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Abstract
Quantum anomalousHall effect (QAHE)has been experimentally realized inmagnetic topological
insulator (MTI) thinfilms fabricated onmagnetically doped ( )Bi, Sb Te2 3. In anMTI thinfilmwith
themagnetic easy axis along the normal direction (z-direction), orientations ofmagnetic dopants are
randomly distributed around themagnetic easy axis, acting asmagnetic disorders.With the aid of the
non-equilibriumGreenʼs function and Landauer–Büttiker formalism, we numerically study the
influence ofmagnetic disorders onQAHE in anMTI thinfilmmodeled by a three-dimensional tight-
bindingHamiltonian. It is found that, due to the existence of gapless side surface states, QAHE is
protected even in the presence ofmagnetic disorders as long as the z-component ofmagneticmoment
of allmagnetic dopants are positive.More importantly, suchmagnetic disorders also suppress the
dissipation of the chiral edge states and enhance the quality ofQAHE inMTIfilms. In addition, the
effect ofmagnetic disorders depends verymuch on the film thickness, and the optimal influence is
achieved at certain thickness. Thesefindings are new features forQAHE in three-dimensional systems,
not present in two-dimensional systems.

1. Introduction

The quantumanomalousHall effect (QAHE) is of interest to both fundamental research and spintronic
applications [1–4]. QAHEwas originally proposed in various ideal two-dimensional (2D) systems, including 2D
honeycomb lattices with periodic pseudo-magnetic fields [5, 6],MnHgTemagnetic quantumwells [7],
monolayer [8] or bilayer [9] graphenes, andmultilayer topological insulators withmagnetic doping [10, 11].

After the theoretical prediction ofQAHE in three-dimensional (3D)magnetic topological insulator (MTI)
thinfilms [12], the existence ofQAHEwas recently verified by a series of experiments inmagnetically doped

( )Bi, Sb Te2 3 systems [13–16]. Different from the conventional QAHEdiscussed in 2D cases [5, 7–11], the
quantizedHall conductance in 3DMTIfilms is jointly contributed by the top and bottommassiveDirac-like
surface states which have opposite signs in their effectivemasses [12, 17]. Furthermore, the gapless side surfaces
are still crucial forQAHE in 3DMTI films. Since the top and bottom surfaces are gapped, the chiral edgemodes
actually propagate through the gapless side surface states. Besides the side surface states, a constant exchange
fieldM is essential forQAHE inMTI films, responsible for breaking the time-reversal symmetry and
consequently opening the nontrivial energy surface gap.
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In the experiments ofQAHE inMTI films such as ( )Bi, Sb Te2 3, magnetic doping gives rise to amacroscopic
magnetism along the z-direction (perpendicular to thefilm), which is necessary to produceQAHE.However, it
is very difficult to align allmagneticmoments ofmagnetic dopants experimentally. The randomdeviation of
magneticmoments from themacroscopicmagnetization in z-direction forms a type ofmagnetic disorders. It
would be interesting to investigate the effect ofmagnetic disorders onQAHE in a 3DMTIfilm.

In this paper, with the aid of the non-equilibriumGreenʼs functions and Landauer–Büttiker formula, we
study the influence ofmagnetic disorders onQAHE in a six-terminal Hall bar constructed on anMTIfilm,
which is illustrated infigure 1(a). In the calculation, the orientation of exchange fieldM is represented by (θ,f),
as shown infigure 1(b). In this representation, q q= =∣ ∣ ∣ ∣M M M Mcos , sinz xy , whereMz is the z-component
of the exchangefieldwhileMxy is its projection in the x–y plane. To include contributions of side surface states,
we adopt the 3DHamiltonian [18] derived frombulk ( )Bi, Sb Te2 3 material instead of the previous 2D effective
Hamiltonian [12, 19, 20]. Our numerical results suggest that, in the presence of randommagnetic disorders,
QAHE is always robust as long asMz>0 for allmagnetic dopants, regardless of the x–y componentMxy.More
importantly, the randomdistribution ofM can suppress the dissipation of the chiral edge states. It should be
emphasized that these conclusions are valid only in 3D systems, where the side surface in the 3D thinfilmplays a
crucial role. In fact, 3DQAHE reliesmuch on the thicknessCz of theMTI film and ismost sensitive to the
distribution ofM at the film thickness of C 5 nmz . Sincemagnetic disorders are inevitable in three-
dimensionalMTIfilms, thesefindings can serve as an useful guide for the application ofQAHE.

The rest of the paper is organized as follows.Using a four-band tight-bindingmodel, theHamiltonian of the
six-terminalHall system is introduced in section 2. The formalisms for calculating the longitudinal resistance
andHall resistance are also derived. Section 3 gives numerical results of the effect ofmagnetic disorders on
QAHE in the 3DMTIfilm, accompaniedwith detailed discussions. Finally, a brief summary is presented in
section 4.

2.Model and theory

Using k·p perturbation theory, the low energy spectrumof ( )Bi, Sb Te2 3 can be approximated by the four-band
HamiltonianH0(k)which is written as [21, 22]

 s t s t= + Ä + Ä( ) · ( )H k mp , 1k x k z0 0

with = [ ]A k A k A kp , ,x x y y z z and = - - -m m m k m k m kk x x y y z z0
2 2 2. Equation (1) is theDirac equation of

3D systems, consists of four-componentDiracmatricesσi=x,y,z⊗τx andσz⊗τ0, whereσ and τ are Pauli
matrices for spin  ( ) and orbit ( + -P Pz z1 2 ), respectively.σ0 and τ0 are 2×2 unitmatrices. For simplicity, we
set òk=0 in the calculation since it does not change the topological structure of theHamiltonian. To study the
magnetic doping effect, we express theHamiltonian as

s t= + Ä( ) ( ) · ( )H k H k M , 20 0

whereM is the exchange field induced bymagnetic doping. Generally speaking, both externalmagnetic fields
[23] and localmagneticmoments [24–26] can induce spin-dependent energy split for electrons. In this work, we
consider only the later as themagnetic field is weak in our calculation. To describe amulti-terminal device
fabricated onmagnetically doped ( )Bi, Sb Te2 3 films, a real-spaceHamiltonian is needed. Replacing kx, y, z by
−i∇x, y, z, we get the 3D effective tight-bindingHamiltonian on a cubic lattice [18]:

å å= + +
d

d d d d+ +[ ] ( )† † † †H d H d d H d d H d , 3
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Figure 1.Panel (a) schematic plot of a six-terminalHall device. The current is injected from terminal-1 to terminal-4. Panel (b)
angular representation ofM.
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where = [ ]i i i i, ,x y z labels the site in real space, δ=aαwithα=x, y, z and aα are basis vectors of the cubic
lattice,Hi describes the on-site potential, whileHδ and d

†H denotes hopping to the six nearest neighbors in the
cubic lattice. Their expressions are given by, respectively
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where Mi is the random exchangefield at site i. Since orientations of the localmagneticmoments randomly
distribute, we assume that the angle (θ,f) (see figure 1(b)) ofMi is random,while itsmagnitude ∣ ∣Mi is a constant.
In equation (4), = ∣ ∣a a is the lattice constant of the cubic lattice. In the presence of a perpendicularmagnetic

fieldB=[0, 0,B], an extra phase
 òf =+

+

a

a ·A dla
e a

i i i

i

, is induced in the nearest neighbor coupling termHδ

withB=∇×A.
In order to calculate theHall resistance ρxy and longitudinal resistance ρxx, we consider the six-terminalHall

bar system shown infigure 1(a). In this setup, the central scattering region is connected to six semi-infinite leads.
In theCoulomb gauge, the vector potential is chosen asA=[−By, 0, 0] in lead-1, lead-4, and the central
scattering region, which does not depend on x. For lead-2, lead-3, lead-5 and lead-6A=[0,Bx, 0] is usedwhich
is independent of y. Then, themagnetic flux in each unit cell in x–y plane satisfies F = =∮ · BaA dlc

cell
2 for

every layer in x–y plane.Herewe define the dimensionlessmagnetic fluxΦ=Φc/(ÿ/e)where ÿ/e is the
magnetic flux quantum. In the following, we useΦ to describe the strength ofmagnetic field. Since two different
gauges are used for different regions, we have to be careful inmaintaining constantmagnetic flux at the
boundaries between scattering region and leads. This can be done through gauge transformation in the
boundaries between the scattering region and lead-2, lead-3, lead-5 and lead-6. In the following calculation,
other parameters in equations (3) and (4) are set as a=5Å, =∣ ∣M 0.15 eV,m0=0.28 eV [21],
mx=my=56.6 eVÅ2,mz=10 eVÅ2,Az=2.2 eVÅ and Ax=Ay=4.1 eVÅ, respectively [22].

The current from themth lead can be calculated using Landau–Büttiker formalism [27], which expresses as

å= -( ) ( )J
e

h
T V V , 5m

n
mn m n

2

wherem, n=1, 2,K, 6 label the leads, andTmn is the transmission coefficient from lead n to leadm. The
transmission coefficient is expressed as = G G[ ]T G GTrmn m

r
n

a , where ‘Tr’ denotes the trace. The linewidth
functionΓm is defined as G = S - S[ ]im m

r
m
a , andGr is the retardedGreenʼs function

= = - - å S -[ ] ( )†G G EI Hr a
c m m

r 1, whereHc is theHamiltonian of the central scattering region. I is an unit
matrix with the same dimension ofHc, andSm

r is the retarded self energy contributed by the semi infinite lead-m
which can be obtained using the transfer-matrixmethod [28, 29].

In themeasurement ofQAHE, a bias voltage is applied across terminal-1 and terminal-4 to drive the current.
The other four terminals serve as voltage probes. By requiring J2,3,5,6=0, voltagesV2,3,5,6 can be determined.
With these voltages, togetherwithV1=V andV4=0, we can calculate the current J1=−J4 from equation (5).
Finally, the longitudinal resistance ρxx≡(V2−V3)/J1 andHall resistance ρxy≡(V6−V2)/J1 are obtained.
For a perfectHall effect, ρxx is exactly zero and ρxy is ideally quantized.

3.Numerical results and discussions

ForQAHE in anMTI filmwith finite thickness, the dimension along zwhich is perpendicular to the film is
important for two reasons. First of all, the top and bottom surface states are coupled to each other in z-direction.
This coupling results in an effectivemass termwhich in turn leads to the band inversion. Consequently this gives
rise to the topological transition, i.e., QAHE, in the simplest low-energy effectiveHamiltonian consisting of
Dirac-type surface states only [12, 19, 20]. Secondly, in the presence of exchangefieldM along z-direction, the
top and bottom surface states are gappedwhile the side surfaces are gapless. As a result, the chiral edge states of
the bottomand top surfaces are actually propagating through gapless side surfaces. Therefore, it is necessary to
study the influence of thefilm thickness onQAHE.

To beginwith, we plot infigure 2 the longitudinal resistance ρxx and theHall resistance ρxy against thickness
Cz of theMTI film for differentmagnetic field strengthsΦ in the presence of constant exchange field, i.e.,
Mz=0.15 eV andMxy=0. As expected, theHall resistance ρxy is quantizedwhen Fermi energy EF=0.01 eV is
in the surface gap. Comparedwith the quality ofHall resistance, however, the longitudinal resistance ρxx is not so
ideal which shows significant deviation from zero even in the presence of a largemagnetic field. Fromfigure 2we
find thatwith the increasing offilm thicknessCz, ρxx increases quickly and reaches themaximumat C a10z ,
regardless of themagnetic field strength. Therefore, for a constant exchangefield, the edge states aremost
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dissipative at the thickness of =C a10z . Here, amagnetic field is also applied to suppress the dissipation and
thereby improve the quality of chiral edge states ofQAHE. As the observations in experiments, the stronger the
magnetic field, the smaller the longitudinal resistance.

Next, atfixedfilm thicknessCz=10awhere the edge states aremost dissipative in the clean sample, we
allow the direction of local exchangefield tofluctuate and study the influence of the randomfluctuation on
QAHE. Specifically, we denote the orientation of exchangefieldM as (θ,f) as shown infigure 1(b). Since the
macroscopicmagnetization direction of theMTIfilm is along z-direction, we assume thatf and θ are in the
range of [0, 2π] and [0,Θ], respectively, whereΘmeasures the largest angular deviation from z-direction. In
figure 3, we show the average longitudinal resistance ρxx, the averageHall resistance ρxy and their fluctuations
againstΘ at differentmagnetic fields. Fromfigure 3(a1) andfigure 3(a2), wefind that whenΘ is small
(Θ<0.2π) ρxx obviously deviates from zero. Upon increasingΘ further, ρxx starts to decrease and reaches a
minimumatΘ≈0.46− 0.5π, where ρxx≈0 for anymagnetic field strength.WhenΘ>0.5π, ρxx increases
abruptly with increasing ofΘ. At the same time, ρxy is always perfectly quantized untilΘ>0.6π.When
Θ>0.6πρxy starts to deviate from the quantized value abruptly. Besides ρxx and ρxy, we also plot their

Figure 2. Influence of thefilm thicknessCz. Panels (a) and (b) ρxx and ρxy versusCz for differentmagnetic fieldΦ. Here EF=0.01 eV.

Figure 3. ρxx, ρxy and their fluctuationsΔρxx,Δρxy versusΘ atfixedfilm thickness =C a10z . Other parameters:
= = =C a C a E90 , 30 , 0.01x y F eV. Averaged over 1000 random configurations at eachΘ.
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fluctuationsΔρxx andΔρxy infigures 3(b1) and (b2), which are defined as the root ofmean square of the
corresponding resistances. It is found thatwhenΘ=0, bothΔρxx andΔρxy are zero, and ρxx and ρxy do not
fluctuate since there is no randomness.With the increasing ofΘ,Δρxx increases to its localmaximumand then
drops to a localminimumatΘ≈0.46− 0.5π.WhenΘ>0.5π,Δρxx increases abruptly. On the other hand,
whenΘ<0.6π thefluctuation of ρxy is very small comparedwith ρxx. It starts to increase drastically for
Θ>0.6π. Notice that, atΘ≈0.46− 0.5π, the direction of exchangefieldM is almost randomly distributed in
the entire upper hemisphere, suggesting thatQAHE in anMTIfilm is very robust in the presence ofmagnetic
disorders, as long as allMz>0.More importantly, themoderate angular randomness ofmagnetic dopants can
lead to the suppression of dissipation and improve the quality of chiral edge sates, since both ρxx and its
fluctuationΔρxx drop to theminimumatΘ≈0.46− 0.5π. Furthermore, externalmagnetic fieldΦ obviously
suppresses ρxx but hardly affects ρxywhenΘ<0.5π, which is consistent with previous experimental
observations [13, 14].

The numerical results infigure 3 is really counterintuitive, inwhich amoderate angular randomness does
not suppressQAHEbut enhance it atΘ≈0.46− 0.5π. To understand this phenomenon, infigure 4we show
energy bands of periodicMTI strips with finite width and thickness. Various angular randomness ofM are
considered in each unit cell with size of width =C a30y and thickness =C a10z , and the disorder profile is the
same among these unit cells. Infigure 4(a1), the orientation ofM isfixed in x-direction, i.e.,M=Mx; in
figure 4(a2), the orientation ofM uniformly distributes in thewhole 4πsolid angle; infigure 4(a3),M is located
in the x–y plane, the orientations ofM are uniformly distributed in x–y plane. In these three cases, the chiral edge
states do not appear because the averageMz are zero. In the bottompanels, averageM has z-component. For
instance, infigure 4(b1), the direction ofM isfixed in z-direction, i.e.,M=Mz; infigure 4(b2),M is uniformly
distributed in the upper hemisphere; infigure 4(b3),M is a combination ofM=Mxy andM=Mz, and the
band structure of this hybrid system is calculated using the supercellmethod. In these three cases, we find
Mz�0 for all dopants and the chiral edge state, which is the signature ofQAHE, emerges. Fromfigure 4, we
tend to conclude that, as long asMz�0 for all dopantsQAH states would appear. This fact provides an
explanationwhymagnetic disorders does not suppress theQAHE inMTI films. In the followingwe try to
understand the reasonwhymoderate angular randomness ofM favors the formation ofQAHE inMTI films. It is
known that for 3DMTI films the top and bottom surface states are forbidden in the energy gap induced byMz,
and the edge states can only propagate along the gapless side surfaces. However, since theMTI film is very thin,
the energies of the side surface are quantized. As a result the side surface statemay not be available for an electron
with a given energy. Angular randomness ofM is helpful in suppressing the discreteness of the side energy bands
and providing surface states for the electron to propagate for the same energy. Consequently, QAHE inMTI
films is substantially improved bymagnetic disorders.

Figure 4.Band structures of periodicMTI stripswith various exchange fieldsM. Red lines denotes the chiral edge states. Panel (a1) the
orientationM isfixed in x-direction:M=Mx; panel (a2) the orientation ofMuniformly distributes in the whole 4π solid angle:
θ=[0,π],f=[0, 2π]; panel (a3)M is located in the x–y plane, and the orientation ofM uniformly distributes in thewhole x–y plane:
Mz=0,f=[0, 2π]; panel (b1) the direction ofM isfixed in z-direction:M=Mz; panel (b2)M is uniformly distributed in the upper
hemisphere:Θ=0.5π,f=[0, 2π]; panel (b3) the hybrid ofM=Mxy andM=Mz.
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Since themagnetic disorders are beneficial to the formation ofQAHE inMTI films, we consider amoderate
angular randomness ofM by choosingΘ=0.46π, and study the effect ofmagnetic randomness onQAHE in
MTIfilms as we vary the thickness of the thinfilm. Infigure 5we plot the average ρxx, the average ρxy and their
fluctuations as a function of film thicknessCz for differentmagnetic fieldsΦ. Comparing figure 5(a)with
figure 2, wefind that with the increase ofCz, the averageHall resistance ρxy is still perfectly quantized.However,
the average longitudinal resistance ρxx is drastically affected by the randomness. In the presence of randomM
withΘ=0.46π, ρxx is suppressed abruptly with the increasing film thicknessCz. At r»C a10 ,z xx drops to
nearly zero, regardless of themagnetic field strength. For the clean sample the behavior is the opposite. In
figure 2, where afixedMz is considered, it shows that ρxx ismaximumat »C a10z . Figure 5(b1) shows that
accompanying the nearly zero ρxx, its fluctuationΔρxx reaches the lowest value aswell. These observations
clearly show that, in anMTIfilm, angular randomness ofM ismost effective in suppressing the dissipation of
chiral edge states at the film thickness »C a10z . In experiment, themagnetically doped ( )Bi, Sb Te2 3 film
consists of periodicfive-atomic layers along the z-direction, known as quintuple layers. The thickness »C a10z

is about two quintuple layers, which is almost the thinnestfilm that consists of intact top and bottom surfaces.
Consequently, the thinfilmwith thickness »C a10z is optimal forQAHE inMTIfilms. For r> DC a10 ,z xx

increases slowly. Different fromΔρxx, thefluctuation ofHall resistanceΔρxy is very small, it is two orders of
magnitude smaller thanΔρxx, whichmeans that ρxy is immune to angular randomness ofM. In summary,
magnetic disorders are beneficial to enhance the quality of edge states ofQAHE inMTIfilms, especially at
certainfilm thickness.

To further illustrate the effect ofmagnetic disorders onQAHE, theQAHEwith orwithoutmagnetic
disorders are compared infigure 6. The average longitudinal resistance andHall resistancewith constant and
randomexchangefieldM are depicted infigures 6(a) and (b), respectively. Here, the constant exchange fieldM is
fixed atMz=0.15 eV andMxy=0.Meanwhile, for the case ofmagnetic disorders,M is randomly distributed in
almostwhole upper hemispherewith θ=[0, 0.46π] andf=[0, 2π]. Fromfigure 6(a)whereM is a constant, we
find that the averageHall resistance ρxy is perfectly quantized, but the average longitudinal resistance ρxx deviates
significantly from zero.On the other hand,figure 6(b) shows that the deviation in ρxx is suppressed bymagnetic
disorders while the perfect ρxy ismaintained. These findings further confirm thatmagnetic disorders are useful
to eliminate the dissipation of the edge states, regardless of the strength of externalmagnetic field.

It should be noted that, all conclusions discussed above are only valid for 3DMTI systemswithfinite
thickness, inwhich edge states can propagate through the gapless side surfaces. For a very thinfilm, the energy of
surface state on side surfaces is discretized so that theymay not be available for edge state to propagate. As a
result, any type of disorder,magnetic or nonmagnatic, tends to overcome the discrete nature of the side surface
states, and is beneficial to the formation ofQAHE inMTI films.On the contrary, in two-dimensional systems,
edge states reside on the edges in x–y plane. Therefore, disorders would induce the scattering between edge states

Figure 5. Influence of thefilm thicknessCz. ρxx, ρxy and theirfluctuationsΔρxx,Δρxy versusCz for differentmagnetic fieldΦ. The
range of randomorientation of the exchange field is set as θ=[0, 0.46π],f=[0, 2π]. Other parameters:

= = =C a C a E90 , 30 , 0.01 eVx y F . Averaged over 1000 randomconfigurations.
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locating in different edges if the disorder strength is large enough and consequently be destructive toQAHE. To
verify this statement, we calculate the longitudinal andHall resistances using the 2D effectiveHamiltonianwith
magnetic disorders [12, 19, 20]. Similar tofigure 6, average ρxx and ρxy of the 2D effectivemodel with constant or
random exchangefieldM are depicted infigures 7(a) and (b), respectively. Comparing figure 7(a)with
figure 7(b), we see that in the presence of randommagnetic disorders, although ρxy is roughly the same as that of
clean sample for two Fermi energies, ρxx deviate significantly from zero showing strong back scattering. This
means that the edge states of 2D systems are heavily damaged bymagnetic disorders. This is totally different
from3D case as shown infigure 6, inwhich ρxx is strongly suppressed and ρxy is perfectly kept in the presence of
magnetic disorders.

Figure 6. ρxx and ρxy versusmagnetic fieldΦwith a constant or random exchange field at different Fermi energies. Left panels: unitary
M,Mz=0.15 eV,Mxy=0; right panels: random = =∣ ∣M MM, 0, 0.15 eVz xy randomly distributes in the x–y plane, i.e., θ=0.5π,
f=[0, 2π]. Averaged over 200 random configurations.

Figure 7. ρxx and ρxy versusmagnetic fieldΦwith unitary or randomexchange field at different Fermi energies. The two-dimensional
effectiveHamiltonian is adopted in the calculation and other computational parameters are the same as infigure 6. Averaged over 500
random configurations.
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4. Conclusion

In summary, we have studied the influence ofmagnetic disorders onQAHE in 3DMTI thin films.Magnetic
disorders aremodeled by randomdistribution of orientations of the exchange fieldM. It is found that in the
presence of angular randomness of exchange field, QAHE is well kept as long as the z-component ofM for all
dopants remain positive.Moreover,magnetic disorders are helpful in suppressing the dissipation of the chiral
edge states due to the presence of the side surfaces inMTIfilms.Our results also show that the longitudinal
resistance ρxx reliesmuch on the thickness of the film. At certain film thickness »C a10z , magnetic disorders
aremost effective in protecting the chiral edge states ofQAHE. These findings are new features forQAHE in
three-dimensional systems, not present in two-dimensional systems.
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