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Nearest-neighbour resonating valence bonds
in YbMgGaO4
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Since its proposal by Anderson, resonating valence bonds (RVB) formed by a superposition of

fluctuating singlet pairs have been a paradigmatic concept in understanding quantum spin

liquids. Here, we show that excitations related to singlet breaking on nearest-neighbour bonds

describe the high-energy part of the excitation spectrum in YbMgGaO4, the effective spin-1/2

frustrated antiferromagnet on the triangular lattice, as originally considered by Anderson.

By a thorough single-crystal inelastic neutron scattering study, we demonstrate that

nearest-neighbour RVB excitations account for the bulk of the spectral weight above 0.5 meV.

This renders YbMgGaO4 the first experimental system where putative RVB correlations

restricted to nearest neighbours are observed, and poses a fundamental question of how

complex interactions on the triangular lattice conspire to form this unique many-body state.
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Q
uantum spin liquid (QSL) is a long-sought exotic phase
in condensed matter physics. It is intimately related to
the problem of high-temperature superconductivity

and may be instrumental in realizing topological quantum
computation1–6. In a QSL, spins are highly entangled up to
long distances and times without symmetry breaking down to
zero temperature due to strong quantum fluctuations3.
Experimental systems exhibiting QSL behaviour are actively
sought after. However, most of the existing materials are suffering
from magnetic defects7,8, spatial coupling anisotropy8–10 and
(or) antisymmetric Dzyaloshinsky–Moriya anisotropy11.
Recently, a triangular QSL candidate YbMgGaO4 attracted
much interest12–15, because it seems to be free from all of the
above effects. Neither spin freezing nor long-range ordering were
detected by muon spin relaxation (mSR) down to 0.048 K (ref. 14).
Together with the absence of any residual spin entropy12, this
renders YbMgGaO4 a unique material that may exhibit a gapless
U(1) QSL ground state.

A QSL state can be represented by a superposition of many
different partitions of a system into valence bonds (spin-0 singlet
pairs)3, as proposed by Anderson back in 1973 (refs 1,2). Such
valence bonds can be formed between nearest-neighbour spins
and between spins beyond nearest neighbours. The longer the
bond, the weaker the respective singlet pairing energy. Low-
energy excitations arise from breaking long-range valence bonds
or rearranging the short bonds into longer ones3,16. High-energy
excitations result from breaking nearest-neighbour valence bonds.
Therefore, for characterizing a QSL, the detailed investigation of
both high- and low-energy excitations is required.

In YbMgGaO4, excellent transparence with the optical gap
exceeding B3 eV and the robust insulating behaviour with the
unmeasurably high resistance suggest a large charge gap, placing
the material deep in the Mott-insulator regime of the Hubbard
model. Strong localization of the 4f electrons of Yb3þ should
restrict magnetic interactions to nearest neighbours (S1 and S2),
but these interactions are anisotropic13,
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owing to the strong spin-orbit coupling, where the local moment
S¼ 1/2 is a pseudospin, that is, a combination of spin and orbital
moments15,17–19. The lowest-energy eigenstate of a dimer formed
by such anisotropic pseudospins is, nevertheless, a pure singlet,
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� ffiffiffi
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antiferromagnetic isotropic coupling, J0 � (4J±þ Jzz)/
3¼ 0.13(1) meV (ref. 13), as observed experimentally. In
contrast to Heisenberg spins, the Yb3þ pseudospins do not
form a three-fold degenerate triplet state and feature three
non-degenerate excited states separated by 0.809J0, 1.012J0 and
1.179J0 from the singlet state instead. Excitations of a system can
be viewed as the transitions between the singlet ground state and
one of the excited states. Therefore, the resonating valence bond
(RVB) picture holds, albeit with minor quantitative modifications
due to the different structure of the excited states.

Two very recent inelastic neutron scattering (INS) studies
reported a continuum of spin excitations in YbMgGaO4 in the
energy range between 0.25 and 1.5 meV (refs 20,21), and a
phenomenological interpretation of these excitations in terms of a
spinon Fermi surface has been proposed20. However, given the
nearest-neighbour magnetic energy of J0¼ 0.13(1) meV only13,
the excitations were observed at energies between 2J0 and 10J0.
Therefore, they are high-energy magnetic excitations of
YbMgGaO4.

In this paper, we propose a different interpretation of these
high-energy excitations and also endeavour to probe YbMgGaO4

at lower energies. This task is extremely challenging, owing to the
low energy scale of J0 and the limits of instrumental energy
resolution for neutron spectrometers. We report a thorough INS
investigation of a single crystal of YbMgGaO4 at energies between
0.02 and 3.5 meV, that is, 0.15–27 in units of J0. We present the
data collected at the low temperature of 0.1 K, which is well inside
the gapless ground-state regime defined by the saturation of the
mSR rate14, and at a much higher temperature of 35 K
corresponding to 23J0. The high-energy excitations observed
previously20,21 are confirmed and ascribed to nearest-neighbour
RVB correlations. At low temperatures, these excitations are
suppressed at energies below J0, which suggests their gapped
nature. Our results imply that distinct gapless excitations should
exist at much lower energies, and we indeed observe traces of
such excitations at the lowest energies accessible in our
experiment.

Results
High energy nearest-neighbour RVB correlations. The INS data
for YbMgGaO4 are shown in Figs 1 and 2. A continuum of
excitations broadly distributed in both momentum (Q)
(see Fig. 1) and energy (0.1r:or2 meV) space (see Fig. 2) is
clearly visible. At 0.1 K, external field shifts the spectral weight
towards higher energies (see Fig. 2), thus indicating the magnetic
origin of these excitations. Remarkably, the excitation continuum
persists up to 35 K, that is, at a temperature that is 23 times higher
than J0. In fact, there are no qualitative differences between the
high-energy parts of the INS spectra measured at 0.1 and 35 K
apart from a 2.57(4)-fold reduction in the intensity near the
hump centre B0.7 meV (see Fig. 2) when the temperature is
increased to 35 K. The wave-vector and temperature dependence
of the excitation continuum clearly indicates its spin–spin
correlation origin and excludes other possible interpretations,
such as CEF excitations, which are Q-independent and observed
at energies larger than 39 meV (refs 13,15,21).

We first focus on the wave vector dependence of the INS
intensity measured with the incident neutron energy of Ei¼ 5.5
meV. Assuming uncorrelated nearest-neighbour valence bonds
on a triangular lattice, the equal-time INS intensity can be
expressed as ref. 22

N F Qð Þj j2¼ 2
3
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Here, f(Q) is the magnetic form factor of free Yb3þ , and N is the
total number of nearest-neighbour valence bonds probed in the
INS measurement. This expression accounts for the experimental
spectral weight above 0.5 meV, thus suggesting that at high
energies spin–spin correlations are restricted to nearest neigh-
bours. Any static state, such as valence bond solid23 and glass24,25,
is excluded by our previous mSR study14, and the RVB scenario
turns out to be most plausible, as supported by the following
arguments:

First, the Q-dependence of the INS signal at 0.1 and 35 K (after
the subtraction of the background term b) is well described by the
uncorrelated nearest-neighbour valence bond model on a
triangular lattice (see Fig. 1c–f). No signatures of spin–spin
correlations beyond nearest neighbours are observed
(Supplementary Note 2 and Supplementary Figs 10 and 11).
This Q-dependence cannot be understood by short distance
correlations in an arbitrary ground state on the triangular lattice.
For example, the 120� long-range order would produce spin-wave
excitations26 and a qualitatively different Q-dependence even at
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high energies (Supplementary Note 5 and Supplementary
Figs 21–26).

Second, the antiferromagnetic nature of the isotropic nearest-
neighbour coupling, J0 � (4J±þ Jzz)/3¼ 0.13(1) meV (ref. 13),
allows the formation of spin singlet in a pair of the Yb3þ spins
(Supplementary Note 1 and Supplementary Fig. 1).

Third, temperature dependence of the pre-factor a in the RVB
expression, a(35 K)/a(0.1 K) B0.3 (Supplementary Table 1), is
consistent with the expected ratio,
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based on the thermal distribution of the eigenstates of the Yb3þ

dimer. With increasing temperature, a larger fraction of
nearest-neighbour singlets is excited.

Fourth, the uniform spin susceptibility, w0(E), which is obtained
from the INS spectrum measured around the Gamma point
(Q¼ 0) via the fluctuation-dissipation theorem and the
Kramers�Kronig transformation22, is almost zero at 0.1 K
above B0.5 meV, in agreement with the proposed RVB state
(Supplementary Note 3 and Supplementary Figs 12 and 13).

Fifth, the energy dependence of the integrated INS signal
reveals gapped nature of the high-energy excitations (see below
for the details), which is consistent with the aforementioned
suppression of the uniform susceptibility above B0.5 meV.

Last, both spin and valence bond freezing are excluded by our
mSR measurement reported previously14.

The above six arguments suggest that the whole excitation
continuum at energies above J0 may be due to the
nearest-neighbour RVB-type correlations. We prove this
explicitly above 0.5 meV, while below 0.5 meV the Q-dependent
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Figure 1 | Wave-vector dependences of the INS intensity for YbMgGaO4. Wave-vector dependences of excitations measured under 0 T at 35 K (a) and at

0.1 K (b). Wave-vector dependences of the INS intensity along [� 1, Kþ0.5, 0] (c), [H, 0, 0] (d), and [�H, 0.5H, 0] (e), with lines representing the

calculated nearest-neighbour RVB dependence. Error bars on INS data indicate one standard error propagated from neutron counts (using Horace-Matlab).

Calculated |F(Q)|2 (from equation (2)) (f). The black lines represent Brillouin zone boundaries. Pink lines show the high-symmetry directions with special

reciprocal-space points labelled. Note that the experimental data contain a Q-independent background, which is about the same at G1, G2 and G3. This

background is missing in the RVB calculation in f, where IG¼0.
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The excitation continuum was probed with the incident neutron energy

of 5.5 meV (a) and 2.3 meV (b). Black arrows show the lower boundary

(gap energy) of the spin-wave excitations in the fully polarized state.

This boundary is determined as the energy, where the high-temperature

(35 K, 0 T) INS intensity crosses the low-temperature (0.1 K, 8.5 T) one.

Error bars on INS data indicate one standard error propagated from

neutron counts (using Horace-Matlab), and all measured Q space is

integrated.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15814 ARTICLE

NATURE COMMUNICATIONS | 8:15814 | DOI: 10.1038/ncomms15814 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


data measured with the incident energy Ei¼ 5.5 meV are
contaminated by the elastic signal (Supplementary Figs 14–19).
Lower energies can be probed with Ei¼ 1.26 meV (the energy
resolution sB20 meV (ref. 27)), but these data cover a limited
Q-range only. Nevertheless, we find no qualitative differences
between the spectra at B0.3 and B0.7 meV in all measured
Q space (Ei¼ 1.26 meV) apart from an overall increase in
the intensity. This indicates same, nearest-neighbour nature of
spin–spin correlations across the whole excitation continuum
above J0 that was previously ascribed to the spinon Fermi surface.

It is crucial, though, that this continuum and the associated
nearest-neighbour spin–spin correlations do not persist down to
zero energy, because the nearest-neighbour RVBs are gapped,
whereas YbMgGaO4 clearly shows gapless behaviour12,14.
Therefore, the RVB scenario holds at high energies only.
The presence of a distinct low-energy regime is supported by
the analysis of the energy-dependent spectra integrated over all
measured Q space.

Low energy long-range spin correlations. For energy transfer
below J0, excitations related to the breaking of nearest-neighbour
spin singlets must freeze out as long as thermal energy is insuf-
ficient to overcome J0, that is, To1.5 K. We, therefore, expect that
below 0.13 meV the INS intensity at 0.1 K falls below that at 35 K.
As indicated by the downward-pointing arrow in Fig. 3c, this
expected crossing of the overall scattering intensity is observed
indeed. Respectively, the intensity difference I(0.1 K)–I(35 K) at
zero magnetic field changes sign and becomes negative at energy
transfer below J0 (Fig. 3d).

Further information is obtained from the INS spectra at finite
magnetic fields applied along the crystallographic c-direction. At
8.5 T, which fully polarizes the moments at low temperatures13,15,
a clear boundary is observed in the low-energy magnetic
excitations, leading to a crossing of I(0.1 K, 8.5 T) with I(35 K)
near 1 meV, as indicated by the arrow in Fig. 2. This gap is related
to the Zeeman energy15,21 in the applied field of 8.5 T.
In the same vein, under a moderate applied field of 1.8 T,
which polarizes the spins only partially, negative values of
I(0.1 K)–I(35 K) occur below 0.27 meV (see Fig. 3d). This energy

lies in between J0 and the Zeeman energy m0mBg||H||¼ 0.39 meV of
spin-wave excitations for this field. When the field is reduced to
zero, the crossing of intensities shifts to J0 (Fig. 3c). We, therefore,
associate this effect with an energy gap for the continuum of
nearest-neighbour RVB-type excitations3. These excitations seem
to be unrelated to the gapless spinon Fermi surface, in contrast to
recent expectations based on the INS measurements at higher
energies20.

It is worth noting that a qualitatively similar crossing of the
INS intensities measured at low and high temperatures has been
recently observed in the frustrated pyrochlore Er2Ti2O7 (ref. 28),
where magnetic excitations are gapped. In our case, the relation
I(0.1 K, 0 T)oI(35 K, 0 T) is also clearly detected in zero field at
transfer energies from 0.13 meV down to 0.018 meV, below which
a rapid increase of the low-temperature intensity sets in. This
lower energy is roughly the same as the energy resolution
sB20 meV (0.15J0) (ref. 27) of the LET spectrometer at the
incident neutron energy of 1.26 meV. We emphasize that the
inelastic signal does not become featureless at this energy (s), as
otherwise a smooth convoluted Lorentzian-Gaussian peak profile
would be expected (see the raw data in Fig. 3c and Supplementary
Fig. 20). At low transfer energies, the inelastic signal is found on
top of the elastic background (see Fig. 3c). Assuming a weakly
temperature-dependent elastic signal at Tr35 K, we expect that it
cancels out when analysing I(0.1 K)–I(35 K). Therefore, the
intensity difference observed in zero field (see Fig. 3d) is intrinsic,
as further confirmed by its tangible field dependence, and should
reflect the onset of low-energy excitations related to longer-range
correlations in YbMgGaO4 (refs 12,14). The most conspicuous
effect of this change is the shift of the intensity maxima from
the K-points in the high-energy regime to the M-points in the
low-energy regime (Supplementary Note 4 and Supplementary
Fig. 18), as also seen in the diffuse scattering reported by
Paddison et al.21

Discussion
The clear separation between the low-12,14 and high-energy
excitations in the spectrum of YbMgGaO4 (see Fig. 3d) is
interesting and unique, rendering YbMgGaO4 distinct from QSL
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materials known to date, such as herbertsmithite7,29, organic
charge transfer salts9,10 and Ca10Cr7O28 reported recently30.
The RVB scenario on the triangular-lattice was also discussed for
the cluster magnet LiZn2Mo3O8, where a spin-liquid state with
both nearest-neighbour and next-nearest-neighbour correlations
is formed31–33. It is also worth noting that the continuum of
nearest-neighbour RVB excitations goes back to the original idea
by Anderson1 who argued that Heisenberg spins on the regular
triangular lattice evade long-range magnetic order and form the
nearest-neighbour RVB QSL state. Although Anderson’s
conjecture was not confirmed in later studies34, the formation
of a QSL on a triangular lattice with spatial anisotropy35,
next-nearest-neighbour couplings36 and multiple-spin
exchange37 was identified in the recent literature. Whereas the
multiple-spin exchange can be clearly excluded due to the
strongly localized nature of the 4f electrons of Yb3þ , two other
effects are potentially relevant to YbMgGaO4.

The presence of next-nearest-neighbour couplings is currently
debated based on the modelling of the magnetic diffuse
scattering21,38. Spatial anisotropy of nearest-neighbour
couplings can be, at first glance, excluded, based on the
three-fold symmetry of the crystal structure12. However, recent
experiments15,21, including our INS study15 of crystal-field
excitations of Yb3þ , pinpoint the importance of the Mg/Ga
disorder that leads to variations in the local environment of
Yb3þ . An immediate effect of this structural disorder is the
distribution of g-values that manifests itself in the broadening of
excitations in the fully polarized state, yet randomness of
magnetic couplings resulting in local spatial anisotropy seems
to be relevant too15,18,21.

Our result suggests that the broad excitation continuum in
YbMgGaO4 reflects nearest-neighbour spin correlations and bears
no obvious relation to the gapless spinon Fermi surface, a
conclusion consistent with the absence of the Fermi spinon or any
other magnetic contribution to the thermal conductivity39.
On the other hand, gapless nature of YbMgGaO4 evidenced
by the non-zero low-temperature susceptibility12,14 and the
power-law behaviour of the magnetic specific heat12 are
indicative of a distinct low-energy regime that has been
glimpsed in our experiment. These low-energy excitations are
likely to contain crucial information on whether the ground
state of YbMgGaO4 is indeed a QSL, or a special case of the
disorder-induced mimicry of a spin liquid, as proposed
recently40,41.

Methods
Sample preparation. Large single crystals (B1 cm) of YbMgGaO4 were grown by
the floating zone technique reported previously13. The as grown rod (B50 g) was
cut into slices along the ab-plane (the easily cleavable direction). Ten best-quality
ab-slices of the single-crystal (total mass B10 g) were selected for the neutron
scattering experiment on LET by Laue X-ray diffractions on all surface
(Supplementary Figs 2 and 3). The slices were fixed to the copper base by Cytop
glue to avoid any shift in an applied magnetic field up to 8.5 T.

Neutron scattering measurements. Systematic neutron scattering experiments
were carried out on a cold neutron multi-chopper spectrometer LET at the ISIS
pulsed neutron and muon source. Incident energies of 26.8, 5.5, 2.3 and 1.26 meV
were chosen for both elastic and inelastic scattering with the energy resolution of
1,400, 160, 48 and 20meV, respectively27. The sample temperature of 0.1 K was
achieved using dilution refrigerator. The neutron diffraction (elastic signal) showed
that the alignment of the single crystals was sufficient for the INS study of the
continuous excitations. No additional diffraction peaks were observed down to
0.1 K, compatible with the absence of long-range magnetic order (Supplementary
Figs 4–6). All neutron scattering data were processed and analysed using
Horace-Matlab42 on the ISIS computers. Asymmetry of the intensities was
observed due to the macro-scale non-rotational symmetry of the sample around
the rotation axis. For the sake of clarity, the raw data have been symmetrized and
averaged using the point symmetry (D3d) in the reciprocal lattice space (see
Fig. 1a,b). The corresponding raw data can be found in Supplementary Figs 7–9.

External magnetic fields of 1.8 and 8.5 T were applied along the c-axis. The
data sets in Fig. 1a,b were integrated over the momentum space, � 0.9rZr0.9 in
[0, 0, � Z], and over a small energy range, 0.65rEr0.75 meV. The data sets in
Fig. 1c–e were integrated over the momentum space, � 1.03rxr� 0.97 in
[x, � x/2, 0], � 0.03rxr0.03 in [x/2, � x, 0], and � 0.03rxr0.03 in [0, x, 0],
respectively. All data sets in Fig. 1c–e were integrated over the same momentum
range, � 0.9rZr0.9 in [0, 0, � Z], and over the same energy range,
0.5rEr1.5 meV. a and b are fitted constants for the proportionality and
background, respectively (see Fig. 1c–e and Supplementary Table 1). The data sets
in Figs 2 and 3 were integrated over all measured momentum space.

Data availability. The data sets generated during and/or analysed during the
current study are available from the corresponding author on reasonable request.
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