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Abstract—Renewable energy and electric vehicles (EVs) are
two key developments of smart grid. To support the increasing
charging demands of EVs, more charging stations need to
be constructed. Some charging stations are located in remote
areas and they mainly rely on renewable generations for energy
provisioning. Due to dissimilar self-generations and local energy
demands at different locations, it is beneficial to share the energy
among themselves for a sustainable eco-system. Powered by the
smart city vision that revolutionizes the energy and transporta-
tion sectors, vehicular energy network (VEN) is developed, which
can distribute energy across a geographical area by means of
EVs. In this paper, we formulate an optimization problem to
optimally coordinate energy exchange among renewable-enabled
or off-grid charging stations based on VEN. We also propose a
heuristic to develop some high-quality energy tracks for energy
exchange, which can significantly reduce the computational time.
We evaluate the energy exchange performance on some random
networks of various sizes. Simulation results demonstrate that
the proposed design can effectively deliver excessive energy
over VEN and the proposed heuristic can drastically reduce
the computational time without significantly undermining the
performance.

I. INTRODUCTION

The smart grid facilitates the development of many ad-
vanced energy control technologies, in which renewable en-
ergy and electric vehicles (EVs) take crucial roles. They
alleviate our reliance on fossil fuels and to foster sustainability.
While the widespread renewable energy sources facilitate the
shift of generations from central plants toward distributed
energy resources, EVs can serve as flexible energy repositories
for the grid. Many studies investigate various smart grid
applications utilizing EVs, vehicle-to-grid technologies [1],
and renewables [2], [3]. [4] and [5] provide comprehensive
surveys of renewable energy and EV research.

Electrical energy is essential to powering EVs and the
gradual adoption of EVs advocates extensive constructions of
EV charging stations [6]. However, for some reasons, certain
charging stations need to be located at remote areas. Their
connections to the main grid may not always be physically
possible or lots of efforts are required to bring them online.
To acquire energy for EV charging, many charging stations are
equipped with self-generation facilities, such as photovoltaic
panels [7] and wind turbines [8]. This can not only address
energy provisioning but also increase renewable energy pene-
tration, constituting a greener transportation system.

Even for the grid-connected charging stations, energy pro-
visioning by the renewables may also bring into another di-
mension of problems. Due to the intermittency of renewables,
extra measures are definitely required to ensure the stability
of power system (see [9] for an example). For some charging
stations spread over a region, consider that their self renewable
energy generations are uneven and their charging demands are
highly heterogeneous. It is likely that some of the charging sta-
tions are generating excessive energy while the others consume
more than their own generations. If there exists an independent
energy delivery system which enables energy exchange among
these charging stations, we can create a sustainable eco-system
of charging stations and utilize the renewable energy more
effectively without impairing the power grid stability.

Recently the vehicular energy network (VEN) has been
developed, which is capable of transmitting energy over a
geographical region effectively via EVs [10]. VEN is basically
constructed over a road network, which is well-established to
cover most areas with human activities. At some locations
along the roads, wireless charging-discharging facilities are
installed with energy storage and they allow the passing EVs
to get charged or discharged over the air on the move. While
traversing the road network based on their own schedules,
with proper charging and discharging, EVs can carry energy
to different locations in the network. Even if each EV carries
a very small energy packet each time (which does not harm
the battery much [11]), the aggregated energy flows in VEN
can still be substantial to support the energy exchange among
different locations [10]. There are also other studies dedicated
to VEN routing strategies for improving its energy delivery
efficiency [12], [13]. Therefore, VEN is a promising infrastruc-
ture for energy delivery in an effective and fully controllable
manner [10].

In this paper, we study the coordination of charging stations
for energy exchange with VEN. Without loss of generality,
we assume off-grid charging stations1 such that they can
operate as an independent system without relying on the grid.
To facilitate the energy exchange, we establish energy tracks
among charging stations over VEN. We formulate a multi-
track coordination optimization problem for energy exchange

1Here we can also cover the grid-connected charging stations. Our assump-
tion can allow them to operate independently most of the time and to acquire
power from the grid only when necessary.
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Fig. 1. Schematic structure of VEN and smart city applications.

between the charging stations systematically. In addition, as
the number of energy tracks is enormous, we propose a track
selecting heuristic to strategically develop the energy tracks
for the optimization model. This can drastically reduce the
computational time while maintaining the system performance.

The rest of this paper is organized as follows. In Section
II, we briefly introduce the system model of VEN and we
formulate the multi-track energy exchange problem in Section
III. In Section IV, we propose the track selecting heuristic
and we present case studies to demonstrate the efficacy of the
optimization and proposed heuristic in Section V. Finally, this
work is concluded in Section VI.

II. SYSTEM MODEL

This paper demonstrates an application of VEN, in which
we study how to exchange energy among some charging
stations. In general, we can understand the role of VEN with
Fig. 1. A road network, a fleet of EVs, some wireless charging
facilities, and other technologies constitute VEN, which in
turn provides energy delivery services for the applications built
on top of it. This layered structure can abstract many design
considerations of VEN so that we can focus on the details of
the application.

A. Vehicular Energy Network

We basically follow [10] to define VEN, which is composed
of an underlying road network and an overlying energy net-
work:

1) Road Network: EVs travel in the road network, which
is modeled by a direct graph G(N ,A), where N and A are
road intersections and segments, respectively. Consider that
all n ∈ N are equipped with (dis)charging facilities and
they are called energy points in the sequel. They can be
further classified into three types: N S, ND, and NR. N S and
ND refer to the energy sources and destinations, which are
those charging stations with excessive and deficient energy,
respectively. NR are the routing points for energy exchange
between vehicles only. Gs ≥ 0 denotes the maximum amount
of energy available to be shared at s ∈ N S and Cd ≥ 0
represents the minimum amount of energy needed at d ∈ ND.
Each a = (nfra , n

to
a ) ∈ A has a starting point nfra and an

ending point ntoa . Moreover, as the number of EVs driving on
a in each time slot is finite, each segment a has an energy
transmission capacity, denoted by W a.
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Fig. 2. An example of multiple energy paths for an energy source-destination
pair.

2) Energy Network: The energy network is an abstract
network built on top of the road network. Each pair of energy
source and destination are connected by a set of energy
paths [10], each of which is composed of one or multiple
road segments in G(N ,A). For the same energy source and
destination, it is possible to construct different energy paths
with the same set of vehicular paths of subtle different con-
figurations [10]. However, these energy paths may complicate
the application designed over VEN. Hence, in this paper, we
simplify the design by aggregating those energy paths with
the same source-destination pair and constituting vehicular
routes into one single energy track so that we can focus on
how to share the energy among charging stations. Once the
energy tracks have been developed for the application, we can
construct the corresponding energy paths in VEN to realize
the energy tracks based on [12] and [14].

For each pair of s ∈ N S and d ∈ ND, we can construct
the set of all possible energy tracks, denoted by P(s, d). The
energy generated at s can be transmitted to d using one or
multiple of these tracks. Each pi(s, d) ∈ P(s, d) is represented
by its constructing segments 〈a1, a2, · · · , aj , · · · , aJi(s,d)〉,
where aj ∈ A is the j-th segment of pi(s, d), and Ji(s, d) =
|pi(s, d)| is the number of total road segments in the track.
Therefore, we have s = nfra1

, d = ntoaJ
, and ntoaj−1

= nfraj
,

for 1 < j ≤ Ji(s, d). We also define the actual amount
of energy transmitted over pi(s, d) by Ei(s, d). Consider
the example given in Fig. 2. Nodes A and D are an en-
ergy source and a destination, respectively, while Nodes
B and C are routing points. Each road segment is asso-
ciated with its energy transmission capacity W a. In this
network, there are three energy tracks connecting A and D:
p1(A,D) = 〈〈A,B〉, 〈B,D〉〉, p2(A,D) = 〈〈A,C〉, 〈C,D〉〉,
and p3(A,D) = 〈〈A,C〉, 〈C,B〉, 〈B,D〉〉. The transmittable
energy of each track should be no larger than the capacity
of any of its constituting segments. Meanwhile, as p1(A,D)
and p3(A,D) share (B,D), the sum of energy transmitted
along these two energy tracks must not exceed the capacity of
(B,D). Therefore, E1(A,D)+E3(A,D) ≤W 〈B,D〉 = 2, and
similarly, E2(A,D) + E3(A,D) ≤ W 〈A,C〉 = 3 for sharing
(A,C).

Each energy track also experiences charging-discharging
cycles at its energy points resulting in energy loss. Assume
that the energy efficiency for each charging-discharging cycle
is H . Then the energy efficiency ηi(s, d) for route pi(s, d) is
determined by ηi(s, d) = HJi(s,d).



B. Operation

Consider that there is a control center which coordinates
the energy exchange among the charging stations. We aim to
maximize the utilization of excessive energy generated at the
energy sources and minimize the energy loss subject to some
energy consumption requirements. We focus on coordinating
the energy exchange for a given period of time. We first set up
the energy exchange plan among charging stations and then
carry out the plan over VEN in the rest of the period.

At the beginning of planning, each charging station eval-
uates its energy generation and consumption conditions, and
reports to the control center. Gs for each s ∈ N s and Cd for
each d ∈ N d are determined. The control center then develops
the required energy tracks for each source-destination pair and
optimizes the amount of energy Ei(s, d) for each energy track
by solving an optimization problem, which is discussed in
Section III. The result is then distributed to the corresponding
energy points and the energy sources then start delivering
energy based on Ei(s, d) through VEN. Meanwhile, energy
may not be available immediately at the energy destinations
due to various delays [10], e.g., travel time of vehicles.
In fact, energy may first be advanced from the attached
energy storage at routing points and the energy destinations
if necessary. When the appropriate vehicles arrive at these
locations later on, the on-board VEN energy is discharged to
the corresponding storage to cover the deficit.

III. PROBLEM FORMULATION

We should optimally distribute the excessive generated
energy among the charging stations via the energy tracks. In
this section, we formulate the problem as an optimization.

Consider Ei(s, d) a control variable, which should be non-
negative by nature, i.e.,

Ei(s, d) ≥ 0,∀s ∈ N . (1)

Ei(s, d) should also be limited by the maximum energy
generated at all s ∈ N S and confined by the minimum energy
drawn from d ∈ ND. Thus we have

∑
d∈ND

I(s,d)∑
i=1

Ei(s, d) ≤ Gs,∀s ∈ N S, (2)

∑
s∈NS

I(s,d)∑
i=1

ηi(s, d)Ei(s, d) ≥ Cd,∀d ∈ ND, (3)

where I(s, d) = |P(s, d)|.
As analyzed in Section II-A2, the transmitting energy must

not exceed the capacity of the energy track, which gives

Ei(s, d) ≤W a,∀a ∈ pi(s, d), 1 ≤ i ≤ I(s, d),
∀s ∈ N S, d ∈ ND. (4)
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Fig. 3. A randomly generated VEN with two-way interconnects.

It is possible to have multiple energy tracks sharing a road
segment. In such case, the total amount of energy transmitted
by all these tracks must not exceed its capacity. So we have

∑
s∈NS

∑
d∈ND

I(s,d)∑
i=1

Êa
i (s, d) ≤W a,∀a ∈ A, (5)

where

Êa
i (s, d) =

{
Ei(s, d) if a ∈ pi(s, d)
0 otherwise

,∀a ∈ A (6)

is the energy contributed by pi(s, d) on road segment n ∈ N .
Since Ea

i (s, d) ≥ 0, we have

∑
s∈NS

∑
d∈ND

I(s,d)∑
i=1

Êa
i (s, d) ≥ Êa

i (s, d),∀a ∈ pi(s, d),

1 ≤ i ≤ I(s, d),∀s ∈ N S, d ∈ ND. (7)

Combining (5)–(7) gives

Ei(s, d) = Êa
i (s, d) ≤W a,∀a ∈ pi(s, d), 1 ≤ i ≤ I(s, d),

∀s ∈ N S, d ∈ ND.

In fact, (5) is equivalent to (4) but the former is tighter giving
better performance in solving the optimization.

Finally, as mentioned in Section II, we consider the follow-
ing two objectives:

1) Energy delivery maximization:

maximize Etotal =
∑
s∈NS

∑
d∈ND

I(s,d)∑
i=1

ηi(s, d)Ei(s, d);

(8a)
2) Energy loss minimization:

minimize Eloss =
∑
s∈NS

∑
d∈ND

I(s,d)∑
i=1

[1−ηi(s, d)]Ei(s, d).

(8b)

These two objectives are optimized individually in this work,
subject to constraints introduced by (1), (2), (3), and (5).



IV. TRACK SELECTING HEURISTIC

To formulate Problem (8), we assume full knowledge of
all possible energy tracks in the system. However, as shown
in [12], the total number of energy paths in VEN grow
exponentially with the number of energy points, so as the
energy tracks for VEN applications. For the example shown
in Fig. 3, a relatively small network with 5 energy sources,
5 energy destinations, and 10 routing points has 296,541
energy tracks. Therefore, modeling and solving the proposed
optimization problem can be computationally expensive. To
alleviate the computational complexity, in this section we
propose a track selecting heuristic to strategically select some
“good” energy tracks for optimization.

The heuristic is constructed based on the intuition that
energy tracks with fewer charging-discharging cycles are more
preferable as they incur less energy loss. Its pseudo-code is
presented in Algorithm 1. In this heuristic, the pre-defined
parameter I(s, d) represents the total number of required
energy tracks from s to d. This parameter has a direct impact
on the resultant problem size and we will analyze its sensitivity
in Section V.

Algorithm 1 Track Selecting Heuristic
1: Construct the connected graph G(N ,A).
2: for each energy source and destination pair (s, d) do
3: P(s, d)← ∅
4: Set the weight of each arc wa equals to 1.
5: while Is,d < I(s, d) do
6: Find the shortest track p from s to d by weight.
7: if p 6∈ P(s, d) then
8: Insert p into P(s, d).
9: Find the arc a in p with smallest W a.

10: wa ←∞
11: else
12: Find a random arc a in p.
13: wa ←∞
14: end if
15: end while
16: end for

This heuristic introduces a “weight” for each road segment
when developing the shortest energy tracks. The weights are
employed in the heuristic to determine shortest paths from
one energy point to another. For each road segment a ∈ A, its
weight wa can be set to either one or infinity. When it is one,
the corresponding road segment can be employed to construct
energy tracks. Otherwise, the road segment is excluded in the
heuristic. We manipulates the weights of road segments to
construct shortest paths for different source-destination pairs,
which is described below.

The heuristic starts with the road network G(N ,A). For
each pair of energy source s and destination d, we decide
to determine I(s, d) energy tracks with the least amount of
charging-discharging cycles. To do this, each arc a ∈ A is
first assigned with a weight wa = 1 (Line 4). Then we find
the shortest track in G(N ,A) from s to d using the wa values

as the metrics (Line 6). Since each arc has weight one, the
track p is the shortest from s to d in terms of wa. If p has not
been generated before, it is considered as a candidate energy
track from s to d (Line 8). We continue to develop the next
energy path if the total number of generated paths is smaller
than I(s, d) (Line 5). In addition, to generate a new track
different from p, we exclude the arc in p which has the smallest
energy transmission capacity by setting its weight to infinity
(Lines 9–10). If p is already in P(s, d), a random arc in p
is excluded instead (Lines 12–13). This process repeats until
enough energy paths have been developed. After the required
number of energy tracks have been developed, they are used
in modeling Problem (8).

This design has two advantages. First, the shortest I(s, d)
tracks between energy sources and destinations are always
considered. Such paths are usually involved when we minimize
the energy loss. Second, those road segments with small
energy transmission capacity are less likely to get overloaded;
after the first shortest energy track is developed, its segment
with the smallest capacity is not used to construct other energy
tracks for the same source-destination pair. These advantages
allow us to find an optimal solution while avoiding violating
the constraints. The efficacy of the proposed heuristic will be
demonstrated in Section V.

V. PERFORMANCE EVALUATION

We conduct three tests to evaluate the performance of the
proposed VEN application and the heuristic. We first compare
the performance of the proposed heuristic with the optimal
solutions for some small problem instances. Then we examine
the energy delivery performance and computational time of the
proposed problem with heuristic on various problem sizes.
Finally we investigate the impact of charging-discharging
energy efficiency.

We randomly generate a collection of VEN of different size
for each test. In each network, each energy point is connected
to some 2–4 energy points nearby by road segments, whose
energy transmission capacity is randomly generated in [2, 4]
units. We randomly select some energy points as the energy
sources and destinations. The energy generations at the energy
sources are randomly set in [5, 10] units while the demands
at the destinations are chosen in [1, 2] units.2 All simulations
are performed on a computer with Intel Core-i7 CPU at 3.60
GHz with 32 GB RAM. The optimization problem and test
code are developed with Python 3.

A. Heuristic Performance

In this test we examine the effectiveness of the proposed
energy track selecting heuristic with small test cases. We
generate 20 random cases, each of which has 20 energy points
with two energy sources and two energy destinations. For
these small test cases, we can enumerate all energy tracks
so that we can generate the corresponding optimal solutions
for comparison.

2Demands are generally set smaller than generations due to energy loss.
This allows us to generate feasible problems for evaluation.



TABLE I
PATH SELECTING HEURISTIC PERFORMANCE COMPARISON

I(s, d)
Objective Function Values Computational Time Average Number

Delivery Loss Track Construction Optimization of Energy Paths
All 9.788E+00±2.864E+00 6.414E-01±1.818E-01 2.129E+00±2.408E+00 4.207E-01±3.443E-01 7685
2 9.517E+00±2.508E+00 6.513E-01±2.049E-01 1.319E-02±6.190E-03 2.293E-02±3.665E-03 8
4 9.681E+00±2.436E+00 6.466E-01±1.975E-01 1.358E-02±6.488E-03 3.497E-02±5.995E-03 16
6 9.730E+00±2.819E+00 6.466E-01±1.975E-01 1.973E-02±1.332E-03 4.264E-02±8.110E-03 24
8 9.778E+00±2.838E+00 6.414E-01±1.818E-01 2.573E-02±1.900E-03 4.738E-02±8.587E-03 32

10 9.784E+00±2.838E+00 6.414E-01±1.818E-01 3.181E-02±2.256E-03 5.074E-02±1.065E-02 40

TABLE II
ENERGY TRANSMISSION FOR VARIOUS PROBLEM SIZES

|N | |NS| |ND| I(s, d)
Objective Function Values Computational Time

Delivery Loss Track Construction Optimization

20

2 2 2 9.517E+00±2.508E+00 6.513E-01±2.049E-01 1.319E-02±6.190E-03 2.293E-02±3.665E-03
2 2 4 9.681E+00±2.436E+00 6.466E-01±1.975E-01 1.358E-02±6.488E-03 3.497E-02±5.995E-03
4 2 2 1.206E+01±3.407E+00 4.840E-01±1.606E-01 1.463E-02±7.016E-03 3.418E-02±3.780E-03
4 2 4 1.315E+01±3.417E+00 5.296E-01±1.430E-01 1.534E-02±8.714E-03 4.919E-02±7.085E-03

50

5 5 5 2.291E+01±5.018E+00 1.877E+00±5.197E-01 8.247E-02±3.217E-02 1.232E-01±1.442E-02
5 5 10 2.363E+01±3.337E+00 1.736E+00±4.427E-01 1.293E-01±4.848E-02 1.571E-01±1.969E-02

10 5 5 3.062E+01±7.191E+00 1.498E+00±4.317E-01 1.266E-01±3.571E-02 1.811E-01±1.277E-02
10 5 10 3.072E+01±6.194E+00 1.574E+00±4.248E-01 2.195E-01±1.137E-01 1.931E-01±2.003E-02

100

10 10 10 4.452E+01±4.831E+00 3.634E+00±5.306E-01 1.435E+00±4.686E-01 3.386E-01±2.425E-02
10 10 20 4.668E+01±4.767E+00 3.375E+00±8.358E-01 2.797E+00±1.044E+00 3.608E-01±3.589E-02
20 10 10 6.647E+01±1.235E+01 2.942E+00±6.356E-01 2.757E+00±1.307E+00 4.301E-01±2.819E-02
20 10 20 7.282E+01±1.155E+01 2.665E+00±3.857E-01 5.477E+00±2.720E+00 4.770E-01±3.278E-02

200

20 20 20 9.022E+01±8.102E+00 7.565E+00±8.709E-01 5.304E+01±4.331E+01 1.095E+00±1.073E-01
20 20 40 9.196E+01±1.070E+01 7.588E+00±1.329E+00 1.075E+02±6.930E+01 1.238E+00±1.276E-01
40 20 20 1.338E+02±1.885E+01 5.523E+00±7.940E-01 1.016E+02±3.475E+01 1.686E+00±1.042E-01
40 20 40 1.386E+02±2.003E+01 5.428E+00±7.590E-01 2.043E+02±8.383E+01 1.811E+00±1.327E-01

The objective function values and computational times are
presented in Table I, in which both average values and standard
deviations are given. The first column gives the number of
energy paths generated for each source-destination pair by the
heuristic, and “All” means that all energy paths are employed
representing the optimal results. We can see that the heuristic
can effectively reduce both the times needed for generating
energy tracks and for solving the problem. Generally 60–
150× speedup can be expected for track construction and 8-
20× speedup is observed for solving (8). In addition, when
I(s, d) is large enough, we can determine the global optimal
with respect to energy loss while the energy delivery part is
very close to the optimal. Even when I(s, d) is very small
(e.g., 2 in Table I), the objective function values are still
satisfactory: only around 3% and 1.5% worse than the global
optimal. This indicates the efficacy of the proposed heuristic
in reducing computational time while generating high-quality
energy tracks.

B. Energy Delivery Performance

In this test, we examine the energy delivery performance of
the proposed problem with various problem sizes. We generate
test cases with |N | ∈ [20, 50, 100, 200]. In each case, either
10% or 20% of the energy points are energy sources while
10% are energy destinations. For those instances with more
than 20 energy points, we cannot enumerate all possible energy
tracks in reasonable time and thus their optimal solutions
are intractable. Hence in this test, we can only employ the

proposed heuristic to strategically select some energy tracks
for the optimization. For each case, we consider two values
of I(s, d): 0.1 × |N | and 0.2 × |N |]. 20 random VENs are
generated with each combination of the parameters and thus
total 320 random cases are generated. The energy efficiency H
is set to 0.9. The results, in terms of the average and standard
deviation, from solving (8) are presented in Table II.

The results clearly demonstrate that both energy delivery
and energy loss increases with the problem size. Increas-
ing |N S | and |ND| lead to larger energy transmission and
higher energy loss. Moreover, more energy sources result in
significantly higher deliverable amount of energy due to the
increased volume of total energy supply. This incurs smaller
energy loss because the energy destinations have more sources
to be matched with and the ones constituting better energy
efficiency are preferred. Furthermore, the number of energy
tracks I(s, d) slightly increases the energy delivery with no
clear impact on the energy loss. This is because that each
energy track has its own energy transmission capacity. More
energy tracks can increase the total transmission capacity,
which relaxes Constraint (5) when solving the problem.

In terms of computational times, it is clear that constructing
energy tracks consumes much more time than solving the
optimization problem (8). In addition, the time on track
construction is roughly proportional to the number of energy
tracks required, i.e., |N S|× |ND|×I(s, d), when the problem
size is large (say N ≥ 50). This linear relationship is not
evident for N = 20 because the overheads for initializing
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(a) Small case.
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(b) Medium case.
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(c) Large case.

Fig. 4. Impact of charging-discharging efficiency on the optimization objectives.

the test code and constructing the road network (Line 1 in
Algorithm 1) become significant.

C. Charging-Discharging Energy Efficiency

Here we investigate the influence of charging-
discharging efficiency on both the energy trans-
mission and energy loss. Specifically, we set
H ∈ {0.81, 0.84, 0.87, 0.90, 0.93, 0.96, 0.99} and consider
the small, medium, and large test cases, respectively given
by (i) |N | = 20, |N S| = 2, |ND| = 2, I(s, d) = 2, (ii)
|N | = 50, |N S| = 5, |ND| = 5, I(s, d) = 5, and (iii)
|N | = 100, |N S| = 10, |ND| = 10, I(s, d) = 10. The
simulation results are depicted in Fig. 4, where the mean and
standard deviation of objective function values are plotted.
We can see that the total amount of delivered energy increases
with charging-discharging efficiency for all test cases. As
the energy transmission capacity is limited, the transmitted
energy is either delivered to the energy destinations or lost. So
a higher charging-discharging efficiency will lead to a smaller
energy loss, which in turn results in better energy delivery
performance. Moreover, the energy loss is reduced with
charging-discharging efficiency. When minimizing the energy
loss, we will only fulfill the minimum energy consumption
requirement at the energy destinations. Therefore, a higher
charging-discharging efficiency will result in a smaller loss
when the delivered energy is unchanged.

VI. CONCLUSION

With the growing population of EVs, we need to construct
more charging stations to accommodate the charging demands
of the vehicles. Some charging stations need to be built in
remote locations and the renewables are the main energy
sources. Due to dissimilar self-generations and local energy
demands at different locations, it is beneficial to share the
energy among themselves for a sustainable eco-system. VEN
has been recently developed and it is capable of transmitting
energy over a geographical area by the means of EVs. It is
a promising architecture to facilitate energy exchange among
these charging stations when we cannot rely too much on the
grid. In this paper, we propose a practical solution for en-
ergy exchange among some off-grid charging stations through
VEN. As a VEN application, we formulate an optimization

problem to develop energy exchange plans among the charging
stations by maximizing the energy delivery and minimizing
the energy loss. Since it is not practical to construct all
energy tracks for energy exchange in a large system, we
also devise a heuristic to strategically select some energy
tracks for optimization modeling. We test the performance
of the proposed optimization as well as heuristic with a
series of simulations of various problem sizes. The results
demonstrate that the proposed design can effectively deliver
excessive energy over VEN and the proposed heuristic can
drastically reduce the computational time without significantly
undermining the performance. This work provides a feasible
solution to enable energy sharing among different locations
and it can also serve as a guideline for other VEN applications.
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