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15 Abstract: Many studies have been conducted to create building information models (BIMs) or 

16 city information models (CIMs) as the digital infrastructure to support various smart city 

17 programs. However, automatic generation of such models for high-density (HD) urban areas 

18 remains a challenge owing to (a) complex topographic conditions and noisy data irrelevant to 

19 the buildings, and (b) exponentially growing computational complexity when the task is 

20 reconstructing hundreds of buildings at an urban scale. This paper develops a method — multi-

21 Source recTification of gEometric Primitives (mSTEP) — for automatic reconstruction of 

22 BIMs in HD urban areas. By retrieving building base, height, and footprint geodata from 

23 topographic maps, level of detail 1 (LoD1) BIMs representing buildings with flat roof 

24 configuration were first constructed. Geometric primitives were then detected from LiDAR 

25 point clouds and rectified using architectural knowledge about building geometries (e.g. a 

26 rooftop object would normally be in parallel with the outer edge of the roof). Finally, the 

27 rectified primitives were used to refine the LoD1 BIMs to LoD2, which show detailed 

28 geometric features of roofs and rooftop objects. A total of 1,361 buildings located in a four 

29 square kilometer area of Hong Kong Island were selected as the subjects for this study. The 

30 evaluation results show that mSTEP is an efficient BIM reconstruction method that can 

31 significantly improve the level of automation and decrease the computation time. mSTEP is 

32 also well applicable to point clouds of various densities. The research is thus of profound 

33 significance; other cities and districts around the world can easily adopt mSTEP to reconstruct 

34 their own BIMs/CIMs to support their smart city programs. 

35
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39 1. Introduction

40 City reconstruction in 3D digital format emerges popularity in the era of information (Heo et 

41 al. 2013). A city information model (CIM) contains spatial data and virtual representations of 

42 all objects of interest in an urban area. A well-developed CIM can facilitate the work of city 

43 planners and urban designers in addressing urban problems such as traffic congestion, 

44 accessibility, connectivity, and the potential impact of natural disasters (AECbytes 2016). From 

45 a city administrator’s perspective, a CIM with rich information can be useful for city 

46 governance, while at the individual citizen level, a CIM enables applications such as 

47 transportation navigation, emergency response, and many other location-based services. Cities 

48 such as New York, London, Berlin, and Adelaide have all created their CIMs to support many 

49 of the applications cited above (Over et al. 2010; Gröger and Plümer 2012; Sun and Salvaggio 

50 2013). 

51

52 Buildings are the most important manmade objects in the urban scene (Henricsson and 

53 Baltsavias, 1997). Many studies, over the years, have focused on the reconstruction of building 

54 information models (BIMs) (e.g. Tang et al. 2010; Xue et al. 2018) which can be stitched 

55 together to form a CIM. Another approach is to create CIMs using Geographic Information 

56 Systems (GIS) (Li et al. 2015) and remote sensing (Haala and Kada 2010; Lillesand et al. 2015). 

57 In these CIMs, individual buildings could be roughly represented by prisms or “boxes” without 

58 precise information on the “as-is” condition. With the advancements of data acquisition and 

59 processing technologies, the trend is to reconstruct BIMs that contain detailed geometric 

60 features of roofs and rooftop objects (so termed as Level of Detail 2 [LoD2] defined by the 

61 Open Geospatial Consortium [OGC] [2012]) to extend CIM applications, e.g. green roof 

62 development (Choi et al. 2017) and energy performance improvement (Yang and Zou 2016). 

63 However, the reconstruction of BIMs, particularly those with greater details, is labor-intensive, 

64 time-consuming, and error-prone (Volk et al. 2014). The process requires a considerable 

65 amount of manual rectifications and computational power, and this becomes extreme 

66 burdensome when the task is at the urban scale (Sun and Salvaggio 2013; Li et al. 2016; Wu 

67 et al. 2017). 

68

69 Researchers have attempted to improve the efficiency of BIM reconstruction by introducing 

70 automatic or semi-automatic approaches. Images, 3D laser scanning point clouds, and total 

71 station surveying data are commonly used for model reconstruction (e.g. Awrangjeb et al. 2013; 

72 Li et al. 2016; Wu et al. 2017). Algorithms have been developed to process different types of 
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73 data and reconstruct BIMs (e.g. Heo et al. 2013; Xue et al. 2018). In addition, with data from 

74 multiple sources become affordable, it is now possible to use multi-source data to overcome 

75 some of the inherent problems (e.g. inaccurate/”noisy” data, incomplete information) 

76 associated with single-source data  (e.g. Habib et al. 2010; Cheng et al. 2011; Gilani et al. 

77 2016). Aknowledging considerable achievements in the field of BIM/CIM reconstruction, 

78 BIM/CIM reconstruction in  high-density (HD) urban areas remains an open problem 

79 (Musialski et al. 2013). Firstly, city features such as trees, roads, and terrain introduce a lot of 

80 noise that undermines the quality of the measurement data. Secondly, densely-distributed 

81 buildings make it difficult to segment data for generating individual BIMs. Lastly, 

82 reconstructing thousands of buildings at an urban scale exponentially increases the 

83 computational complexity, bringing many difficulties for methods which rely on general object 

84 recognition approaches to derive geometric primitives to form the building models.

85

86 This study aims to improve automatic BIM reconstruction in HD urban areas by proposing a 

87 reconstruction method called multi-Source recTification of gEometric Primitives (mSTEP). 

88 mSTEP harnesses the data from multiple sources and makes use of architectural features (e.g. 

89 parallels and symmetries) to reduce the noisy data and fine-tune the geometric primitives to 

90 reconstruct LoD2 BIMs automatically. The data employed in this study comes from the Hong 

91 Kong governmental agencies, comprising digital topographic map and light detection and 

92 ranging (LiDAR) point cloud. Given the fact that such types of data are extensively available 

93 in many cities and districts around the world, mSTEP can be applied to reconstruct their 

94 BIMs/CIMs in an efficient manner.

95

96 The organization of the paper is as follows: Section 2 reviews the state-of-the-art studies on 

97 BIM reconstruction. Section 3 describes the overall research progress, the subject area and 

98 characteristics of the corresponding topographic map and LiDAR point clouds. Section 4 

99 details the BIM reconstruction method – mSTEP. Section 5 provides a comprehensive 

100 discussion of the evaluation results, discusses the parameter configuration of mSTEP, and 

101 shows the compatibility of mSTEP with a denser point cloud. Section 6 concludes with a 

102 summary and highlights future research directions. 

103

104 2. Literature Review

105 Previous studies on the generation of BIMs in the urban environment can be viewed from two 

106 different perspectives: (1) The raw data used for BIM reconstruction; and (2) the methods 
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107 employed in processing the data. While the two perspectives are related, the discussion deals 

108 with each perspective separately for the sake of clarity.

109

110 2.1 Original datasets 

111 Aerial and satellite images are typical data sources for large-scale BIM reconstruction. 

112 Spaceborne sensors like IKONOS, QuickBird, and GeoEye-1 have provided 1m-resolution 

113 satellite images for 3D building reconstruction (Lafarge et al. 2008; Poli et al. 2015). Aerial 

114 image resolution can be even higher than that of satellite images, in some cases, reaching 

115 decimeter accuracy. Owing to their high image resolution as well as the widespread use of 

116 unmanned aerial vehicles (UAVs), the uses of aerial images to create 3D models of individual 

117 buildings or even to reconstruct the entire urban scenes are increasing (Li et al. 2016). 

118

119 LiDAR point clouds have also been widely used for BIM reconstruction. It typically utilizes 

120 laser light which is projected on surfaces and its reflected backscattering is captured for 

121 generating 3D point clouds. Heo et al. (2013) used LiDAR point clouds to develop the models 

122 of 29 buildings. Other studies including Sun and Salvaggio (2013), Xiong et al. (2014), and 

123 Yan et al. (2016) used airborne LiDAR point clouds to model a limited number of buildings 

124 with roofs of various shapes. With the availability of city-scale LiDAR point clouds, Poullis 

125 and You (2009) created simplified BIMs within a large city area. 

126

127 Topographic maps, which describe urban objects in terms of geometry, land use, and other 

128 attributes, are another important data source for BIM reconstruction at city- or district-scale. In 

129 addition to the topographic maps produced by government agencies, recent years have seen the 

130 emergence of open-access geographic datasets. For example, OpenStreetMap (OSM) – a 

131 prominent volunteered geographic information service – has been used for BIM reconstruction 

132 (Over et al. 2010). However, without official verification, the common problem of open-access 

133 geographic datasets is their completeness and accuracy.

134

135 The use of single-source data for BIM reconstruction, be it aerial images or LiDAR point 

136 clouds, is prevailing but still poses problems such as “nosie” data casused by complex urban 

137 features and incomplete information (Cheng et al. 2011). These drawbacks have given rise to 

138 increased use of multi-source data for BIM reconstruction. A number of studies have confirmed 

139 that using multi-source data can overcome some of the problems associated with the use of 
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140 single-source data (Rottensteiner and Jansa 2002; Alexandar et al. 2009; You and Lin 2011; 

141 Henn et al. 2013; Zhang et al. 2014; Zhu et al. 2015).

142

143 2.2 Data processing methods

144 Various data processing methods have been proposed for BIM/CIM reconstruction (Haala and 

145 Kada 2010; Musialski et al. 2013). Aerial or satellite images can be processed into digital 

146 elevation model (DEM) (Lafarge et al. 2008; Poli et al. 2015) from which building models can 

147 be extracted by applying height thresholds. With the further development of image matching, 

148 an alternative way is to generate colored point clouds from a number of aligned aerial images 

149 and then processed the generated point clouds into textured BIMs, which are formed by a large 

150 number of small geometric primitives (Singh et al. 2014). This method, however, requires 

151 careful selection of images and manual interpretation to adjust the building models is often 

152 needed. Li et al. (2016) also generated point clouds from images, and proposed an object-level 

153 point cloud segmentation and roof extraction. However, their method was only tested on 

154 buildings with flat roofs.

155

156 Processing LiDAR data starts with segmentation of the point clouds of individual buildings. 

157 This can generally be achieved using semantic segmentation approach (Lin et al. 2013), 

158 classification or clustering algorithms (Zhu et al. 2015; Cao et al. 2017) or the reflectance value 

159 captured by the LiDAR sensors (Sun and Salvaggio 2013). LiDAR point clouds can also be 

160 integrated with other datasets. For example, building footprints retrieved from a topographic 

161 map can provide a reference for segmenting the point clouds of buildings (Alexander et al. 

162 2009; Ledoux and Meijers 2011). The segmentation of LiDAR point clouds can also be 

163 improved with aerial images that provide regions of homogeneous gray level or color 

164 distribution (Rottensteiner and Jansa 2002). Once segmented, the point clouds are used to 

165 model the buildings with roofs and rooftop objects by various methods. A typical method is to 

166 decompose the roof shapes into simple pre-defined ones by 2D plans (Henn et al. 2013) or 

167 graph matching technique (Xiong et al. 2014), but the reconstruction may fail if the roof shape 

168 is not pre-defined in the model library. Connecting the extracted primitives to form the roof 

169 features is also widely-used due to its flexibility (Poullis and You 2009; Zhang et al. 2014; Yan 

170 et al. 2016). However, such kind of method is sensitive to noise (Goebbelsa and Pohle-

171 Fröhlicha 2016) and so far have only been used for specific roof forms.

172



6

173 Although it is difficult to directly compare all these reconstruction methods since they are 

174 developed under different context with their own emphasis, our review has revealed that 

175 existing data processing methods usually require much time for noise filtering and assume 

176 buildings with flat or other simplified roof structures. Those methods that can generate more 

177 differentiated building and roof structures require considerable manual interpretation for pre- 

178 or post-processing. Actually, architectural designs commonly exhibit some conventional 

179 features such as parallels, symmetries or other structural regularities, which are not accidental, 

180 but often the result of economical, manufacturing, functional, or aesthetic considerations (Mitra 

181 and Pauly 2008). Parallel and perpendicular features have been used as the constraints to 

182 segment the point cloud to extract planar segments that constitute approximate building roof 

183 structure (Dorninger and Pfeifer 2008, Sampath and Shan 2010). However, few studies have 

184 systematically applied architectural rules to reconstructing BIMs of densely-distributed 

185 buildings in large-scale urban areas. As will be demonstrated in this study, rules derived from 

186 architectural conventions can help reduce the noise in the collected data and improve the 

187 efficiency of the modeling method and the informativeness of the reconstructed models.

188

189 3. Research approach 

190 3.1 Overview of the research process

191 Given the aim of this study, a design science research approach (Peffers et al. 2008) is adopted 

192 to develop an automatic and efficient BIM reconstruction method. Design science focuses on 

193 not only understanding problems, but also developing methods or artifacts with the explicit 

194 intention of improving human performance (Van Aken 2005). A diagrammatic illustration of 

195 the research process is presented in Figure 1. 

196
197 Figure 1 Research process 

198
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199 By identifying the challenges of BIM reconstruction in high-density urban areas, multi-Source 

200 recTification of gEometric Primitives (mSTEP) was proposed, which takes the topographic 

201 map, point clouds, and architectural conventions as inputs and generates BIMs with detailed 

202 rooftop structures and objects identified. A 2km×2km area in northwestern Hong Kong Island, 

203 containing 1,361 blocks of densely-distributed buildings of varying heights and shapes, was 

204 selected as the subject area since all identified challenges of BIM reconstruction exist in this 

205 area: The buildings are surrounded by urban features like trees on hills and slopes, commercial 

206 signs and power lines, which create noise in the data captured for BIM reconstruction; The 

207 narrow gaps between buildings also cause severe occlusions in the collected data. In 

208 combination, these factors present difficulties for segmentation, refinement and other BIM 

209 reconstruction processes. After applying mSTEP on test datasets, the generated BIMs were 

210 compared with results from another two reconstruction methods (i.e. methods described in 

211 Javanmardi et al. [2015] and Wu et al. [2017]) and manual modeling for evaluation.

212

213 3.2 Test datasets 

214 The topographic map used in this study was purchased from the Lands Department (LD) of 

215 HKSAR. It is in Geodatabase (GDB) format with a scale of 1:1000. The Hong Kong 1980 Grid 

216 Coordinates provides the latitude and longitude of the map, and heights are in meters above 

217 the Hong Kong Principal Datum. The topographic map contains feature datasets including 

218 buildings, land cover, transportation, etc. As shown in Figure 2, the buildings in the selected 

219 region are shown in green with their boundaries in black. The map also contains data on 

220 building ID, shape, shape area, type of building block, base level, roof level, and data source. 

221 A preliminary analysis of the base and roof levels found that the datasets in the topographic 

222 map are collected from various sources such as building plans, photogrammetry, and 

223 topographic survey. Data for the buildings was last updated in the period 1 July 2014 to 27 

224 April 2016.
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225
226 Figure 2 Data of the topographic map of the subject area

227

228 The LiDAR point clouds used in this study was provided by the Civil Engineering and 

229 Development Department (CEDD) of HKSAR. The data, comprising buildings, roads, and 

230 many other urban features, was collected between 1 December 2010 and 8 January 2011 by 

231 the CEDD by hiring an airborne LiDAR surveying company. In the original dataset, the point 

232 density is about 4 points/m2. Points classified according to American Society for 

233 Photogrammetry and Remote Sensing (ASPRS) laser (LAS) format specification 1.1 (ASPRS 

234 2005) are shown in different colors (see Figure 3). The classification codes represent the type 

235 of object that has reflected the laser pulse. 

236  
237 Figure 3 An illustration of the LiDAR point clouds

238
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239 4. BIM reconstruction method 

240 The main purpose of the proposed method — multi-Source recTification of gEometric 

241 Primitives (mSTEP) — is to enable automatic and efficient BIM reconstruction. The overall 

242 procedure of mSTEP is shown in Figure 4, which consists of four main phases. In this section, 

243 each of the four phases of mSTEP is introduced in details.  

244
245 Figure 4 Overall procedure of mSTEP 

246

247 4.1 Reconstructing LoD1 BIMs from topographic map

248 In the first phase, data in the topographic map is filtered to retrieve the data of building footprint, 

249 base level, and top level. By vertically stretching the footprint of each building according to 

250 the base level and top level of that building, the LoD1 BIM with flat roof configuration can be 

251 created (see Figure 5). 
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252
253 Figure 5 An illustration of created LoD1 BIMs

254

255 4.2 Filtering the LiDAR point clouds

256 The LiDAR point clouds is first filtered in ESRI ArcScene by using the classification codes to 

257 separate building point clouds from those of trees, terrain, and other features (ESRI 2016). 

258 However, it was found that many points of building structures were unclassified (see the circled 

259 area in Figure 6). Therefore, points classified as either “building” or “unclassified” were thus 

260 kept for further rectifications and other points were removed. Then, the point cloud of 

261 individual buildings was obtained by segmentation, a process accelerated through the use of 

262 building footprints contained in the topographic map. After converting the LiDAR point clouds 

263 and topographic map in the same coordinate system, points with XY-coordinates falling into 

264 the area zoned by a building footprint was segmented to that building. 

265
266 Figure 6 An example of unclassified points in the raw LiDAR point clouds

267

268 4.3 Developing object rectification rules from conventional architectural features

269 Architectural conventions refer to the domain knowledge applied in the architectural design, 

270 such as geometrical or physical features (e.g. flatness, parallels, and symmetries) of building 

271 objects and their spatial relationships (Cantzler 2003). Some of the conventions can be obtained 
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272 from ordinances or standards, while others can be originated from general observation in real-

273 world situations. In this study, two object rectification rules are developed based on very simple 

274 architectural conventions to ensure “structural regularity”: (1) the top surface of rooftop objects 

275 are either in parallel with the horizontal plane or with a considerable angle of dip; and (2) the 

276 rooftop objects are normally in parallel with the outer edge of roof. 

277

278 Both rules should be satisfied when rectifying the geometric primitives detected from the 

279 segmented LiDAR point clouds to form roofs and rooftop objects. An illustration of 

280 rectification by the first rule is presented in Figure 7(a). The rectangle in blue is the top surface 

281 of a rooftop object, which has a very small angle β of dip to the horizontal plane (i.e. the roof). 

282 Therefore, this detected primitive is against the first rule, and should be rotated to be the 

283 rectangle in gray, which is in parallel with the horizontal plane. An illustration of rectification 

284 by the second architectural rule is shown in Figure 7(b). The rectangle in dashed line is not in 

285 parallel with the outer edge of the roof, but has a deviation of angle α. This is rare in 

286 architectural conventions, therefore, it should be rotated to be the rectangle in gray. 

 

(a) First object rectification rule (b) Second object rectification rule

287 Figure 7 An illustration of the two rules of rectification 

288

289 In order to enable automatic application of these two rules, especially the second one, guiding 

290 directions were are derived from the building footprints since the outer edge of the roof and 

291 building footprint usually have the same shape, unless it is an irregular-shaped building. As 

292 can be seen in Figures 8(a) and (b), for simple, regular-shaped building footprint, its centerline 

293 provide the guiding direction for the rooftop object to be in parallel with, while for irregular-

294 shaped building footprint, the centerlines of its top 25% longest lines will provide guiding 

295 directions for the computer to check whether the rooftop object is in parallel with at least one 

296 of the directions.
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(a) Regular-shaped footprint (b) Irregular-shaped footprint

297 Figure 8 An illustration of deriving guiding direction(s) from building footprints

298

299 4.4 Reconstructing LoD2 BIM by using object rectification rules

300 In the last phase of mSTEP, LoD2 BIM is developed by using the two object rectification rules. 

301 The pseudo code of this process is shown in Figure 9. Given a target building, its LoD1 model 

302 is inherited from the topographic map (Line 6). A variant of RANSAC (Fischler and Bolles 

303 1981; Schnabel et al. 2007) is adopted for detecting geometric primitives from LiDAR point 

304 cloud of the building rooftop (Lines 7-8). The application of RANSAC requires a set of 

305 parameters to be determined (see Table 1). Different values of these parameters have been 

306 tested in order to find the optimal parameter set regarding the LiDAR point clouds to be 

307 processed. It is decided to set minimum number of support points to 10, maximum distance to 

308 primitive to 0.02m, and sampling resolution to 1.0. Maximum normal deviation and 

309 overlooking probability, are set to 25o and 1.0×10-6 respectively. More details regarding the 

310 parameters configuration are provided in Section 5.2.

311

312 Then, the detected geometric primitives are rectified to form the building roofs and rooftop 

313 objects. A tolerance level (ε), which is set to 0.05π, is used to determine whether one primitive 

314 needs rectification or not. The detected geometric primitives of roofs and rooftop objects will 

315 be rectified by the horizontal plane (Lines 9-13) and the guiding directions (Lines 14-21). After 

316 rectification, the volumetric models of roofs and rooftop objects can be created by projection 

317 to the top level of individual buildings, and will be integrated with the LoD1 BIMs created in 

318 the first phase to enrich them into LoD2 ones that have differentiated roof structures with higher 

319 completeness and accuracy (Lines 22-24). 
1 procedure multi-source primitives rectification
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     input: a set of building exterior data sources (S) of a building, including data in topographic map and 

LiDAR point clouds,

                five parameters (param) of RANSAC,

                a tolerance level (ε) for orientation rectification (default value of 0.05π)

     output: an LoD2 building model (M) with detailed roof and rooftop objects

     M  a LoD1 model from topographic map (S)                        //referring to subsection 4.1

     r  filter point cloud of rooftops (S);                                       //referring to subsection 4.2

     P  RANSAC (r, param);                                                        //detecting geometric primitives

     loop for each p in P                                                                      //for each detected geometric primitive

         α  heading of normal (p);  β  dip of plane (p);               // for α and β referring to Figure 7

          if  |β| < ε or  | π - β| < ε                                                          //if β is close to the horizontal plane 

               β  0                                               //rectify w.r.t. the horizontal plane (as shown in Figure 7[a])

          end if

          A  derived guiding directions;

          loop for each α* in A                                                            //for each direction α*

               loop for q = -2 to 2                                                          //for each quadrant

                    if | α - α* + q × π / 2| < ε                                              //if α is close to α*

                         α  α* - q × π / 2                 //rectify w.r.t. the direction α* (as shown in Figure 7[b])

                    end if

               end loop

          end loop

          if α, β meets the two object rectification rules

              M  M∪update and 3D projection(p, α, β)      //enrich LoD1 BIM with roof and rooftop objects

          end if

     end loop

     return M  

320 Figure 9 Pseudo code of the multi-source rectification

321

322 Table 1 Descriptions of the RANSAC parameters
Parameter Description

minimum number of support 

points

The minimum number of points required to identify a geometry. A larger 

minimum support points means a more rigorous geometry detection process.

maximum distance to primitive The maximum distance of an inlier point to a geometry.

sampling resolution The parameter determines the sample rate of neighboring points

maximum normal deviation The difference between the normal at a point and the normal of a geometry 

at the closest project of that point onto that geometry.

overlooking probability The parameter controls the population size of the primitive candidates.

323
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324 A demonstration of multi-source rectification is shown in Figure 10. At the beginning, 

325 geometric primitives are detected from LiDAR point clouds (see Figure 10[a]) by RANSAC, 

326 but the detected geometric primitives may not be corrected from an architectural point of view. 

327 For instance, in Figure 10(b), the rectangle marked in red circle conjuncts to the roof surface 

328 at an angle. Then, the detected primitives are rectified according to the horizontal plane and 

329 the guiding direction(s). After that, the rectified primitives will be projected to create 

330 volumetric models of roofs and rooftop objects (see Figure 10[c]). 

331 Figure 10 A demonstration of the multi-source rectification

332

333 5. Evaluation

334 5.1 Overall results

335 In this study, the first phase of mSTEP is performed in ESRI ArcScene, and the remaining three 

336 phases are automatically performed by using a plug-in of CloudComapre which is tailor-

337 programmed in C++ by the authors. A screenshot of the plug-in is shown in Figure 11. The 

338 computation environment was a personal notebook with 2.6GHz Quad-core CPU, 16 GB RAM, 

339 and a 64-bit Microsoft Windows 10 operating system. Applying mSTEP, the automatic 

340 generation of BIMs in the subject area took 319.7 seconds. 81.9% of the 1,361 buildings were 

341 successfully modeled. Among the remainder, 113 buildings do not have either the base level 

342 or the roof level in the topographic map, and 134 buildings lacked points in the LiDAR dataset 

343 for modeling of the roofs and the rooftop objects. 

(a) LiDAR  point clouds of one 

building roof of the subject area

(b) Geometric primitives detected 

by using RANSAC

(c) Rectified geometric primitives
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344
345 Figure 11 The screenshot of the developed CloudCompare plug-in

346

347 Some examples of the reconstructed models are shown in Figure 12. Among the buildings 

348 shown include a building on a university campus (ID: 11**374), Edwardian Baroque in style 

349 with a central clock tower and several turrets; a residential building with a pyramid-shaped 

350 roof and many rooftop objects (ID: 11**486); a wholesale food market with a strip-shaped 

351 roof and several box-shaped air conditioners (ID: 11**535); and a residential building (ID: 

352 11**845) with flat roof and cuboid-shaped rooftop objects. Other building models shown in 

353 Figure 12 also have their roof and rooftop objects in the correct shapes constituted without the 

354 need for manual post-modifications. By manually checking the 3D building models and the 

355 actual buildings, it can be seen that the models reach the LoD2 that possess more detailed 

356 information than simple “boxes”. It can also be seen that the models are in an acceptable 

357 standard of accuracy.

Building ID in the 
topographic map

Reconstructed model (colors 
are for distinguishing only)

Photo (collected from the 
Internet or taken by the authors)

11**374

11**486
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11**535

11**845

11**386

11**200

11**500

11**345

358 Figure 12 An illustration of the reconstructed models and actual buildings 

359

360 5.1.1 Efficiency assessment

361 To assess the efficiency of reconstruction, the time spent on reconstructing buildings by using 

362 mSTEP was compared with the time required for manual modeling. In SketchUp, two human 

363 modelers, who have over four years’ experience in architectural drawing, created LoD2 BIMs 

364 based on base and roof levels from the topographic map and the segmented LiDAR point clouds. 

365 They began modeling at the same time and alerted the researchers once they finished each of 

366 the nine models so that the time they spent on modeling each building was recorded. In addition, 

367 mSTEP was compared with: (1) a concave hull and Hough transform based reconstruction 

368 method (take LiDAR point cloud and topographic map as inputs) introduced in Javanmardi et 
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369 al. (2015); and (2) a bipartite graphic matching-based reconstruction method introduced in Wu 

370 et al. (2017). The two reconstruction methods were selected for comparison due to two reasons. 

371 First, all the three methods share the same vision of enhancing 3D model reconstruction by 

372 taking advantage of architectural conventions and graph theory. The other reason was that their 

373 input point clouds were all airborne LiDAR data of HD urban areas. The comparsion was based 

374 on three commonly-adopted metrics, including (1) reconstruction time; (2) percentage of 

375 points that are segmented to support the detection of geometric primitives; and (3) root mean 

376 square error (RMSE) of the distances of points to their corresponding primitives. The 

377 assessment results on nine randomly-selected buildings are presented in Table 2. 

378 Table 2 Assessment results  

mSTEP Javanmardi et al. (2015)† Wu et al. (2017)‡ Manual
No.

Number 
of 
points

Time 
(s)

Segmented 
(%)#

RMSE 
(m)*

Time 
(s)

Segmented 
(%)#

RMSE 
(m)*

Time 
(s)

Segmented 
(%)#

RMSE 
(m)*

Time (In 
average; s)

1 270 0.03 75.2 0.114 0.02 63.1 0.119 0.01 88.3 0.341 266.65
2 372 0.03 77.7 0.048 0.01 58.7 0.157 0.01 60.4 0.223 171.23
3 620 0.40 87.6 0.065 0.02 84.7 0.098 0.01 78.8 0.370 94.33
4 2,491 0.16 48.6 0.196 0.05 31.6 0.199 0.01 99.8 0.315 2,486.75
5 2,682 0.09 90.0 0.057 0.03 60.2 0.049 0.01 89.6 0.251 515.65
6 7,212 0.23 91.1 0.067 0.04 26.4 0.067 0.01 90.4 0.280 597.92
7 8,987 0.26 85.1 0.065 0.09 18.8 0.097 0.01 100.0 0.257 1,386.16
8 24,878 2.23 86.3 0.068 0.13 66.2 0.163 0.02 99.1 0.340 2,498.84
9 29,506 0.47 90.1 0.088 0.21 71.1 0.230 0.02 99.9 0.291 701.43

379 †: The paprameter β of Javanmardi et al. (2015)’s method was set to 0.5m as the average point distance;

380 ‡: The two parameters, i.e., variable n and contour interval di, were set as 250 and 0.5m based on Wu et al. 

381 (2017)’s experimental results.

382 #: Percentage of points that are segmented to support the detection of geometric primitives.

383 *: Root mean square error of the distances of segmented points to their corresponding primitives.

384

385 The results in Table 2 showed that mSTEP achieved a competitive performance. Specifically, 

386 both mSTEP and Javanmardi et al. (2015)’s method reconstructed accurate geometric 

387 primitives for segmenting the point clouds. The proposed mSTEP segmented more points than 

388 Javanmardi et al. (2015)’s to support the detection of geometric primitives and reconstruct 

389 BIMs with less RMSE. In contrast, Wu et al. (2017)’s method achieved a fast reconstruction 

390 with a high-level of segmentation; yet at a significant cost of error (see the level of RMSE). 

391 The results confirmed that mSTEP could overcome the three identified challenges in BIM 

392 reconstruction in HD urban areas, i.e., much noise in measurement data, difficulties in 

393 segmenting data of densely-distributed buildings, and high computational complexity. With 
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394 the help of mSTEP, the efficiency of BIM reconstruction in HD urban areas can be 

395 considerably improved.

396

397 Nevertheless, there seems no convincing way to measure the exact accuracy of the 

398 reconstructed BIMs scientifically due to the lack of ground truth (Poullis and You 2009; Sun 

399 and Salvaggio 2013). It is far from an effective measurement to reflect the resemblance 

400 between the generated BIMs and the “as-is” condition. Neither can the model accuracy be 

401 measured using a single index, such as the physical volume. A BIM professional, with expertise 

402 and insights, can also tell whether the accuracy of a reconstructed 3D model is “acceptable” or 

403 not. The issue of measurement standard is left for further studies.

404

405 5.1.2 Identified problems

406 During application of mSTEP, it was found that the modeling outcomes can be affected by the 

407 accuracy of data used, including the building footprints and heights in the topographic map, 

408 and the LiDAR point clouds. Regarding the topographic map used in this study, some building 

409 footprints were inaccurate and some heights were generated by estimation. This affected the 

410 quality and accuracy of the retrieved guiding directions and, in turn, the accuracy of geometric 

411 primitives detected from the point clouds. 

412

413 Regarding the accuracy of the LiDAR point clouds, this is adversely affected by missing points 

414 and interference caused by densely-distributed buildings, city features, and the like. mSTEP 

415 can address interference, but not the problem of missing data. In this study, three factors 

416 resulted in missing data. Firstly, the LiDAR scan pulse typically does not provide a detectable 

417 return from transparent materials such as glass. Therefore, the points for roofs and rooftop 

418 objects made of such materials were missing and thus could not be used for BIM reconstruction. 

419 Secondly, the density of the point cloud was 4 points/m2. This may not be sufficient to capture 

420 data on certain rooftop objects, such as parapet walls that are relatively thin in the horizontal 

421 dimension. Thirdly, the LiDAR point clouds, collected from 2010 and 2011, was not up-to-

422 date. 

423

424 5.2 Parameter configuration of mSTEP

425 A set of tests was performed on the parameter configuration of mSTEP. The purpose is to 

426 identify the parameters that can significantly impact the modeling outcomes measured by the 

427 average number of detected geometric primitives. This indicator is chosen because it measures 
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428 the primitives generated from the LiDAR point clouds to form the roof and rooftop objects. 

429 Generally, the larger value the indicator, the more details the roof and rooftop objects have 

430 been reconstructed by mSTEP. However, excessive primitives detected are also undesirable 

431 since they are often caused by a single rooftop object being separated into several small pieces 

432 (e.g. a pipe separated into different trunks), which actually decrease the accuracy of 

433 reconstruction. 

434

435 The parameters to be tested include the tolerance level and the five RANSAC parameters in 

436 terms of (a) minimum number of support points, (b) maximum normal deviation, (c) maximum 

437 distance to primitive, (d) sampling resolution, and (e)overlook probability. The test subject is 

438 the LiDAR point clouds of a randomly-selected building, which has an ID 11**200 in Figure 

439 12. The tests aim at evaluating the sensitivity of each parameter, therefore when performing 

440 the testing one parameter, other five parameters are controlled, i.e.  remaining unchanged. In 

441 the single factor sensitivity analysis, for each parameter, the tests were replicated for 100 times 

442 to get the statistic values at 5th and the 95th percentiles. The results of all tests are shown in 

443 Figure 13. In each of the six sub-figures, the Y-axis on the left denote the number of geometric 

444 primitives detected by mSTEP, the X-axis denotes the value of the tested parameter. The box 

445 chart shows the average values, and the 5th and the 95th percentiles of the indicator. The curve 

446 depicted in each sub-figure illustrates the trend of value changes of the indicator as reflection 

447 to the value change of the parameter under evaluation.
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448
449 Figure 13 Testing results of parameter configuration of mSTEP

450

451 Based on the results shown in Figure 13, it can be confirmed that minimum number of support 

452 points and maximum normal deviation are the two parameters that have the most significant 

453 impact on the indicator of average number of detected geometric primitives since the curves 

454 shown in Figure 13(a) and (b) cover a much wider range in Y-axis than the curves in the other 

455 four figures. Particularly in Figure 13(a), when minimum number of support points increase 

456 from 3 to 10, the indicator decreases steeply from 95 to 33.6. Once minimum number of support 

457 points exceed 10, the indicator will continuously decrease, at a slower pace, to 9. From the 

458 three outputs of mSTEP when minimum number of support points equal to 3, 10 and 50 

459 respectively, it can be seen that some of the rooftop objects such as the parapet wall are divided 

460 into small pieces (see the comparison between the two parts marked in red rectangle of Figure 
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461 13[a]). When minimum number of support points is set to 3, too many primitives are detected. 

462 By contrast, when minimum number of support points is set to 50, many details of rooftop 

463 objects are missing. Setting minimum number of support points to 10 can generate an 

464 appropriate output. In Figure 13(b),  when maximum normal deviation increases from 0o to 90o, 

465 the average number of detected geometric primitives increases from 0 to 55.4. Similar to the 

466 evaluation on minimum support points, three outputs when maximum normal deviation equals 

467 to 5o, 25o, and 90o are presented, from which, it is found that setting maximum normal deviation 

468 to 5o and 90o lead to too few and too many detected primitives respectively. When maximum 

469 normal deviation equals 25o, an appropriate amount of primitives can be detected. 

470

471 For the remaining four parameters, the impact of maximum distance to primitive on the 

472 indicator is relatively complex. As it increases from 1.0×10-4m to 1.0m, the average number 

473 of detected geometric primitives fluctuates (see Figure 13[c]). It seems that setting maximum 

474 distance to primitive to either 1.0×10-4m or 0.02m can deliver similar outputs in terms of 

475 quantity, but it is found that when maximum distance to primitive equals to 1.0×10-4m, most of 

476 the detected primitives are too small, which shows a lack of accuracy. Therefore, 0.02m is the 

477 more appropriate value for maximum distance to primitive. Additionally, when tolerance level 

478 increases from 0.001π to 0.5π, the average number of detected geometric primitives increases 

479 from 3.58 to 33.91. Such impact, however, becomes negligible after tolerance level reaches 

480 0.05π (see Figure 13[f]). For sampling resolution, when it is either less than 1.0 or large than 

481 1.25, the average number of detected geometric primitives will become less than 30, which 

482 decreases the accuracy of the reconstructed roof and rooftop objects (see Figure 13[d]). Finally, 

483 for overlook probability, its overall influence is less significant compared with the other five 

484 parameters (see Figure 13[e]). Its values between 1.0×10-6 and 5×10-5 can detect an appropriate 

485 amount of primitives, but the best output is identified when setting overlook probability to 

486 1.0×10-6.  

487

488 5.3 Implementing mSTEP on dense point cloud

489 The density of LiDAR point clouds used to reconstruct buildings in the subject areas is 4 

490 points/m2. With the improvement in sensing devices, the cost of data acquisition is expected to 

491 continuously decrease and denser point clouds will become available. Therefore, it is necessary 

492 to test the applicability of mSTEP to dense point clouds. Since few buildings in the subject area 

493 have publicly available dense point cloud, a building at the main campus of the University of 

494 Hong Kong in Hong Kong Island is selected for the test.
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495

496 The dense point cloud of the selected building contains 482,404 points in total, which is 

497 obtained by using SfM to process 200 photos taken by a UAV (see Figure 14[a]). Details about 

498 SfM for processing images into point cloud can be found in Jancosek and Pajdla (2011). When 

499 applying mSTEP to this dense point cloud, one parameter, i.e. minimum number of support 

500 points, is changed from 10 to 30 in order to cope with the point density, while other five 

501 parameters remain unchanged. The rooftop model is developed in 1.41s with 475 geometric 

502 primitives detected (see Figure 14[b]). In doing so, mSTEP is proved to be capable of 

503 reconstructing BIMs from a denser point cloud. A conclusion thus can be drawn that mSTEP 

504 is applicable to both sparse point clouds (e.g. 4 points/m2) and dense point clouds for BIM 

505 reconstruction. This suggests mSTEP can be applied to 3D building reconstruction in many 

506 other cities or districts, which possess point clouds of various densities.

(a) Dense point cloud (482,404 points)
(b) Rooftop model generated from (a)

507 Figure 14 An illustration of applying mSTEP to a dense point cloud

508

509 6. Conclusions

510 The challenges of automatic reconstruction of building information models (BIMs)/city 

511 information models (CIMs) in high-density (HD) urban areas are predominately twofold: (a) 

512 the complex topographic conditions and noisy data, and (b) the heavy computational 

513 complexity when the task is at an urban scale. This paper took the challenges by developing an 

514 improved method — multi-Source recTification of gEometric Primitives (mSTEP) — for 

515 automatic BIM reconstruction in complex urban areas. mSTEP comprises of several 

516 interconnected steps to make good use of multi-source data including light detection and 

517 ranging (LiDAR) point clouds, and topographic maps. The method has been validated through 

518 a series of rigorous tests, and the results show that mSTEP is an efficient method to reconstruct 

519 informative BIMs by significantly improving the level of automation and decreasing the 

520 computation time. 

521
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522 Of particular originality of this research is augmenting the multi-source data with some simple 

523 architectural conventions, which can effectively tackle the challenges of automatic BIM/CIM 

524 reconstruction. Another original contribution made by this study is the optimal parameter 

525 configuration of mSTEP, which is derived from a series of sensitivity analyses of the 

526 parameters’ impacts on the accuracy of the reconstructed models. As the paper shows, mSTEP 

527 can be applied to both sparse and dense point clouds. The research is thus of profound 

528 significance; It can help other cities or districts, which have possessed such “common” datasets 

529 as topographic map and LiDAR point clouds, to produce their own BIMs/CIMs to support their 

530 smart city programs.

531

532 Future research will be conducted in mainly three aspects. Firstly, the two object rectification 

533 rules used in the current version of mSTEP might be too restrictive when dealing with atypical 

534 architectures. Improvements thus are desired to allow reconstruction of buildings with curved 

535 and irregular-shaped roofs and rooftop objects. Secondly, data from other sources, such as 

536 aerial images, will be integrated with the topographic map and LiDAR point clouds to increase 

537 the level of detail (e.g. texture) of the generated models. In this connection, other architectural 

538 conventions such as symmetries or repetitive patterns should be exploited to facilitate the BIM 

539 reconstruction processes.

540
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