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Abstract. In this paper we study generalizations of Poincaré series arising from quadratic forms,
which naturally occur as outputs of theta lifts. Integrating against them yields evaluations of higher
Green’s functions. For this we require a new regularized inner product, which is of independent
interest.

1. Introduction and statement of results

While investigating the Doi-Naganuma lift, Zagier [42] encountered interesting weight 2k cusp
forms for SL2(Z) (k ∈ N≥2, ` ∈ Z) for ` = δ > 0 defined by

fk,` :=
∑

A∈Q`/SL2(Z)

fk,`,A. (1.1)

Here Q` is the set of integral binary quadratic forms of discriminant ` ∈ Z and for A an SL2(Z)-
equivalence class of quadratic forms of discriminant `, we set (z ∈ H)

fA(z) = fk,`,A(z) := |`|
k
2

∑
Q∈A

Q(z, 1)−k.

Throughout we write δ > 0 for positive discriminants and let −D < 0 denote negative discriminants.
Kohnen and Zagier [32] showed, using a different normalization, that the even periods of fk,δ
are rational, and Kramer [30] proved that the fk,δ,A span the space of weight 2k cusp forms.
Furthermore, Kohnen and Zagier [31] used the functions fk,δ to construct a kernel function for the
Shimura and Shintani lifts. These may also be realized as theta lifts.

Roughly speaking, a theta lift is a map between modular objects in different spaces. One begins
with a theta kernel Θ(z, τ), which is modular in both variables. In our setting, both variables lie in
H and Θ(z, τ) has integral weight in z and a half-integral weight in τ . Given a function τ 7→ P (τ)
transforming with the same weight as Θ in the τ -variable, one may then define the theta lift of P
by taking the Petersson inner product 〈·, ·〉 between Θ and P :

Φ(Θ;P )(z) := 〈P,Θ(z, ·)〉 .
Niwa [34] wrote the Shimura and Shintani lifts as theta lifts by using a theta kernel corresponding

to an integral quadratic form of signature (2, 1), which was later extended by Oda [35] to signature
(2, n) for n ∈ N. These lifts fit into the general framework of the theta correspondence between
automorphic forms associated to two groups of a dual reductive pair [26]. Theta lifts have appeared
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in a variety of applications, including a relation of Katok and Sarnak [28] between central values of
L-functions and Fourier coefficients. Paralleling the results in [28], the realization of fk,δ as theta
lifts gave the non-negativity of twisted central L-values [31].

Natural inputs for theta lifts are Poincaré series. These are defined, in the simplest case, for a
translation-invariant function ϕ (in the case of absolute convergence) as∑

γ∈Γ∞\SL2(Z)

ϕ|κγ(τ),

where Γ∞ := {± ( 1 n
0 1 ) : n ∈ Z}, κ ∈ 1

2Z (throughout the paper we use κ for arbitrary weight

in 1
2Z and reserve k for restricted weights), and |κ denotes the usual slash operator. A natural

choice for ϕ is a term from the Fourier expansions of forms in the space of automorphic forms
in which one is interested. In this paper, we consider in particular half-integral weight modular
forms and harmonic Maass forms, which transform and grow like modular forms but instead of
being meromorphic they are annihilated by the weight κ hyperbolic Laplace operator (in the variable
z = x+ iy ∈ H), defined by

∆κ := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iκy

(
∂

∂x
+ i

∂

∂y

)
. (1.2)

We denote the Poincaré series constructed by choosing a particular function ϕ from the Fourier
expansions of these forms by Pk+ 1

2
,m and P 3

2
−k,m (see (2.23) and (2.24) for the explicit definitions).

This gives in particular four relevant cases: for positive weight one can average a cusp form coeffi-
cient or a coefficient that grows towards i∞, while in negative weight one can define two kinds of
Poincaré series, one that grows in the holomorphic part and one that grows in the non-holomorphic
part (see (2.15) for the decomposition).

We start with the case of positive weight and define (with τ = u+ iv ∈ H) the theta kernel

Θk(z, τ) := y−2kv
1
2

∑
D∈Z

∑
Q∈QD

Q(z, 1)ke−4πQ2
zve2πiDτ . (1.3)

Here, for Q = [a, b, c], we set

Qz := y−1
(
a|z|2 + bx+ c

)
. (1.4)

It is well-known that the function z 7→ Θk(−z, τ) is modular of weight 2k and τ 7→ Θk(z, τ) is
modular of weight k + 1

2 . Hence taking the inner product in either variable yields a lift between
integral and half-integral weights. For this, we define the following theta lift

Φk(f)(z) := Φ(Θk; f)(z).

Using as input positive weight cuspidal Poincaré series, one recovers the functions fk,δ:

fk,δ = Ck,δ · Φk

(
Pk+ 1

2
,δ

)
with Ck,δ an explicit constant. By the Petersson coefficient formula, the holomorphic projection
(recalled below) of the theta kernel Θk yields the generating function

Ωk(z, τ) :=
∑
δ>0

δ
k−1
2 fk,δ(z)e

2πiδτ .

Kohnen and Zagier [31] proved that z 7→ Ωk(z, τ) is a weight 2k cusp form and τ 7→ Ωk(z, τ) is
a weight k + 1

2 cusp form. By integrating in either variable, Ωk yields theta lifts from weight 2k

to k + 1
2 and from weight k + 1

2 to 2k; these lifts turn out to yield an alternative construction
of the well-known (first) Shintani [40] and Shimura [39] lifts. Hereby, the idea underlying the
holomorphic projection operator is simple. Suppose that f is a weight κ real-analytic modular
form with moderate growth at cusps. Then g 7→ 〈g, f〉 yields a linear functional on the space of
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weight κ cusp forms. Since the Petersson inner product is non-degenerate, this functional must be
given by 〈·, F 〉 for some weight κ cusp form F . This F is essentially the holomorphic projection of
f .

If one takes weakly holomorphic Poincaré series (i.e., Poincaré series which yield meromorphic
modular forms with poles only at the cusps) as inputs of the theta lifts, one obtains, instead of the
fk,δ’s, the analogous meromorphic modular forms fk,−D defined in (1.1). We note that some care
is needed if the inputs are no longer cusp forms. Although the naive definition of the inner product
usually diverges when taking weakly holomorphic modular forms one can extend its definition, and
define a regularized theta lift that is meaningful for more general inputs; we describe this in Section
3. To obtain the functions fk,−D as theta lifts, we use a regularization of Borcherds. The functions
fk,−D were first constructed by Bengoechea [3] in her thesis.

Theorem 1.1. We have

Φk

(
Pk+ 1

2
,−D

)
= fk,−D.

Remarks.

(1) The theta lift in Theorem 1.1 is a special case of a more general theta lift introduced by
Borcherds in Theorem 14.3 of [4]. We choose a Poincaré series as a distinguished input, while
Borcherds had more general inputs. Moreover, Borcherds unfolded against the theta function,
while we apply the unfolding method to the Poincaré series. As a result, the two approaches
yield different representations of the functions fk,−D.

(2) The theta lift Φk maps (parabolic) Poincaré series Pk+ 1
2
,` to other types of Poincaré series;

the functions fk,δ are sums of the hyperbolic Poincaré series which appeared in previous work
of Petersson [36] (see also [27]), while we see in (2.27) that the fk,−D are sums of the elliptic
Poincaré series defined by Petersson in [37]. This implies that they are elements of S2k, the
space of meromorphic cusp forms of weight 2k for SL2(Z), which are meromorphic modular
forms that decay like cusp forms towards i∞.

We turn now to the case of negative weight. We use the theta kernel (k ∈ N≥2)

Θ∗1−k(z, τ) := vk
∑
D∈Z

∑
Q∈QD

QzQ(z, 1)k−1e
− 4π|Q(z,1)|2v

y2 e−2πiDτ .

The function z 7→ Θ∗1−k(z, τ) is modular of weight 2− 2k, and τ 7→ Θ∗1−k(z, τ) is modular of weight
3
2 − k. We set

Φ∗1−k(f)(z) := Φ(Θ∗1−k; f)(−z) .
We then define negative-weight analogues of the functions fk,` (with ` ∈ Z), namely

F1−k,` :=
∑

A∈Q`/SL2(Z)

F1−k,`,A,

where

FA(z) = F1−k,`,A(z) :=
∑
Q∈A

P1−k,`,Q(z) (1.5)

with

P1−k,`,Q(z) :=
i(−1)k

2
|`|

1−k
2 sgn (Qz)Q (z, 1)k−1 β

(
`y2

|Q (z, 1)|2
; k − 1

2
,
1

2

)
. (1.6)

Here β (Z; a, b) denotes the incomplete β-function, which is defined for a, b ∈ C satisfying Re(a),

Re(b) > 0 by β (Z; a, b) :=
∫ Z

0 ta−1 (1− t)b−1 dt. Note that we can also write the incomplete
β-function in terms of the hypergeometric function 2F1 (see (2.13)).
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We recall some of the properties of these functions for ` = δ > 0. The F1−k,δ,A, with a different
normalization, were investigated by Kohnen and the first two authors in [7], and a variant of these
functions was studied by Hövel [25] for k = 1. It turns out that they are locally harmonic Maass
forms. Locally harmonic Maass forms allow jump singularities in the upper half-plane. These
functions and their higher-dimensional analogues also appeared as theta lifts in both physics and
mathematics – see the work of Angelantonj, Florakis, and Pioline [1] for the former and the work
of Viazovska and the first two authors [8] for the latter. Namely, in analogy to the positive weight
case, we have [8, 25]

F1−k,δ = C1−k,δ · Φ1−k

(
P 3

2
−k,δ

)
,

with C1−k,δ an explicit constant and P3/2−k,δ defined in (2.24). In addition to their relationship via
theta lifts, the functions FA are connected to the functions fA via the differential operators ξ2−2k

and D2k−1, where

ξκ := 2iyκ
∂

∂z
and D :=

1

2πi

∂

∂z
. (1.7)

Specifically, we have

ξ2−2k (FA) = C1,k,δ · fA, D2k−1 (FA) = C2,k,δ · fA,

where the Cj,k,δ are explicit constants.
It is unusual for a harmonic Maass form to map to a constant multiple of the same function

under ξ2−2k and D2k−1. However, given their uniform definition in (1.5), it is not a surprise to find
out that for discriminants −D < 0, the functions F1−k,−D,A have many properties similar to those
of F1−k,δ,A. As a difference between negative and positive discriminants, note that for negative
discriminants the functions have poles instead of jump singularities. We call functions that behave
like harmonic Maass forms away from singularities of this type polar harmonic Maass forms.

Theorem 1.2.

(1) We have

Φ∗1−k

(
P 3

2
−k,−D

)
= F1−k,−D.

(2) For A ∈ Q−D/SL2(Z), the functions FA are weight 2− 2k polar harmonic Maass forms whose
only singularities occur at τQ for Q ∈ A; here τQ ∈ H is the unique solution to Q(z, 1) = 0.
Furthermore, we have

ξ2−2k (FA) = fA, D2k−1 (FA) = −(2k − 2)!

(4π)2k−1
fA. (1.8)

Remarks.

(1) The difference in the singularities of F1−k,`,A for discriminants ` > 0 and ` < 0 comes from the
sign factor in (1.6). For ` > 0, Qz = 0 along a geodesic SQ, and the function “jumps” as one
crosses from one side of SQ to the other. For ` < 0, sgn(Qz) 6= 0 and sgn(Qz) is independent
of z; namely, sgn(Qz) = 1 for all z ∈ H if Q is positive-definite and sgn(Qz) = −1 for all z ∈ H
if Q is negative-definite.

(2) A key step in proving Theorem 1.2 (2) is to relate FA to the higher Green’s functions Gk
defined in Subsection 2.6 (see Corollary 5.2). These have appeared in a number of interesting
applications, and their evaluations at pairs of CM-points has been intensively studied. Values
of higher Green’s functions at CM-points are conjectured to be roughly logarithms of algebraic
numbers, and a number of cases are known by work of Mellit [33] and Viazovska [41].
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Let us now return to the positive weight cusp forms fk,δ,A. Integrating against them gives cycle
integrals. To be more precise, we have

〈f, fk,δ,A〉 = Ck,δ
∫

ΓQ0
\SQ0

f(z)Q0(z, 1)k−1dz,

where Ck,δ ∈ R is an explicit constant, Q0 ∈ A is arbitrary, SQ0 is an oriented geodesic joining the
two real roots of Q0, and ΓQ0 ⊂ SL2(R) is the stabilizer group of Q0. These cycle integrals then
occur as coefficients of the (first) Shintani lift. In this paper we take the Petersson inner product
of fA with other meromorphic cusp forms.

Since the classical inner product diverges, one needs to regularize it. In addition to their in-
herent interest, extensions of Petersson’s inner product yield applications to other areas, including
generalized Kac–Moody algebras [21] and the arithmetic of Shimura varieties [14]. Those applica-
tions used a regularization of Petersson [38], later rediscovered and generalized by Borcherds [4]
and Harvey–Moore [23]. However, Petersson’s inner product 〈f, f〉 for any (non-cuspidal) f ∈ S2k

always diverges (see Satz 1 of [38]), so one cannot use it to extend the classical inner product to
an inner product on any larger subspace. For the application in this paper, we introduce a new
regularized inner product, again denoted by 〈·, ·〉 and formally defined in (3.5) below, which extends
the domain of the inner product to include all meromorphic cusp forms.

Theorem 1.3. The regularized inner product 〈f, g〉 exists for all f, g ∈ S2k. It is Hermitian, and
it equals Petersson’s regularized inner product whenever his exists.

We next consider an application of the inner product to higher Green’s functions. To state the
formula we let ω% be the size of the stabilizer Γ% of % ∈ H with respect to the action of PSL2(Z).
We require the elliptic expansion of a meromorphic modular form f around % ∈ H, namely

f(z) = (z − %)−2k
∑

n�−∞
cf,%(n)X%(z)

n, with X%(z) :=
z − %
z − %

. (1.9)

Furthermore, set

bk,n :=
(−1)k(2k − 2)!

23k−2(k − 1)!

{
1
n! if n ≥ k − 1,

1
(2k−2−n)! if n < k − 1.

(1.10)

Throughout, we let

Rκ := 2i
∂

∂z
+
κ

y
(1.11)

be the Maass raising operator, and denote repeated raising by Rnκ := Rκ+2n−2 ◦ · · · ◦Rκ.

Theorem 1.4. If Q0 ∈ A ∈ Q−D/SL2(Z) and f ∈ S2k with poles in the SL2(Z)-orbits of z1, . . . , zr
with z` = x` + iy` 6= τQ for all Q ∈ A and ` ∈ {1, . . . , r}, then

〈f, fA〉 =
π

ωτQ0

r∑
`=1

1

ωz`

(∑
n≥k

bk,n−1y
−2k+n
` cf,z`(−n)Rn−k0 (Gk(z, τQ0))

+
k−1∑
n=1

bk,n−1y
−n
` cf,z`(−n)Rk−n0 (Gk(z, τQ0))

)
.

Particularly interesting is the following special case.

Corollary 1.5. For every Qj ∈ Aj ∈ Q−Dj/SL2(Z) (j = 1, 2) with A1 6= A2 we have

〈fA1 , fA2〉 = π bk,k−1
Gk(τQ1 , τQ2)

ωτQ1
ωτQ2

.
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Remarks.

(1) For arbitrary z1, z2 ∈ H, which are not necessarily CM-points, one may also realize Gk(z1, z2)
as an inner product. In order to obtain such a relation, one replaces fAj with the more general
functions Ψ2k,−k(·, zj), defined in (2.25) below, which have poles at z1, z2 ∈ H. Furthermore,
since Theorems 1.3 and 1.4 can be generalized to arbitrary congruence subgroups, similar rela-
tions can be established for the corresponding Green’s functions associated to these subgroups.

(2) Given the interest in Gk evaluated at CM-points, one may wonder what further implications
Corollary 1.5 may have. Possible future directions of study along these lines are discussed in
Section 7 below. The relation between higher Green’s functions and inner products in Corollary
1.5 leads one to search for connections with geometry. In the case k = 1, which is excluded here,
Gross and Zagier related the Green’s function evaluated at CM-points to the height pairing of
certain Heegner points on modular curves (see Proposition 2.22 in Section II of [22]). This has
been generalized to higher k by Zhang, who defined a global height pairing between CM-cycles
in certain Kuga–Sato varieties using arithmetic intersection theory, as developed by Gillet and
Soulé [19]. The archimedean part of this height pairing is then given by the values of higher
Green’s functions evaluated at CM-points (see Propositions 3.4.1 and 4.1.2 of [45]).

(3) Although we restrict ourselves in the introduction to the case z` 6= τQ in Theorem 1.4, and
correspondingly A1 6= A2 in Corollary 1.5, this is only done for convenience of notation. By
replacing the Green’s function with a regularized version, we obtain a more general version of
Theorem 1.4 in Theorem 6.2 below, and consequently an extension of Corollary 1.5.

The paper is organized as follows. In Section 2 we recall basic geometric facts and certain special
functions, and introduce the relevant modular objects. In Section 3 we study regularized inner
products and prove Theorem 1.3. In Section 4 we investigate theta lifts, proving Theorem 1.1 and
Theorem 1.2 (1). Theorem 1.2 (2) is established while studying the functions FA in Section 5. In
Section 6 we compute regularized inner products in order to prove Theorem 1.4 and Corollary 1.5.
We conclude the paper with a discussion of natural questions in Section 7.
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2. Preliminaries

2.1. CM-points and the hyperbolic distance. For a positive-definite Q = [a, b, c] ∈ Q−D (with
a > 0), we denote the associated CM-point by

τQ = uQ + ivQ, with uQ = − b

2a
and vQ =

√
D

2a
. (2.1)

We note that for z = x+ iy ∈ H, with XτQ defined in (1.9), we have

Q(z, 1) =

√
D

2vQ
(z − τQ)2XτQ(z). (2.2)

Moreover, for Q ∈ Q`, we often make use of the identity

y−2 |Q(z, 1)|2 = Q2
z + `, (2.3)
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with Qz given in (1.4). The quantity Qz naturally occurs when computing the hyperbolic distance
d(z, z) between z and z = x+ iy ∈ H, which is expressed through

cosh (d(z, z)) = 1 +
|z − z|2

2yy
(2.4)

(see p. 131 of [2]). In particular, when z is a CM-point τQ with Q ∈ Q−D, we have the equality

cosh (d (z, τQ)) =
Qz√
D
. (2.5)

The combination of (2.3) and (2.5) gives(
1− cosh(d(z, τQ))2

)−1
= − Dy2

|Q(z, 1)|2
. (2.6)

Finally, for z ∈ H (and fixed % ∈ H) we set

r%(z) := tanh

(
d(z, %)

2

)
= |X%(z)| .

Here the last equality follows from the half-argument formula

tanh

(
Z

2

)
=

√
cosh(Z)− 1

cosh(Z) + 1

combined with (2.4) and |z − z|2 + 4yy = |z − z|2. Using this half-argument formula once again,
equation (2.5) implies that

1− rτQ(z)2 =
2

cosh(d(z, τQ)) + 1
=

2
√
D

Qz +
√
D
. (2.7)

2.2. Properties of hypergeometric functions. In this subsection we recall relations between
the hypergeometric function and other functions, as well as its transformations that are required
for this paper.

For Z ∈ C with |Z| < 1 the hypergeometric function is defined by the series

2F1 (a, b; c;Z) :=
∑
n≥0

(a)n(b)n
n!(c)n

Zn, (2.8)

with parameters a, b, c ∈ C, c not a non-negative integer, and (a)n :=
∏n−1
j=0 (a + j). Outside the

disk |Z| < 1, the hypergeometric function is defined by analytic continuation. Using the symmetry
in (2.8), one directly sees that

2F1 (a, b; c;Z) = 2F1 (b, a; c;Z) . (2.9)

Furthermore, by 15.4.6 of [15] we have

2F1 (a, b; b;Z) = (1− Z)−a . (2.10)

We also require the following transformation law from 15.8.1 of [15], valid when 1− Z /∈ R−:

2F1 (a, b; c;Z) = (1− Z)−b 2F1

(
c− a, b; c; Z

Z − 1

)
. (2.11)

By 15.5.3 of [15] (with n = 1) we have

∂

∂Z
(Za 2F1 (a, b; c;Z)) = aZa−1

2F1 (a+ 1, b; c;Z) . (2.12)
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By 8.17.7 of [15] the hypergeometric function is related to the incomplete β-function via

β(Z; a, b) =
Za

a
2F1 (a, 1− b; a+ 1;Z) . (2.13)

Using 15.8.14 of [15] then implies that for 1− Z 6∈ R− we have

β(Z; 2k − 1, 1− k) = 22k−2i(−1)kβ

(
Z2

4(Z − 1)
; k − 1

2
,
1

2

)
. (2.14)

2.3. Polar harmonic Maass forms and their elliptic expansions. For γ =
(
a b
c d

)
∈ SL2(Z)

and f : H→ C, the weight κ ∈ 1
2Z slash-action is defined by

f |κγ(τ) := (cτ + d)−κf(γτ)

{
1 if κ ∈ Z,(
c
d

)
ε2κ
d if κ ∈ 1

2Z\Z and γ ∈ Γ0(4),

with the extended Legendre symbol ( ··) and

εd :=

{
1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4).

We assume throughout that N ∈ N is divisible by 4 if κ ∈ 1
2 + Z.

Definition. For N ∈ N, a weight κ ∈ 1
2Z polar harmonic Maass form on Γ0(N) is a real-analytic

function M : H → C that satisfies the following conditions, outside finitely many singularities in
Γ0(N)\(H ∪Q ∪ {i∞}):
(1) For all γ ∈ Γ0(N) we have M|κγ =M.
(2) We have ∆κ(M) = 0, with the hyperbolic Laplacian defined in (1.2).
(3) For every % ∈ H there exists n ∈ N such that (τ − %)nM(τ) is bounded for r%(τ) �M 1. We

say that M has a singularity of finite order at % if this condition is satisfied.
(4) The function M grows at most linear exponentially at the cusps.

If the only singularities of M lie at the cusps, then M is a harmonic Maass form.

For κ < 1, the Fourier expansion of a polar harmonic Maass form at i∞ has a natural splitting
of the shape

M(τ) =M+(τ) +M−(τ), (2.15)

where the holomorphic and non-holomorphic parts (at i∞) are defined by the following series, that
converge for v sufficiently large, with c±M(n) ∈ C:

M+(τ) :=
∑

n�−∞
c+
M(n)e2πinτ ,

M−(τ) := c−M(0)v1−κ +
∑

06=n�∞
c−M(n)Γ (1− κ,−4πnv) e2πinτ .

Here Γ(r, Z) :=
∫∞
Z tr−1e−tdt denotes the incomplete gamma function. Expansions of this type

also exist for κ ≥ 1, but the term in M− containing v1−κ is replaced with a logarithmic term for
κ = 1, and more care is needed for the terms containing an incomplete gamma function when both
parameters are negative. There are also similar expansions at the other cusps. One reason that
the splitting into holomorphic and non-holomorphic parts is natural is that the holomorphic part is
annihilated by the operator ξκ defined in (1.7). Both parts can have singularities; the singularities
in the holomorphic part are poles, while one can determine the kind of singularities in the non-
holomorphic part by noting that its image under ξκ is meromorphic. The terms in the expansion
which grow as v → ∞ are called the principal part of M (at i∞); namely, for κ < 1 these are
the terms in M+ with n < 0 and those terms in M− with n ≥ 0. The coefficients c−M are closely
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related to coefficients of meromorphic modular forms of weight 2− κ, following from the fact that
ifM is modular of weight κ, then ξκ(M) is modular of weight 2−κ. Thus ξκ maps weight κ polar
harmonic Maass forms to weight 2− κ meromorphic modular forms.

Solving the second-order differential equation coming from (1.2), one obtains an elliptic expansion
of polar harmonic Maass forms that parallels the expansion (1.9) for meromorphic cusp forms. The
resulting expansion is given in Proposition 2.2 of [6], which appears, as Pioline later pointed out,
as a special case of Theorem 1.1 of [18]. To describe it, under the restriction 0 ≤ Z < 1, a ∈ N,
and b ∈ Z, we set

β0 (Z; a, b) := β (Z; a, b)− Ca,b with Ca,b :=
∑

0≤j≤a−1
j 6=−b

(
a− 1

j

)
(−1)j

j + b
. (2.16)

Making the change of variables t 7→ 1 − t in the integral representation and then applying the
Binomial Theorem, we obtain

β0(Z; a, b) =
∑

0≤j≤a−1
j 6=−b

(
a− 1

j

)
(−1)j+1

j + b
(1− Z)j+b + δ1−a≤b≤0

(
a− 1

−b

)
(−1)b+1 log(1− Z). (2.17)

Here for a property S, δS = 1 if S is satisfied and δS = 0 otherwise.
For every % ∈ H, a polar harmonic Maass form M of weight 2 − 2k (or more generally any

function M that is annihilated by ∆2−2k and has a singularlity of finite order at %), there exist
c±M,%(n) ∈ C such that for r%(z)�% 1 one has

M(z) = (z − %)2k−2

( ∑
n�−∞

c+
M,%(n)X%(z)

n +
∑
n�∞

c−M,%(n)β0

(
1− r%(z)2; 2k − 1,−n

)
X%(z)

n

)
.

(2.18)
The meromorphic and the non-meromorphic parts of the elliptic expansion around % are

M+
% (z) := (z − %)2k−2

∑
n�−∞

c+
M,%(n)X%(z)

n,

M−% (z) := (z − %)2k−2
∑
n�∞

c−M,%(n)β0

(
1− r%(z)2; 2k − 1,−n

)
X%(z)

n.

We refer to the terms in (2.18) that grow as z → % as the principal part around % and denote them
by PM,%; the corresponding meromorphic and non-meromorphic parts of PM,% are

P+
M,%(z) := (z − %)2k−2

∑
n<0

c+
M,%(n)X%(z)

n,

P−
M,%(z) := (z − %)2k−2

∑
n≥0

c−M,%(n)β0

(
1− r%(z)2; 2k − 1,−n

)
X%(z)

n.

Remark. Note that the principal parts of the Fourier expansions around all cusps and the principal
parts of the elliptic expansions uniquely determine the form. Indeed, Proposition 3.5 of [11] implies
that harmonic Maass forms M without any singularities must satisfy ξ2−2k(M) = 0 and there are
no non-trivial negative-weight holomorphic modular forms.

2.4. Differential operators. Recall the raising operator defined in (1.11). If g has eigenvalue λ
and weight κ, then R`κ(g) (` ∈ N0) has weight κ+2` and eigenvalue λ+κ`+ `(`−1). The following
lemma may easily be verified by induction on `.
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Lemma 2.1. For ` ∈ N0 and g : H→ C satisfying ∆κ(g) = λg, we have

R`−κ−2`

(
y2`+κR`κ (g(z))

)
= yκ

∏̀
j=1

(
−λ− j(j + κ− 1)

)
g(z).

The next lemma rewrites the elliptic coefficients of a meromorphic function f in terms of the
raising operator and η := Im(%). Its proof may be found in Proposition 17 of [13].

Lemma 2.2. If f : H → C is a meromorphic function that is holomorphic in some neighborhood
of % ∈ H and κ ∈ Z, then for z in this neighborhood we have

f(z) = (2iη)κ(z − %)−κ
∑
n≥0

ηn

n!
Rnκ(f(%))X%(z)

n.

We also recall that raising and differentiation are related through Bol’s identity (k ∈ N)

D2k−1 = −(4π)1−2kR2k−1
2−2k. (2.19)

We note that the constant Ca,b in (2.16) is chosen so that the operator D2k−1 acts nicely on M−% .

Namely, most of the terms in M−% are annihilated by D2k−1. One can use this to conclude that

D2k−1 maps polar harmonic Maass forms of weight 2−2k to meromorphic modular forms of weight
2k. One can also easily show that ξ2−2k maps polar harmonic Maass forms of weight 2 − 2k to
meromorphic modular forms of weight 2k. This operator may also be written in terms of the raising
operator. More precisely, for every g : H→ C we have the equality

ξκ

(
y−κg(z)

)
= R−κ(g(z)). (2.20)

2.5. Poincaré series. In this section we review the Maass–Poincaré series (see Theorem 3.1 of
[18]) with singularities at the cusps, which are used as inputs of the theta lifts of Theorems 1.1 and
1.2 (1), and Petersson’s meromorphic Poincaré series [36, 37], which are closely connected to fA.

To construct the Maass–Poincaré series we define, for Z ∈ R\{0}, the expression

Mκ,s (Z) := |Z|−
κ
2 Mκ

2
sgn(Z), s− 1

2
(|Z|) ,

with Mµ,ν the usual M -Whittaker function. For µ, s ∈ C with Re (s± µ) > 0 and Z ∈ R+ we have

Mµ,s− 1
2
(Z) = Zse

Z
2

Γ(2s)

Γ (s+ µ) Γ (s− µ)

∫ 1

0
ts+µ−1(1− t)s−µ−1e−Ztdt.

For s = ±µ, we have the well-known identities

Mµ,µ− 1
2
(Z) = e−

Z
2 Zµ and M−µ,µ− 1

2
(Z) = e

Z
2 Zµ. (2.21)

For m ∈ Z \ {0} and κ ∈ 1
2Z, the function

ψκ,m,s (τ) := (4π|m|)
κ
2 Mκ,s (4πmv) e2πimu

is then an eigenfunction of ∆κ with eigenvalue (s − κ
2 )(1 − s − κ

2 ). Denoting by |κpr the identity
for κ ∈ Z and Kohnen’s projection operator (see p. 250 of [29]) for κ /∈ Z, one concludes that for
σ := Re(s) > 1, the following Poincaré series are also eigenfunctions of ∆κ and have weight κ:

Pκ,m,s :=
∑

γ∈Γ∞\Γ0(4)

ψκ,sgn(κ)m,s

∣∣∣
κ
γ
∣∣∣
κ
pr. (2.22)

If s = 1 − κ
2 or s = κ

2 , then the functions Pκ,m,s are harmonic. The Poincaré series satisfy the
growth condition

Pκ,m,s(τ)− ψκ,m,s (τ)
∣∣
κ
pr = O

(
v1−Re(s)−κ

2

)
.
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Here we simply abbreviate the operator appearing on the right-hand side of the identity on page
250 of [29] by pr, despite the fact that ψκ,m,s is not modular. In the special case that κ = k+ 1

2 > 1
and s = κ

2 , we normalize the resulting weakly holomorphic Poincaré series as

Pk+ 1
2
,m :=

6(4π)
k
2
− 1

4

(k − 1)!|m|
1
4

Pk+ 1
2
,m, k

2
+ 1

4
. (2.23)

For κ = 3
2 − k < 1 we set

P 3
2
−k,m := − 6(4π)

k
2
− 1

4

(k − 1)!|m|
1
4 (2k − 1)

P 3
2
−k,m, k

2
+ 1

4
. (2.24)

We turn next to Poincaré series with singularities in the upper half-plane, defining, for κ > 2
even and n ∈ Z,

Ψκ,n(z, z) :=
∑

γ∈SL2(Z)

(
(z − z)−κXz(z)

n
)∣∣∣∣
κ,z

γ. (2.25)

One has z 7→ Ψκ,n(z, z) ∈ Sκ and z 7→ y
−κ−nΨκ,n(z, z) are modular of weight −2n− κ (see page 72

of [37]). Moreover, the functions z 7→ Ψκ,n(z, z) ∈ Sκ vanish identically if n 6≡ −κ/2 (mod ωz) and
are cusp forms in z if n ∈ N0. Furthermore, the set {Ψκ,n(z, z) : z ∈ H, n ∈ Z} spans Sκ (see Sätze
7 and 9 of [38]). The principal part of z 7→ Ψκ,m(z, z) has a simple shape. To be more precise,
set f(z) = (2ωz)

−1Ψκ,m(z, z) and write c(n) := cf,%(n)− δn=mδz=%, where in the latter δ-term, and
throughout the paper in similar identities, we consider z and % as elements of SL2(Z)\H. Using this
notation, Satz 7 of [38] implies that

(2ωz)
−1 Ψκ,m (z, z) = (z − %)−κ

δz=%X%(z)
m +

∑
n≥0

c(n)X%(z)
n

 . (2.26)

Moreover, fA is a specialization of Ψ2k,−k, as given in the following straightforward lemma.

Lemma 2.3. With Q0 ∈ A ∈ Q−D/SL2(Z) we have

fA(z) =
(2vQ0)k

2ωτQ0

Ψ2k,−k (z, τQ0) . (2.27)

2.6. Higher Green’s functions. For z, z ∈ H and s ∈ C with σ > 1, the automorphic Green’s
function Gs on SL2(Z)\H is given by

Gs(z, z) :=
∑

γ∈SL2(Z)

gHs (z, γz),

where

gHs (z, z) := −2s−1 Γ(s)2

Γ(2s)
cosh(d(z, z))−s2F1

(
s

2
,
s+ 1

2
; s+

1

2
;

1

cosh(d(z, z))2

)
.

Note that we have the equality gHs (z, z) = −Qs−1(cosh(d(z, z))), with Qν the associated Legendre
function of the second kind. Furthermore, note that there are different normalizations of Gs in the
literature; our normalization agrees with the one from [33]. Automorphic Green’s functions can be
defined for arbitrary Fuchsian groups of the first kind, and hence in particular for any congruence
group. They also arise as the resolvent kernel for the hyperbolic Laplacian (see, e.g. [18, 24]).

In the case s = k ∈ N>1, the function Gk : H×H→ C is called a higher Green’s function. It is
uniquely characterized by the following properties:

(1) The function Gk is smooth and real-valued on H×H \ {(z, γz) : γ ∈ SL2(Z), z ∈ H}.
(2) For γ1, γ2 ∈ SL2(Z) we have Gk(γ1z, γ2z) = Gk(z, z).
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(3) We have
∆0,z(Gk(z, z)) = ∆0,z(Gk(z, z)) = k(1− k)Gk (z, z) .

(4) As z → z we have
Gk(z, z) = 2ωz log (rz(z)) +O(1).

(5) As z approaches a cusp, we have Gk(z, z)→ 0.

These higher Green’s functions have a long history (cf. [18, 22, 24, 33]). For example, Gross and
Zagier [22] conjectured that their evaluations at CM-points are essentially logarithms of algebraic
numbers. If S2k(Γ) = {0}, with Γ ⊆ SL2(Z) of finite index, then the conjecture states that

Gk(z, z) = (D1D2)
1−k
2 log(α)

for CM-points z, z of discriminants D1 and D2 respectively and some algebraic number α. Various
cases of this conjecture have been proved. For example, Mellit [33] proved the case with k = 2 and
z = i for Γ = SL2(Z), and also interpreted α as an intersection number of certain algebraic cycles.
Further cases were then investigated by Viazovska [41].

3. Regularized Petersson inner products and the proof of Theorem 1.3

3.1. Known regularized inner products. The classical Petersson inner product of two weight
κ ∈ 1

2Z (holomorphic) modular forms f and g on Γ0(N) such that fg is a cusp form is given by

〈f, g〉 :=
1

[SL2(Z) : Γ0(N)]

∫
Γ0(N)\H

f(z)g(z)yκ
dxdy

y2
. (3.1)

Although (3.1) generally diverges for meromorphic modular forms, one may still define a regular-
ized inner product in some cases. The first to do so appears to be Petersson [38]. If all of the poles
of f and g are at the cusps, the regularization of Petersson was later rediscovered and extended by
Harvey-Moore [23] and Borcherds [4], and subsequently used by Bruinier [10] and others to obtain
a regularized integral that exists in many cases. Indeed, Petersson gave explicit necessary and
sufficient conditions for existence of his regularized inner product in Satz 1a of [38]. In particular,
for f, g ∈ Sκ, his regularization exists if and only if for every n < 0 and % ∈ H we have

cf,%(n)cg,%(n) = 0; (3.2)

the conditions are similar if f and g have singularities at the cusps. This regularization is used to
define theta lifts of functions with singularities, some of which are evaluated in this paper.

To give a full definition we require some notation. We let FT be the restriction of the standard
fundamental domain for SL2(Z) to those z with y ≤ T , and let FT (N) :=

⋃
γ∈Γ0(N)\SL2(Z) γFT . For

functions f and g transforming like modular forms of weight κ ∈ 1
2Z for Γ0(N) we define

〈f, g〉 :=
1

[SL2(Z) : Γ0(N)]
lim
T→∞

∫
FT (N)

f(z)g(z)yκ
dxdy

y2
, (3.3)

in the case the integral exists.
The definition above may be interpreted as cutting out neighborhoods around cusps and letting

the hyperbolic volume of the neighborhood shrink to zero. If poles exist in H, the construction in
[38] is similar. For f, g ∈ S2k with poles at z1, . . . , zr ∈ SL2(Z)\H, we choose a fundamental domain
F ∗ such that the representatives of z1, . . . , zr in F ∗ (also denoted by z`) all lie in the interior of
Γz`F

∗. We then set Bε(z) := {z ∈ H : rz(z) < ε}, and define Petersson’s regularized inner product
as

〈f, g〉 := lim
ε1,...,εr→0+

∫
F ∗\

⋃r
`=1 Bε` (z`)

f(z)g(z)y2k dxdy

y2
. (3.4)

Like (3.3), the regularized inner product (3.4) does not always exist. The inner product (3.3)
has recently been further extended to an inner product on all weakly holomorphic modular forms
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by Diamantis, Ehlen, and the first author in [5], and we address the extension of (3.4) to all
meromorphic cusp forms in the next section.

3.2. A new regularization. In this section we restrict to κ = 2k ∈ 2Z and N = 1, but the
construction can be easily generalized to subgroups. We also assume that f and g decay like cusp
forms towards the cusps, but this restriction can be removed by combining with the regularization
from Subsection 3.1. We choose a fundamental domain F ∗ as in Subsection 3.1 and denote the
poles of f and g in F ∗ by z1, . . . , zr.

For an analytic function A(s) in s = (s1, . . . , sr), denote by CTs=0A(s) the constant term of the
meromorphic continuation of A(s) around s1 = · · · = sr = 0, and define

〈f, g〉 := CTs=0

(∫
SL2(Z)\H

f(z)Hs(z)g(z)y2k dxdy

y2

)
(3.5)

where

Hs(z) = Hs1,...,sr,z1,...,zr(z) :=

r∏
`=1

hs`,z`(z).

Here for z` ∈ F ∗ and z ∈ H we set hs`,z`(z) := rz`(γz)
2s` , with γ ∈ SL2(Z) chosen such that

γz ∈ F ∗. Note that rz`(γz) → 0 as z → γ−1z`, so the integral in (3.5) converges for σ � 0,
where this notation means that for every 1 ≤ ` ≤ r, σ` := Re(s`) � 0. One can show that the
regularization is independent of the choice of fundamental domain.

Proof of Theorem 1.3. For δ > 0 sufficiently small, we may assume that the Bδ(z`) are disjoint and
split off the integral over those z that lie in one of these balls.

If z /∈ Bδ(z`) for all `, then one can bound the integrand locally uniformly for s contained in a
small open neighborhood around 0. Hence we conclude that

CTs=0

(∫
F ∗\

⋃r
`=1 Bδ(z`)

f(z)Hs(z)g(z)y2k dxdy

y2

)
=

∫
F ∗\

⋃r
`=1 Bδ(z`)

f(z)g(z)y2k dxdy

y2
. (3.6)

Thus we are left to show existence of the meromorphic continuation to a small open neighborhood
around 0 of ∫

Bδ(z`)∩F ∗
f(z)Hs(z)g(z)y2k dxdy

y2
. (3.7)

By construction, z` lies in the interior of Γz`F
∗, so we may assume that Bδ(z`) ⊆ Γz`F

∗. To rewrite
(3.7) as an integral over the entire ball Bδ(z`), we decompose the ball into the disjoint union

Bδ(z`) =

•⋃
γ∈Γz`

γ (Bδ (z`) ∩ F ∗) . (3.8)

Moreover, bounding hsm,zm(z) locally uniformly for σm > −ε for m 6= `, we may plug in sm = 0,
and hence the invariance of the integrand under SL2(Z) implies that the constant term at s = 0 of
(3.7) is the constant term at s` = 0 of

Is`,z`,δ(f, g) :=
1

ωz`

∫
Bδ(z`)

f(z)hs`,z`(z)g(z)y2k dxdy

y2
.

Setting R := rz`(z) for z ∈ Bδ(z`), we have for γ ∈ Γz` the equality

hs`,z`(z) = rz`(γz)
2s` = R2s` . (3.9)

We now closely follow the proof of Satz 1a in [38]. We rewrite

y =
y`

(
1− r2

z`
(z)
)

|1−Xz`(z)|
2
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for z` = x` + iy` and compute

dz =
2iy

(1−Xz`(z))
2dXz`(z).

Hence changing variables Xz`(z) = Reiϑ and inserting the elliptic expansions (1.9) of f, g around
% = z` yields

Is`,z`,δ(f, g) =
1

ωz`

∫
Bδ(z`)

f(z)g(z)rz`(z)
2s`y2k dxdy

y2

=
4

ωz` (4y`)
2k

∑
m,n�−∞

cf,z`(n)cg,z`(m)

∫ δ

0

∫ 2π

0
ei(n−m)ϑRn+m+2s`

(
1−R2

)2k−2
RdϑdR

=
8π

ωz` (4y`)
2k

∑
n�−∞

cf,z`(n)cg,z`(n)

∫ δ

0
R1+2n+2s`

(
1−R2

)2k−2
dR. (3.10)

Plugging in the binomial expansion of (1−R2)2k−2, the remaining integral in (3.10) becomes

2k−2∑
j=0

(−1)j
(

2k − 2

j

)∫ δ

0
R1+2(n+j)+2s`dR =

2k−2∑
j=0

(−1)j
(

2k − 2

j

)
δ2(n+j+1+s`)

2 (n+ j + 1 + s`)
.

Since this is meromorphic at s` = 0, its constant term at s` = 0 exists, yielding the existence of the
inner product.

We next prove that the inner product is Hermitian. For f, g ∈ S2k, let Ff,g denote the meromor-
phic continuation of the function defined for s ∈ Cr with σ` � 0 by

Ff,g(s) :=

∫
F ∗
f(z)g(z)Hs(z)y

2k dxdy

y2
.

Since 〈f, g〉 always exists, Ff,g has an expansion around s = 0 of the shape

Ff,g(s) =
∑

n=(n1,...,nr)∈Zr
af,g(n)sn1

1 · · · · · s
nr
r

with 〈f, g〉 = af,g(0). Since rz`(z) ∈ R, we have Hs(z) = Hs(z), and thus

〈g, f〉 = ag,f (0) = CTs=0

(
Fg,f (s)

)
= CTs=0

(∫
F ∗
f(z)g(z) Hs(z)y

2k dxdy

y2

)
= 〈f, g〉.

We finally show that the new regularization agrees with Petersson’s, wherever his exists. Setting
B (z`, ε, δ) := {z ∈ H : ε < rz`(z) < δ} , Petersson’s regularization equals

lim
ε1,...,εr→0+

∫
F ∗\

⋃r
`=1 Bε` (z`)

f(z)g(z)y2k dxdy

y2

=

∫
F ∗\

⋃r
`=1 Bδ(z`)

f(z)g(z)y2k dxdy

y2
+ lim
ε1,...,εr→0+

∫
F ∗∩

⋃r
`=1 B(z`,ε`,δ)

f(z)g(z)y2k dxdy

y2
. (3.11)

The first term on the right-hand side of (3.11) is precisely the right-hand side of (3.6). It thus
remains to prove that

lim
ε`→0+

∫
F ∗∩B(z`,ε`,δ)

f(z)g(z)y2k dxdy

y2
= CTs`=0 Is`,z`,δ(f, g). (3.12)

By the existence condition (3.2), we may plug in s` = 0 in (3.10), and obtain that

CTs`=0 Is`,z`,δ(f, g) =
8π

ωz` (4y`)
2k

∑
n≥0

cf,z`(n)cg,z`(n)

∫ δ

0
R1+2n

(
1−R2

)2k−2
dR.
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Using (3.8) and then following the calculation in (3.10), plugging the elliptic expansion into the
left-hand side of (3.12) yields that the two regularizations match since

lim
ε`→0+

∫
B(z`,ε`,δ)

f(z)g(z)y2k dxdy

y2
=

8π

(4y`)
2k

∑
n≥0

cf,z`(n)cg,z`(n)

∫ δ

0
R1+2n

(
1−R2

)2k−2
dR.

�

4. Theta lifts and the proofs of Theorems 1.1 and 1.2 (1)

4.1. Proof of Theorem 1.1. Before proving Theorem 1.1, we note a (well-known) fact about the
theta kernel Θk.

Lemma 4.1. The function τ 7→ Θk(z, τ) grows at most polynomially towards the cusps and decays
exponentially for τ → i∞.

Proof. To show that it exponentially decays towards i∞, we use (2.3) to rewrite the absolute value of

the exponential in definition (1.3) as e−2πv(Q2
z+|Q(z,1)|2/y2), and then note that Q2

z+|Q(z, 1)|2/y2 > 0
for Q 6= [0, 0, 0]. Modularity then implies the claim at the other cusps. �

We specifically apply the theta lift Φk to the weight k + 1
2 weakly holomorphic Poincaré series

Pk+ 1
2
,−D defined in (2.23) in order to obtain Theorem 1.1.

Proof of Theorem 1.1. A standard unfolding argument (see, e.g., [43]) combined with (2.21) gives
that Φk(Pk+ 1

2
,−D, k

2
+ 1

4
) equals

(4πD)
k
2

+ 1
4

6
lim
T→∞

∫ T

0

∫ 1

0
e−2πiDτΘk(z, τ)vk+ 1

2
dudv

v2

−
∑
c≥1

∑
a (mod c)∗

∫
Sa
c

e−2πiDτΘk(z, τ)vk+ 1
2
dudv

v2

 , (4.1)

where a runs over residues modulo c that are coprime to c and for each a and c we denote by Sa
c

the disc of radius (2c2T )−1 tangent to the real axis at a
c . Note that the factor 1

6 = [SL2(Z) : Γ0(4)]
comes from the fact that the inner product is taken over Γ0(4). Following an argument similar to
the proof of Theorem 1.1 (2) in [8], the polynomial growth of τ 7→ Θk(z, τ) towards the cusps yields
that the second term of (4.1) does not contribute in the limit T → ∞. To evaluate the integral
in the first term of (4.1), we plug in the defining series (1.3) and integrate over u to obtain, as
T →∞, the expression

(4πD)
k
2

+ 1
4

6
y−2k

∑
Q∈Q−D

Q (z, 1)k
∫ ∞

0
e4πDv−4πQ2

zvvk−1dv.

The claim now easily follows using (2.3) to show that the integral on v equals∫ ∞
0

e
− 4π|Q(z,1)|2v

y2 vk−1dv =
(k − 1)!

(4π)k
y2k|Q(z, 1)|−2k.

�
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4.2. Proof of Theorem 1.2 (1). The goal of this section is to compute the image of the Maass–
Poincaré series P 3

2
−k,−D,s defined in (2.22) under Φ∗1−k, and to connect these images to the functions

FA. We do so in the following theorem, which extends Theorem 1.2 (1).

Theorem 4.2. For s ∈ C with σ > 1 we have

Φ∗1−k

(
P 3

2
−k,−D,s

)
(z)

=
Ds Γ

(
s+ k

2 −
1
4

)
6(4π)

k
2
− 1

4

∑
Q∈Q−D

Q
−2s−k+ 3

2
z Q(z, 1)k−1

2F1

(
s+

k

2
− 1

4
, s+

k

2
− 3

4
; 2s;

D

Q2
z

)
.

(4.2)

In particular, we have the equality

Φ∗1−k

(
P 3

2
−k,−D

)
= F1−k,−D.

Remark. After seeing a preliminary version of this paper, Zemel [44] has obtained further theta
lifts related to vector-valued versions of FA.

Proof of Theorem 4.2. One can show that both sides of (4.2) converge absolutely and locally uni-
formly for σ > 1 and z /∈ {τQ : Q ∈ A} and hence are analytic in s. It thus suffices to show (4.2)

for σ > k − 3
2 . Following the proof of Theorem 1.1 and noting that the map [a, b, c] 7→ [a,−b, c] is

an involution on Q−D, we obtain

Φ∗1−k

(
P 3

2
−k,−D,s

)
(z) =

(4πD)
1
4
− k

2

6

∑
Q∈Q−D

QzQ(z, 1)k−1Is
(

Dy2

|Q(z, 1)|2

)
, (4.3)

where

Is(Z) :=

∫ ∞
0
M 3

2
−k,s (v) v−

1
2 e−

v
2 e−

v
Z dv

(
Z ∈ R+

)
.

Applying formula 7.621.1. of [20] yields

Is(Z) = Γ

(
s+

k

2
− 1

4

)(
Z

Z + 1

)s+ k
2
− 1

4

2F1

(
s+

k

2
− 1

4
, s+

k

2
− 3

4
; 2s;

Z

Z + 1

)
. (4.4)

Moreover, (2.3) implies that

Z

Z + 1
=

D

Q2
z

(4.5)

for Z := Dy2/|Q(z, 1)|2, and substituting this and (4.4) back into (4.3) yields (4.2).
To prove the second claim, we use (2.11), (2.9), and (2.13) to obtain

2F1

(
k, k − 1

2
; k +

1

2
;W

)
= (1−W )

1
2
−k

2F1

(
1

2
, k − 1

2
; k +

1

2
;

W

W − 1

)
= (−1)k−

1
2

(
k − 1

2

)
W−k+ 1

2 β

(
W

W − 1
; k − 1

2
,
1

2

)
. (4.6)

Employing (4.6) with W := D/Q2
z and using (4.5) to evaluate W/(W−1) = −Z = −Dy2/|Q(z, 1)|2,

we obtain the second claim, using the fact that sgn(Qz) = 1. �
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5. Properties of the function FA and proof of theorem 1.2 (2)

5.1. Relation to higher Green’s functions. The goal of this section is to write the functions
FA defined in (1.5) in terms of higher Green’s functions. For this, set

ak,n := − (2k − 2)!

2k−1(k − 1)!

{
1 if n ≥ k − 1,

n!
(2k−2−n)! if n < k − 1.

(5.1)

Lemma 5.1. For Q ∈ Q−D and n ∈ N0 we have

Rn2−2k(P1−k,−D,Q(z)) = ak,n

{
Rn+1−k

0

(
gHk (z, τQ)

)
if n ≥ k − 1,

y2k−2−2nRk−1−n
0

(
gHk (z, τQ)

)
if n ≤ k − 1.

Proof. We first prove that for every z, z ∈ H and j ∈ N0 we have

Rj0,z

(
gHk (z, z)

)
=
−2k−j−1(k − 1)!(k + j − 1)!(z − z)j(z − z)j

(2k − 1)!y2jyj cosh(d(z, z))k+j 2F1

(
k + j + 1

2
,
k + j

2
; k +

1

2
;

1

cosh(d(z, z))2

)
.

(5.2)

We note that the images under repeated raising of the Green’s function are known in the literature
(see, e.g., [33]), but some rewriting is still required to derive the form (5.2). So, for the convenience
of the reader, we present a direct proof. To show (5.2), we first compute

R0,z (cosh(d(z, z))) = −(z − z)(z − z)

2y2y
, (5.3)

from which we conclude that R2
0,z (cosh(d(z, z))) = 0. Employing these identities, induction on

j ∈ N0 gives

Rj0,z

(
gHk (z, z)

)
= −2k−1 (k − 1)!2

(2k − 1)!
(R0,z(cosh(d(z, z))))j

∂j

∂Zj

[
Z−k 2F1

(
k

2
,
k + 1

2
; k +

1

2
;

1

Z2

)]
Z=cosh(d(z,z))

.

(5.4)

Next, again by induction on j ∈ N0, and employing (2.12), we obtain

∂j

∂Zj

(
Z−k 2F1

(
k

2
,
k + 1

2
; k +

1

2
;

1

Z2

))
=

(−1)j(k + j − 1)!

(k − 1)!Zk+j 2F1

(
k + j + 1

2
,
k + j

2
; k +

1

2
;

1

Z2

)
.

Plugging this and (5.3) into (5.4) gives (5.2).
Using (5.2), we next show the n = 0 case of the assertion of Lemma 5.1, namely

P1−k,−D,Q(z) = − 1

2k−1(k − 1)!
y2k−2Rk−1

0

(
gHk (z, τQ)

)
. (5.5)

For this we let j = k − 1 in (5.2), which yields that

Rk−1
0,z

(
gHk (z, z)

)
= − (k − 1)!(z − z)k−1(z − z)k−1

(2k − 1)y2k−2yk−1 cosh(d(z, z))2k−1 2F1

(
k, k − 1

2
; k +

1

2
;

1

cosh(d(z, z))2

)
.

(5.6)
From now on we choose z = τQ. Hence, employing (4.6), (2.6), and (2.2), (5.6) becomes

Rk−1
0

(
gHk (z, τQ)

)
= i(−1)k2k−2(k − 1)!D

1−k
2 y2−2kQ(z, 1)

k−1
β

(
− Dy2

|Q(z, 1)|2
; k − 1

2
,
1

2

)
.
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Since Q is positive-definite, so that sgn(Qz) = 1, this gives (5.5).
To finish the proof, we apply raising n times to (5.5), yielding

Rn2−2k (P1−k,−D,Q(z)) = − 1

2k−1(k − 1)!
Rn2−2k

(
y2k−2Rk−1

0

(
gHk (z, τQ)

))
. (5.7)

We now distinguish among two cases depending on whether n ≥ k − 1 or n ≤ k − 1.
In the case n ≥ k − 1, the claim follows from applying Lemma 2.1 with ` = k − 1 to (5.7) and

noting that gHk is real-valued. This yields the claim.

For n ≤ k− 1 the eigenvalue of Rk−1−n
0 (gHk ) is (n+ 1)(n+ 2− 2k). Thus we have, by Lemma 2.1

with ` = n,

Rn2−2k

(
y2k−2Rn2k−2−2n

(
Rk−1−n

0

(
gHk (z, τQ)

)))
= y2k−2−2n n!(2k − 2)!

(2k − 2− n)!
Rk−1−n

0

(
gHk (z, τQ)

)
.

Plugging this back into (5.7) yields the claim. �

We also need regularized versions of Gk and FA. For this, define∑reg

w∈S
h(w) :=

∑
w∈S

h(w)6=∞

h(w),

where h is an arbitrary function taking inputs from some set S and with outputs in C∪{∞}. Note
that different choices of w lead to different subsets of S being excluded on the right-hand side of
the above equation. For any operator O we then let

O

(∑reg

w∈S
h(w)

)
:=
∑reg

w∈S
O(h(w)).

Moreover, for H(z) :=
∑

w∈S hz(w) we set

Hreg(z) :=
∑reg

w∈S
hz(w).

Note that H may possibly have distinct presentations of this type, written both as a sum over
w ∈ S of hz(w) and as sum over another set with a different function. The regularization Hreg(z)
depends on the choice of its presentation so we emphasize that the regularization uses the choice
of hz and the set S given in the definition of H.

We obtain the following corollary by applying Lemma 5.1 termwise.

Corollary 5.2. For Q0 ∈ A ∈ Q−D/SL2(Z) and n ∈ N0 we have

Rn2−2k

(
F reg
A (z)

)
=

ak,n
2ωτQ0

{
Rn+1−k

0

(
Greg
k (z, τQ0)

)
if n ≥ k − 1,

y2k−2−2nRk−1−n
0

(
Greg
k (z, τQ0)

)
if n ≤ k − 1,

where ak,n is defined in (5.1). In particular

F reg
A (z) = − 1

2k(k − 1)!ωτQ0

y2k−2Rk−1
0

(
Greg
k (z, τQ)

)
.

Proof. Writing Q = Q0 ◦M with M ∈ ΓτQ0
\SL2(Z), we have

Rn2−2k

(
F reg
A
)

=
1

2ωQ0

∑reg

M∈SL2(Z)

Rn2−2k(P1−k,−D,Q0◦M ) .

The result then follows from Lemma 5.1, using the relation τQ0◦M = M−1τQ0 . �
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5.2. Proof of Theorem 1.2 (2). We now have the necessary pieces to show the modularity of
FA and its relation to fA under the differential operators.

Proof of Theorem 1.2 (2). We first show that

Rk0 (Gk(z, τQ0)) = −2k(k − 1)!ωτQ0
fA(z). (5.8)

For this, we plug j = k into (5.2), which implies that Rk0
(
gHk (z, z)

)
equals

−(k − 1)!(z − z)k(z − z)k

2y2kyk cosh(d(z, z))2k 2F1

(
k +

1

2
, k; k +

1

2
;

1

cosh(d(z, z))2

)
. (5.9)

Now, by (2.9) and (2.10), (5.9) becomes

− (k − 1)!(z − z)k(z − z)k

2y2kyk(cosh(d(z, z))2 − 1)k
.

Taking z = τQ, using (2.6) and (2.1), and plugging in termwise, gives (5.8).
The statement for the ξ-operator now follows from Corollary 5.2, using (2.20) and (5.8).
We next compute the image of FA under D2k−1. Using Bol’s identity (2.19) we have, by Corollary

5.2, the equality

D2k−1(FA(z)) = − 1

(4π)2k−1

ak,2k−1

2ωτQ0

Rk0 (Gk (z, τQ0)) .

Using (5.8) then gives the claim.
Finally, Corollary 5.2 immediately implies that FA is modular of weight 2− 2k, and the decom-

position ∆2−2k = −ξ2k ◦ ξ2−2k together with (1.8) give that FA is annihilated by that operator.
From this one concludes that FA is a polar harmonic Maass form. �

5.3. Elliptic expansion of FA. Before stating the elliptic expansion of FA, we first give a general
formula for functions annihilated by the Laplace operator.

Lemma 5.3. Suppose that M : H → C satisfies ∆2−2k(M) = 0 and has a singularity of finite
order at % ∈ H. Then for 0 ≤ r%(z)�% 1 we have(

M+
% −P+

M,%

)
(z) = (2iη)2−2k (z − %)2k−2

∑
n≥0

ηn

n!
Rn2−2k (M−PM,%) (%)X%(z)

n. (5.10)

In particular, if M does not have a singularity at %, then for 0 ≤ r%(z)�% 1 we have

M+
% (z) = (2iη)2−2k (z − %)2k−2

∑
n≥0

ηn

n!
Rn2−2k (M(%))X%(z)

n. (5.11)

Remarks.

(1) In (5.10), one first needs to act on an independent variable and then plug in %, because M−
PM,% depends on %. In (5.11), one may directly apply raising.

(2) A similar statement is true for the non-meromorphic partM−% , where raising is instead applied
to the conjugate of M. However, we do not work out the details here.

Proof of Lemma 5.3. Since M+
% −P+

M,% is holomorphic in some region around %, Lemma 2.2 pro-
vides, for z in some neighborhood of %, the expansion(

M+
% −P+

M,%

)
(z) = (2iη)2−2k (z − %)2k−2

∑
n≥0

ηn

n!
Rn2−2k

(
M+

% −P+
M,%

)
(%)X%(z)

n.

The claim hence follows once we prove that

Rn2−2k

(
M+

% −P+
M,%

)
(%) = Rn2−2k (M−PM,%) (%).
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Noting which terms in the expansion (2.18) grow as z → %, it suffices to show that for all m ∈ N
and n ∈ N0 one has[

Rn2−2k,z

(
(z − %)2k−2β0

(
1− r%(z)2; 2k − 1,m

)
X%(z)

−m
)]

z=%
= 0. (5.12)

To prove (5.12), we first use (2.17) to rewrite

(z − %)2k−2β0

(
1− r%(z)2; 2k − 1,m

)
X%(z)

−m

=
∑

0≤j≤2k−2

(
2k − 2

j

)
(−1)j+1

j +m
(z − %)2k−2X%(z)

jX%(z)j+m. (5.13)

We next apply Rn2−2k,z to (5.13). All of the factors other than (z − %)2k−2X%(z)
j are annihilated

by differentiation in z. Note moreover that X%(z)j+m vanishes at z = %, and also that the limit of

Rn2−2k,z((z−%)2k−2X%(z)
j) as z → % exists because j ≥ 0 and the resulting function is a polynomial

(of degree at most 2k−2) in z with coefficients depending on y and %. Therefore (5.12) follows. �

We next describe the principal part of the elliptic expansion of FA around %, and relate the
coefficients of its expansion to higher Green’s functions.

Lemma 5.4. The principal part of FA around % ∈ H is

PFA,%(z) = δ%=τQP1−k,−D,Q(z),

where here by δ%=τQ we mean that % = τQ as points in H instead of SL2(Z)\H as used throughout
the paper. The elliptic coefficients of the meromorphic part of FA are given by

c+
FA,%(n) =

bk,n
ωτQ0

{
η2−2k+nRn+1−k

0,%

(
Greg
k (%, τQ0)

)
if n ≥ k − 1,

η−nRk−1−n
0,%

(
Greg
k (%, τQ0)

)
if n ≤ k − 1,

where bk,n is defined in (1.10).

Proof. First note that since 0 < D ≤ Q2
z with D = Q2

z if and only if Q(z, 1) = 0 by (2.3), and
since the only possible singularities of β(x; a, b) are at x = 0, x = 1, and x → ∞, the only terms
contributing singularities are those with % = τQ. Since Q is entirely determined by τQ and D, it
remains to show that P1−k,−D,Q is precisely a principal part (i.e., that its elliptic expansion (2.18)
only contains terms that grow towards %). The claim hence follows once we show that

P1−k,−D,Q(z) = 22−3k(z − τQ)2k−2 v1−k
Q β0

(
1− rτQ(z)2; 2k − 1, 1− k

)
XτQ(z)k−1. (5.14)

To obtain (5.14), note that it is not hard to see that the constant C2k−1,1−k defined in (2.16)
vanishes, and thus

β0(Z; 2k − 1, 1− k) = β(Z; 2k − 1, 1− k).

By (2.2), the right-hand side of (5.14) thus equals

21−2kD
1−k
2 Q(z, 1)k−1β

(
1− rτQ(z)2; 2k − 1, 1− k

)
.

We then use (2.14), noting that (2.7) and (2.3) imply that

−
(
1− rτQ(z)2

)2
4rτQ(z)2

= − Dy2

|Q(z, 1)|2
,

to obtain

2−1i(−1)kD
1−k
2 Q(z, 1)k−1β

(
−Dy2

|Q(z, 1)|2
; k − 1

2
,
1

2

)
.

Recalling the definition of P1−k,−D,Q in (1.6), this yields the statement for the principal part.
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We next evaluate the elliptic coefficients of the meromorphic part. For n ∈ N0, Lemma 5.3 allows
us to rewrite

c+
FA,%(n) =

(2i)2−2k

n!
η2−2k+nRn2−2k (FA −PFA,%) (%).

Using (5.14) and acting termwise yields

c+
FA,%(n) =

(2i)2−2k

n!
η2−2k+nRn2−2k

(
F reg
A (%)

)
.

The result then follows from Corollary 5.2. �

6. Proof of Theorem 1.4 and Corollary 1.5

In this section we prove a more general version of Theorem 1.4 in Theorem 6.2 below, and then
use this to prove Corollary 1.5. In order to do so, we first rewrite the inner product 〈f, fA〉 in terms
of the elliptic coefficients of f given in (1.9), as well as those of FA, evaluated explicitly in Lemma
5.4.

Theorem 6.1. If f ∈ S2k has its poles at z1, . . . , zr in SL2(Z)\H, then

〈f, fA〉 = π
r∑
`=1

1

y`ωz`

∑
n≥1

cf,z`(−n)c+
FA,z`(n− 1).

Proof. Since the functions {Ψ2k,m(·, z) : z ∈ H, m ∈ Z} span S2k, linearity allows us to assume that
f(z) = (2ωz)

−1Ψ2k,m(z, z) for m ∈ Z, z ∈ H. We use a trick employed by many authors (cf.
[4, 11, 17]) for rewriting the inner product. By (1.8) we obtain

〈f, fA〉 = 〈f, ξ2−2k (FA)〉 . (6.1)

We take the implied integral in (6.1) over the cut-off fundamental domain F ∗T , consisting of those
z ∈ F ∗ for which z is equivalent to a point in FT under the action of SL2(Z), and then let T →∞.
We require a few additional properties of F ∗. First we may assume, without loss of generality, that
τQ0 , z ∈ F ∗. We also claim that since there are no poles of f or fA for y � 0, F ∗ may be constructed

so that for T � 0, the boundary of F ∗T includes the line from −1
2 + iT to 1

2 + iT . Indeed, one can
explicitly build F ∗ from the standard fundamental domain F by successively removing partial balls
Bδ(z`)∩F around each pole z` ∈ ∂F that is not an elliptic fixed point and moving them to the other
side of the fundamental domain with respect to the imaginary axis to combine with other partial
balls around equivalent points γz` ∈ ∂F to form entire balls Bδ(γz`) for some γ ∈ SL2(Z). Since the
part of the fundamental domain with y � 0 remains unchanged, the boundary of F ∗T is as desired.
Moreover, we may choose δ > 0 sufficiently small such that Bδ(z`) is contained inside Γz`F

∗ and
balls around different points are disjoint. By Stokes’ Theorem, using the meromorphicity of f and
the vanishing of f(z)hs,%(z) at z = % for s ∈ C with σ � 0, (6.1) equals

− CTs=0

(∫
F ∗
f(z)ξ0

(
hs1,z(z)hs2,τQ0

(z)
)
FA(z)dxdy

+ lim
T→∞

∫
∂F ∗T

f(z)hs1,z(z)hs2,τQ0
(z)FA(z)dz

)
. (6.2)

Note that the minus sign occurring in the second term in (6.2) comes from the computation of
the exterior derivative in terms of the ξ-operator; see the last two formulas on page 12 of [11] for
further details.

Recalling the definition after (3.5), we note that z 7→ hs0,%(z) is invariant under Γ, and hence the
integrand in the second term of (6.2) is modular of weight 2. Combining this modularity with the
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exponential decay of f towards i∞ and the polynomial growth of the other factors, one concludes
that the second term vanishes as T → ∞. Using the invariance of the integrand under the action
of ΓτQ0

and Γz, we then rewrite (6.2) as

− 1

ωτQ0
ωz

CTs=0

∑
γ1∈Γz

∑
γ2∈ΓτQ0

∫
γ1γ2F ∗

f(z)ξ0

(
hs1,z(z)hs2,τQ0

(z)
)
FA(z)dxdy

 . (6.3)

Note that for % ∈ F ∗, no other element of Γ%F
∗ is equivalent to % modulo SL2(Z), and we have the

equality r%(Mz) = r%(z) for every M ∈ Γ% by (3.9). Hence the equality hsj ,%(z) = r%(z)
2sj holds

for every z ∈ Γ%F
∗. For (%, s0) ∈ {(z, s1), (τQ0 , s2)} we may therefore compute

ξ0 (hs0,%(z)) = −4s0ηr%(z)
2s0−2 X%(z)

(z − %)2 . (6.4)

Thus 1/(s1s2) times the first integral in (6.2) restricted to z /∈ Bδ(z)∪Bδ(τQ0) converges absolutely
and locally uniformly in s, and hence the corresponding contribution to the integral is analytic and
vanishes at s = 0. To evaluate the remaining part of (6.3), we first compute ξ0(hs1,z(z)hs2,τQ0

(z))

for z ∈ Bδ(z)∩F ∗ using the product rule. The term coming from differentiating hs2,τQ0
vanishes in

the limit s2 → 0 by (6.4). We then use (3.8) and (6.3) to show that the first integral in (6.2) over
Bδ(z) ∩ F ∗ equals

− 1

ωz
CTs1=0

(∫
Bδ(z)

f(z)ξ0,z (hs1,z(z))FA(z)dxdy

)
.

Plugging (6.4) into the latter expression, and repeating the argument for τQ0 if τQ0 6= z, (6.2)
becomes

4vQ0

ωτQ0

J (τQ0) + δz6=τQ0

4y

ωz
J (z), (6.5)

where

J (%) := CTs0=0

(
s0

∫
Bδ(%)

f(z)r%(z)
2s0−2 X%(z)

(z − %)2FA(z)dxdy

)
. (6.6)

To evaluate J (%), we insert the elliptic expansion (2.26) of f(z) = (2ωz)
−1Ψ2k,m(z, z) around

% and the expansion of FA using the explicit principal part given in Lemma 5.4 (rewritten as in
(5.14)) to see that the integral in (6.6) equals

1

η2

∫
Bδ(%)

η2

|z − %|4

δ%=zX%(z)
m +

∑
n≥0

c(n)X%(z)
n

 r%(z)
2s0−2X%(z)

×

(
22−3kv1−k

Q0
δ%=τQ0

β0

(
1− rτQ0

(z)2; 2k − 1, 1− k
)
XτQ0

(z)k−1 +
∑
`≥0

c+
FA,%(`)X%(z)

`

+
∑
`<0

c−FA,%(`)β0

(
1− r%(z)2; 2k − 1,−`

)
X%(z)

`

)
dxdy. (6.7)

22



Making the change of variables X%(z) = Reiθ and noting that η2

|z−%|4dxdy = R
4 dθdR and r%(z) = R,

we may rewrite (6.7) as

1

4η2

∫ δ

0

∫ 2π

0

δ%=zR
meimθ +

∑
n≥0

c(n)Rneinθ

(δ%=τQ0

Rk−1+2s0eikθ

23k−2vk−1
Q0

β0

(
1−R2; 2k − 1, 1− k

)
+
∑
`≥0

c+
FA,%(`)R

`+2s0ei(`+1)θ +
∑
`<0

c−FA,%(`)β0

(
1−R2; 2k − 1,−`

)
R`+2s0ei(`+1)θ

)
dθdR.

Expanding, the integral over θ vanishes unless the power of eiθ is zero. The latter expression thus
equals

π

2η2

∫ δ

0

(
δm=−kδ%=τQ=z

23k−2vk−1
Q0

β0

(
1−R2; 2k − 1, 1− k

)
+ δ%=zc

+
FA,% (−m− 1)

+
∑
n≥0

(c(n) + δn=mδ%=z) c
−
FA,% (−n− 1)β0

(
1−R2; 2k − 1, n+ 1

))
R2s0−1dR. (6.8)

To determine the residue of (6.8) at s0 = 0, we use (2.17) with a = 2k − 1 and b = −` to expand
β0(1− R2; 2k − 1,−`). For σ0 � 0, multiplying the first term in (2.17) by R2s0−1 and integrating
then yields∑

0≤j≤2k−2
j 6=`

(
2k − 2

j

)
(−1)j+1

j − `

∫ δ

0
R2(j−`+s0)−1dR =

∑
0≤j≤2k−2

j 6=`

(
2k − 2

j

)
(−1)j+1δ2(j−`+s0)

2(j − `)(j − `+ s0)
,

which is holomorphic at s0 = 0, so the corresponding terms in (6.8) give no residue. Hence

J (%) =
πδ%=z

2η2
CTs0=0

(
−s0

δm=−kδ%=τQ0

(−8vQ0)k−1

(
2k − 2

k − 1

)∫ δ

0
log(R)R2s0−1dR+ c+

FA,% (−m− 1)
δ2s0

2

)
.

(6.9)
Using integration by parts for the first summand in (6.9), we obtain a meromorphic continuation
with no constant term, as

s0

∫ δ

0
log (R)R2s0−1dR =

δ2s0

2
log(δ)− 1

4s0
δ2s0 = − 1

4s0
+O(s0).

Therefore

J (%) =
πδ%=z

4η2
cFA,%(−m− 1).

Plugging this back into (6.5) and recalling that this equals (6.1) then gives

〈f, fA〉 = 〈f, ξ2−2k (FA)〉 =
4vQ0

ωτQ0

J (τQ0) +
4yδz 6=τQ0

ωz
J (z)

=
π

vQ0ωτQ0

δz=τQ0
c+
FA,τQ0

(−m− 1) +
π

yωz
δz6=τQ0

c+
FA,z(−m− 1) =

π

yωz
c+
FA,z(−m− 1).

�

The following Theorem generalizes Theorem 1.4 to also allow poles at τQ0 .
23



Theorem 6.2. If Q0 ∈ A ∈ Q−D\SL2(Z) and f ∈ S2k with poles in SL2(Z)\H at z1, . . . , zr, then

〈f, fA〉 =
π

ωτQ0

r∑
`=1

1

ωz`

(∑
n≥k

bk,n−1y
−2k+n
` cf,z`(−n)Rn−k0

(
Greg
k (z, τQ0)

)
+

k−1∑
n=1

bk,n−1y
−n
` cf,z`(−n)Rk−n0

(
Greg
k (z, τQ0)

))
.

Proof. The result follows directly by plugging Lemma 5.4 into the statement of Theorem 6.1. �

We finally prove Corollary 1.5.

Proof of Corollary 1.5. This follows immediately from Theorem 1.4 and Lemma 2.3. �

7. Future questions

We conclude the paper by discussing some possible future directions that one could pursue:

(1) Note that by Theorem 1.4, fA is orthogonal to cusp forms, which was also proven by Petersson
[38]. Combining the regularizations for growth towards the cusps and towards points in H,
one can further prove that fA is orthogonal to weakly holomorphic modular forms, but we
do not carry out the details here. After reading a preliminary version of this paper, Zemel
[44] considered some questions related to inner products between weakly holomorphic modular
forms and meromorphic cusp forms.

(2) Images of lifts between integral and half-integral weight weak Maass forms have Fourier ex-
pansions that can be written as CM-traces for negative discriminants and cycle integrals for
positive discriminants [9, 12, 16]. Thus the appearance of CM-values of SL2(Z)-invariant func-
tions in Theorem 6.2 is natural. Since the generating function of Zagier’s cusp forms for positive
discriminants yields the (holomorphic) kernel function for the first Shintani lift, one may ask
whether there is a connection between CM-traces and the generating function of the fk,−D.
However, the naive generating function diverges, and furthermore, it would have a dense set of
poles in the upper half-plane. It hence might be interesting to investigate instead whether the
generating function for the regularized function f reg

k,−D has any connection to CM-traces.

(3) In light of the connection in Corollary 1.5, it would be interesting to investigate Conjecture 4.4 of
[22], concerning Gk evaluated at CM-points. Moreover, since Greg

k (τQ0 , τQ0) naturally appears
when computing 〈fA, fA〉, one can probably use the regularized higher Green’s functions to
reformulate the conjecture to include the case when the CM-points agree. Given the connections
to heights and geometry in [22] and [45], it would also be interesting to see if the identity in
Corollary 1.5 holds for k = 1 and higher level in this case.

(4) In Conjecture 4.4 of [22], Gross and Zagier took linear combinations of Gk acted on by Hecke op-
erators, and conjectured that these linear combinations evaluated at CM-points are essentially
logarithms of algebraic numbers whenever the linear combinations satisfy certain relations.
These relations are determined by linear equations defined by the Fourier coefficients of weight
2k cusp forms. Note that by Corollary 5.2, Gk(z, τQ) is essentially Rk−1

0 (FA(z)), while FA is
naturally related to fA via differential operators in Theorem 1.2 (2). Translating the condition
of Gross and Zagier into a condition on polar harmonic Maass forms might be enlightening in
two directions. On the one hand, it might carve out a natural subspace of weight 2k meromor-
phic modular forms (corresponding to the image under ξ2−2k of those polar harmonic Maass
forms satisfying these conditions), which may satisfy other interesting properties. On the other
hand, by applying the theory of harmonic Maass forms, one may be able to loosen the conditions
and investigate what happens for general linear combinations.
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sion bei beliebigen Grenzkreisgruppen von erster Art, Abh. Math. Semin. Univ. Hambg. 14 (1941), 22–60.

[37] H. Petersson, Konstruktion der Modulformen und der zu gewissen Grenzkreisgruppen gehörigen automorphen
Formen von positiver reeller Dimension und die vollständige Bestimmung ihrer Fourierkoeffzienten, S.-B. Hei-
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