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Abstract

Quantum anomalous Hall effect (QAHE) has been experimentally realized in magnetic topological
insulator (MTI) thin films fabricated on magnetically doped (Bi, Sb),Tes. In an MTI thin film with
the magnetic easy axis along the normal direction (z-direction), orientations of magnetic dopants are
randomly distributed around the magnetic easy axis, acting as magnetic disorders. With the aid of the
non-equilibrium Green’s function and Landauer—Biittiker formalism, we numerically study the
influence of magnetic disorders on QAHE in an MTT thin film modeled by a three-dimensional tight-
binding Hamiltonian. It is found that, due to the existence of gapless side surface states, QAHE is
protected even in the presence of magnetic disorders as long as the z-component of magnetic moment
of all magnetic dopants are positive. More importantly, such magnetic disorders also suppress the
dissipation of the chiral edge states and enhance the quality of QAHE in MTT films. In addition, the
effect of magnetic disorders depends very much on the film thickness, and the optimal influence is
achieved at certain thickness. These findings are new features for QAHE in three-dimensional systems,
not present in two-dimensional systems.

1. Introduction

The quantum anomalous Hall effect (QAHE) is of interest to both fundamental research and spintronic
applications [1-4]. QAHE was originally proposed in various ideal two-dimensional (2D) systems, including 2D
honeycomb lattices with periodic pseudo-magnetic fields [5, 6], MnHgTe magnetic quantum wells [7],
monolayer [8] or bilayer [9] graphenes, and multilayer topological insulators with magnetic doping [10, 11].

After the theoretical prediction of QAHE in three-dimensional (3D) magnetic topological insulator (MTT)
thin films [12], the existence of QAHE was recently verified by a series of experiments in magnetically doped
(Bi, Sb),Te; systems [13—16]. Different from the conventional QAHE discussed in 2D cases [5, 7-11], the
quantized Hall conductance in 3D MTT films is jointly contributed by the top and bottom massive Dirac-like
surface states which have opposite signs in their effective masses [12, 17]. Furthermore, the gapless side surfaces
are still crucial for QAHE in 3D MTI films. Since the top and bottom surfaces are gapped, the chiral edge modes
actually propagate through the gapless side surface states. Besides the side surface states, a constant exchange
field M is essential for QAHE in MT1 films, responsible for breaking the time-reversal symmetry and
consequently opening the nontrivial energy surface gap.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Figure 1. Panel (a) schematic plot of a six-terminal Hall device. The current is injected from terminal-1 to terminal-4. Panel (b)
angular representation of M.

In the experiments of QAHE in MTT films such as (Bi, Sb),Tes, magnetic doping gives rise to a macroscopic
magnetism along the z-direction (perpendicular to the film), which is necessary to produce QAHE. However, it
is very difficult to align all magnetic moments of magnetic dopants experimentally. The random deviation of
magnetic moments from the macroscopic magnetization in z-direction forms a type of magnetic disorders. It
would be interesting to investigate the effect of magnetic disorders on QAHE in a 3D MTI film.

In this paper, with the aid of the non-equilibrium Green’s functions and Landauer—Biittiker formula, we
study the influence of magnetic disorders on QAHE in a six-terminal Hall bar constructed on an MTI film,
which is illustrated in figure 1(a). In the calculation, the orientation of exchange field M is represented by (6, ¢),
as shown in figure 1(b). In this representation, M, = [M| cos 0, My, = |M| sin ¢, where M, is the z-component
of the exchange field while M, is its projection in the x—y plane. To include contributions of side surface states,
we adopt the 3D Hamiltonian [18] derived from bulk (Bi, Sb), Te; material instead of the previous 2D effective
Hamiltonian [12, 19, 20]. Our numerical results suggest that, in the presence of random magnetic disorders,
QAHE is always robust as longas M, > 0 for all magnetic dopants, regardless of the x—y component M. More
importantly, the random distribution of M can suppress the dissipation of the chiral edge states. It should be
emphasized that these conclusions are valid only in 3D systems, where the side surface in the 3D thin film plays a
crucial role. In fact, 3D QAHE relies much on the thickness C, of the MT1I film and is most sensitive to the
distribution of M at the film thickness of C, ~ 5 nm. Since magnetic disorders are inevitable in three-
dimensional MTI films, these findings can serve as an useful guide for the application of QAHE.

The rest of the paper is organized as follows. Using a four-band tight-binding model, the Hamiltonian of the
six-terminal Hall system is introduced in section 2. The formalisms for calculating the longitudinal resistance
and Hall resistance are also derived. Section 3 gives numerical results of the effect of magnetic disorders on
QAHE in the 3D MTI film, accompanied with detailed discussions. Finally, a brief summary is presented in
section 4.

2.Model and theory

Usingk - p perturbation theory, the low energy spectrum of (Bi, Sb),Te; can be approximated by the four-band
Hamiltonian Hy(k) which is written as [21, 22]

Hy(k) =€+ p- -0 Q7 + mpo, @ Ty, (1)

with p = [Acky, A k), A k;]and my = mg — my k:— m, kf — m, k2. Equation (1) is the Dirac equation of
3D systems, consists of four-component Dirac matrices 0,_,,, ® 7yand 0, ® 7o, where o and Tare Pauli
matrices forspin ( T / | )and orbit (P;}/Py,), respectively. oy and Tgare 2 x 2 unit matrices. For simplicity, we
set €, = 0in the calculation since it does not change the topological structure of the Hamiltonian. To study the

magnetic doping effect, we express the Hamiltonian as

H(k) = Hy(k) + M - 0 @ 7o, (@)
where M is the exchange field induced by magnetic doping. Generally speaking, both external magnetic fields
[23] and local magnetic moments [24—26] can induce spin-dependent energy split for electrons. In this work, we
consider only the later as the magnetic field is weak in our calculation. To describe a multi-terminal device

fabricated on magnetically doped (Bi, Sb),Te; films, a real-space Hamiltonian is needed. Replacing k,. ,, ,by
—iVy, ,, » we get the 3D effective tight-binding Hamiltonian on a cubic lattice [18]:

H =Y diHd; + ) [d{Hsdi s + df, sH]di], (3)
i 1,0
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where i = [iy, i, i,]labels the sitein real space, § = a, with @ = x, y, zand a,, are basis vectors of the cubic
lattice, H; describes the on-site potential, while Hsand H, denotes hopping to the six nearest neighbors in the
cubic lattice. Their expressions are given by, respectively

m
Hi = Mi 0T + (m() + ZZ _;)O-OTzi
a
@

M, LA :
H6 = Haa = |:__QUOTZ - l_aJaij|el@i’i+““a (4)
a? 2a

where M; is the random exchange field at site i. Since orientations of the local magnetic moments randomly
distribute, we assume that the angle (6, ¢) (see figure 1(b)) of M; is random, while its magnitude |M;] is a constant.
In equation (4), a = |a]is the lattice constant of the cubic lattice. In the presence of a perpendicular magnetic

field B = [0, 0, B], an extra phase ¢i,i+aa _ % J;Ha,. A - dlisinduced in the nearest neighbor coupling term H
withB =V x A.

In order to calculate the Hall resistance p,, and longitudinal resistance p,., we consider the six-terminal Hall
bar system shown in figure 1(a). In this setup, the central scattering region is connected to six semi-infinite leads.
In the Coulomb gauge, the vector potential is chosen as A = [— By, 0, 0] inlead-1,lead-4, and the central
scattering region, which does not depend on x. For lead-2, lead-3, lead-5 and lead-6 A = [0, Bx, 0] is used which
isindependent of y. Then, the magnetic flux in each unit cell in x—y plane satisfies &, = 55 A - dl = Ba?for

every layer in x—y plane. Here we define the dimensionless magnetic flux ® = ®_./(h/¢) where h/eisthe
magnetic flux quantum. In the following, we use ® to describe the strength of magnetic field. Since two different
gauges are used for different regions, we have to be careful in maintaining constant magnetic flux at the
boundaries between scattering region and leads. This can be done through gauge transformation in the
boundaries between the scattering region and lead-2, lead-3, lead-5 and lead-6. In the following calculation,
other parameters in equatlons (3)and (4) aresetasa = 5 A IM| = 0.15eV,my = 0.28 eV [21],
m, = m, = 56. 6eV A2 m, = 10 eV A2 A, =22 eVAandAx =A, =41 eVA, respectively [22].

The current from the mth lead can be calculated using Landau—Buttlker formalism [27], which expresses as

m = eh_zz Tmn(Vm - Vn)> (5)

wherem,n = 1,2, ..., 6label theleads, and T,,,, is the transmission coefficient from lead 7 to lead m. The
transmission coefficient is expressed as T,,,, = Tr[L},,G'T;,G?], where “Tr’ denotes the trace. The line width
functionT',,,is defined as I}, = i[¥], — X7 ], and G'is the retarded Green’s function

G" = [G' = (EI — H, — ¥,,%,)" !, where H_ is the Hamiltonian of the central scattering region. I is an unit
matrix with the same dimension of H,, and X3, is the retarded self energy contributed by the semi infinite lead-m
which can be obtained using the transfer-matrix method [28, 29].

In the measurement of QAHE, a bias voltage is applied across terminal-1 and terminal-4 to drive the current.
The other four terminals serve as voltage probes. By requiring ], 5 5 s = 0, voltages V, 3 5 s can be determined.
With these voltages, together with V; = Vand V, = 0, we can calculate the current J; = —J, from equation (5).
Finally, the longitudinal resistance p.. = (V, — V3)/J; and Hall resistance p,, = (Vs — V,)/J; are obtained.
For a perfect Hall effect, p,. is exactly zero and p,, is ideally quantized.

3. Numerical results and discussions

For QAHE in an MTT film with finite thickness, the dimension along z which is perpendicular to the film is
important for two reasons. First of all, the top and bottom surface states are coupled to each other in z-direction.
This coupling results in an effective mass term which in turn leads to the band inversion. Consequently this gives
rise to the topological transition, i.e., QAHE, in the simplest low-energy effective Hamiltonian consisting of
Dirac-type surface states only[12, 19, 20]. Secondly, in the presence of exchange field M along z-direction, the
top and bottom surface states are gapped while the side surfaces are gapless. As a result, the chiral edge states of
the bottom and top surfaces are actually propagating through gapless side surfaces. Therefore, it is necessary to
study the influence of the film thickness on QAHE.

To begin with, we plotin figure 2 the longitudinal resistance p., and the Hall resistance p,,, against thickness
C, of the MTI film for different magnetic field strengths ® in the presence of constant exchange field, i.e.,
M, = 0.15eV and M,,, = 0. As expected, the Hall resistance p,,, is quantized when Fermi energy Er = 0.01 eV is
in the surface gap. Compared with the quality of Hall resistance, however, the longitudinal resistance p,, is not so
ideal which shows significant deviation from zero even in the presence of a large magnetic field. From figure 2 we
find that with the increasing of film thickness C,, p,. increases quickly and reaches the maximum at C, ~ 10a,
regardless of the magnetic field strength. Therefore, for a constant exchange field, the edge states are most
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Figure 2. Influence of the film thickness C,. Panels (a) and (b) p,. and p,, versus C, for different magnetic field ®. Here E = 0.01 eV.

0.06

I

XX

I

Ap. (10°h/e?)
o
o
w
1

I

I

I

Ap, (10°h/e%)
o
o
w
1

I

T T T T - 0'00 —TTTT T T T T T T T T T T . T T T TT
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
random range O (r) random range @ (r)

Figure 3. p..., p, and their fluctuations A p., Apy, versus © at fixed film thickness C, = 10a. Other parameters:
C, = 90a, C, = 30a, Er = 0.01eV. Averaged over 1000 random configurations at each ©.

dissipative at the thickness of C, = 10a. Here, a magnetic field is also applied to suppress the dissipation and
thereby improve the quality of chiral edge states of QAHE. As the observations in experiments, the stronger the
magnetic field, the smaller the longitudinal resistance.

Next, at fixed film thickness C, = 10a where the edge states are most dissipative in the clean sample, we
allow the direction of local exchange field to fluctuate and study the influence of the random fluctuation on
QAHE. Specifically, we denote the orientation of exchange field M as (6, ¢) as shown in figure 1(b). Since the
macroscopic magnetization direction of the MT1 film is along z-direction, we assume that ¢ and f are in the
range of [0, 27r] and [0, ©], respectively, where © measures the largest angular deviation from z-direction. In
figure 3, we show the average longitudinal resistance p,., the average Hall resistance p,, and their fluctuations
against O at different magnetic fields. From figure 3(al) and figure 3(a2), we find that when © is small
(© < 0.27) pyr obviously deviates from zero. Upon increasing O further, p,, starts to decrease and reaches a
minimum at © =& 0.46 — 0.57, where p,, &~ 0 for any magnetic field strength. When © > 0.5, p,, increases
abruptly with increasing of ©. At the same time, p,, is always perfectly quantized until© > 0.6. When
© > 0.67 p,, starts to deviate from the quantized value abruptly. Besides p., and p,,, we also plot their

4
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Figure 4. Band structures of periodic MTI strips with various exchange fields M. Red lines denotes the chiral edge states. Panel (al) the
orientation M is fixed in x-direction: M = M,; panel (a2) the orientation of M uniformly distributes in the whole 47 solid angle:

0 = [0, 7], ¢ = [0,27]; panel (a3) M is located in the x—y plane, and the orientation of M uniformly distributes in the whole x—y plane:
M, = 0, ¢ = [0, 27]; panel (b1) the direction of M is fixed in z-direction: M = M,; panel (b2) M is uniformly distributed in the upper
hemisphere: © = 0.5, ¢ = [0, 27]; panel (b3) the hybrid of M = M,,,andM = M._.

fluctuations Ap,and Ap,, in figures 3(b1) and (b2), which are defined as the root of mean square of the
corresponding resistances. It is found that when © = 0, both Ap,,and Ap,, are zero, and p,. and p,, do not
fluctuate since there is no randomness. With the increasing of ©, Ap, increases to its local maximum and then
dropsto alocal minimum at © ~ 0.46 — 0.57. When © > 0.57, Ap,, increases abruptly. On the other hand,
when © < 0.67 the fluctuation of p,, is very small compared with p,,. It starts to increase drastically for

© > 0.6m. Notice that,at© ~ 0.46 — 0.5, the direction of exchange field M is almost randomly distributed in
the entire upper hemisphere, suggesting that QAHE in an MTI film is very robust in the presence of magnetic
disorders, aslongasall M, > 0. More importantly, the moderate angular randomness of magnetic dopants can
lead to the suppression of dissipation and improve the quality of chiral edge sates, since both p,, and its
fluctuation Ap,, drop to the minimum at © =~ 0.46 — 0.57. Furthermore, external magnetic field ® obviously
suppresses py, but hardly affects p,, when © < 0.57, which is consistent with previous experimental
observations [13, 14].

The numerical results in figure 3 is really counterintuitive, in which a moderate angular randomness does
not suppress QAHE but enhanceitat © ~ 0.46 — 0.57. To understand this phenomenon, in figure 4 we show
energy bands of periodic MTT strips with finite width and thickness. Various angular randomness of M are
considered in each unit cell with size of width C, = 30a and thickness C, = 104, and the disorder profile is the
same among these unit cells. In figure 4(al), the orientation of M is fixed in x-direction, i.e., M = M,;in
figure 4(a2), the orientation of M uniformly distributes in the whole 47 solid angle; in figure 4(a3), M is located
in the x—y plane, the orientations of M are uniformly distributed in x—y plane. In these three cases, the chiral edge
states do not appear because the average M, are zero. In the bottom panels, average M has z-component. For
instance, in figure 4(b1), the direction of M is fixed in z-direction, i.e., M = M,; in figure 4(b2), M is uniformly
distributed in the upper hemisphere; in figure 4(b3), Mis a combination of M = M, and M = M,, and the
band structure of this hybrid system is calculated using the supercell method. In these three cases, we find
M, > Ofor all dopants and the chiral edge state, which is the signature of QAHE, emerges. From figure 4, we
tend to conclude that, aslongas M, > 0 for all dopants QAH states would appear. This fact provides an
explanation why magnetic disorders does not suppress the QAHE in MTI films. In the following we try to
understand the reason why moderate angular randomness of M favors the formation of QAHE in MTI films. Itis
known that for 3D MTI films the top and bottom surface states are forbidden in the energy gap induced by M,,
and the edge states can only propagate along the gapless side surfaces. However, since the MTI film is very thin,
the energies of the side surface are quantized. As a result the side surface state may not be available for an electron
with a given energy. Angular randomness of M is helpful in suppressing the discreteness of the side energy bands
and providing surface states for the electron to propagate for the same energy. Consequently, QAHE in MTI
films is substantially improved by magnetic disorders.
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Figure 5. Influence of the film thickness C.. py, px, and their fluctuations A py, Apy, versus C, for different magnetic field ®. The
range of random orientation of the exchange field is setas 8 = [0, 0.467], ¢ = [0, 27]. Other parameters:
Cy = 90a, C, = 30a, Er = 0.01 V. Averaged over 1000 random configurations.

Since the magnetic disorders are beneficial to the formation of QAHE in MT1I films, we consider a moderate
angular randomness of M by choosing © = 0.467, and study the effect of magnetic randomness on QAHE in
MTTI films as we vary the thickness of the thin film. In figure 5 we plot the average p.., the average p,, and their
fluctuations as a function of film thickness C, for different magnetic fields . Comparing figure 5(a) with
figure 2, we find that with the increase of C,, the average Hall resistance p,, is still perfectly quantized. However,
the average longitudinal resistance p,, is drastically affected by the randomness. In the presence of random M
with © = 0.46m, p, is suppressed abruptly with the increasing film thickness C,. At C, ~ 10a, p,, drops to
nearly zero, regardless of the magnetic field strength. For the clean sample the behavior is the opposite. In
figure 2, where a fixed M, is considered, it shows that p,.. is maximum at C, ~ 10a. Figure 5(b1) shows that
accompanying the nearly zero p,,, its fluctuation Ap,, reaches the lowest value as well. These observations
clearly show that, in an MTI film, angular randomness of M is most effective in suppressing the dissipation of
chiral edge states at the film thickness C, ~ 10a. In experiment, the magnetically doped (Bi, Sb),Te; film
consists of periodic five-atomic layers along the z-direction, known as quintuple layers. The thickness C, ~ 10a
is about two quintuple layers, which is almost the thinnest film that consists of intact top and bottom surfaces.
Consequently, the thin film with thickness C, ~ 10a is optimal for QAHE in MTI films. For C, > 10a, Ap,,
increases slowly. Different from Ap,., the fluctuation of Hall resistance Ap,, is very small, it is two orders of
magnitude smaller than Ap,,, which means that p,,, is immune to angular randomness of M. In summary,
magnetic disorders are beneficial to enhance the quality of edge states of QAHE in MTI films, especially at
certain film thickness.

To further illustrate the effect of magnetic disorders on QAHE, the QAHE with or without magnetic
disorders are compared in figure 6. The average longitudinal resistance and Hall resistance with constant and
random exchange field M are depicted in figures 6(a) and (b), respectively. Here, the constant exchange field M is
fixedat M, = 0.15 eV and M,,, = 0. Meanwhile, for the case of magnetic disorders, M is randomly distributed in
almost whole upper hemisphere with § = [0, 0.467] and ¢ = [0, 27]. From figure 6(a) where M is a constant, we
find that the average Hall resistance p, is perfectly quantized, but the average longitudinal resistance p,, deviates
significantly from zero. On the other hand, figure 6(b) shows that the deviation in p,. is suppressed by magnetic
disorders while the perfect p,, is maintained. These findings further confirm that magnetic disorders are useful
to eliminate the dissipation of the edge states, regardless of the strength of external magnetic field.

It should be noted that, all conclusions discussed above are only valid for 3D MTI systems with finite
thickness, in which edge states can propagate through the gapless side surfaces. For a very thin film, the energy of
surface state on side surfaces is discretized so that they may not be available for edge state to propagate. As a
result, any type of disorder, magnetic or nonmagnatic, tends to overcome the discrete nature of the side surface
states, and is beneficial to the formation of QAHE in MTI films. On the contrary, in two-dimensional systems,
edge states reside on the edges in x—y plane. Therefore, disorders would induce the scattering between edge states

6
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Figure 7. p.and p,, versus magnetic field ® with unitary or random exchange field at different Fermi energies. The two-dimensional
effective Hamiltonian is adopted in the calculation and other computational parameters are the same as in figure 6. Averaged over 500

random configurations.

locating in different edges if the disorder strength is large enough and consequently be destructive to QAHE. To
verify this statement, we calculate the longitudinal and Hall resistances using the 2D effective Hamiltonian with
magnetic disorders [12, 19, 20]. Similar to figure 6, average p, and p,,, of the 2D effective model with constant or
random exchange field M are depicted in figures 7(a) and (b), respectively. Comparing figure 7(a) with

figure 7(b), we see that in the presence of random magnetic disorders, although p,, is roughly the same as that of
clean sample for two Fermi energies, p,. deviate significantly from zero showing strong back scattering. This
means that the edge states of 2D systems are heavily damaged by magnetic disorders. This is totally different
from 3D case as shown in figure 6, in which p,, is strongly suppressed and p,, is perfectly kept in the presence of

magnetic disorders.
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4. Conclusion

In summary, we have studied the influence of magnetic disorders on QAHE in 3D MTT thin films. Magnetic
disorders are modeled by random distribution of orientations of the exchange field M. It is found that in the
presence of angular randomness of exchange field, QAHE is well kept as long as the z-component of M for all
dopants remain positive. Moreover, magnetic disorders are helpful in suppressing the dissipation of the chiral
edge states due to the presence of the side surfaces in MTI films. Our results also show that the longitudinal
resistance p,, relies much on the thickness of the film. At certain film thickness C, ~ 104, magnetic disorders
are most effective in protecting the chiral edge states of QAHE. These findings are new features for QAHE in
three-dimensional systems, not present in two-dimensional systems.
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