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Optimal Two-Part Pricing under Demand Uncertainty

Abstract

This paper examines the two-part pricing problem of a risk-neutral monopoly (the seller) for a

good sold to buyers who face uncertainty about their demand for the good. If buyers are risk neutral,

we show that marginal-cost pricing is not only profit-maximizing but also socially efficient. If buyers

are risk averse, the demand uncertainty calls for the insurance need of buyers, which induces the seller

to deviate from marginal-cost pricing. We show that the optimal unit price is higher or lower than

the constant marginal cost, depending on the nature of the good (normal or inferior) and on the signs

of cross-derivatives of buyers’ multivariate utility function. Employing a quasi-linear specification

that reduces the general multivariate utility function to a special univariate utility function, we show

that the seller optimally raises (lowers) the unit price and lowers (raises) the fixed fee from their

risk-neutral counterparts if buyers’ total and marginal benefits are positively (negatively) correlated.

We further show that these results are robust to the introduction of competition to the seller.

JEL classification: D11; D42; D81; L11

Keywords: Demand uncertainty; Insurance; Risk aversion; Two-part pricing

1. Introduction

Two-part pricing requires consumers to pay a fixed fee upfront to secure the right to purchase

a good or service at a predetermined unit price. Examples of firms using two-part pricing

abound. The classical example is Disneyland that charges each visitor of its amusement

park an admission fee and a price per ride (see Oi, 1971). Other examples include beach

resorts, health clubs, mobile telephone companies, and commercial banks, to name just a

few.

Since the seminal work of Oi (1971), there has been a large literature that examines two-

part pricing as a means of price discrimination.1 In the standard analysis wherein consumers

are homogeneous and uncertainty is absent, the extant literature shows that a monopolistic

firm using two-part pricing optimally sets the unit price equal to the constant marginal cost,

and charges the fixed fee that seizes the entire consumer’s surplus arising from marginal-

cost pricing. A notable exception is Hayes (1987). She introduces uncertainty about future

demand for a good to risk-averse buyers when they decide to subscribe to a two-part pricing

1For an excellent survey on price discrimination, see Armstrong (2006).
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contract offered by a risk-neutral seller who supplies the good. Ex-ante demand uncertainty

is driven by an unknown state variable (e.g., income, weather, health, etc.). Buyers make

their consumption plans ex post after the state variable has been revealed. Hayes (1987)

shows that the seller has incentives to deviate from marginal-cost pricing so as to cater the

insurance need of buyers in the presence of demand uncertainty.2

To fix the idea, take beach resorts as an example. We can treat the uncertain weather

as the state variable. Beach resorts charge risk-averse tourists for the hotel rooms, which

can be regarded as the fixed fee. Suppose that tourists’ marginal utility of income increases

as the weather improves. If the weather is good (bad), tourists’ demand for beach activities

such as sailing and diving is likely to be high (low). In this case, the optimal two-part

pricing is to price the beach activities below their marginal costs and charge a higher fixed

fee. While risk-averse tourists suffers utility losses in bad weather because of the high fixed

fee, they benefit from utility gains in good weather because of low usage charges. Since

marginal utility of income increases as the weather improves, utility gains must out-weight

utility losses so that tourists’ expected utility increases. This is the insurance benefit offered

by the optimal two-part pricing to risk-averse tourists. On the other hand, tourists’ demand

for indoor activities such as spa treatments and gym facilities is likely to be high (low) if the

weather is bad (good). The optimal two-part pricing is then to price the indoor activities

above their marginal costs and charges a lower fixed fee. Risk-averse tourists encounter

utility losses in bad weather because of high usage charges, but they enjoy utility gains in

good weather because of the low fixed fee. Since marginal utility of income increases as

the weather improves, utility gains must out-weight utility losses, which offers insurance

to risk-averse tourists. When tourists’ marginal utility of income decreases as the weather

improves, the opposite pricing rules would apply. In any case, the optimal two-part pricing

plays an insurance role in protecting risk-averse buyers against demand uncertainty.

The purposes of this paper are to re-examine the model of Hayes (1987) in general, and

derive sufficient conditions based on exogenous model restrictions under which the optimal

pricing rule can be unambiguously characterized in particular.3 When buyers are risk

neutral, we show that marginal-cost pricing is not only optimal for the profit-maximizing

seller, but also efficient in the social welfare perspective, where social welfare is defined

as the expected joint surplus of buyers and the seller. These are the celebrated results of

Oi (1971) extended to the case of demand uncertainty. When buyers are risk averse, we

2If buyers are risk neutral, marginal-cost pricing remains optimal in the presence of demand uncertainty
(see Proposition 1). Hence, it is indeed the insurance need of buyers that induces the seller to deviate from
marginal-cost pricing.

3Hayes (1987) shows that the optimal unit price is larger (smaller) than the constant marginal cost if the
marginal utility of all other goods and the consumption of the good are negatively (positively) correlated at
the optimum, which by itself is endogenously determined and thus cannot constitute a sufficient condition.
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derive sufficient conditions under which the optimal unit price is higher or lower than the

constant marginal cost. We show that the sufficient conditions include, among others, the

differential Spence-Mirrlees single-crossing property that is commonly found in monotone

comparative statics analysis (see Milgrom and Shannon, 1994; Edlin and Shannon, 1998).

We then follow Png and Wang (2010) to consider a special case of Hayes (1987) wherein a

quasi-linear specification is imposed to reduce buyers’ general multivariate utility function

to an univariate utility function. We show that the seller optimally raises (lowers) the unit

price and lowers (raises) the fixed fee from their risk-neutral counterparts if buyers’ total

and marginal benefits are positively (negatively) correlated, which are consistent with the

results of the general model of Hayes (1987).

As in Png and Wang (2010), we conduct comparative static analysis with respect to

an increase in buyers’ risk aversion. Confined to buyers’ preferences that exhibit constant

absolute risk aversion (CARA), we show that the marginal effect of increased risk aversion

of buyers on the optimal two-part pricing contract inherits the global effect of risk aversion.4

When buyers become more risk averse, there is greater insurance need that is catered for by

moving the optimal unit price further away from the constant marginal cost. Our results

complement to those of Png and Wang (2010) in that we analyze not only the impact on

the optimal unit price but also that on the optimal fixed fee. Finally, we introduce compe-

tition to the seller in a reduced form by using the Nash bargaining solution to determine

the optimal two-part pricing contract. This formulation subsumes monopoly and perfect

competition as two extreme cases wherein the seller has all or none of the bargaining power,

respectively, both of which have already been studied by Png and Wang (2010). We show

that imposing competition onto the seller by means of the Nash bargaining solution does not

qualitatively alter the optimal two-part pricing contract. Indeed, when buyers’ preferences

exhibit CARA, the optimal unit price is completely neutral to the extent of competition

(as measured by the degree of bargaining power possessed by the seller), even though the

optimal fixed fee increases as competition becomes lax.

The rest of this paper is organized as follows. Section 2 delineates the model of Hayes

(1987). Section 3 derives the optimal two-part pricing contract when buyers are risk neutral,

and that when buyers are risk averse. Section 4 considers a special case in which a quasi-

linear specification is imposed to reduce buyers’ multivariate utility function to an univariate

utility function as in Png and Wang (2010). Within this simplified framework, we conduct

comparative static analysis with respect to an increase in buyers’ risk aversion and to the

4Due to the binding participation constraint of buyers at the optimum, the usual characterization of
increased risk aversion (Arrow, 1965; Pratt, 1964; Diamond and Stiglitz, 1974) does not give us clear
guidance to study the marginal effect of increased risk aversion of buyers on the optimal two-part pricing
contract, except in the special case of CARA (see Section 4.1).
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introduction of competition to the seller. The final section concludes.

2. The Model

Consider a monopoly (henceforth the seller) who produces a good at a known constant

marginal cost, c > 0.5 The seller sells the good to buyers who face uncertainty about their

demand for the good. To facilitate sales, the seller uses a two-part pricing contract, (T, p),

where T is the fixed fee paid (received if negative) by a buyer ex ante (i.e., before resolving

the underlying uncertainty) to secure the right to purchase the good at the predetermined

unit price, p, ex post (i.e., after resolving the underlying uncertainty). The seller is risk

neutral and devises the two-part pricing contract, (T, p), ex ante to maximize his expected

profit.6

All buyers have the same initial wealth, I > 0, to be allocated for the consumption

of the good and all other goods. Following Hayes (1987), we assume that buyers are risk

averse and possess the same ex-post utility function, U(q, m, s), where q is the number of

units of the good, m is the consumption of all other goods, and s is the realization of a

state variable, s̃, that is unknown ex ante.7 Let F (s) be the known cumulative distribution

function of the state variable, s̃, over support [s, s] with s < s, which may either be indepen-

dent or be perfectly correlated among buyers. Risk aversion requires that Uq(q, m, s) > 0,

Um(q, m, s) > 0, Uqq(q, m, s) < 0, and Umm(q, m, s) < 0, where subscripts always signify

partial derivatives throughout the paper.8

The sequence of moves is as follows. Before the state variable, s̃, is revealed, the seller

offers the two-part pricing contract, (T, p), to buyers. If a buyer pays the fixed fee, T , to

the seller, she obtains the right to purchase as many units of the good as she wants at

the unit price, p, after s̃ has been revealed.9 Specifically, the buyer chooses q and m to

maximize her ex-post utility, U(q, m, s), subject to the budget constraint, T + pq + m ≤ I .

The optimal consumption of the good, q◦ ≡ q(I, T, p, s), is characterized by the following

5In Section 4.2, we incorporate competition into the model by means of the Nash bargaining solution.
6Introducing risk aversion into the seller gives rise to a hedging motive. Specifically, the risk-averse seller

would like to adopt marginal-cost pricing so as to eliminate the risk arising from his volatile operating profits.
The wedge between the optimal unit price and the constant marginal cost is as such jointly determined by
the efficient risk-sharing arrangement between buyers and the seller. Nevertheless, none of our qualitative
results are affected when the seller is de facto risk averse.

7Throughout the paper, random variables have a tilde (∼), while their realizations do not.
8It is noteworthy mentioning that Hayes’ (1987) model is along the line of Kihlstrom and Mirman (1974,

1981) for a general two-commodity choice problem with a single exogenous random variable.
9We exclude any possibilities of reselling the good to other buyers.
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first-order condition:

Uq(q
◦, m◦, s)− pUm(q◦, m◦, s) = 0, (1)

while the optimal consumption of all other goods, m◦ ≡ m(I, T, p, s), is determined by the

binding budget constraint, i.e., m◦ = I −T −pq◦. The second-order condition requires that

∆ ≡ Uqq(q
◦, m◦, s) − 2pUqm(q◦, m◦, s) + p2Umm(q◦, m◦, s) < 0, (2)

which we assume to hold. Should the buyer elect not to pay the fixed fee, T , to the seller,

her ex-post utility is equal to U(0, I, s), for all s ∈ [s, s], and the seller’s profit from this

buyer is zero.

Anticipating buyers’ ex-post optimal consumption bundles, the seller devises the two-

part pricing contract, (T, p), so as to maximize his expected profit ex ante:

max
T,p

T + (p − c)E(q̃◦), (3)

subject to the following participation constraint of buyers:

E[U(q̃◦, m̃◦, s̃)] ≥ E[U(0, I, s̃)], (4)

where q̃◦ ≡ q(I, T, p, s̃), m̃◦ ≡ m(I, T, p, s̃), and E(·) is the expectation operator with respect

to the cumulative distribution function, F (s), of the state variable, s̃. It is clear from

program (3) that buyers’ participation constraint (4) must be binding at the optimum.10

For a given unit price, p, we define the fixed fee, T (p), as the unique solution to the following

binding participation constraint:11

E

{

U{q[I, T (p), p, s̃], m[I, T (p), p, s̃], s̃}

}

= E[U(0, I, s̃)]. (5)

Differentiating Eq. (5) with respect to p and rearranging terms yields

T ′(p) = −
E

{

Um{q[I, T (p), p, s̃], m[I, T (p), p, s̃], s̃}q[I, T (p), p, s̃]

}

E

{

Um{q[I, T (p), p, s̃], m[I, T (p), p, s̃], s̃}

} < 0, (6)

10Using Eq. (1), we have ∂E[U(q̃◦, m̃◦, s̃)]/∂T = −E[Um(q̃◦, m̃◦, s̃)] < 0. If buyers’ participation constraint
(4) is slack at the optimal two-part pricing contract, (T∗, p∗), the seller can increase the optimal fixed fee, T∗,
by an amount, ε > 0, such that E[U(q̃∗, m̃∗, s̃)] > E{U [q(I, T∗+ε, p∗, s̃), m(I,T∗+ε, p∗, s̃), s̃]} ≥ E[U(0, I, s̃)].
This contradicts the optimality of (T∗, p∗).

11Since ∂E[U(q̃◦, m̃◦, s̃)]/∂T = −E[Um(q̃◦, m̃◦, s̃)] < 0, where the equality follows from Eq. (1), and there
is no restriction on T , T (p) is indeed the unique solution to Eq. (5) for a given unit price, p.
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which implies that a higher unit price is associated with a lower fixed fee so as to keep buyers’

participation constraint (4) binding. The seller’s ex-ante decision problem (3), therefore,

reduces to

max
p

T (p) + (p− c)E{q[I, T (p), p, s̃]}, (7)

where T (p) is implicitly defined by Eq. (5).

3. Solution to the Model

The first-order condition for program (7) is given by

(p∗ − c)

{

E{qp[I, T (p∗), p∗, s̃] + E{qT [I, T (p∗), p∗, s̃]}T ′(p∗)

}

+E{q[I, T (p∗), p∗, s̃]} + T ′(p∗) = 0, (8)

where p∗ is the optimal unit price. The second-order condition for program (7) is given by

T ′′(p∗) + 2E{qT [I, T (p∗), p∗, s̃]}T ′(p∗) + 2E{qp[I, T (p∗), p∗, s̃]}

+(p∗ − c)

{

E{qT [I, T (p∗), p∗, s̃]}T ′′(p∗) + E{qTT [I, T (p∗), p∗, s̃]}T ′(p∗)2

+2E{qTp[I, T (p∗), p∗, s̃]}T ′(p∗) + E{qpp[I, T (p∗), p∗, s̃]}

}

< 0, (9)

which we assume to hold.

Let Cov(·, ·) be the covariance operator with respect to the cumulative distribution

function, F (s), of the state variable, s̃. Substituting Eq. (6) with p = p∗ into Eq. (8)

yields12

(p∗ − c)

{

E[qp(I, T ∗, p∗, s̃)]− E[qT (I, T ∗, p∗, s̃)] ×
E[Um(q̃∗, m̃∗, s̃)q̃∗]

E[Um(q̃∗, m̃∗, s̃)]

}

−
Cov[Um(q̃∗, m̃∗, s̃), q̃∗]

E[Um(q̃∗, m̃∗, s̃)]
= 0, (10)

12For any two random variables, x̃ and ỹ, we have Cov(x̃, ỹ) = E(x̃ỹ) − E(x̃)E(ỹ).



optimal two-part pricing under demand uncertainty 7

where q̃∗ ≡ q(I, T ∗, p∗, s̃), m̃∗ ≡ m(I, T ∗, p∗, s̃), and the optimal fixed fee, T ∗ = T (p∗), is

implicitly determined by the following binding participation constraint:

E[U(q̃∗, m̃∗, s̃)] = E[U(0, I, s̃)]. (11)

Solving Eqs. (10) and (11) simultaneously gives us the optimal two-part pricing contract,

(T ∗, p∗).

3.1. Risk-Neutral Buyers

As a benchmark, suppose that buyers are risk neutral. According to Stiglitz (1969),

risk neutrality is equivalent to linearity in wealth of the von Neumann-Morgenstern utility

function for all fixed prices and states. Define V (I, T, p, s) ≡ U(q◦, m◦, s) as the ex-post

indirect utility function, where q◦ ≡ q(I, T, p, s) and m◦ ≡ m(I, T, p, s). It then follows

from Eq. (1) that VI(I, T, p, s) = Um(q◦, m◦, s). Hence, linearity of V (I, T, p, s) in I for all

fixed two-part pricing contracts and states implies that Um(q◦, m◦, s) is a constant, which,

without any loss of generality, is normalized to unity.13

Using the fact that Um(q◦, m◦, s) = 1 for all fixed two-part pricing contracts and states,

we solve Eqs. (10) and (11) simultaneously to establish our first proposition. All proofs of

propositions are relegated to Appendix A.

Proposition 1. In the benchmark case of risk-neutral buyers, the profit-maximizing seller

sets the optimal unit price equal to the constant marginal cost, c, and the optimal fixed fee,

T 0, that solves E{U [q(I, T 0, c, s̃), m(I, T 0, c, s̃), s̃]} = E[U(0, I, s̃)].

Proposition 1 extends the celebrated results of Oi (1971) to the case of two commodities

and a single source of uncertainty. To see the intuition for why marginal-cost pricing is

optimal when buyers are risk neutral, we first compute the expected joint surplus, S(T, p),

of buyers and the seller for a given two-part pricing contract, (T, p):

S(T, p) = E[U(q̃◦, m̃◦, s̃)]− E[U(0, I, s̃)] + T + (p − c)E(q̃◦), (12)

where q̃◦ ≡ q(I, T, p, s̃) and m̃◦ ≡ m(I, T, p, s̃). The first-order conditions for maximizing

13Under Png and Wang’s (2010) quasi-linear specification (see Section 4), i.e., U(q, m, s) = u[b(q, s) + m],
the restriction due to risk neutrality on U(q, m, s) implies that Um(q◦, m◦, s) = u′[b(q◦, s) + m◦] = 1 for all
fixed two-part pricing contracts and states. Hence, in this case, it must be true that u′(x) = 1, i.e., u(x) = x,
which is indeed the definition of risk neutrality in the Arrow-Pratt sense in which utility is a function of one
argument.
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the expected joint surplus in Eq. (12) are given by

ST (TB, pB) = −E[Um(q̃B, m̃B, s̃)] + 1 = 0, (13)

and

Sp(T
B, pB) = −E[Um(q̃B, m̃B, s̃)q̃B] + E(q̃B) + (pB − c)E[qp(I, TB, pB, s̃)] = 0, (14)

where (TB, pB) is the first-best two-part pricing contract, q̃B = q(I, TB, pB, s̃), and m̃B =

m(I, TB, pB, s̃). Since Um(q◦, m◦, s) = 1 for all fixed two-part pricing contracts and states,

Eq. (13) holds for any value of TB. In other words, we can regard the fixed fee as a

pure transfer to the seller, thereby making the fixed fee irrelevant to the maximization of

the expected joint surplus. Since Um(qB, mB, s) = 1 for all s ∈ [s, s], Eq. (14) implies

that pB = c. When buyers are risk neutral, marginal-cost pricing attains the maximum

expected joint surplus, SB = S(T, c), for any value of T . The profit-maximizing seller as

such optimally sets the unit price equal to the constant marginal cost. The optimal fixed

fee, T 0, is then the one that extracts the entire amount of SB, i.e., T 0 = S(T 0, c) = SB.

3.2. Risk-Averse Buyers

We now resume the original case that buyers are risk averse. Evaluating the left-hand side

of Eq. (10) at p∗ = c yields

−
Cov

{

Um{q[I, T (c), c, s̃], m[I, T (c), c, s̃], s̃}, q[I, T (c), c, s̃]

}

E

{

Um{q[I, T (c), c, s̃], m[I, T (c), c, s̃], s̃}

} . (15)

Expression (15) is positive (negative) if the covariance of the marginal utility of all other

goods, Um{q[I, T (c), c, s̃], m[I, T (c), c, s̃], s̃}, and the consumption of the good, q[I, T (c), c, s̃],

is negative (positive). In this case, it follows from the second-order condition (9) and Eq.

(10) that p∗ > (<) c, which is exactly the same condition stated in Hayes (1987). Of

course, such a condition is not that informative since it depends on endogenously chosen

variables. It is thus of great interest to look for sufficient conditions under which we can

unambiguously sign expression (15).

It is well known that the covariance of two monotonically increasing functions of a ran-

dom variable is positive (see Theorem 236 in Hardy et al., 1964). Hence, to sign expression

(15), we must delve into the co-movement of the marginal utility of all other goods at the
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optimum, Um(q◦, m◦, s), and the optimal consumption of the good, q◦, when the realized

state, s, varies. As is shown in Proposition 2, the following single-crossing property:

∂

∂s

[

Uq(q, m, s)

Um(q, m, s)

]

> (<) 0, (16)

is proved to be crucial for determining the sign of expression (15).

Proposition 2. Given that condition (16) holds and the good is a normal good, i.e.,

qI(I, T, p, s) > 0, the profit-maximizing seller sets the optimal unit price, p∗, lower (higher)

than the constant marginal cost, c, if Ums(q, m, s) ≥ (≤) 0. Given that condition (16) holds

and the good is an inferior good, i.e., qI (I, T, p, s) < 0, then p∗ > (<) c if Ums(q, m, s) ≤

(≥) 0. Given that condition (16) holds and the optimal consumption of the good has no

wealth effect, i.e., qI (I, T, p, s) = 0, then p∗ < (>) c if Ums(q, m, s) > 0, and p∗ > (<) c if

Ums(q, m, s) < 0.

Condition (16) exhibits the differential Spence-Mirrlees single-crossing property that is

central for monotone comparative statics analysis (see Milgrom and Shannon, 1994; Edlin

and Shannon, 1998). It reflects the notion that the tradeoff between the consumption of

the good, q, and that of all other goods, m, results in an increase in q and a decrease in

m when the realized state, s, is higher (lower), i.e., qs(I, T, p, s) > (<) 0. If the good is a

normal good, qs(I, T, p, s) > (<) 0 implies that the marginal utility of all other goods at the

optimum is enhanced (reduced) when the realized state increases, which reinforces the direct

effect that Ums(q, m, s) ≥ (≤) 0, so that Um(q◦, m◦, s) unambiguously increases (decreases)

with an increase in s. Expression (15) as such is negative (positive), thereby rendering

p∗ < (>) c.14 On the other hand, if the good is an inferior good, qs(I, T, p, s) > (<) 0 implies

that the marginal utility of all other goods at the optimum is reduced (enhanced) when the

realized state increases, which reinforces the direct effect that Ums(q, m, s) ≤ (≥) 0, so that

Um(q◦, m◦, s) unambiguously decreases (increases) with an increase in s. It then follows

that expression (15) is positive (negative) and thus p∗ > (<) c. Finally, if the optimal

consumption of the good has no wealth effect, the sate variable affects the marginal utility

of all other goods at the optimum solely through the direct effect, Ums(q, m, s). Hence, given

condition (16), we have p∗ < (>) c if Ums(q, m, s) > 0, and p∗ > (<) c if Ums(q, m, s) < 0.

To see the intuition underlying Proposition 2, consider first the case that the marginal

14As an example, consider the following ex-post utility function employed in Hayes (1987): U(q, m, s) =
s
√

q +
√

m. In this example, we have Ums(q, m, s) = 0. Furthermore, the single-crossing property is

satisfied, i.e., ∂[Uq(q, m, s)/Um(q, m, s)]/∂s =
√

m/q > 0. The optimal consumption of the good is q◦ =
(I −T )/(p+ p2/s2) so that the good is a normal good. From Proposition 2, the optimal unit price, p∗, must
be less than the constant marginal cost, c, which is indeed what Hayes (1987) shows numerically by using a
two-state discrete distribution of s̃.
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utility of all other goods at the optimum, Um(q◦, m◦, s), increases with an increase in the

realized state, s.15 Suppose that the seller offers the two-part pricing contract, [T (c), c], to

buyers. In this case, the seller earns the expected profit equal to T (c). Given condition

(16) that ensures qs(I, T, p, s) > (<) 0, Figure 1 depicts the optimal consumption of the

good at s = s, i.e., qc(s) ≡ q[I, T (c), c, s], and that at s = s, i.e., qc(s) ≡ q[I, T (c), c, s]

in Panel A (B) so that qc(s) < (>) qc(s). Let [T̂ (p), p] be the two-part pricing contract

that generates the same expected profit, i.e., T̂ (p)+ (p− c)E{q[I, T̂(p), p, s̃]} = T (c). If the

seller chooses to lower (raise) the unit price, p, below (above) the constant marginal cost,

c, he has to adjust the fixed fee, T̂ (p), upward (downward) from T (c) so as to keep the

expected profit constant at T (c). Given condition (16) that ensures qs(I, T, p, s) > (<) 0,

the seller alters the two-part pricing contract from [T (c), c] to [T̂ (p∗), p∗] with p∗ < (>) c

and T̂ (p∗) > (<) T (c). In this case, the optimal consumption of the good at s = s becomes

q̂(s) ≡ q[I, T̂(p∗), p∗, s], and that at s = s becomes q̂(s) ≡ q[I, T̂ (p∗), p∗, s]. As is shown in

Panels A and B of Figure 1, buyers’ utility falls when the realized state is low and rises

when the realized state is high. Since Um(q◦, m◦, s) increases with an increase in s, the

utility loss in low states must be out-weighted by the utility gain in high states so that

buyers’ expected utility increases when the seller alters the two-part pricing contract from

[T (c), c] to [T̂ (p∗), p∗]:

E

{

U{q[I, T̂(p∗), p∗, s̃], m[I, T̂(p∗), p∗, s̃], s̃}

}

> E

{

U{q[I, T (c), c, s̃], m[I, T (c), c, s̃], s̃}

}

= E[U(0, I, s̃)], (17)

which reflects the insurance benefit that the two-part pricing contract offers to buyers. Since

buyers’ participation constraint (17) is slack, the seller raises the fixed fee from T̂ (p∗) to

T ∗ = T (p∗), making the resulting expected profit exceed T (c). Given condition (16) and

that Um(q◦, m◦, s) increases with an increase in s, the seller indeed finds it optimal to set

the unit price below (above) the constant marginal cost, c.

(Insert Figure 1 here.)

Consider now the case that the marginal utility of all other goods at the optimum,

Um(q◦, m◦, s), decreases with an increase in the realized state, s.16 Given the two-part

15If the good is a normal (an inferior) good, this is the case when qs(I, T, p, s) > (<) 0 and Ums(q, m, s) ≥ 0.
If the optimal consumption of the good has no wealth effect, this is the case when Ums(q, m, s) > 0.

16If the good is a normal (an inferior) good, this is the case when qs(I, T, p, s) < (>) 0 and Ums(q, m, s) ≤ 0.
If the optimal consumption of the good has no wealth effect, this is the case when Ums(q, m, s) < 0.
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pricing contract, [T (c), c], Figure 2 depicts the optimal consumption of the good, qc(s), at

s = s, and qc(s) at s = s. Since condition (16) implies that qs(I, T, p, s) > (<) 0, Panel

A (B) of Figure 2 shows that qc(s) < (>) qc(s). If the seller alters the two-part pricing

contract from [T (c), c] to [T̂ (p∗), p∗] with p∗ > (<) c and T̂ (p∗) < (>) T (c), the optimal

consumption of the good becomes q̂(s) at s = s and q̂(s) at s = s. As is evident from Panels

A and B of Figure 2, buyers’ utility falls when the realized state is high and rises when the

realized state is low. Since Um(q◦, m◦, s) decreases with an increase in s, the utility loss in

high states must be out-weighted by the utility gain in low states so that Eq. (17) holds.

Since buyers’ participation constraint (17) is slack, the seller raises the fixed fee from T̂ (p∗)

to T ∗ = T (p∗), thereby rendering the expected profit to exceed T (c). Given condition (16)

and that Um(q◦, m◦, s) decreases with an increase in s, we thus conclude that the optimal

unit price, p∗, is indeed above (below) the constant marginal cost, c.

(Insert Figure 2 here.)

4. A Quasi-Linear Specification

Png and Wang (2010) have recently revisited the model of Hayes (1987) by using a quasi-

linear specification of the ex-post utility function, U(q, m, s). Succinctly, Png and Wang

(2010) assume that U(q, m, s) = u[b(q, s)+m], where b(q, s)+m is the total benefit derived

from the consumption of q units of the good and m of all other goods when the prevailing

state is s, and u(x) is a von Neumann-Morgenstern utility function defined over the ex-post

total benefit, x, with u′(x) > 0 and u′′(x) < 0, indicating the presence of risk aversion.

Imposing such a quasi-linear specification not only greatly enhances the tractability of

Hayes’ (1987) model, but also clearly identifies the underlying uncertainty as the uncertainty

about buyers’ demand (i.e., marginal benefit) for the good.

Png and Wang (2010) assume that buyers’ ex-post marginal benefit from consuming the

good is positive but diminishing, i.e., bq(q, s) > 0 and bqq(q, s) < 0, which is consistent with

Uq(q, m, s) > 0 and Uqq(q, m, s) < 0.17 Png and Wang (2010) order the realizations of s̃ in

such a way that bs(q, s) > 0 for all s ∈ [s, s]. Under the quasi-linear specification, condition

(16) reduces to bqs(q, s) > (<) 0, which perfectly matches the two cases, (i) bqs(q, s) > 0

and (ii) bqs(q, s) < 0, that are the focuses of Png and Wang (2010). Since bs(q, s) > 0, case

(i) implies that buyers’ total and marginal benefits are positively correlated ex ante, while

case (ii) implies that they are negatively correlated ex ante.

17Since Uq(q, m, s) = u′[b(q, s) + m]bq(q, s) and Uqq(q, m, s) = u′′[b(q, s) + m]bq(q, s)
2 + u′[b(q, s) +

m]bqq(q, s), it follows that bq(q, s) > 0 and bqq(q, s) < 0 imply that Uq(q, m, s) > 0 and Uqq(q, m, s) < 0,
respectively. Furthermore, Um(q, m, s) = u′[b(q, s) + m] > 0 and Umm(q, m, s) = u′′[b(q, s) + m] < 0.
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Given that U(q, m, s) = u[b(q, s) + m], Eq. (1) reduces to bq[q(p, s), s] = p, so that

the optimal consumption of the good, q(p, s), depends neither on the initial wealth, I , nor

on the fixed fee, T , i.e., there is no wealth effect.18 Solving the binding budget constraint

yields the optimal consumption of all other goods, m(I, T, p, s) = I − T − pq(p, s). Hence,

the ex-post total benefit of buyers at the optimum is given by

x(I, T, p, s)≡ b[q(p, s), s] + m(I, T, p, s) = b[q(p, s), s] + I − T − pq(p, s). (18)

Since Ums(q, m, s) = u′′[b(q, s) + m]bs(q, s) < 0, it follows immediately from Proposition

2 that p∗ > (<) c if bqs(q, s) > (<) 0, which is consistent with the findings in Png and

Wang (2010). The optimal fixed fee, T ∗, is implicitly determined by the following binding

participation constraint:

E{u[x(I, T ∗, p∗, s̃)]} = E{u[b(0, s̃) + I ]}, (19)

where x(I, T, p, s) is given by Eq. (18).

In the benchmark case that buyers are risk neutral, we have u(x) = x so that U(q, m, s) =

b(q, s)+m.19 It follows from Proposition 1 that the optimal unit price is equal to the constant

marginal cost, c.20 The optimal fixed fee, T 0, is then determined by the following binding

participation constraint under risk neutrality:

E[x(I, T 0, c, s̃)] = E[b(0, s̃) + I ]. (20)

Substituting Eq. (18) into Eq. (20) and solving for T 0 yields21

T 0 = E{b[q(c, s̃), s̃]} − E[b(0, s̃)] − cE[q(c, s̃)] > 0. (21)

We show in the following proposition that the optimal fixed fee, T ∗, is smaller or greater than

T 0, depending on whether buyers’ total and marginal benefits are positively or negatively

correlated, respectively.

Proposition 3. Given that buyers have the ex-post utility function, u[b(q, s)+m], satisfying

bqs(q, s) > (<) 0, the profit-maximizing seller sets the optimal unit price, p∗, higher (lower)

18The second-order condition (2) is satisfied since bqq(q, s) < 0.
19Using the results in Hosoya (2011), we can interpret b(q, s) + m as the least concave utility function of

quasi-linear preferences.
20When buyers are risk neutral so that u(x) = x and p∗ = c, Eq. (9) reduces to E[qp(c, s̃)] < 0, which

holds since qp(p, s) = 1/bqq [q(p, s), s] < 0.
21Since b[q(c, s), s] − cq(c, s) > b(0, s) for all s ∈ [s, s], we have T 0 > 0.
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than the constant marginal cost, c, and the optimal fixed fee, T ∗ > 0, lower (higher) than

the risk-neutral counterpart, T 0 > 0.

The intuition for Proposition 3 is the same as that for Proposition 2 when the marginal

utility of all other goods at the optimum satisfies that Um(q◦, m◦, s) decreases with an

increase in the realized state, s. To see why T ∗ < (>) T 0 if bqs(q, s) > (<) 0, suppose

that the seller offers the two-part pricing contract, (T 0, c), which is optimal under risk

neutrality, to buyers who are risk averse. If buyers were risk neutral, they would have

been indifferent between accepting and rejecting (T 0, c) given Eq. (20), which implies that

buyers derive the same expected total benefit with and without the right to purchase the

good from the seller. Since ∂[x(I, T 0, c, s)− b(0, s)]/∂s = bs[q(c, s), s]− bs(0, s) > (<) 0 if

bqs(q, s) > (<) 0, it follows from Eq. (20) that there must exist a critical realization of s̃

below which x(I, T 0, c, s) is less (greater) than b(0, s) + I , and above which x(I, T 0, c, s) is

greater (less) than b(0, s)+ I , thereby rendering x(I, T 0, c, s̃) to be more (less) volatile than

b(0, s̃) + I . Indeed, following the arguments in the proof of Proposition 3, we can easily

verify that the distribution of x(I, T 0, c, s̃) is a mean-preserving-spread of the distribution

of b(0, s̃) + I in the sense of Rothschild and Stiglitz (1970) if bqs(q, s) > 0, and that the

converse is true if bqs(q, s) < 0. Since buyers are risk averse, it follows from Rothschild

and Stiglitz (1971) that E{u[x(I, T 0, c, s̃)]} < E{u[b(0, s̃) + I ]} and thus buyers strictly

prefer b(0, s̃) + I to x(I, T 0, c, s̃) if bqs(q, s) > 0. To induce buyers to accept the two-part

pricing contract, the seller has to cut the fixed fee below T 0 to T (c). Since p∗ > c, we have

T ∗ = T (p∗) < T (c) < T 0. On the other hand, if bqs(q, s) < 0, risk-averse buyers strictly

prefer x(I, T 0, c, s̃) to b(0, s̃) + I . The seller as such raises the fixed fee above T 0 to T (c) to

extract more rent from buyers. Since p∗ < c, we have T ∗ = T (p∗) > T (c) > T 0.22

4.1. Risk Aversion

Proposition 3 shows the global effect of imposing risk aversion onto buyers on the optimal

two-part pricing contract, (T ∗, p∗), i.e., (T ∗, p∗) is compared with the optimal one under

risk neutrality, (T 0, c). A related issue of interest is to study the marginal effect of increased

risk aversion of buyers on (T ∗, p∗). To this end, we follow Diamond and Stiglitz (1974) to

work with a differentiable family of utility functions, u(x, α), where α is a one sided index

of risk aversion. Given this notation, Diamond and Stiglitz (1974) show that an increase

in α represents an increase in risk aversion if, and only if, the coefficient of absolute risk

22Png and Wang (2010) show that T (c) < (>) T (p∗) = T∗ if bqs(q, s) > (<) 0. However, they do not
compare T 0 with either T (c) or T∗. Proposition 3 as such fills this gap.
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aversion (Arrow, 1965; Pratt, 1964), −uxx(x, α)/ux(x, α), satisfies that

∂

∂α

[

−
uxx(x, α)

ux(x, α)

]

=
uxx(x, α)uxα(x, α)− ux(x, α)uxxα(x, α)

ux(x, α)2
> 0, (22)

i.e., an increase in α increases the Arrow-Pratt measure of absolute risk aversion for all

x ≥ 0.

We state the binding participation constraint of buyers as

E

{

u{x[I, T (p, α), p, s̃], α}

}

= E{u[b(0, s̃) + I, α]}, (23)

which defines the fixed fee, T (p, α), as a function of the unit price, p, and the index of risk

aversion, α. The first-order condition, Eq. (8), becomes

(p∗ − c)E[qp(p
∗, s̃)] + E[q(p∗, s̃)] + T ′(p∗, α) = 0. (24)

Totally differentiating T ∗ = T (p∗, α) with respect to α yields

dT ∗

dα
= Tα(p∗, α) + Tp(p

∗, α)×
dp∗

dα
, (25)

where we differentiate Eq. (23) with respect to p and α separately, and evaluate the resulting

derivatives at p = p∗ to yield

Tp(p
∗, α) = −

E{ux[x(I, T ∗, p∗, s̃), α]q(p∗, s̃)}

E{ux[x(I, T ∗, p∗, s̃), α]}
< 0, (26)

and

Tα(p∗, α) =
E{uα[x(I, T ∗, p∗, s̃), α]} − E{uα[b(0, s̃) + I, α]}

E{ux[x(I, T ∗, p∗, s̃), α]}
. (27)

The first term on the right-hand side of Eq. (25) is the direct effect of increased risk aversion

on the optimal fixed fee, T ∗. The second term on the right-hand side of Eq. (25) captures

the indirect effect of increased risk aversion on T ∗ via its effect on the optimal unit price,

p∗. Eq. (26) implies that the indirect effect has the opposite sign to that of dp∗/dα.

Totally differentiating Eq. (24) with respect to α yields

dp∗

dα
= −

Tpα(p∗, α)

Tpp(p∗, α) + 2E[qp(p∗, s̃)] + (p∗ − c)E[qpp(p∗, s̃)]
, (28)
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where we differentiate Eq. (23) twice with respect to p and α, and evaluate the resulting

derivative at p = p∗ to yield

Tpα(p∗, α) = −
E{uxα[x(I, T ∗, p∗, s̃), α][Tp(p

∗, α) + q(p∗, s̃)]}

E{ux[x(I, T ∗, p∗, s̃), α]}

+Tα(p∗, α)×
E{uxx[x(I, T ∗, p∗, s̃), α][Tp(p

∗, α) + q(p∗, s̃)]}

E{ux[x(I, T ∗, p∗, s̃), α]}
. (29)

It follows from the second-order condition (9) and Eq. (28) that the sign of dp∗/dα is the

same as that of Tpα(p∗, α). Inspection of Eqs. (28) and (29) reveals that there are two

effects that jointly determine how increased risk aversion influences the optimal unit price,

p∗. The first term on the right-hand side of Eq. (29) captures the pure effect of increased

risk aversion on p∗. The second term on the right-hand side of Eq. (29) captures the wealth

effect that arises from the direct effect of increased risk aversion on the optimal fixed fee,

T ∗. Specifically, if Tα(p∗, α) > (<) 0, buyers’ wealth is reduced (increased) by this amount

for all s ∈ [s, s] as they become more risk averse, thereby giving rise to the wealth effect.23

The literature on risk aversion is completely silent about how increased risk aversion

affects marginal utility, i.e., the signs of uα(x, α), uxα(x, α), and uxxα(x, α). Thus, there is

no acceptable guidance that we can follow to determine the sign of Tα(p∗, α), except in the

special case that buyers’ preferences exhibit constant absolute risk aversion (CARA), i.e.,

−uxx(x, α)/ux(x, α) = α for all x ≥ 0, where α > 0 is the constant coefficient of absolute

risk aversion. Note that this is also the case considered by Png and Wang (2010) when they

examine how increased risk aversion of buyers affects the optimal two-part-pricing contract,

(T ∗, p∗). Under CARA, we have ux(x, α) = −αuxx(x, α). It then follows from Eq. (26) that

the second term on the right-hand side of Eq. (29) vanishes. This is the well-known result

that CARA induces no wealth effect. Thus, dp∗/dα is solely determined by the pure effect

of increased risk aversion. The following proposition shows how an increase in buyers’ risk

aversion affects the optimal two-part pricing contract, (T ∗, p∗), under CARA.

Proposition 4. Given that buyers have the ex-post utility function, u[b(q, s) + m], sat-

isfying bqs(q, s) > (<) 0, and that u(x) exhibits constant absolute risk aversion, the profit-

maximizing seller raises (lowers) the optimal unit price, p∗, and lowers (raises) the opti-

mal fixed fee, T ∗, as the constant coefficient of absolute risk aversion, α, increases, i.e.,

dp∗/dα > (<) 0 and dT ∗/dα < (>) 0.

23In standard decision making problems, increased risk aversion seldom creates any wealth effect. In our
context, the wealth effect is driven by the binding participation constraint, Eq. (23), which is evidently
affected by the index of risk aversion, α. See also Wong (1997).
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When buyers’ preferences exhibit CARA, Png and Wang (2010) derive the same compar-

ative static results regarding the optimal unit price, p∗. Ignoring the direct effect, Tα(p∗, α),

Png and Wang (2010) conclude that the effect of an increase in buyers’ risk aversion on the

optimal fixed fee, T ∗, is governed solely by the indirect effect, Tp(p
∗, α)× dp∗/dα. Indeed,

we show in Proposition 4 that the direct effect reinforces the indirect effect under CARA,

thereby making the overall effect of increased risk aversion on the optimal fixed fee, T ∗,

unambiguous under CARA.

4.2. Competition

To study how competition affects the optimal two-part pricing contract, (T ∗, p∗), we model

the determination of (T ∗, p∗) by the Nash bargaining solution. Let η be the bargaining

power of the seller, and 1 − η be that of buyers, where η ∈ [0, 1]. The Nash bargaining

solution is given by

max
T,p

{

T + (p− c)E[q(p, s̃)]

}η{

E{u[x(I, T, p, s̃)]} − E{u[b(0, s̃) + I ]}

}1−η

, (30)

since buyers’ reservation utility would be E{u[b(0, s̃) + I ]} and the seller’s profit would be

zero should no agreement be reached. When η = 1, the seller has all the bargaining power

and, thereby, is a monopoly. This extreme case has been thoroughly analyzed above (see

also Png and Wang, 2010). When η = 0, the seller has no bargaining power and, thereby,

is perfectly competitive. In this extreme case, Png and Wang (2010) show that the optimal

unit price is above or below the constant marginal cost depending on whether buyers’

total and marginal benefits are positively or negatively correlated, respectively, which are

qualitatively the same as those when η = 1. The seller makes zero expected profit so

that the optimal fixed fee is set to exactly offset the expected operating profit. In general

when η ∈ (0, 1), the seller possesses some, but not all, bargaining power and, thereby, is

imperfectly competitive. We hereafter interpret a lower value of η as a greater extent of

competition confronted by the seller.

The first-order conditions for program (30) are given by24

η

{

E{u[x(I, T ∗, p∗, s̃)]} − E{u[b(0, s̃) + I ]}

}

−(1− η){T ∗ + (p∗ − c)E[q(p∗, s̃)]}E{u′[x(I, T ∗, p∗, s̃)]} = 0, (31)

24The second-order conditions for program (30) are assumed to hold.
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and

η

{

E{u[x(I, T ∗, p∗, s̃)]} − E{u[b(0, s̃) + I ]}

}

{E[q(p∗, s̃)] + (p∗ − c)E[qp(p
∗, s̃)]}

−(1− η){T ∗ + (p∗ − c)E[q(p∗, s̃)]}E{u′[x(I, T ∗, p∗, s̃)]q(p∗, s̃)} = 0. (32)

Multiplying E{u′[x(I, T ∗, p∗, s̃)]q(p∗, s̃)}/E{u′[x(I, T ∗, p∗, s̃)]} to Eq. (31) and subtracting

the resulting equation from Eq. (32) yields

η

{

E{u[x(I, T ∗, p∗, s̃)]} − E{u[b(0, s̃) + I ]}

}

×

{

E[q(p∗, s̃)] + (p∗ − c)E[qp(p
∗, s̃)]−

E{u′[x(I, T ∗, p∗, s̃)]q(p∗, s̃)}

E{u′[x(I, T ∗, p∗, s̃)]}

}

= 0. (33)

If η ∈ (0, 1), Eq. (33) reduces to

E[q(p∗, s̃)] + (p∗ − c)E[qp(p
∗, s̃)] =

E{u′[x(I, T ∗, p∗, s̃)]q(p∗, s̃)}

E{u′[x(I, T ∗, p∗, s̃)]}
. (34)

In the two extreme cases that η = 0 and η = 1, we know from Png and Wang (2010)

that Eq. (34) remains to be the optimality condition. Hence, the results of Proposition 3

regarding the optimal unit price, p∗, apply to all η ∈ [0, 1].

As a benchmark, suppose that buyers are risk neutral so that u(x) = x. It follows

from Eq. (34) with u′(x) = 1 that p∗ = c. The optimal fixed fee, denoted by T 0, is then

determined by Eq. (31) with u(x) = x and p∗ = c:

η{E[x(I, T 0, c, s̃)]− E[b(0, s̃) + I ]} − (1 − η)T 0 = 0. (35)

Substituting Eq. (18) into Eq. (35) and solving for T 0 yields

T 0 = η

{

E{b[q(c, s̃), s̃]} − E[b(0, s̃)]− cE[q(c, s̃)]

}

≥ 0, (36)

where the equality holds when η = 0. Inspection of the optimal two-part pricing contract,

(T 0, c), under risk neutrality reveals that introducing competition to the seller, i.e., setting

η < 1, renders buyers to enjoy a lower fixed fee, but has no effect on the optimal unit price.

To see why the optimal unit price is neutral to competition, we use Eqs. (12) and (18) to

write the expected joint surplus of buyers and the seller as

S(T, p) = E[x(I, T, p, s̃)] − E[b(0, s̃) + I ] + T + (p− c)E[q(p, s̃)]
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= E{b[q(p, s̃), s̃]} − E[b(0, s̃)] − cE[q(p, s̃)], (37)

which is maximized at p = c. Hence, Eq. (37) implies that the maximum expected joint

surplus is given by SB = S(T, c) = E{b[q(c, s̃), s̃]} − E[b(0, s̃)] − cE[q(c, s̃)]. The fixed fee,

T 0, is a pure transfer of this surplus, SB, between buyers and the seller. According to their

relative bargaining power, the seller receives ηSB and buyers receive (1−η)SB, as is evident

from Eqs. (35) and (36).

We characterize the optimal two-part pricing contract, (T ∗, p∗), of the Nash bargaining

solution, which solves Eqs. (31) and (34) simultaneously, in the following proposition.25

Proposition 5. Given that buyers have the ex-post utility function, u[b(q, s)+m], satisfying

bqs(q, s) > (<) 0, the Nash bargaining solution is the one at which the optimal unit price,

p∗, is set higher (lower) than the constant marginal cost, c, and the optimal fixed fee, T ∗,

is set lower (higher) than the risk-neutral counterpart, T 0 ≥ 0.

The intuition for Proposition 5 is similar to that for Proposition 3 and thus is omitted.

An immediate implication of Proposition 5 is that imposing competition onto the seller does

not seem to change the optimal two-part pricing contract in a qualitative manner. Indeed,

consider the case that buyers’ preferences exhibit constant absolute risk aversion (CARA)

so that the utility function, u(x), must take on the exponential form. Without any loss

of generality, let u(x) = −e−αx, where α > 0 is the constant coefficient of absolute risk

aversion. In this case, Eq. (34) reduces to

E[q(p∗, s̃)] + (p∗ − c)E[qp(p
∗, s̃)] =

E{e−α{b[q(p∗,s̃),s̃]−p∗q(p∗,s̃)}q(p∗, s̃)}

E{e−α{b[q(p∗,s̃),s̃]−p∗q(p∗,s̃)}}
. (38)

Inspection of Eq. (38) reveals that the optimal unit price, p∗, does not depend on the extent

of competition, η, confronted by the seller in the case of CARA. When u(x) = −e−αx, using

the fact that dp∗/dη = 0, we differentiate Eq. (31) with respect to η to yield

dT ∗

dη
=

T ∗ + (p∗ − c)E[q(p∗, s̃)]

η + αη(1− η){T ∗ + (p∗ − c)E[q(p∗, s̃)]}
> 0, (39)

for all η ∈ (0, 1). Hence, Eq. (39) implies that as competition becomes lax, the seller with

greater bargaining power is able to charge a higher fixed fee under CARA. These results

are qualitatively the same as those under risk neutrality.

25If bqs(q, s) > 0, prudence, i.e., u′′′(x) > 0, is called for to ensure that T∗ < T 0. As convincingly
argued by Kimball (1990, 1993), prudence is a reasonable behavioral assumption for decision making under
uncertainty. See also Eeckhoudt et al. (2007) for extending the concepts of prudence to multivariate utility
functions.
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5. Conclusion

In this paper, we re-examine the model of Hayes (1987) wherein a risk-neutral, profit-

maximizing monopoly (the seller) sells a good or service to buyers via a two-part pricing

contact. Demand uncertainty is modeled by a state variable that affects buyers’ ex-post

demand for the good. Prior to knowing the realization of the state variable, buyers have

to decide whether to subscribe to the two-part pricing contract offered by the seller or

not. When buyers are risk neutral, we show that marginal-cost pricing is not only profit-

maximizing but also socially efficient. When buyers are risk averse, demand uncertainty

calls for the insurance need of buyers, which induces the seller to deviate from marginal-

cost pricing. We show that the optimal unit price is higher or lower than the constant

marginal cost, depending on the nature of the good (normal or inferior) and on the signs of

cross-derivatives of buyers’ multivariate utility function.

Following Png and Wang (2010) to employ a quasi-linear specification that reduces the

general multivariate utility function to a special univariate utility function, we show that

the seller optimally raises (lowers) the unit price and lowers (raises) the fixed fee from their

risk-neutral counterparts if buyers’ total and marginal benefits are positively (negatively)

correlated, which are consistent with the results of the general model of Hayes (1987).

Confined to buyers’ preferences that exhibit constant absolute risk aversion (CARA), we

show that the marginal effect of increased risk aversion of buyers on the optimal two-part

pricing contract inherits the global effect of risk aversion. Finally, we introduce competition

to the seller in a reduced form by using the Nash bargaining solution to determine the

optimal two-part pricing contract. We show that imposing competition onto the seller by

means of the Nash bargaining solution does not qualitatively alter the optimal two-part

pricing contract.

Appendix A

Proof of Proposition 1. Since Um(q∗, m∗, s) = 1 for all s ∈ [s, s], Eq. (10) reduces

to

(p∗ − c){E[qp(I, T ∗, p∗, s̃)]− E[qT (I, T ∗, p∗, s̃)]E(q̃∗)} = 0. (A.1)

Differentiating Eq. (1) with respect to T and rearranging terms yields

qT (I, T, p, s) = −
1

∆
[pUmm(q◦, m◦, s) − Uqm(q◦, m◦, s)]. (A.2)
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Differentiating Eq. (1) with respect to p and rearranging terms yields

qp(I, T, p, s) = −
1

∆
{[pUmm(q◦, m◦, s)− Uqm(q◦, m◦, s)]q◦ − Um(q◦, m◦, s)}

=
1

∆
+ qT (I, T, p, s)q◦, (A.3)

where the second equality follows from Eq. (A.2) and the fact that Um(q◦, m◦, s) = 1.

Substituting Eqs. (A.2) and (A.3) with T = T ∗ and p = p∗ into Eq. (A.1) yields

(p∗ − c)

{

E

(

1

∆̃

)

+ Cov[qT (I, T ∗, p∗, s̃), q̃∗]

}

= 0. (A.4)

The expression inside the curly brackets on the left-hand side of Eq. (A.4) vanishes only

in very special cases with measure zero. Hence, Eq. (A.4) implies that p∗ = c. From

Eq. (14), p∗ = c is also the optimal unit price that maximizes the expected joint surplus,

S(T, p), in Eq. (12). The optimal fixed fee, T 0, is then determined by solving Eq. (5) with

p = c. Hence, the seller’s maximum expected profit is equal to T 0 = S(T 0, c) = SB, thereby

rendering the optimality of the two-part pricing contract, (T 0, c).

Proof of Proposition 2. Differentiating Eq. (1) with respect to s and rearranging

terms yields

qs(I, T, p, s) = −
1

∆
[Uqs(q

◦, m◦, s) − pUms(q
◦, m◦, s)]

= −
1

∆

[

Um(q◦, m◦, s)Uqs(q
◦, m◦, s) − Uq(q

◦, m◦, s)Ums(q
◦, m◦, s)

Um(q◦, m◦, s)

]

, (A.5)

where the second equality follows from Eq. (1), and ∆ < 0 from the second-order condition

(2). It follows from Eq. (A.5) that qs(I, T, p, s) > (<) 0 given condition (16). Differentiating

Um(q◦, m◦, s) with respect to s yields

∂

∂s
Um(q◦, m◦, s)

= [Uqm(q◦, m◦, s)− pUmm(q◦, m◦, s)]qs(I, T, p, s) + Ums(q
◦, m◦, s). (A.6)

Differentiating Eq. (1) with respect to I and rearranging terms yields

qI(I, T, p, s) = −
1

∆
[Uqm(q◦, m◦, s)− pUmm(q◦, m◦, s)]. (A.7)
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According to Eq. (A.7), the good is a normal (an inferior) good, i.e., qI(I, T, p, s) > (<) 0,

if Uqm(q◦, m◦, s)− pUmm(q◦, m◦, s) > (<) 0.

Condition (16) implies that qs(I, T, p, s) > (<) 0. If the good is a normal good and

Ums(q, m, s) ≥ (≤) 0 , it then follows from Eq. (A.6) that Um(q◦, m◦, s) is an increasing

(a decreasing) function of s. Expression (15) is, therefore, negative (positive) so that p∗ <

(>) c. On the other hand, if the good is an inferior good and Ums(q, m, s) ≤ (≥) 0, it

then follows from Eq. (A.6) that Um(q◦, m◦, s) is a decreasing (an increasing) function

of s. Expression (15) is, therefore, positive (negative) so that p∗ > (<) c. Finally, if

the optimal consumption of the good has no wealth effect, i.e., qI(I, T, p, s) = 0, it then

follows from Eq. (A.6) that Um(q◦, m◦, s) is an increasing (a decreasing) function of s if

Ums(q, m, s) < (>) 0. Given condition (16), expression (15) is negative (positive) so that

p∗ < (>) c if Ums(q, m, s) > 0, and expression (15) is positive (negative) so that p∗ > (<) c

if Ums(q, m, s) < 0

Proof of Proposition 3. From Proposition 2, we have p∗ > (<) c if bqs(q, s) > (<) 0.

Suppose that T ∗ ≤ 0. Then, x(I, T ∗, p∗, s) ≥ b[q(p∗, s), s] + I − p∗q(p∗, s) > b(0, s) + I for

all s ∈ [s, s], and thus E{u[x(I, T ∗, p∗, s̃)]} > E{u[b(0, s̃) + I ]}, a contradiction to Eq. (19).

Hence, we have T ∗ > 0. It remains to show that T ∗ < (>) T 0 if bqs(q, s) > (<) 0.

Let T n be the fixed fee that solves the following equation:

E[x(I, T n, p∗, s̃)] = E[b(0, s̃) + I ], (A.8)

where p∗ is the optimal unit price. Substituting Eq. (18) into Eq. (A.8) and solving for T n

yields

T n = E{b[q(p∗, s̃), s̃]} − E[b(0, s̃)] − p∗E[q(p∗, s̃)] > 0. (A.9)

We want to show that E{u[x(I, T n, p∗, s̃)]} < (>) E{u[b(0, s̃)+I ]} if bqs(q, s) > (<) 0, which

is done by showing that the distribution of x(I, T n, p∗, s̃) is a mean-preserving-spread of the

distribution of b(0, s̃) + I in the sense of Rothschild and Stiglitz (1970) if bqs(q, s) > 0, and

that the converse holds if bqs(q, s) < 0.

Let Φ(x) be the cumulative distribution function of x̃ = x(I, T n, p∗, s̃). Since ∂x/∂s =

bs[q(p
∗, s), s] > 0, the inverse of x = x(I, T n, p∗, s) exists and is denoted by s = f(x).

Using the change-of-variable technique (see, e.g., Hogg and Craig, 1989), x̃ has support

[x(I, T n, p∗, s), x(I, T n, p∗, s)] and Φ(x) = G[f(x)]. We can express E{u[x(I, T n, p∗, s̃)]} in

terms of Φ(x):

E{u[x(I, T n, p∗, s̃)]} =

∫ x(I,T n,p∗,s)

x(I,T n,p∗,s)
u(x) dΦ(x). (A.10)
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Likewise, let Ψ(z) be the cumulative distribution function of z̃ = b(0, s̃)+ I . Since ∂z/∂s =

bs(0, s) > 0, the inverse of z = b(0, s)+I exists and is denoted by s = g(z). Using the change-

of-variable technique (see, e.g., Hogg and Craig, 1989), z̃ has support [b(0, s)+I, b(0, s)+I ]

and Ψ(z) = G[g(z)]. We can express E{u[b(0, s̃) + I ]} in terms of Ψ(z):

E{u[b(0, s̃) + I ]} =

∫ b(0,s)+I

b(0,s)+I
u(z) dΨ(z). (A.11)

Note that ∂(x− z)/∂s = bs[q(p
∗, s), s]− bs(0, s). If bqs(q, s) > 0, we have ∂(x − z)/∂s > 0.

It then follows from Eq. (A.8) that b(0, s) + I > x(I, T n, p∗, s), b(0, s) + I < x(I, T n, p∗, s),

and that there exists a unique point, so ∈ (s, s), such that x > (<) z for all s > (<) so and

x = z = xo ∈ (b(0, s) + I, b(0, s) + I) at s = so. These observations imply that f(x) > g(x)

for all x ∈ [b(0, s) + I, xo) and f(x) < g(x) for all x ∈ (xo, b(0, s) + I ]. On the other hand,

if bqs(q, s) < 0, we have ∂(x − z)/∂s < 0. It then follows from Eq. (A.8) that b(0, s) + I <

x(I, T n, p∗, s), b(0, s) + I > x(I, T n, p∗, s), and that there exists a unique point, s� ∈ (s, s),

such that x > (<) z for all s < (>) s� and x = z = x� ∈ (x(I, T n, p∗, s), x(I, T n, p∗, s))

at s = s�. These observations imply that f(x) < g(x) for all x ∈ [x(I, T n, p∗, s), x�) and

f(x) > g(x) for all x ∈ (x�, x(I, T n, p∗, s)].

Consider first the case that bqs(q, s) > 0. Subtracting Eq. (A.10) from Eq. (A.11) yields

E{u[x(I, T n, p∗, s̃)]} − E{u[b(0, s̃) + I ]} =

∫ x(I,T n,p∗,s)

x(I,T n,p∗,s)
u(x) d[Φ(x)− Ψ(x)], (A.12)

since dΨ(x) = 0 for all x ∈ [x(I, T n, p∗, s), b(0, s)+I)∪ (b(0, s)+I, x(I, T n, p∗, s)]. Consider

the following function:

D(x) =

∫ x

x(I,T n,p∗,s)
[Φ(y)− Ψ(y)] dy, (A.13)

for all x ∈ [x(I, T n, p∗, s), x(I, T n, p∗, s)]. Using Leibniz’s rule, we differentiate Eq. (A.13)

with respect to x to yield

D′(x) =



























Φ(x) if x ∈ [x(I, T n, p∗, s), b(0, s) + I),

Φ(x)− Ψ(x) if x ∈ [b(0, s) + I, b(0, s) + I ],

Φ(x)− 1 if x ∈ (b(0, s) + I, x(I, T n, p∗, s)].

(A.14)

For all x ∈ [b(0, s)+I, xo), we have f(x) > g(x) so that Φ(x)−Ψ(x) = G[f(x)]−G[g(x)] > 0.

On the other hand, for all x ∈ (xo, b(0, s) + I ], we have f(x) < g(x) so that Φ(x)− Ψ(x) =

G[f(x)]−G[g(x)] < 0. It then follows from Eq. (A.14) that D(x) is strictly increasing for all



optimal two-part pricing under demand uncertainty 23

x ∈ [x(I, T n, p∗, s), xo) and strictly decreasing for all x ∈ (xo, x(I, T n, p∗, s)]. Furthermore,

we have

D[x(I, T n, p∗, s)] =

∫ x(I,T n,p∗,s)

x(I,T n,p∗,s)
[Φ(x)− Ψ(x)] dx

=

∫ b(0,s)+I

b(0,s)+I
x dΨ(x) −

∫ x(I,T n,p∗,s)

x(I,T n,p∗,s)
x dΦ(x), (A.15)

which vanishes from Eq. (A.8). Hence, it follows from Eqs. (A.14) and (A.15) that D(x) > 0

for all x ∈ (x(I, T n, p∗, s), x(I, T n, p∗, s)). In other words, Φ(x) is a mean-preserving-spread

of Ψ(x) in the sense of Rothschild and Stiglitz (1970). Integrating the right-hand side of

Eq. (A.12) by parts twice yields

E{u[x(I, T n, p∗, s̃)]} − E{u[b(0, s̃) + I ]} =

∫ x(I,T n,p∗,s)

x(I,T n,p∗,s)
u′′(x)H(x) dx < 0, (A.16)

since u′′(x) < 0 (see also Rothschild and Stiglitz, 1971).

Consider now the case that bqs(q, s) < 0. Subtracting Eq. (A.11) from Eq. (A.10) yields

E{u[b(0, s̃) + I ]} − E{u[x(I, T n, p∗, s̃)]} =

∫ b(0,s)+I

b(0,s)+I
u(x) d[Ψ(x) − Φ(x)], (A.17)

since dΦ(x) = 0 for all x ∈ [b(0, s)+I, x(I, T n, p∗, s))∪ (x(I, T n, p∗, s), b(0, s)+I ]. Consider

the following function:

D̂(x) =

∫ x

b(0,s)+I
[Ψ(y) − Φ(y)] dy, (A.18)

for all x ∈ [b(0, s) + I, b(0, s) + I ]. Using Leibniz’s rule, we differentiate Eq. (A.18) with

respect to x to yield

D̂′(x) =



























Ψ(x) if x ∈ [b(0, s) + I, x(I, T n, p∗, s)),

Ψ(x) − Φ(x) if x ∈ [x(I, T n, p∗, s), x(I, Tn, p∗, s)],

Ψ(x) − 1 if x ∈ (x(I, T n, p∗, s), b(0, s) + I ].

(A.19)

For all x ∈ [x(I, T n, p∗, s), xo), we have g(x) > f(x) so that Ψ(x) − Φ(x) = G[g(x)] −

G[f(x)] > 0. For all x ∈ (xo, x(I, T n, p∗, s)], we have g(x) < f(x) so that Ψ(x) − Φ(x) =

G[g(x)]− G[f(x)] < 0. It then follows from Eq. (A.19) that D̂(x) is strictly increasing for
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all x ∈ [b(0, s) + I, x�) and strictly decreasing for all x ∈ (x�, b(0, s) + I ]. Furthermore, we

have

D̂[b(0, s) + I ] =

∫ b(0,s)+I

b(0,s)+I
[Ψ(x)− Φ(x)] dx

=

∫ x(I,T n,p∗,s)

x(I,T n,p∗,s)
x dΦ(x)−

∫ b(0,s)+I

b(0,s)+I
x dΨ(x), (A.20)

which vanishes from Eq. (A.8). Hence, it follows from Eqs. (A.19) and (A.20) that D̂(x) > 0

for all x ∈ (b(0, s) + I, b(0, s) + I). In other words, Ψ(x) is a mean-preserving-spread of

Φ(x) in the sense of Rothschild and Stiglitz (1970). Integrating the right-hand side of Eq.

(A.17) by parts twice yields

E{u[b(0, s̃) + I ]} − E{u[x(I, T n, p∗, s̃)]} =

∫ b(0,s)+I

b(0,s)+I
u′′(x)Ĥ(x) dx < 0, (A.21)

since u′′(x) < 0 (see also Rothschild and Stiglitz, 1971).

If bqs(q, s) > (<) 0, we have

E{u[x(I, T n, p∗, s̃)]} < (>) E{u[b(0, s̃) + I ]} = E{u[x(I, T ∗, p∗, s̃)]}. (A.22)

Since ∂E{u[x(I, T, p∗, s̃)]}/∂T = −E{u′[x(I, T, p∗, s̃)]} < 0, it follows from Eq. (A.22) that

T ∗ < (>) T n if bqs(q, s) > (<) 0. Since

∂

∂p

{

E{b[q(p, s̃), s̃]} − pE[q(p, s̃)]

}

= −E[q(p, s̃)] < 0, (A.23)

and p∗ > (<) c if bqs(q, s) > (<) 0, Eqs. (21), (A.9), and (A.23) imply that T 0 > (<) T n if

bqs(q, s) > (<) 0. Hence, we conclude that T ∗ < (>) T 0 if bqs(q, s) > (<) 0.

Proof of Proposition 4. Define ŝ as the one at which q(p∗, ŝ) = −Tp(p
∗, α). Using

h(x) = −uxα(x, α)/ux(x, α) and Eq. (26), we can write

−E{uxα[x(I, T ∗, p∗, s̃), α][Tp(p
∗, α) + q(p∗, s̃)]}

= E

{

{h[x(I, T ∗, p∗, s̃)]− h[x(I, T ∗, p∗, ŝ)]}

×ux[x(I, T ∗, p∗, s̃), α][Tp(p
∗, α) + q(p∗, s̃)]

}

. (A.24)
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Note that

h′(x) =
uxx(x, α)uxα(x, α)− ux(x, α)uxxα(x, α)

ux(x, α)2
> 0, (A.25)

where the inequality follows from Eq. (22). Since bs(q, s) > 0, it follows from Eq.

(A.25) that ∂h[x(I, T, p, s)]/∂s = h′[x(I, T, p, s)]bs[q(p, s), s] > 0. Since qs(p, s) > (<) 0

if bqs(q, s) > (<) 0, the sign of h[x(I, T ∗, p∗, s̃)] − h[x(I, T ∗, p∗, ŝ)] must be the same

as (opposite to) that of Tp(p
∗, I) + q(p∗, s̃) if bqs(q, s) > (<) 0. Hence, the right-hand

side of Eq. (A.24) is positive (negative) if bqs(q, s) > (<) 0. Under CARA, we have

ux(x, α) = −αuxx(x, α). It then follows from Eq. (26) that the second term of Eq. (29)

vanishes, thereby implying that dp∗/dα > (<) 0 if bqs(q, s) > (<) 0.

Under CARA, we can write buyers’ utility function as u(x, α) = −αne−αx, where n ≥ 0

is a constant. Define the two-part pricing contract, (T a, pa), that solves the following system

of equations:

E[x(I, T a, pa, s̃)] = E[b(0, s̃) + I ], (A.26)

and

E{uα[x(I, T a, pa, s̃), α]} = E{uα[x(I, T ∗, p∗, s̃), α]}. (A.27)

Using similar arguments as in the proof of Proposition 3, it follows from Eq. (A.26) that the

distribution of x(I, T a, pa, s̃) is a mean-preserving-spread of the distribution of b(0, s̃) + I

in the sense of Rothschild and Stiglitz (1970) if bqs(q, s) > 0, and that the converse holds

if bqs(q, s) < 0. Since u(x, α) = −αne−αx, we have uxxα(x, α) = αn+1e−αx(αx − n − 2) < 0

for all x ≥ 0 if n is sufficiently large. In this case, we know from Rothschild and Stiglitz

(1971) that

E{uα[b(0, s̃) + I, α]} > (<) E{uα[x(I, T a, pa, s̃), α]}, (A.28)

if bqs(q, s) > (<) 0. It then follows from Eqs. (27), (A.27), and (A.28) that Tα(p∗, α) < (>) 0

if bqs(q, s) > (<) 0. Since dp∗/dα > (<) 0 if bqs(q, s) > (<) 0, it follows from Eq. (25) that

dT ∗/dα < (>) 0 if bqs(q, s) > (<) 0. Since von Neumann-Morgenstern utility functions

are unique up to affine transformations (see Varian, 1992), the optimal two-part pricing

contract, (T ∗, p∗), must be invariant to changes in n. Hence, the results on dT ∗/dα when

n is sufficiently large must remain valid for all n ≥ 0.

Proof of Proposition 5. Since buyers are risk averse, it follows from Eq. (34) that

p∗ > (<) c if bqs(q, s) > (<) 0 for all η ∈ [0, 1]. When η = 1, we know from Proposition 3
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that T ∗ < (>) T 0 if bqs(q, s) > (<) 0. When η = 0, we know from Png and Wang (2010)

that T ∗ = −(p∗ − c)E[q(p∗, s̃)] < (>) T 0 = 0 if bqs(q, s) > (<) 0. It remains to show that

T ∗ < (>) T 0 if bqs(q, s) > (<) 0 for all η ∈ (0, 1).

To characterize the optimal fixed fee, T ∗, for all η ∈ (0, 1), we denote T̂ (p) as the fixed

fee given by

T̂ (p) = η

{

E{b[q(p, s̃), s̃]} − E[b(0, s̃)]− pE[q(p, s̃)]

}

− (1− η)(p− c)E[q(p, s̃)]. (A.29)

It follows from Eq. (36) and (A.30) that T 0 = T̂ (c). Define the fixed fee, T̂ ∗ = T̂ (p∗). Since

∂{b[q(p, s), s]− pq(p, s)}/∂p = −q(p, s) < 0, we have

T 0 > η

{

E{b[q(p∗, s̃), s̃]} − E[b(0, s̃)]− p∗E[q(p, s̃)]

}

> η

{

E{b[q(p∗, s̃), s̃]} − E[b(0, s̃)]− p∗E[q(p, s̃)]

}

− (1 − η)(p∗ − c)E[q(p, s̃)]

= T̂ ∗, (A.30)

if p∗ > c. Differentiating Eq. (A.30) with respect to p yields

T̂ ′(p) = −E[q(p, s̃)]− (1− η)(p− c)E[qp(p, s̃)]. (A.31)

Since qp(p, s) = 1/bqq[q(p, s), s] < 0, Eq. (A.31) implies that T̂ ′(p) < 0 for all p ≤ c. Hence,

if p∗ < c, we have T 0 < T̂ ∗. Evaluating the left-hand side of Eq. (31) at T = T̂ ∗ yields

η

{

E{u[x(I, T̂ ∗, p∗, s̃)]} − E{u[b(0, s̃) + I ]}

}

−η{E[x(I, T̂ ∗, p∗, s̃)]− E[b(0, s̃) + I ]}E{u′[x(I, T̂ ∗, p∗, s̃)]}. (A.32)

If we can show that expression (A.32) is negative (positive) when bqs(q, s) > (<) 0, it then

follows from Eq. (31) and the second-order conditions for program (30) that T̂ ∗ > (<) T ∗.

If bqs(q, s) > (<) 0, we have p∗ > (<) c so that T 0 > (<) T̂ ∗. Hence, we conclude that

T ∗ < (>) T 0 if bqs(q, s) > (<) 0.

Consider first the case that bqs(q, s) > 0. Since u′′(x) < 0, we have

u[x(I, T̂ ∗, p∗, s)]− u[b(0, s) + I ]

x(I, T̂ ∗, p∗, s)− b(0, s)− I
> (<) u′[b(0, s) + I ], (A.33)
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if x(I, T̂ ∗, p∗, s) < (>) b(0, s) + I . Multiplying x(I, T̂ ∗, p∗, s) − b(0, s) − I to both sides of

Eq. (A.33) and taking expectations with respect to G(s) yields

E{u[x(I, T̂ ∗, p∗, s̃)]} − E{u[b(0, s̃) + I ]}

< E{u′[b(0, s̃) + I ][x(I, T̂ ∗, p∗, s̃) − b(0, s̃) − I ]}

= E{u′[b(0, s̃) + I ]}{E[x(I, T̂ ∗, p∗, s̃)]− E[b(0, s̃) + I ]}

+Cov{u′[b(0, s̃) + I ], x(I, T̂ ∗, p∗, s̃) − b(0, s̃)}. (A.34)

Note that ∂u′[b(0, s) + I ]/∂s = u′′[b(0, s) + I ]bs(0, s) < 0. Note also that ∂[x(I, T̂ ∗, p∗, s) −

b(0, s)]/∂s = bs[q(p
∗, s), s] − bs(0, s) > 0 since bqs(q, s) < 0. Thus, the covariance term

on the right-hand side of Eq. (A.34) is negative. It then follows from Eq. (A.34) that

expression (A.32) is less than

η{E[x(I, T̂ ∗, p∗, s̃)] − E[b(0, s̃) + I ]}

×

{

E{u′[b(0, s̃) + I ]} − E{u′[x(I, T̂ ∗, p∗, s̃)]}

}

. (A.35)

Define the two-part pricing contract, (T c, pc), that solves the following system of equations:

E[x(I, T c, pc, s̃)] = E[b(0, s̃) + I ], (A.36)

and

E{u′[x(I, T c, pc, s̃)]} = E{u′[x(I, T̂ ∗, p∗, s̃)]}. (A.37)

Using similar arguments as in the proof of Proposition 3, it follows from Eq. (A.36) that the

distribution of x(I, T c, pc, s̃) is a mean-preserving-spread of the distribution of b(0, s̃) + I

in the sense of Rothschild and Stiglitz (1970) since bqs(q, s) > 0. Given prudence, i.e.,

u′′′(x) > 0 for all x ≥ 0, it follows immediately from Rothschild and Stiglitz (1971) that

E{u′[b(0, s̃) + I ]} < E{u′[x(I, T c, pc, s̃)]} = E{u′[x(I, T̂ ∗, p∗, s̃)]}. (A.38)

where the equality follows from Eq. (A.37). It then follows from expression (A.35) and Eq.

(A.38) that expression (A.32) is unambiguously negative when bqs(q, s) > 0.
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We now consider the case that bqs(q, s) < 0. Since u′′(x) < 0, we have

u[x(I, T̂ ∗, p∗, s)]− u[b(0, s) + I ]

x(I, T̂ ∗, p∗, s)− b(0, s)− I
< (>) u′[x(I, T̂ ∗, p∗, s)], (A.39)

if x(I, T̂ ∗, p∗, s) < (>) b(0, s) + I . Multiplying x(I, T̂ ∗, p∗, s) − b(0, s) − I to both sides of

Eq. (A.39) and taking expectations with respect to G(s) yields

E{u[x(I, T̂ ∗, p∗, s̃)]} − E{u[b(0, s̃) + I ]}

> E{u′[x(I, T̂ ∗, p∗, s̃)][x(I, T̂ ∗, p∗, s̃) − b(0, s̃) − I ]}

= E{u′[x(I, T̂ ∗, p∗, s̃)]}{E[x(I, T̂ ∗, p∗, s̃)] − E[b(0, s̃) + I ]}

+Cov{u′[x(I, T̂ ∗, p∗, s̃)], x(I, T̂ ∗, p∗, s̃) − b(0, s̃)}. (A.40)

Note that ∂u′[x(I, T̂ ∗, p∗, s)]/∂s = u′′[x(I, T̂ ∗, p∗, s)]bs[q(p
∗, s), s] < 0. Note also that

∂[x(I, T̂ ∗, p∗, s) − b(0, s)]/∂s = bs[q(p
∗, s), s] − bs(0, s) < 0 if bqs(q, s) < 0. Thus, the

covariance term on the right-hand side of Eq. (A.40) is positive. It then follows from Eq.

(A.40) that expression (A.32) is unambiguously positive when bqs(q, s) < 0. This completes

our proof.
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Figure 1: Buyers’ optimal consumption bundles for difference two-part pricing

contracts and states. Panel A depicts the case wherein p∗ < c and T̂ (p∗) > T (c) given

that qs(I, T, p, s) > 0. Panel B depicts the case wherein p∗ > c and T̂ (p∗) < T (c) given that
qs(I, T, p, s) < 0.
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Figure 2: Buyers’ optimal consumption bundles for difference two-part pricing

contracts and states. Panel A depicts the case wherein p∗ > c and T̂ (p∗) < T (c) given

that qs(I, T, p, s) > 0. Panel B depicts the case wherein p∗ < c and T̂ (p∗) > T (c) given that
qs(I, T, p, s) < 0.


