sequence of basic noisy
operations is not a basic noisy operation [51]. It is then convenient to take the closure of the set of basic noisy
operations:

Definition 7.A channel  is a noisy operation if it is the limit of a sequence of basic noisy operations { }n .

The set of noisy operations satisfies all the requirements for being a set of free operations: the identity is a
noisy operation, and the parallel and sequential composition of two noisy operations are noisy operations,
thanks to the condition of informational equilibrium(24). The resource theory where the set of free operations
is the set of noisy operations will be called the noisy resource theory. The corresponding preorder on states will be
denoted by Noisy .

5.3. The unital resource theory
In the third resource theory, the set of free operations includes all the operations that transformmicrocanonical
states intomicrocanonical states. The rationale for considering these transformations, called unital channels, is
their generality: if we insist that themicrocanonical states are the only free states, unital channels are themost
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general transformations that send free states into free states. In other words, they are themost general operations
that do not create resources out of free states

Mathematically, the unital channels are defined as follows:

Definition 8.A channel  from system A to system ¢A is called unital if c c= ¢A A .

Unital channels are the operational generalisation of doubly stochasticmatrices in classical probability
theory [49, 50, 66].

The set of unital channels enjoys all the properties required of a set of free operations: the identity is a unital
channel, and thanks to the condition of informational equilibrium, the sequential and parallel composition of
unital channels is a unital channel. The resource theorywhere free operations are unital channels will be called
the unital resource theory. The corresponding preorder on states will be denoted by Unital .

5.4. Containment relations
Let us highlight the relations between the three sets of operations defined so far. First, RaRe channels are
examples of unital channels. This is clear because every RaRe channel can be decomposed as amixture of
reversible transformations, each of which preserves themicrocanonical state. Hence, we have the inclusion

RaRe UnitalÍ ( ). 26

In classical probability theory, the inclusion is actually an equality, as a consequence of Birkhoff’s theorem
[66, 85]. Remarkably, in quantum theory there exist unital channels that are not randomunitary,meaning that
the inclusion(26) is generally strict. The simplest example is due to Landau and Streater [49]: for a quantum
particle of spin j, they defined themap

 =
+ +

+
(·)

(·) (·) (·)
( )

( )
J J J J J J

j j 1
, 27j

x x y y z z

where J J J, ,x y z are the three components of the spin operator. It is easy to see that themap j is trace-preserving
and identity-preserving—that is, it is a unital channel. On the other hand, Landau and Streater showed that the
map j cannot be decomposed as amixture of unitary channels unless =j 1 2 [49].

We have seen that all RaRe channels are unital. Noisy operations are also unital, as shown by the following

Proposition 2.Every noisy operation is unital.

Proof. Suppose that  is a basic noisy operation, decomposed as in equation (25). Then, one has

ð28Þ

having used the condition of informational equilibrium(24), the invariance of themicrocanonical state cAE
under reversible transformations, and the condition c =( ∣ )e 1E , following from the fact that both cE and e are
deterministic. Hence, every basic noisy operation is unital. Since the set of unital channels is closed under limits,
all noisy operations are unital. +

In summary, one has the inclusion

Noisy UnitalÍ ( ). 29

The inclusion is strict in quantum theory, whereHaagerup andMusat have found examples of unital channels
that cannot be realised as noisy operations [52].

It remains to understand the relation betweenRaRe channels and noisy operations. In quantum theory, the
set of noisy operations (strictly) contains the set of RaRe channels as a proper subset [51]. In a generic theory,
however, this containment relationmay not hold. As a counterexample, consider the variant of quantum theory
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where only local operations are allowed: in this case, RaRe channels are not contained in the set of noisy
operations, because all the interactions are trivial.

The inclusions(26) and (29) are themost general result one can derive from the definitions alone. To go
further, we need to introduce axioms. In the next sections, wewill introduce a set of axioms that imply deeper
relations between the RaRe, noisy, and unital resource theories. In addition, the axiomswill imply a connection
with themathematical theory ofmajorisation andwith the resource theory of entanglement.

6. Four axioms

In this sectionwe review the four axioms used in this paper. These axioms—causality, purity preservation, pure
sharpness, and purification—define a special class of theories, whichwe call sharp theories with purification.

6.1. Sharp theorieswith purification
Sharp theories with purification are defined by the following four axioms. Thefirst axiom—causality—states
that no signal can be sent from the future to the past:

Axiom1 (Causality [57, 59, 61, 68]).The probability that a transformation occurs in a test is independent of the
settings of tests performed on the output.

The second axiom—purity preservation—states that no information can leak to the environment when two
pure transformations are composed:

Axiom2 (Purity preservation [86]). Sequential and parallel compositions of pure transformations yield pure
transformations.

The third axiom—pure sharpness—guarantees that every systempossesses at least one elementary property,
in the sense of Piron [87]:

Axiom3 (Pure sharpness [88]). For every system there exists at least one pure effect occurringwith unit
probability on some state.

Axioms 1–3 are satisfied by both classical and quantum theory.Our fourth axiom, purification, characterises
all physical theories admitting a fundamental level of descriptionwhere all deterministic processes are pure and
reversible.

Axiom4 (Purification [57, 59, 61, 68]).Every state has a purification. Purifications are essentially unique, in the
sense of definition 2.

Quantum theory, both on complex and realHilbert spaces, satisfies purification. Remarkably, even classical
theory can be regarded as a sub-theory of a larger physical theory where purification is satisfied [62].

Definition 9.AnOPT is a sharp theory with purification if it satisfies axioms 1–4.

In the rest of the sectionwewill outline themain kinematic properties of sharp theories with purification.

6.2.Well-definedmarginal states
By definition, sharp theories with purification satisfy causality, which in turn is equivalent to the requirement
that, for every system A, there exists a unique deterministic effect EffÎ ( )u AA (or simply u, when no ambiguity
can arise) [57]. The uniqueness of the deterministic effect implies that themarginals of a bipartite state are
uniquely defined. For a bipartite state Str Î Ä( )A B , wewill denote themarginal on system A as

ð30Þ

in analogywith the notation used in quantum theory.
In a causal theory, it is immediate to see that a state ρ can be prepared deterministically if and only if it is

normalised, namely
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r r =[ ] ≔ ( ∣ ) ( )uTr 1. 31

Wedenote the set of normalised states of system A as St DetSt=( ) ( )A : A1 .

6.3.Diagonalisation
In sharp theories with purification, one can prove that every state can be diagonalised, that is, decomposed as a
randommixture of perfectly distinguishable pure states.

Theorem2 ([62, 88]).Every normalised state Str Î ( )A1 of every system A can be decomposed as

år a=
=

( )p , 32
i

r

i i
1

where r is an integer (called the rank of the state),   ¼ >p p p 0r1 2 are probabilities (called the eigenvalues),
and a ={ }i i

r
1 is a set of perfectly distinguishable pure states (called the eigenstates).

It follows from the axioms that the eigenvalues are uniquely defined by the state (see [62] for the proof). The
uniqueness of the spectrum is a non-trivial consequence of the axioms: notably, [89, 90] exhibited examples of
theories (other than sharp theories with purification)where states can be diagonalised, but the same state can
have two different diagonalisations with two different spectra.

6.4. State-effect duality
Sharp theories with purification exhibit a duality between normalised pure states and normalised pure effects—a
normalised effect being an effect a such that r =( ∣ )a 1 for some state. Denoting the set of normalised pure effects
by PurEff ( )A1 , the duality reads as follows:

Proposition 3 ([88]).There is a bijective correspondence between normalised pure states and normalised pure effects.
Specifically, if PurSta Î ( )A1 , there exists a unique PurEffa Î ( )† A1 such that a a =( ∣ )† 1.

Physically, themeaning of the duality is that every pure state can be certified by a (unique)pure effect, which
occurs with unit probability only on that particular state. The duality between pure states and pure effects can be
lifted to a duality betweenmaximal sets of perfectly distinguishable pure states and perfectly distinguishing
observation tests, defined as follows:

Definition 10.Anobservation-test XÎ{ }ai i is called perfectly distinguishing if there exists a set of states Xr Î{ }i i ,
such that r d=( ∣ )ai j ij for all i and j in X. In this case the states Xr Î{ }i i are said perfectly distinguishable.

Definition 11.A set of perfectly distinguishable states Xr Î{ }i i ismaximal if there is no state r0 such that the states

X Èr rÎ{ } { }i i 0 are perfectly distinguishable.

Amaximal set of perfectly distinguishable pure states will be called puremaximal set for short.With this
notation, the duality reads

Proposition 4 ([62]).The pure states Xa Î{ }i i are amaximal set if and only if the pure effects Xa Î{ }†
i i form a perfectly

distinguishing observation-test.

As a consequence, the product of two puremaximal sets is a puremaximal set for the composite system:

Proposition 5. If a ={ }i i
d

1
A is a puremaximal set for system A and b ={ }j j

d
1

B is a puremaximal set for system B, then
a bÄ Î ¼ Î{ } { } { }i j i d j d1, , , 1 ,...,A B

is a puremaximal set for the composite system ÄA B.

Proof.By proposition 4, a ={ }†
i i

d
1

A and b ={ }†
j j

d
1

B are two observation tests for systems A and B, respectively. Now,
the product of two observation tests is an observation-test (physically, corresponding to twomeasurements
performed in parallel). Hence, the product a bÄ Î ¼ Î{ }† †

{ } { }i j i d j d1, , , 1 ,...,A B
is an observation-test on the

composite system ÄA B.Moreover, each effect a bÄ† †
i j is pure, due to purity preservation. Using proposition

4 again, we obtain that a bÄ Î ¼ Î{ } { } { }i j i d j d1, , , 1 ,...,A B
is a puremaximal set. +

It is possible to show that all puremaximal sets in a given systemhave the same cardinality [62]. For a generic
system A, wewill denote the cardinality of themaximal sets by dA.Wewill refer to dA as the dimension of system
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A.We stress that the dimension dA should not be confusedwith the dimension of the normalised state space
St ( )A1 : in quantum theory, the dimension dA is the dimension of the system’sHilbert space, while the dimension
of the space of densitymatrices is -d 1A

2 .
Proposition 5 shows that the dimension of a composite system is the product of the dimensions of the

components, namely

= ( )d d d , 33AB A B

for every pair of systems A and B. This property has been dubbed information locality byHardy [70, 71].

7.Microcanonical thermodynamics in sharp theorieswith purification

Herewe show that sharp theories with purification satisfy our requirements 1 and 2 for the construction of the
microcanonical framework.Moreover, wewill show that sharp theories with purification exhibit a simple
inclusion relation betweenRaRe and noisy operations.

7.1. Themicrocanonical state
We start by showing that every sharp theorywith purification satisfies requirement 1, which enables the
formulation of the principle of equal a priori probabilities. Thanks to theorem1, we only need to show that every
two pure states of the same system are connected by a reversible transformation. This fact is an immediate
consequence of purification:

Proposition 6 ([57]). For every theory satisfying purification, for every system A in the theory, and for every pair of
deterministic pure states a and a¢ of system A, there exists a reversible transformation  such that a a¢ = .

Proposition 6 guarantees that for every system A there exists a unique probability distribution y( )p dA ,
which is invariant under all reversible dynamics. In turn, the probability distribution y( )p dA can be used to
define themicrocanonical state cA.

In sharp theories with purification, themicrocanonical state enjoys a remarkable property: the state can be
decomposed into a uniformmixture of perfectly distinguishable pure states.

Proposition 7 ([62]). In sharp theories with purification, for every system A, and every puremaximal set a ={ }i i
d

1
A in

A, one has the decomposition

åc a=
=

( )
d

1
. 34

i

d

iA
A 1

A

In quantum theory, the decomposition of equation (34) is nothing but the expression

c = ( )I

d
, 35A

A

A

where dA is the dimension of the system’sHilbert space, and IA is the ´d dA A identitymatrix. Recall that here
we are interpreting the systems in our theory as effective systems. For a systemwith definite energy, the
decomposition of equation (35) reads

åc = ñá
=

∣ ∣ ( )
d

E n E n
1

, , , 36E
E i

d

1

E

where ñ ={∣ }E n, n
d

1
E is any orthonormal basis for the eigenspace of theHamiltonianwith eigenvalue E.

It is worth noting that equation (36) is often chosen as the definition of themicrocanonical state in quantum
statisticalmechanics. Proposition 7 shows that a similar definition is possible in every sharp theorywith
purification.Onemay be tempted to use equation (34) to define themicrocanonical state in arbitrary physical
theories. However, the fact that the state is independent of the choice ofmaximal set is not guaranteed to hold in
every theory. For this reason, we prefer to define themicrocanonical state as the uniformmixture of all pure
states with a given energy, rather than the uniformmixture of a particularmaximal set of pure states. Physically,
the uniformmixture of all pure states represents the result of fully uncontrolled, but energy conserving
fluctuations in the experimental setup. From a subjective point of view, the uniformmixture represents the
complete lack of knowledge besides the knowledge of the value of the energy: not even the ‘energy eigenbasis’ is
assumed to be known.
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7.2. The condition of informational equilibrium
Wehave seen that sharp theories with purification satisfy requirement 1—the uniqueness of the uniform
distribution over the pure states.We now show that requirement 2—the condition of informational equilibrium
—is satisfied too.

Proposition 8. For every pair of systems A and B, one has c c c= ÄAB A B.

Proof.Pick two puremaximal sets for A and B, say a ={ }i i
d

1
A and b ={ }j j

d
1

B . Then, the product set

a bÄ Î ¼ Î{ } { } { }i j i d j d1, , , 1 ,...,A B
ismaximal for the composite system ÄA B, by proposition 5. Using the

decomposition(34), we obtain

åå

å å

c a b

a b

c c

= Ä

= Ä

= Ä

= =

= =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

( )

d

d d

1

1

, 37

i

d

j

d

i j

i

d

i
j

d

j

AB
AB 1 1

A B 1 1

A B

A B

A B

having used the information locality condition =d d dAB A B. +

In summary, sharp theories with purification satisfy our two requirements for the generalmicrocanonical
framework. In the following, wewill show that sharp theories with purification also guarantee an important
inclusion relation between the set of RaRe channels and the set of noisy operations.

7.3. Inclusion of RaRe into noisy
In sharp theories with purification, one can establish an inclusion betweenRaRe channels and noisy operations.
To obtain this result, wefirst restrict our attention to rationalRaRe channels, i.e. RaRe channels of the form
 = å pi i i where each pi is a rationalnumber.With this definition, we have the following lemma:

Lemma1. In every sharp theory with purification, every rational RaRe channel is a basic noisy operation.

In quantum theory, this statement is quite immediate, as pointed out in [48]: a generic RaRe channel with
rational probabilities = ={ }p n ni i i

r
1 and unitary gates ={ }Ui i

r
1 can be realised as the basic noisy operation

 r r= Ä⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )†U

I

n
U: Tr , 38n

anc

where Tranc is the partial trace on the n-dimensional systemused as ancilla, andU is the control-unitary gate

å Ä ñá
=

≔ ∣ ∣ ( )U V k k , 39
k

n

k
1

={ }Vk k
n

1being a list of unitary gates, n1 of which are equal toU1, n2 equal toU2, and so on.
The situation is in generalmore complicated in sharp theories with purification. The reason is that the

simple construction of equations (38) and (39) cannot be reproduced. The analogue of the control-unitaryU is a
control-reversible transformation, which performs a reversible transformation on the target systemdepending
on the state of a control system.However, later in the paper wewill show that not every sharp theorywith
purification admits control-reversible transformations. In fact, wewill show that the existence of control-
reversible transformation is equivalent to a non-trivial property of the dynamics, whichwewill call ‘unrestricted
reversibility’.

The non-trivial content of lemma 1 is that the inclusionRationalRaRe NoisyÍ holds in every sharp theory
with purification, without the need of assuming unrestricted reversibility. To prove such a result we need a new
construction,more elaborate than the simple construction of equations (38) and (39). The details can be found
in appendix B.

Now, since rational RaRe channels are dense in the set of RaRe channels, and since the set of noisy operations
is closed (see definition 7), we obtain the following theorem:

Theorem3. In every sharp theory with purification, RaRe channels are noisy operations.

The inclusion of RaRe channels in the set of noisy operations is generally strict: for example, in quantum
theory there exist noisy operations that are not RaRe channels [51]. In summary, we have the inclusions
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RaRe Noisy UnitalÍ Í ( ), 40

illustrated infigure 2.

8. State convertibility andmajorisation

In this sectionwe investigate the convertibility of states in the RaRe, noisy, and unital resource theories. The
main result is that, in every sharp theorywith purification, an input state can be converted into an output state by
a unital channel if and only if the vector of the eigenvalues of the output state ismajorised by the vector of the
eigenvalues of the input state. Since the set of unital channels contains the sets of noisy operations, andRaRe
channels, our results establishesmajorisation as a necessary condition for convertibility under noisy operations
andRaRe channels. Later in the paper, wewill determine the physical condition under whichmajorisation is also
sufficient.

8.1. State convertibility
In sharp theories with purification, the inclusions(40) imply the relations

RaRe Noisy Unital  r s r s r s⟹ ⟹ ( ), 41

valid for every pair of states ρ andσ of the same system.Note that the unital relation Unital is theweakest, i.e. the
easiest to satisfy. In the followingwewill provide a necessary and sufficient condition for the unital preorder.

8.2. Unital channels anddoubly stochasticmatrices
In a broad sense, unital channels are the generalisation of doubly stochasticmatrices. In sharp theories with
purification, there is also amore explicit connection:

Lemma2. Let  be a unital channel acting on system A and let a ={ }i i
d

1 and a¢ ={ }i i
d

1 be two puremaximal sets of
system A. Then, thematrix D with entries

a a= ¢( ∣ ∣ ) ( )†D : 42ij i j

is doubly stochastic.

Proof.Every entryDij is a probability and therefore it is non-negative.Moreover, one has





å å a a

a
a

= ¢

=
=
= " Î ¼

= =

( ∣ ∣ )

( ∣ ∣ )
[ ]

{ } ( )

†D

u

j d

Tr

1, 1, , 43

i

d

ij
i

d

i j

j

j

1 1

having used the fact that the effects a¢ ={ }†
i i

d
1 form an observation-test and that  is a channel, and therefore

 =u u [57]. On the other hand, one has

Figure 2. Inclusion relations between the sets of free operations in the three resource theories of purity.
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



å å a a

a c

a c

= ¢

=

=

=

= " Î ¼

= =

( ∣ ∣ )

( ∣ ∣ )
( ∣ )

·

{ } ( )

†

†

†

D

d

d

d
d

i d

1

1, 1, , , 44

j

d

ij
j

d

i j

i

i

1 1

having used proposition 7 and the fact that unital channels leaveχ invariant. In conclusion, equations (43) and
(44) show that thematrixD is doubly stochastic. +

Vice versa, every doubly stochasticmatrix defines a unital channel:

Lemma3. Let D be a ´d d doubly stochastic matrix, and let a ={ }i i
d

1 and a¢ ={ }i i
d

1 be two puremaximal sets of
system A. Then, the channel defined by

 å år a r a= = ¢
= =

( )† D: , with : , 45
j

d

j j j
i

d

ij i
1 1

is unital.

Proof.The transformation  is a channel of themeasure-and-prepare form: it can be implemented by
performing the observation-test a ={ }†

j j
d

1 and by preparing the state rj conditionally on outcome j.Moreover,
one has

 å

åå

å

c r a c

a

a

c

=

= ¢

= ¢

=

=

= =

=

( ∣ )

( )

†

d
D

d

1

1

, 46

j

d

j j

j

d

i

d

ij i

i

d

i

1

1 1

1

the third equality following from the definition of doubly stochasticmatrix, and the fourth equality following
from the diagonalisation of the stateχ (proposition 7). +

Lemmas 2 and 3 establish a direct connection between unital channels and doubly stochasticmatrices. Using
this connection, in the followingwe establish a relation between the unital resource theory and the theory of
majorisation.

8.3.Majorisation criterion for state convertibility under unital channels
Herewe show that the ability to convert states in the unital resource theory is completely determined by a
suitablemajorisation criterion. Let us start by recalling the definition ofmajorisation [66]:

Definition 12. Let x and y be two generic vectors in d. One says that x majorises y , denoted x y , if, when
the entries of x and y are rearranged in decreasing order, one has

å å å å" < =
= = = =

x y k d x y, and .
i

k

i
i

k

i
i

d

i
i

d

i
1 1 1 1

Majorisation can be equivalently characterised in terms of doubly stochasticmatrices: one has x y if and only
if = Dy x, whereD is a doubly stochasticmatrix [66, 91].

In every sharp theorywith purification,majorisation is a necessary and sufficient condition for convertibility
under unital channels:
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Theorem4. Let ρ andσ be normalised states, and let p and q be the vectors of their eigenvalues, respectively. The
state ρ can be converted into the stateσ by a unital channel if and only if p majorises q. In formula:

Unital r s ⟺ ( )p q. 47

The proof is provided in appendix C.Note that since RaRe channels and noisy operations are special cases of
unital channels,majorisation is a necessary condition for convertibility in the RaRe and noisy resource theories.

8.4. Characterisation of unitalmonotones
Themajorisation criterion determines whether a state ismore resourceful than another. To bemore
quantitative, one can introducemonotones [19–21]—i.e. functions that are non-increasing under free
operations:

Definition 13.Amonotone under the free operations F for system A is a function St ( )P: A satisfying the
condition

St F r s r s r s" Î( ) ( ) ( ) ( )P P , A , . 48

When F is the set of unital operations, we refer toP as unital monotones. In sharp theories with purification,
unitalmonotones have an elegantmathematical characterisation:

Proposition 9.A function on the state space St ( )P : A1 is a unitalmonotone if and only if r =( ) ( )P f p ,
where p is the vector of eigenvalues of r and  f : dA is a Schur-convex function—that is, a function satisfying
the condition ( ) ( )f fp q whenever p q.

Proof.Theorem4 shows that the convertibility of states under unital channels is fully captured by their
eigenvalues. Consequently, a unitalmonotonewill be a function only of the eigenvalues of a state: there exists a
function  f : dA such that r =( ) ( )P f p , for every normalised state ρ. Now, suppose that p and q are two
probability distributions satisfying p q. Then, theorem4 implies that there is a unital channel transforming

the state r a= å = pi
d

i i1 into the state s a= å = qi
d

i i1 , for any puremaximal set a ={ }i i
d

1. As a result, we obtain the
relation

r s= =( ) ( ) ( ) ( ) ( )f P P fp q . 49

Thismeans that f is Schur-convex. Conversely, given a Schur-convex function f one can define a function Pf on
the state space, as r =( ) ( )P f p:f , p being the spectrumof ρ. This function is easily proved to be a unital
monotone, thanks to theorem 4. +

A canonical example of Schur-convex function is the negative of the Shannon entropy, namely the function

å- = -
=

( ) ≔ ( ) ( ) ( )f H H p pp p p, : log . 50
i

d

i i
1

The corresponding puritymonotone is the negative of the Shannon–vonNeumann entropy [62, 92–94]

r r r= - =( ) ( ) ( ) ( ) ( )P S S H p: , : . 51

Other important examples are the negatives of the Rényi entropies [62, 94].

9. The counterexample of doubled quantum theory

Wehave seen thatmajorisation is a necessary and sufficient condition for state convertibility in the unital
resource theory. Ismajorisation sufficient also for convertibility in theRaRe resource theory?Nowwe show that
the answer is negative by constructing a counterexample, whichwe call ‘doubled quantum theory’.

9.1. Individual systems
Consider a theorywhere every non-trivial system is the direct sumof two identical quantum systemswith
Hilbert spaces0 and1, respectively. Physically, we can think of the twoHilbert spaces as two superselection
sectors.We associate each ‘doubled quantum system’with a pair of isomorphicHilbert spaces  ( ),0 1 , with
 0 1.We define the states of the doubled quantum system to be of the form
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r r r= Å -( ) ( )p p1 , 520 1

where r0 and r1 are two densitymatrices in the two sectors, respectively, and p is a probability. Likewise, we
define the effects to be all quantum effects of the form = Åe e e0 1, where e0 and e1 are two quantum effects in
the two sectors. The allowed channels from the input system  ( ),0 1 to the output system  ( ),0 1 are the
quantum channels (completely positive trace-preservingmaps) that

1. send operators on Å0 1 to operators on  Å0 1

2.map block diagonal operators to block diagonal operators.

The set of allowed tests is defined as the set of quantum instruments X Î{ }i i where each quantumoperation
i sends operators on Å0 1 to operators on  Å0 1, mapping block diagonal operators to block diagonal
operators.

Remark.Note that the set of allowed channels includes quantum channels of the form   = Å0 1, where 0

and 1 are quantum channels acting on the individual sectors. However, not all allowed channels are of this
form. For example, our definition includes unitary channels, of the form  =(·) · †U U , with

= Å ( )U U U , 530 1

whereU0 andU1 are unitary operators acting on the subspaces0 and1, respectively.

The unitary channel  is different from the non-unitary channel   = Å0 1, with  =(·) · †U U0 0 0 and
 =(·) · †U U1 1 1 , even though the two channels act in the sameway on every input state of the form(52).
Operationally, the difference between the channels  and  will become visible when the channels are applied
locally on one part of a composite system.

The existence of different physical transformations that are indistinguishable at the single-system level is
made possible by the fact that doubled quantum theory does not satisfy the local tomography axiom, as we show
in appendixD.1. The inability to distinguish transformations at the single-system level is a fairly generic trait of
theories where the local tomography axiomdoes not hold. Quantum theory on real Hilbert spaces also exhibit
this trait [57, 59] (but only for non-pure transformations [57]).

9.2. Composite systems
The peculiarity of doubled quantum theory is theway systems are composed. The product of two doubled
quantum systems  ( ),0

A
1
A and  ( ),0

B
1
B is the doubled quantum system  ( ),0

AB
1
AB defined by

    

    

= Ä Å Ä

= Ä Å Ä

( ) ( )
( ) ( ) ( )

: ,

: . 54

0
AB

0
A

0
B

1
A

1
B

1
AB

0
A

1
B

1
A

0
B

As an example, consider the composite systemof two doubled qubits, corresponding to
       0

A
1
A

0
B

1
B 2. An example of state of the composite system is the pure state

Yñ =
ñ ñ + ñ ñ∣ ∣ ∣ ∣ ∣ ( )0, 0 0, 0 1, 0 1, 0

2
, 55A B A B

where ñ ñ{∣ ∣ }0, 0 , 0, 1 is an orthonormal basis for0 and ñ ñ{∣ ∣ }1, 0 , 1, 1 is an orthonormal basis for1. Note
that, when one of the two systems is traced out, the remaining local state has the block diagonal form
r = ñá Å ñá∣ ∣ ∣ ∣0, 0 0, 0 1, 0 1, 01

2

1

2
. Thismeans that the coherence between the two summands in the state(55)

is invisible at the single-system level.
From a physical point of view, doubled quantum theory can be thought of as ordinary quantum theorywith

a superselection rule on the total parity. Every system is split into two identical sectors of even and odd parity,
respectively.When systems are composed, the sectors are grouped together based on the total parity, so that
superpositions between subspaces with the same parity are allowed.

9.3. In doubled quantum theory,majorisation is not sufficient for convertibility under RaRe channels
In appendixDwe summarise a few operational features of doubled quantum theory. In particular, we show that
doubled quantum theory is a sharp theorywith purification.Nevertheless, nowwe show thatmajorisation does
not guarantee the convertibility of states under RaRe channels.
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Consider the following states of a doubled qubit:

r = ñá + ñá(∣ ∣ ∣ ∣) ( )1

2
0, 0 0, 0 0, 1 0, 1 56

and

s = ñá Å ñá∣ ∣ ∣ ∣ ( )1

2
0, 0 0, 0

1

2
1, 0 1, 0 , 57

where ñ ñ{∣ ∣ }0, 0 , 0, 1 is an orthonormal basis for0 and ñ ñ{∣ ∣ }1, 0 , 1, 1 an orthonormal basis for1. The key
point here is that the state ρ is fully contained in one sector (the even parity sector), while the stateσ is amixture
of two states in two different sectors.

The two states have the same spectrum, and therefore they are equivalent in terms ofmajorisation. However,
there is noRaRe channel transforming one state into the other. To see this, we use the following lemmas:

Lemma4 ([95]). If any two states ρ andσ are interconvertible under RaRe channels, then there exists a reversible
transformation  such that s r= ( ).

Lemma5.Nounitarymatrices in doubled quantum theory are such that s r= †U U , where r and s are defined in
equations (56) and (57) respectively.

Proof.The proof is by contradiction. Suppose that one has s r= †U U . Then, define the vectors
j ñ = ñ∣ ∣U: 0, 00 and j ñ = ñ∣ ∣U: 0, 11 .With this definition, we have

r j j j j= ñá + ñá(∣ ∣ ∣ ∣) ( )†U U
1

2
. 580 0 1 1

Now, r †U U must be an allowed state in double quantum theory. Thismeans that there are only two possibilities:
either j ñ∣ 0 and j ñ∣ 1 belong to the same sector, or they do not. Butσ is amixture of states in both sectors. Hence,
j ñ∣ 0 and j ñ∣ 1 must belong to different sectors, if the relation r s=†U U is to hold. At this point, there are only
two possibilities: either

ñ = ñ ñ = ñ∣ ∣ ∣ ∣ ( )U U0, 0 0, 0 and 0, 1 1, 0 , 59

or

ñ = ñ ñ = ñ∣ ∣ ∣ ∣ ( )U U0, 0 1, 0 and 0, 1 0, 0 . 60

However, none of these conditions can be satisfied by a unitary in double quantum theory: every unitarymatrix
satisfying either conditionwouldmap the valid state +ñ = ñ + ñ∣ (∣ ∣ )0, 0, 0 0, 11

2
into the invalid state

ñ + ñ(∣ ∣ )0, 0 1, 01

2
, which is forbidden by the parity superselection rule. +

Sinceunitary channels are theonly reversible transformations indoubledquantumtheory,we conclude thatno
RaRe channel canconvertρ intoσ. Summarising:majorisation isnot sufficient for the convertibility viaRaRe channels.

10. Equivalence of the three resource theories

In this sectionwewill determinewhen theRaRe, noisy, and unital resource theories are equivalent in terms of
state convertibility.

10.1. Unrestricted reversibility
The condition for the equivalence of the RaRe, noisy, and unital resource theories can be expressed in three,
mutually equivalent ways, corresponding to three axioms independently introduced by different authors:

Axiom5 (Permutability [70, 71]).Every permutation of every puremaximal set can be implemented by a
reversible transformation.

Axiom5′ (Strong symmetry [84]). For every two puremaximal sets, there exists a reversible transformation that
converts the states in one set into the states in the other.

Axiom5″ (Reversible controllability [63]). For every pair of systems A and B, every puremaximal set a ={ }i i
d

1 of
system A and every set of reversible transformations  ={ }i i

d
1on system B, there exists a reversible transformation

 on the composite system ÄA B such that
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ð61Þ

for every Î ¼{ }i d1, , .

Permutability, strong symmetry, and reversible controllability are logically distinct requirements. For
example, strong symmetry implies permutability, but the converse is not true in general, as shown by the
example of the square bit [55] infigure 3 (see appendix E formore details).

Although different in general, permutability, strong symmetry, and reversible controllability become
equivalent in sharp theories with purification:

Proposition 10. In every sharp theory with purification, permutability, strong symmetry, and reversible
controllability are equivalent requirements.

The proof is presented in appendix F. The fact that three desirable properties become equivalent under our
axioms gives a further evidence that the axioms capture an important structure of physical theories.

Since permutability, strong symmetry, and reversible controllability are equivalent in the present context, we
conflate them into a single notion:

Definition 14.A sharp theorywith purification has unrestricted reversibility if the theory satisfies permutability,
or strong symmetry, or reversible controllability.

10.2.When the three resource theories of purity are equivalent
Wenowcharacterise exactlywhen theRaRe, noisy, andunital resource theories are equivalent in termsof state
convertibility.Owing to the inclusionsRaRe Noisy UnitalÍ Í , a sufficient condition for the equivalence is that the
convertibility under unital channels implies the convertibility underRaRe channels. The characterisation is as follows:

Theorem5. In every sharp theory with purification, the following statements are equivalent:

1. the RaRe, noisy, and unital resource theories are equivalent in terms of state convertibility

2. the theory has unrestricted reversibility.

Proof.The implication 2 1was already proven in [88]Toprove the implication 1 2, we show that
condition 1 implies the validity of strong symmetry. Let a ={ }i i

d
1 and a¢ ={ }i i

d
1be two puremaximal sets, and let

={ }pi i
d

1 be a probability distribution, with > > > >p p p... 0d1 2 . Consider the two states ρ andσ defined by

r a= å = pi
d

i i1 , and s a= å ¢= pi
d

i i1 . Since the two states ρ andσ have the same eigenvalues, themajorisation

Figure 3.Normalised states of the square bit. The two sets a a{ },1 2 (circled in black) and a a{ },1 3 (circled in blue) consist of perfectly
distinguishable pure states. Permutability holds, because every permutation of every pair of perfectly distinguishable pure states can be
implemented by a reversible transformation, corresponding to a symmetry of the square.However, no reversible transformation can
transform a2 into a3 while leaving a1 unchanged.Hence, strong symmetry cannot hold for the square bit.
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criterion guarantees that ρ can be converted intoσ by a unital channel, and vice versa (theorem4). Now, our
hypothesis is that convertibility under unital channels implies convertibility under RaRe channels. Themutual
convertibility of ρ andσ under RaRe channels implies that there exists a reversible transformation  such that

s r= [67, 95]. Applying the effect a¢†1 to both sides of the equality s r= , we obtain





å

å

a s

a a

= ¢

= ¢

=

=

=

( ∣ )

( ∣ ∣ )

( )

†

†

p

p

D p

p , 62

j

d

j j

j

d

j j

1 1

1
1

1
1

1

having used the fact that a a¢≔ ( ∣ ∣ )†Dij i j are the entries of a doubly stochasticmatrix (lemma 2). The above
condition is satisfied only if a a¢ =( ∣ ∣ )† 11 1 . By the state-effect duality (proposition 3), this condition is
equivalent to the condition

a a= ¢ ( ). 631 1

Now, decompose the states ρ andσ as

å
å

r a r r
a

= + - = =

=

( ) ( )p p
p

p
1 , : 64i

d
i i

i

d
i

1 1 1 1 1
2

2

and

å
å

s a s s
a

= ¢ + - =
¢

=

=

( ) ( )p p
p

p
1 , : . 65i

d
i i

i

d
i

1 1 1 1 1
2

2

Combining equation (63)with the equality r s= , we obtain the condition r s=1 1. Applying to r1 and s1

the same argumentwe used for ρ andσ, we obtain the equality a a= ¢2 2. Iterating the procedure -d 1 times,
wefinally obtain the equality a a= ¢i i for every Î ¼{ }i d1, , . Hence, every twomaximal sets of perfectly
distinguishable pure states are connected by a reversible transformation. +

Theorem5givesnecessary and sufficient conditions for the equivalenceof the three resource theories of
microcanonical thermodynamics. In addition, it provides a thermodynamicmotivation for the conditionof
unrestricted reversibility.

10.3. The equivalence in a nutshell
The results of this section can be summedup in the following theorem:

Theorem6. In every sharp theory with purification and unrestricted reversibility, the following are equivalent

1. RaRer s

2. Noisyr s

3. Unitalr s

4. p q

for arbitrary normalised states r and s, where p and q are the vectors of eigenvalues of r and s, respectively.

Proof.The implications 1 2 and 2 3 follow from the inclusions(40). The implication 3 4 follows
from theorem 4. The implication 4 1 follows from the equivalence betweenmajorisation and unital
convertibility, combinedwith theorem 5. +

Theorem 6 tells us that the RaRe, noisy, and unital resource theories are all equivalent in terms of state
convertibility. It is important to stress that the equivalence holds despite the fact that the three sets of operations
are generally different.

An important consequence of the equivalence is that the RaRe, noisy, and unital resource theories have the
same quantitativemeasures of resourcefulness:
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Proposition 11. Let St ( )P : A1 be a real-valued function on the state space of system A. If P is amonotone
under one of the setsRaRe,Noisy andUnital, then it is amonotone under all the other sets.

Since the preorders RaRe , Noisy , and Unital coincide, we can say that the RaRe, noisy, and unital resource
theories define the same notion of resource, which onemay call purity. Accordingly, wewill talk about ‘the
resource theory of purity’without specifying the set of free operations.

11. The entanglement-thermodynamics duality

Weconclude the paper by showing that sharp theories with purification and unrestricted reversibility exhibit a
fundamental duality between the resource theory of purity and the resource theory of entanglement [67]. The
entanglement-thermodynamics duality is a duality between two resource theories: the resource theory of purity
(with RaRe, or noisy, or unital channels as free operations) and the resource theory of pure bipartite
entanglement (with local operations and classical communication as free operations). The content of the duality
is that a pure bipartite state ismore entangled than another if and only if themarginal states of the latter are purer
than themarginal states of the former.More formally, the duality can be stated as follows [67]:

Definition 15.A theory satisfies the entanglement-thermodynamics duality if for every pair of systems A and B,
and every pair of pure states PurStF Y Î Ä( ), A B1 the following are equivalent

1.Φ can be converted intoΨ by local operations and classical communication

2. themarginal ofΨ on system A can be converted into themarginal ofΦ on system A by aRaRe channel

3. themarginal ofΨ on system B can be converted into themarginal ofΦ on system B by aRaRe channel.

Our earlier work [67] showed that the entanglement-thermodynamics duality can be proved from four
axioms: causality, purity preservation, purification, and local exchangeability—the latter defined as follows:

Definition 16.A theory satisfies local exchangeability if for every pair of systems A and B, and for every pure state
PurStY Î Ä( )A B there exist two channels DetTransf Î ( )A, B and DetTransf Î ( )B, A such that

ð66Þ

whereSWAP is the channel that exchanges system A and system B.

Since causality, purity preservation, and purification are already assumed among our axioms, proving the
entanglement-thermodynamics duality is reduced to proving the validity of local exchangeability. The proof is
presented in appendixG,which backs the following claim:

Theorem7.Every sharp theory with purification and unrestricted reversibility satisfies the entanglement-
thermodynamics duality.

As a consequence of the duality, the puritymonotones characterised in the previous subsection are in one-
to-one correspondencewithmeasures of pure bipartite entanglement. For example, Shannon–vonNeumann
entropy of themarginals of a pure bipartite state can be regarded as the entanglement entropy [96–98], an
entropicmeasure of entanglement that is playing an increasingly important role in quantum field theory
[99, 100] and condensedmatter [101].

12. Conclusions

In this workwe developed amicrocanonical framework for general physical theories. The framework is based on
two requirements: the uniqueness of the invariant probability distribution over pure states, needed to define the
microcanonical state, and the stability of themicrocanonical state under composition. Under these
requirements, we defined three resource theories, where free operations are random reversible channels, noisy
operations, and unital channels, respectively.We explored the connections between these three sets of
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operations in a special class of physical theories, called sharp theories with purification, which enable a
fundamentally reversible description of every process. In sharp theories with purification, the sets of random
reversible channels is contained in the set of noisy operations, which in turn is contained in the set of unital
channels. Convertibility under unital channels is equivalent tomajorisation, which is a necessary condition for
convertibility under the other sets of operations.Majorisation becomes a sufficient condition for convertibility
under all sets of operations if and only if the dynamics allowed by the theory have a property, called unrestricted
reversibility. In this case, one obtains the entanglement-thermodynamics duality, which connects the
entanglement of pure bipartite states with the purity of theirmarginals.

Our results identify sharp theories with purification and unrestricted reversibility as the natural candidate
for the information-theoretic foundation ofmicrocanonical thermodynamics. At the same time, it is interesting
to go beyond themicrocanonical scenario, and develop a general probabilistic framework for the canonical
ensemble. Some steps in this direction can be found in a companion paper [62], wherewe give an operational
definition of theGibbs state, and use it in an information-theoretic derivation of Landauer’s principle. These
results are only the surface of a deep operational structure, where thermodynamic and information-theoretic
features are interwoven at the level of fundamental principles.Many interesting directions of research remain
open, including, for example, an extension of the notion of thermomajorisation [25], a derivation of the
monotonicity of the relative entropy [102], and a derivation of the ‘second laws of thermodynamics’ [26] from
operational axioms.
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AppendixA. Properties of themicrocanonical state

Proposition 12. For every theory satisfying requirement 1 and for every finite system A in the theory, the
microcanonical state cA is invariant under all reversible transformations of system A.

Proof. For every reversible transformation  , one has

 



ò
ò
ò

c y y

y y

y y

c

=

= ¢ ¢

= ¢ ¢

=

-

( )

( )

( )

( )

p

p

p

d

d

d

, A1

A A

A
1

A

A

the second equality following from the definition y y¢ =: , and the third equality following from the
invariance of the probability distribution pA . +

Proposition 13. For every theory satisfying requirement 1 and for every finite system A in the theory, there exists a set
of reversible transformations  ={ }i i

r
1 and a probability distribution ={ }pi i

r
1 such that

å a c=
=

( )p , A2
i

r

i i
1

A

for every deterministic pure stateα of the system.
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Proof.The group of reversible transformations on system A has afinite-dimensional representation on the state

space of system A. This representation defines a group offinite-dimensionalmatrices, call itG
~

A. Note that the

group G
~

A is compact, because it is closed and finite-dimensional. Hence, one can construct the invariant
measure d and define the transformation

G
  ò=


( ): d . A3A

A

By construction, the transformation A maps every deterministic pure stateα into themicrocanonical state:
indeed, one has

G
  ò

ò

a a

y y

c

=

=

=



( )

( )

p

d

d

, A4

A

A

A

A

the second equality following from the fact that y( )p dA is the probability distribution induced by the invariant

measure onG
~

A. Finally, since thematrices in G
~

A arefinite-dimensional, the integral in equation (A3) can be
replaced by afinite sum. +

Appendix B. Proof of lemma 1

Proof. Let DetTransf Î ( )A be a rational RaRe channel, written as

 å= ( )n

n
, B1

i

i
i

with n 0i andå =n ni i . Let B be an n-dimensional system, and pick the puremaximal set b ={ }x x
n

1. Let  be
the channel from ÄA B to A defined by

 å b= Ä
=

( )†, B2
x

n

x x
1

where  ={ }x x
n

1 are reversible transformations on A, chosen so that n1 of the channels are equal to 1, n2 are equal
to 2, and so on. Since the theory satisfies Purification, the channel  has a reversible extension [57, 58],meaning
that one has

ðB3Þ

where C and ¢C are suitable systems, γ is a suitable pure state, and  is a reversible transformation.Now, by
constructionwe have

ðB4Þ

for every Î ¼{ }x n1, , . The above condition implies the relation [58]

ðB5Þ

for some pure state gx of system ¢C . Composing both sides with -
x

1on the left, andwith -1on the right we
obtain
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ðB6Þ

Combining equations (B5) and (B6)we obtain the relation

ðB7Þ

At this point, we define the pure transformation

ðB8Þ

From equation (B7)we obtain that  satisfies the relation

ðB9Þ

for all values of x. Using this relation and the expression of cB in terms of the bxʼs, we can reconstruct from  :

ðB10Þ

wherewehaveused the fact that  å = å= nx
n

x i i i1 . Finally, let us show that  is a channel. To this end, it is
enough to show that  =u u [57]. Thisproperty is satisfied if andonly if  c =( ∣ ∣ )u 1, because every state lies in
some convexdecomposition ofχ [57]. By the condition of informational equilibriumand equation (B10), we have
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ðB11Þ

so  is a channel. Since every pure channel on afixed system (here Ä ÄA B A) is reversible [57],  is
reversible. Hence, equation (B10) shows that is a basic noisy operation, with environment = ÄE B A. +

AppendixC. Proof of theorem4

Proof. Let r a= å = pj
d

j j1 and s a= å ¢= qj
d

j j1 be diagonalisations of ρ andσ, respectively.Wefirst show that

Unitalr s implies p q. Suppose that one has s r= , where  is a unital channel. Then

å åa a¢ =
= =

( )q p . C1
j

d

j j
j

d

j j
1 1

Applying a¢†i to both sides, we obtain





å

å

a a

a a

= ¢

= ¢

=

=

( ∣ ∣ )

≔ ( ∣ ∣ ) ( )

†

†

q p

D p D, . C2

i
j

d

j i j

j

d

ij j ij i j

1

1

Now, theDijʼs are the entries of a doubly stochasticmatrixD (lemma 2). Hence, equation (C2) implies that p
majorises q.

Conversely, suppose that p q and letD be a doubly stochasticmatrix such that = Dq p. Define the
measure-and-prepare channel

 å år a r a= = ¢
= =

( )† D: . C3
j

d

j j j
i

d

ij i
1 1

By construction, one has

 å

å å

å

r r a r

a

a

s

=

= ¢

= ¢

=

=

= =

=

( ∣ )

( )

†

D p

q

. C4

j

d

j j

i

d

i
j

d

ij j

i

d

i i

1

1 1

1

Now, the channel  is unital by lemma 3.Hence, ρ can be converted intoσ by a unital channel. +

AppendixD.Operational features of doubled quantum theory

Herewe summarise the key operational features of doubled quantum theory.

D.1.Doubled quantum theory violates local tomography
An equivalent formulation of local tomography is that the dimension of the vector space spanned by the states of
a composite system is equal to the product of the dimensions of the vector spaces spanned by the states of the
components [54, 57]. The equality fails to hold in doubled quantum theory, where the dimension of the global
vector space is strictly larger than the product of the dimensions of the individual vector spaces. To seewhy this is
the case, note that the block diagonal states of the form(52) span a vector space of dimension ≔D d2 2, where d
is the dimension of theHilbert spaces0 and1. Given two systems A and B, the product of the individual
dimensions is
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=
=

( ) · ( )
( ) ( )

D D d d

d d

2 2

2 . D1
A B A

2
B
2

A B
2

On the other hand, each of theHilbert spaces0
AB and1

AB in equation (54) has dimension =d d d2AB A B.
Hence, the vector space spanned by the states of the composite systemhas dimension

=
= ( ) ( )

D d

d d

2

2 2 , D2
AB AB

2

A B
2

that is, twice the dimension of the vector space spanned by product states.

D.2.Doubled quantum theory satisfies purification
Ageneric state of a generic system  ( ),0 1 can be diagonalised as

å år l j j m y y= ñá Å ñá
= =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ∣ ∣ ∣ ( ), D3

i

d

i i i
j

d

j j j
1

0 0
1

1 1

where j ñ ={∣ }i i
d

0 1 is an orthonormal basis for0 and y ñ ={∣ }j j
d

1 1 is an orthonormal basis for1. The state can be
purified e.g. by adding one copy of system  ( ),0 1 . Since the composite systemhas two superselection sectors,
therewill be two types of purification: purifications in the even subspace0

AB and purifications in the odd
subspace1

AB. A purification in the subspace0
AB will have the form

å ål j a m y bY ñ = ñ ñ + ñ ñ
= =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ∣ ∣ ∣ ∣ ( ), D4

i

d

i i i
j

d

j j j0
1

0 0
1

1 1

where a ñ ={∣ }i i
d

0 1 is an orthonormal basis for0 and b ñ ={∣ }j j
d

1 1 is an orthonormal basis for1. A purification in

the subspace1
AB will have the form

å ål j a m y bY ñ = ñ ¢ ñ + ñ ¢ ñ
= =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ∣ ∣ ∣ ∣ ( ), D5

i

d

i i i
j

d

j j j1
1

0 1
1

1 0

where a¢ ñ ={∣ }i i
d

1 1 is an orthonormal basis for1 and b¢ ñ ={∣ }j j
d

0 1 is an orthonormal basis for0. Note that any two
such purifications are equivalent under local unitary transformations: indeed, one has

Y ñ = Ä Y ñ∣ ( )∣ ( )I U , D61 0

whereU is the unitarymatrix defined by

å åa a b b= ¢ ñá + ¢ ñá
= =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ∣ ∣ ∣ ( )U . D7

i

d

i i
j

d

j j
1

1 0
1

0 1

The same arguments apply to purifications within the same sector and to purifications where the purifying
system is not a copy of the original system. In summary, every state can be purified and every two purifications
with the same purifying system are equivalent under local unitaries.

D.3.Doubled quantum theory satisfies causality, pure sharpeness, and purity preservation
Causality is immediate: for every system, the only deterministic effect is the identitymatrix. Pure sharpness is
also immediate: every rank-one projector is a pure sharp effect. As to purity preservation, note that the only pure
transformations are quantumoperations of the single-Kraus form =(·) · †Q Q . Clearly, the composition of
two single-Kraus operations (both in parallel and in sequence) is a single-Kraus operation. In other words, the
composition of two pure transformations is pure.

Appendix E. Permutability versus strong symmetry: the example of the square bit

Consider the square bit [55]. Here the state space is a square, and the pure states are its vertices. The group of
reversible transformations is the symmetry group of the square, which is the dihedral groupD4. Every pair of
vertices is a set of perfectly distinguishable pure states. Figure 3 shows the situation for the pure states
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a a a=
-

=
-
- = -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

1
1
1

1
1

1

1
1

1
, E11 2 3

where the third component gives the normalisation. The pure observation-test { }a a,1 2 , where

= = -( ) ( ) ( )a a
1

2
0 1 1

1

2
0 1 1 , E21 2

is the perfectly distinguishing test for the two sets a a{ },1 2 and a a{ },1 3 .
Now, since every set of perfectly distinguishable pure states has two elements, the only non-trivial

permutation of the elements of such a set is the transposition. This permutation can be implemented by
considering the reflection through the axis of the segment connecting the two points. Hence the square bit
satisfies permutability. On the other hand, the square bit does not satisfy strong symmetry. A counterexample is
shown infigure 3. Consider the twomaximal sets a a{ },1 2 and a a{ },1 3 . There are no reversible transformations
mapping the former to the latter because no symmetries of the squaremap a side to a diagonal.

Appendix F. Proof of proposition 10

Proof.The implication ‘strong symmetry permutability’ follows immediately from the definitions. The
implication ‘strong symmetry reversible controllability’was proved by Lee and Selby [63] using causality,
purification, and the property that the product of two pure states is pure, which is guaranteed by our purity
preservation axiom.Hence, we only need to prove the implications ‘permutability strong symmetry’ and
‘reversible controllability strong symmetry’

Let us prove that permutability implies strong symmetry. Thefirst part of the proof is similar to the proof of
theorem30 of [70]. Consider twomaximal sets of perfectly distinguishable pure states j ={ }i i

d
1 and y ={ }i i

d
1.

Assuming permutability, wewill show that there exists a reversible channel  such that y j=i i, for all
i= 1,K, d. First of all, note that the states j yÄ{ }i j are pure (by purity preservation) and perfectly
distinguishable. Then permutability implies there exists a reversible transformation  such that for all
i= 1,K, d [71]

ðF1Þ

Applying the pure effectj†
1 to both sides of the equationwe obtain

ðF2Þ

with

ðF3Þ

By construction,  is pure (by purity preservation) and occurs with probability 1 on all the states j ={ }i i
d

1.

Moreover, the diagonalisation c j= å =d i
d

i
1

1 implies that  occurswith probability 1 on every state because
 c =( ∣ ∣ )u 1 [57]. Since  is a pure deterministic transformation on A, itmust be reversible [57]. Hence,

equation (F2)proves that the states j ={ }i i
d

1 can be reversibly transformed into the states y ={ }i i
d

1. In short,
permutability implies strong symmetry.

Let us prove now that reversible controllability implies strong symmetry. Let j ={ }i i
d

1 and y ={ }i i
d

1 be two pure
maximal sets of a generic system A. Since reversible transformations act transitively on pure states, for every
Î ¼{ }i d1, , , one can find a reversible transformation i thatmaps y1 into yi, in formula

 y y= ( ). F4i i1

Moreover, reversible controllability implies that we canfind a reversible transformation  such that

ðF5Þ

for every Î ¼{ }i d1, , . Likewise, for every Î ¼{ }i d1, , , one can alwaysfind a reversible transformation i

that transformsji intoj1, in formula
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 j j= ( ). F6i i 1

And again, one can find a reversible transformation  such that

ðF7Þ

for every Î ¼{ }i d1, , . Combining equations (F4)–(F7), we obtain

ðF8Þ

for every i. Hence, one has

ðF9Þ
with

ðF10Þ

By the same argument used in the first part of the proof, we conclude that  is a reversible transformation.
Hence, equation (F9) implies that the set j ={ }i i

d
1 can be reversibly converted into the set y ={ }i i

d
1. In short,

reversible controllability implies strong symmetry. +

AppendixG. Proof that sharp theories with purification andunrestricted reversibility
satisfy the local exchangeability axiom

The aimof this appendix is to prove the following proposition:

Proposition 14.Every sharp theory with purification and unrestricted reversibility satisfies local exchangeability.

Proof of proposition 14. Let PurStY Î Ä( )A B1 be a generic pure state and let rA and rB itsmarginal states,
diagonalised as

å år a r b= =
= =

( )p pand , G1
i

r

i i
i

r

i iA
1

B
1

where >p 0i for all = ¼i r1, , , and  { }r d dmin ,A B . Here we are invoking a result of [62], wherewe showed
that themarginals of a pure bipartite state have the same spectrum (up to vanishing elements). Now,we extend
the set of eigenstates of rA and rB to two puremaximal sets.Without loss of generality assume d dA B. By the
permutability axiom, theremust exist a reversible transformation DetTransf Î Ä Ä( )B A, A B such that

 b a a bÄ = Ä " Î ¼( ) { } ( )i d, 1, , . G2i i1 1 A

Similarly, theremust exist a reversible transformation DetTransf Î Ä Ä( )B A, A B such that

 b a a bÄ = Ä " Î ¼( ) { } ( )i d, 1, , . G3i i1 1 A

At this point, we define the pure transformations

ðG4Þ

ðG5Þ

and the pure state

ðG6Þ
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where the purity of  ,, and Y¢ follows frompurity preservation. Like in the proof of proposition 10, we can
prove that  and are in fact channels, so  =u uB A and  =u uA B. Hence Y¢ andSWAP Y have the same
marginals. Then, the uniqueness of purification applied to both systems A and B (viewed as purifying systems of
one another) implies that there exist two reversible transformationsA andB such that

ðG7Þ

ðG8Þ

Hence, we have shown that there exist two local pure channels   =: B and   =: A that reproduce
the action of the swap channel on the state Y. +

Note that local exchangeability is implemented in this setting by pure channels.
In passing, we alsomention that the validity of local exchangeability implies that every state admits a

symmetric purification, in the following sense:

Definition 17. [67] Let ρ be a state of system A and letΨ be a pure state of ÄA A.We say thatΨ is a symmetric
purification of ρ if

ðG9Þ

and

ðG10Þ

With the above notation, we have the following

Proposition 15. In every sharp theory with purification and unrestricted reversibility, every state of every finite system
admits a symmetric purification.

The existence of a symmetric purification for every state is guaranteed by theorem 3of [67].
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