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Our main aim is to generalize the mean dual affine quermassintegrals to the Orlicz space. Under the framework of dual Orlicz-
Brunn-Minkowski theory, we introduce a new affine geometric quantity by calculating the first Orlicz variation of the mean
dual affine quermassintegrals and call it the Orlicz mean dual affine quermassintegral. The fundamental notions and conclusions
of the mean dual affine quermassintegrals and the Minkowski and Brunn-Minkowski inequalities for them are extended to an
Orlicz setting. The related concepts and inequalities of dual Orlicz mixed volumes are also included in our conclusions. The new
Orlicz isoperimetric inequalities in special case yield the 𝐿𝑝-dual Minkowski inequality and Brunn-Minkowski inequality for the
mean dual affine quermassintegrals, which also imply the dual Orlicz-Minkowski inequality and dual Orlicz-Brunn-Minkowski
inequality.

1. Introduction

The radial addition 𝐾 +̃ 𝐿 of star sets (compact sets that are
star-shaped at 𝑜 and contain 𝑜) 𝐾 and 𝐿 can be defined by

𝐾 +̃ 𝐿 = {𝑥 +̃ 𝑦 : 𝑥 ∈ 𝐾, 𝑦 ∈ 𝐿} , (1)

where 𝑥 +̃ 𝑦 = 𝑥 + 𝑦 if 𝑥, 𝑦, and 𝑜 are collinear and 𝑥 +̃ 𝑦 = 𝑜,
otherwise, or by

𝜌 (𝐾 +̃ 𝐿, ⋅) = 𝜌 (𝐾, ⋅) + 𝜌 (𝐿, ⋅) , (2)

where 𝜌(𝐾, ⋅) denotes the radial function of star set𝐾, which
is defined by

𝜌 (𝐾, 𝑢) = max {𝑐 ≥ 0 : 𝑐𝑢 ∈ 𝐾} , (3)

for 𝑢 ∈ 𝑆𝑛−1, where 𝑆𝑛−1 is the surface of the unit sphere. Hints
as to the origins of the radial addition can be found in [1, p.
235]. If 𝜌(𝐾, ⋅) is positive and continuous, 𝐾 will be called a
star body. LetS𝑛 denote the set of star bodies about the origin
in R𝑛. When combined with volume, radial addition gives
rise to another substantial appendage to the classical theory,

called the dual Brunn-Minkowski theory. Radial addition is
the basis for the dual Brunn-Minkowski theory (see, e.g., [2–
10] for recent important contributions). The original theory
is originated from Lutwak [11]. He introduced the concept
of dual mixed volume which laid the foundation of the dual
Brunn-Minkowski theory. The dual theory can count among
its successes the solutions of the Busemann-Petty problem in
[3, 4, 9, 12, 13]. For 𝑝 ̸= 0, 𝑥 ∈ R𝑛, and𝐾, 𝐿 ∈ S𝑛, the 𝑝-radial
addition𝐾 +̃𝑝 𝐿 is defined by (see [14])

𝜌 (𝐾 +̃𝑝 𝐿, 𝑥)𝑝 = 𝜌 (𝐾, 𝑥)𝑝 + 𝜌 (𝐿, 𝑥)𝑝 . (4)

The 𝐿𝑝-harmonic radial combination for star bodies was
introduced: If 𝐾, 𝐿 ∈ S𝑛, 𝑢 ∈ S𝑛−1, and 𝑝 ≥ 1, then the𝐿𝑝-harmonic radial addition defined by Lutwak [8] is

𝜌 (𝐾 +̃𝑝 𝐿, 𝑢)−𝑝 = 𝜌 (𝐾, 𝑢)−𝑝 + 𝜌 (𝐿, 𝑢)−𝑝 . (5)

For convex bodies, the 𝐿𝑝-harmonic addition was first
investigated by Firey [15].
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If 𝐾 is a nonempty closed (not necessarily bounded)
convex set in R𝑛, then

ℎ (𝐾, 𝑥) = max {𝑥 ⋅ 𝑦 : 𝑦 ∈ 𝐾} , (6)

for 𝑥 ∈ R𝑛, which defined the support function ℎ(𝐾, 𝑥) of𝐾.
A nonempty closed convex set is uniquely determined by its
support function. 𝐿𝑝-addition and inequalities are the funda-
mental and core content in the 𝐿𝑝-Brunn-Minkowski theory.
In recent years, a new extension of 𝐿𝑝-Brunn-Minkowski
theory is to Orlicz-Brunn-Minkowski theory, initiated by
Lutwak et al. [16, 17]. Gardner et al. [18] introduced the Orlicz
addition for the first time, constructed a general framework
for the Orlicz-Brunn-Minkowski theory, and made the rela-
tion to Orlicz spaces and norms clear. The Orlicz addition
of convex bodies was also introduced from different angles
and the 𝐿𝑝-Brunn-Minkowski inequality was extended to
theOrlicz-Brunn-Minkowski inequality (see [19]).TheOrlicz
centroid inequality for star bodieswas introduced in [20].The
other articles advancing the theory can be found in literatures
[7, 21–25].

Just as the 𝐿𝑝-Brunn-Minkowski theory is extended to
the Orlicz Brunn-Minkowski theory, it has recently turned
to a study extending from 𝐿𝑝-dual Brunn-Minkowski theory
to dual Orlicz Brunn-Minkowski theory. The dual Orlicz-
Brunn-Minkowski theory has also attracted mathematicians’
attention [14, 26–28]. In 2014, Zhu et al. [29] introduced the
Orlicz harmonic radial sum 𝐾 +̃𝜙 𝐿 of two star bodies 𝐾 and𝐿, defined by

𝜌 (𝐾 +̃𝜙 𝐿, 𝑢) = sup{𝜆 > 0 : 𝜙 (𝜌 (𝐾, 𝑢)𝜆 )
+ 𝜙(𝜌 (𝐿, 𝑢)𝜆 ) ≤ 𝜙 (1)} , (7)

where 𝑢 ∈ 𝑆𝑛−1, 𝜙 : (0,∞) → (0,∞) is a convex and
decreasing function such that 𝜙(0) = ∞, lim𝑡→∞𝜙(𝑡) =0, and lim𝑡→0𝜙(𝑡) = ∞. Let C denote the class of the
convex and decreasing functions 𝜙. When 𝑝 ≥ 1 and𝜙(𝑡) = 𝑡−𝑝, the Orlicz harmonic addition +̃𝜙 becomes the 𝐿𝑝-
harmonic radial addition +̃𝑝. The dual Orlicz mixed volume
with respect to Orlicz harmonic radial addition, denoted by𝑉̃𝜙(𝐾, 𝐿), is defined by

𝑉̃𝜙 (𝐾, 𝐿) fl 𝜙󸀠+ (1)𝑛 lim
𝜀→0+

𝑉(𝐾 +̃𝜙 𝜀 ⋅ 𝐿) − 𝑉 (𝐾)𝜀
= 1𝑛 ∫𝑆𝑛−1 𝜙( 𝜌 (𝐿, 𝑢)𝜌 (𝐾, 𝑢)) 𝜌 (𝐾, 𝑢)𝑛 𝑑𝑆 (𝑢) ,

(8)

where 𝐾 +̃𝜙 𝜀 ⋅ 𝐿 is the Orlicz linear combination of 𝐾 and𝐿, 𝑑𝑆(𝑢) denotes the surface area measure of the unit sphere𝑆𝑛−1, and 𝜙󸀠+(1) denotes the value of the right derivative of
convex function 𝜙 at point 1.

The dual affine quermassintegrals were defined, for a
convex body𝐾 ∈ S𝑛, by letting Φ̃0(𝐾) fl 𝑉(𝐾), Φ̃𝑛(𝐾) fl 𝜔𝑛,

and for 0 < 𝑗 < 𝑛 (see, e.g., [30], p. 515)
Φ̃𝑛−𝑗 (𝐾) fl 𝜔𝑛 [∫

𝐺𝑛,𝑗

(vol𝑗 (𝐾 ∩ 𝜉)𝜔𝑗 )𝑛 𝑑𝜇𝑗 (𝜉)]1/𝑛 , (9)

where 𝐺𝑛,𝑗 denotes the Grassmann manifold of 𝑗-
dimensional subspaces in R𝑛, 𝜇𝑗 denotes the gauge Haar
measure on 𝐺𝑛,𝑗, vol𝑗(𝐾 ∩ 𝜉) denotes the 𝑗-dimensional
volume of intersection of 𝐾 on 𝑗-dimensional subspace𝜉 ⊂ R𝑛, and 𝜔𝑗 denotes the volume of 𝑗-dimensional unit
ball. Gardner [31] showed the Brunn-Minkowski inequality
for the dual affine quermassintegrals. If 𝐾, 𝐿 ∈ S𝑛 and0 ≤ 𝑗 ≤ 𝑛 − 1, then

Φ̃𝑗 (𝐾 +̃ 𝐿)1/(𝑛−𝑗) ≤ Φ̃𝑗 (𝐾)1/(𝑛−𝑗) + Φ̃𝑗 (𝐿)1/(𝑛−𝑗) , (10)

with equality if and only if 𝐾 is a dilate of 𝐿, modulo a set
of measure zero. In analogy to (9), one may also define mean
dual affine quermassintegrals by (see, e.g., [30], p. 516)

Φ𝑛−𝑗 (𝐾)
fl 𝜔𝑛 [∫

𝐴𝑛,𝑗

(vol𝑗 (𝐾 ∩ 𝜉)𝜔𝑗 )𝑛+1 𝑑]𝑗 (𝜉)]1/(𝑛+1) , (11)

for a convex body and 0 < 𝑗 < 𝑛 and by lettingΦ0(𝐾) fl 𝑉(𝐾)
and Φ𝑛(𝐾) fl 𝜔𝑛. Here, 𝐴𝑛,𝑗 denotes the space of the 𝑗-
dimensional affine subspace in R𝑛 and ]𝑗 denotes the gauge
Haar measure on 𝐴𝑛,𝑗. They are related to the dual affine
quermassintegrals by (see [32], p. 373).

Φ𝑛−𝑗 (𝐾) = 𝜔𝑛𝜔𝑗 (∫𝐾 Φ̃𝑛−𝑗 (𝐾 − 𝑥)𝑛 𝑑𝑥)1/(𝑛+1) . (12)

Obviously, Φ𝑛−𝑗(𝐾) is invariant under unimodular affine
transformations of𝐾.

In the paper, our main aim is to generalize the mean
dual affine quermassintegrals to the Orlicz space. Under
the framework of dual Orlicz-Brunn-Minkowski theory,
we introduce a new affine geometric quantity such as
Orlicz mean dual affine quermassintegrals. The fundamental
notions and conclusions of the mean dual affine quer-
massintegrals and the Minkowski and Brunn-Minkowski
inequalities for the mean dual affine quermassintegrals are
extended to an Orlicz setting. The new Orlicz-Minkowski
and Brunn-Minkowski inequalities for the Orlicz mean dual
affine quermassintegrals in special case yield the 𝐿𝑝-dual
Minkowski inequality and Brunn-Minkowski inequalities for
the mean dual affine quermassintegrals, which also imply
the dualOrlicz-Minkowski inequality andBrunn-Minkowski
inequalities for general volumes.

Following the basic spirit of Alexandroff [33], Fenchel
and Jessen [34] introduction ofmixed quermassintegrals, and
introduction of Lutwak’s 𝐿𝑝-mixed quermassintegrals (see
[8, 35]), the study is based on the first-order Orlicz variation
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of the dual affine quermassintegrals. In Section 3, we prove
that the Orlicz first-order variation of the mean dual affine
quermassintegrals can be expressed as follows: for 𝜙 ∈ C,𝜀 > 0, 0 < 𝑗 ≤ 𝑛, and 𝐾, 𝐿 ∈ S𝑛,𝑑𝑑𝜀 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0+ Φ𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿)= 𝑗𝜙󸀠+ (1)Φ𝑛−𝑗 (𝐾)−𝑛Φ𝜙,𝑛−𝑗 (𝐾, 𝐿)𝑛+1 .

(13)

Putting 𝑗 = 𝑛 in (13), then we have the well-known result.𝑑𝑑𝜀 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0+ 𝑉(𝐾 +̃𝜙 𝜀 ⋅ 𝐿) = 𝑛𝜙󸀠+ (1) 𝑉̃𝜙 (𝐾, 𝐿) . (14)

In (13), we find a new geometric quantity. Based on this,
we extract the required geometric quantity, denoted byΦ𝜙,𝑛−𝑗(𝐾, 𝐿), and call it as Orlicz mean dual affine quermass-
integrals, defined by

Φ𝜙,𝑛−𝑗 (𝐾, 𝐿) fl ( 𝜙󸀠+ (1)𝑗 ⋅ Φ𝑛−𝑗 (𝐾)−𝑛
⋅ 𝑑𝑑𝜀 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0+ Φ𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿))

1/(𝑛+1) , (15)

where 𝜙 ∈ C, 0 < 𝑗 ≤ 𝑛, and 𝐾, 𝐿 ∈ S𝑛. We also prove that
the new affine geometric quantityΦ𝜙,𝑛−𝑗(𝐾, 𝐿) has an integral
representation.

Φ𝜙,𝑛−𝑗 (𝐾, 𝐿) = 𝜔𝑛 [[∫𝐴𝑛,𝑗
𝑉̃(𝑗)𝜙 (𝐾 ∩ 𝜉, 𝐿 ∩ 𝜉)

vol𝑗 (𝐾 ∩ 𝜉) (vol𝑗 (𝐾 ∩ 𝜉)𝜔𝑗 )𝑛+1 𝑑]𝑗 (𝜉)]]
1/(𝑛+1) , (16)

where 𝑉̃(𝑗)𝜙 (𝐾∩𝜉, 𝐿∩𝜉) denotes the Orlicz dual mixed volume
of 𝑗-dimensional star bodies𝐾∩𝜉 and 𝐿∩𝜉 in 𝑗-dimensional
subspace 𝜉.

Obviously, the Orlicz mean dual affine quermassintegrals
are an extension of the mean dual affine quermassintegrals;
a very natural question is raised: is there a Minkowski type
isoperimetric inequality for the Orlicz mean dual affine
quermassintegrals? In Section 4, we give a positive answer
to this question and establish the dual Orlicz-Minkowski
inequality for the new affine geometric quantity. For 𝜙 ∈ C,0 < 𝑗 ≤ 𝑛, and 𝐾, 𝐿 ∈ S𝑛, we prove the Orlicz-Minkowski
inequality for the Orlicz mean dual affine quermassintegrals.

(Φ𝜙,𝑛−𝑗 (𝐾, 𝐿)Φ𝑛−𝑗 (𝐾) )
𝑛+1 ≥ 𝜙((Φ𝑛−𝑗 (𝐿)Φ𝑛−𝑗 (𝐾))

1/𝑗) . (17)

If 𝜙 is strictly convex, equality holds if and only if 𝐾 and 𝐿
are dilates. For 𝑗 = 𝑛, (17) becomes the following dual Orlicz-
Minkowski inequality established by Zhu et al. [29]:

𝑉̃𝜙 (𝐾, 𝐿) ≥ 𝑉 (𝐾) 𝜙(( 𝑉 (𝐿)𝑉 (𝐾))1/𝑛) . (18)

If 𝜙 is strictly convex, equality holds if and only if𝐾 and 𝐿 are
dilates.

In Section 5, on the basis of the dual Minkowski inequal-
ity for the Orlicz mean dual affine quermassintegrals, we
establish a dual Orlicz-Brunn-Minkowski inequality for the

dual mixed mean affine quermassintegrals. If 𝐾, 𝐿 ∈ S𝑛,0 < 𝑗 ≤ 𝑛, and 𝜙 ∈ C, then for any 𝜀 > 0
𝜙 (1) ≥ 𝜙(( Φ𝑛−𝑗 (𝐾)Φ𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿))

1/𝑗) + 𝜀
⋅ 𝜙(( Φ𝑛−𝑗 (𝐿)Φ𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿))

1/𝑗) . (19)

If 𝜙 is strictly convex, equality holds if and only if𝐾 and 𝐿 are
dilates. For 𝑗 = 𝑛 and 𝜀 = 1, (19) becomes the following dual
Orlicz-Brunn-Minkowski inequality established by Zhu et al.
[29]. If 𝐾, 𝐿 ∈ S𝑛 and 𝜙 ∈ C, then

𝜙 (1) ≥ 𝜙(( 𝑉 (𝐾)𝑉 (𝐾 +̃𝜙 𝐿))
1/𝑛)

+ 𝜙(( 𝑉 (𝐿)𝑉 (𝐾 +̃𝜙 𝐿))
1/𝑛) . (20)

If 𝜙 is strictly convex, equality holds if and only if 𝐾 and 𝐿
are dilates. Moreover, for 𝜀 = 1, 𝜙(𝑡) = 𝑡−𝑝, and 𝑝 ≥ 1,
(19) becomes the 𝐿𝑝-dual Brunn-Minkowski inequality for
the mean dual affine quermassintegrals. If 𝐾, 𝐿 ∈ S𝑛, 𝜀 > 0,0 < 𝑗 ≤ 𝑛, 𝑝 ≥ 1, and 𝜙 ∈ C, then

Φ𝑛−𝑗 (𝐾 +̃𝑝𝐿)−𝑝/𝑗 ≥ Φ𝑛−𝑗 (𝐾)−𝑝/𝑗 + Φ𝑛−𝑗 (𝐿)−𝑝/𝑗 , (21)

with equality if and only if 𝐾 and 𝐿 are dilates. When 𝑗 =𝑛, (21) becomes Lutwak’s dual Brunn-Minkowski inequality
(36).



4 Journal of Function Spaces

2. Preliminaries

The setting for this paper is 𝑛-dimensional Euclidean space
R𝑛. A body in R𝑛 is a compact set equal to the closure of its
interior. For a compact set𝐾 ⊂ R𝑛, we write𝑉(𝐾) for the (𝑛-
dimensional) Lebesguemeasure of𝐾 and call this the volume
of 𝐾. Associated with a compact subset 𝐾 of R𝑛, which is
star-shapedwith respect to the origin and contains the origin,
its radial function is 𝜌(𝐾, ⋅) : 𝑆𝑛−1 → [0,∞), defined by𝜌(𝐾, 𝑢) = max{𝜆 ≥ 0 : 𝜆𝑢 ∈ 𝐾}. Note that the class (star
sets) is closed under unions, intersection, and intersection
with subspace.The radial function is homogeneous of degree−1; that is, 𝜌(𝐾, 𝑟𝑥) = 𝑟−1𝜌(𝐾, 𝑥), for all 𝑥 ∈ R𝑛 and 𝑟 > 0. Let𝛿 denote the radial Hausdorff metric, as follows; if𝐾, 𝐿 ∈ S𝑛,
then (see, e.g., [30])

𝛿 (𝐾, 𝐿) = 󵄨󵄨󵄨󵄨𝜌 (𝐾, 𝑢) − 𝜌 (𝐿, 𝑢)󵄨󵄨󵄨󵄨∞ . (22)

From the definition of the radial function, it follows imme-
diately that for 𝑔 ∈ 𝐺𝐿(𝑛) the radial function of the image𝑔𝐾 = {𝑔𝑦 : 𝑦 ∈ 𝐾} of 𝐾 is given by

𝜌 (𝑔𝐾, 𝑥) = 𝜌 (𝐾, 𝑔−1𝑥) , (23)

for all 𝑥 ∈ R𝑛.
2.1. Dual Mixed Volumes and 𝐿𝑝-Dual Mixed Volumes. If𝐾1, . . . , 𝐾𝑛 ∈ S𝑛, the dual mixed volume 𝑉̃(𝐾1, . . . , 𝐾𝑛)
defined by (see [11]) is as follows:

𝑉̃ (𝐾1, . . . , 𝐾𝑛)
= 1𝑛 ∫𝑆𝑛−1 𝜌 (𝐾1, 𝑢) ⋅ ⋅ ⋅ 𝜌 (𝐾𝑛, 𝑢) 𝑑𝑆 (𝑢) . (24)

If 𝐾1 = ⋅ ⋅ ⋅ = 𝐾𝑛−𝑖 = 𝐾, 𝐾𝑛−𝑖+1 = ⋅ ⋅ ⋅ = 𝐾𝑛 = 𝐿, the dual
mixed volume 𝑉̃(𝐾1, . . . ,K𝑛) is written as 𝑉̃𝑖(𝐾, 𝐿). If 𝐾1 =⋅ ⋅ ⋅ = 𝐾𝑛 = 𝐾, the dualmixed volume 𝑉̃(𝐾1, . . . , 𝐾𝑛) is written
as 𝑉(𝐾). Obviously, For𝐾 ∈ S𝑛, we have

𝑉 (𝐾) = 1𝑛 ∫𝑆𝑛−1 𝜌 (𝐾, 𝑢)𝑛 𝑑𝑆 (𝑢) , (25)

and (see [11])

𝑉̃1 (𝐾, 𝐿) = lim
𝜀→0+

𝑉 (𝐾 +̃ 𝜀 ⋅ 𝐿) − 𝑉 (𝐾)𝜀
= 1𝑛 ∫𝑆𝑛−1 𝜌 (𝐾, 𝑢)𝑛−1 𝜌 (𝐿, 𝑢) 𝑑𝑆 (𝑢) .

(26)

The fundamental inequality for dual mixed volumes stated
that if 𝐾, 𝐿 ∈ S𝑛, then

𝑉̃1 (𝐾, 𝐿)𝑛 ≤ 𝑉 (𝐾)𝑛−1 𝑉 (𝐿) , (27)

with equality if and only if 𝐾 and 𝐿 are dilates. The Brunn-
Minkowski inequality for the radial addition is the following:

If 𝐾, 𝐿 ∈ S𝑛, then
𝑉 (𝐾 +̃ 𝐿)1/𝑛 ≤ 𝑉 (𝐾)1/𝑛 + 𝑉 (𝐿)1/𝑛 , (28)

with equality if and only if 𝐾 and 𝐿 are dilates.
The following result follows immediately from the defini-

tion of 𝐿𝑝-radial addition, with 𝑝 ̸= 0.
𝑝𝑛 lim𝜀→0+𝑉(𝐾 +̃𝑝 𝜀 ⋅ 𝐿) − 𝑉 (𝐿)𝜀
= 1𝑛 ∫𝑆𝑛−1 𝜌 (𝐾, 𝑢)𝑛−𝑖−𝑝 𝜌 (𝐿, 𝑢)𝑝 𝑑𝑆 (𝑢) .

(29)

Let𝐾, 𝐿 ∈ S𝑛 and 𝑝 < 0; we define 𝐿𝑝-dual mixed volume of
star bodies 𝐾 and 𝐿, 𝑉̃𝑝(𝐾, 𝐿), by

𝑉̃𝑝 (𝐾, 𝐿) = 1𝑛 ∫𝑆𝑛−1 𝜌 (𝐾, 𝑢)𝑛−𝑝 𝜌 (𝐿, 𝑢)𝑝 𝑑𝑆 (𝑢) . (30)

This integral representation (30), together with the Hölder
inequality, yields the 𝑝-dual Minkowski inequality (see [36]):
If 𝐾, 𝐿 ∈ S𝑛 and 𝑝 < 0, then

𝑉̃𝑝 (𝐾, 𝐿)𝑛 ≥ 𝑉 (𝐾)𝑛−𝑝 𝑉 (𝐿)𝑝 , (31)

with equality if and only if𝐾 and 𝐿 are dilates. The definition
of 𝐿𝑝-radial addition, together with (31), yields Gardner’s
Brunn-Minkowski inequality for 𝑝-radial addition (see [37]).
If 𝐾, 𝐿 ∈ S𝑛 and 𝑝 < 0, then

𝑉(𝐾 +̃𝑝 𝐿)𝑝/𝑛 ≥ 𝑉 (𝐾)𝑝/𝑛 + 𝑉 (𝐿)𝑝/𝑛 , (32)

with equality if and only if 𝐾 and 𝐿 are dilates.
2.2. 𝐿𝑝-Harmonic Mixed Volumes. The following result
follows immediately form (5) with 𝑝 ≥ 1.

− 𝑝𝑛 lim𝜀→0+𝑉(𝐾 +̃𝑝 𝜀 ⋅ 𝐿) − 𝑉 (𝐿)𝜀
= 1𝑛 ∫𝑆𝑛−1 𝜌 (𝐾, 𝑢)𝑛+𝑝 𝜌 (𝐿, 𝑢)−𝑝 𝑑𝑆 (𝑢) .

(33)

Let𝐾, 𝐿 ∈ S𝑛 and 𝑝 ≥ 1; the 𝐿𝑝-harmonic mixed volumes of
star bodies 𝐾 and 𝐿 denotes 𝑉̃−𝑝(𝐾, 𝐿), defined by (see [35])

𝑉̃−𝑝 (𝐾, 𝐿) = 1𝑛 ∫𝑆𝑛−1 𝜌 (𝐾, 𝑢)𝑛+𝑝 𝜌 (𝐿, 𝑢)−𝑝 𝑑𝑆 (𝑢) . (34)

This integral representation (34), together with the Hölder
inequality, yields Lutwak’s 𝐿𝑝-dual Minkowski inequality as
follows: If 𝐾, 𝐿 ∈ S𝑛 and 𝑝 ≥ 1, then

𝑉̃−𝑝 (𝐾, 𝐿)𝑛 ≥ 𝑉 (𝐾)𝑛+𝑝 𝑉 (𝐿)−𝑝 , (35)
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with equality if and only if 𝐾 and 𝐿 are dilates. This
integral representation (34), together with the definition of𝑝-harmonic addition, yields Lutwak’s 𝐿𝑝-Brunn-Minkowski
inequality for harmonic 𝑝-addition (see [35]). If 𝐾, 𝐿 ∈ S𝑛

and 𝑝 ≥ 1, then
𝑉(𝐾 +̃𝑝 𝐿)−𝑝/𝑛 ≥ 𝑉 (𝐾)−𝑝/𝑛 + 𝑉 (𝐿)−𝑝/𝑛 , (36)

with equality if and only if 𝐾 and 𝐿 are dilates.
2.3. Orlicz Harmonic Addition and Orlicz Harmonic Linear

Combination

Definition 1. Let 𝑚 ≥ 2, 𝜙 ∈ C, 𝐾𝑗 ∈ S𝑛, 𝑗 = 1, . . . , 𝑚,
define the Orlicz harmonic addition of 𝐾1, . . . , 𝐾𝑚, denoted
by 𝐾1 +̃𝜙 ⋅ ⋅ ⋅ +̃𝜙𝐾𝑚, defined by

𝜌 (𝐾1 +̃𝜙 ⋅ ⋅ ⋅ +̃𝜙𝐾𝑚, 𝑥)
= sup

{{{𝜆 > 0 :
𝑚∑
𝑗=1

𝜙(𝜌 (𝐾𝑗, 𝑥)𝜆 ) ≤ 𝜙 (1)}}} ,
(37)

for all 𝑥 ∈ R𝑛.
Equivalently, the Orlicz harmonic addition𝐾1 +̃𝜙 ⋅ ⋅ ⋅ +̃𝜙𝐾𝑚 can be defined implicitly by

𝜙( 𝜌 (𝐾1, 𝑥)𝜌 (𝐾1 +̃𝜙 ⋅ ⋅ ⋅ +̃𝜙𝐾𝑚, 𝑥)) + ⋅ ⋅ ⋅
+ 𝜙( 𝜌 (𝐾𝑚, 𝑥)𝜌 (𝐾1 +̃𝜙 ⋅ ⋅ ⋅ +̃𝜙𝐾𝑚, 𝑥)) = 𝜙 (1) ,

(38)

for all 𝑥 ∈ R𝑛.
The Orlicz harmonic linear combination on the case𝑚 =2 is defined.

Definition 2. Orlicz harmonic linear combination+̃𝜙(𝐾, 𝐿, 𝛼, 𝛽) for 𝐾, 𝐿 ∈ S𝑛, 𝜙 ∈ C, and 𝛼, 𝛽 ≥ 0 (both not
zero) is defined by

𝛼 ⋅ 𝜙( 𝜌 (𝐾, 𝑥)𝜌 (+̃𝜙 (𝐾, 𝐿, 𝛼, 𝛽) , 𝑥)) + 𝛽
⋅ 𝜙( 𝜌 (𝐿, 𝑥)𝜌 (+̃𝜙 (𝐾, 𝐿, 𝛼, 𝛽) , 𝑥)) = 𝜙 (1) ,

(39)

for all 𝑥 ∈ R𝑛.
When 𝜙(𝑡) = 𝑡−𝑝 and 𝑝 ≥ 1, then Orlicz harmonic lin-

ear combination +̃𝜙(𝐾, 𝐿, 𝛼, 𝛽) changes to the 𝐿𝑝-harmonic
linear combination 𝛼◊𝐾 +̃𝑝 𝛽◊𝐿 (see [9]). Moreover, we shall
write𝐾 +̃𝜙 𝜀 ⋅ 𝐿 instead of +̃𝜙(𝐾, 𝐿, 1, 𝜀), for 𝜀 ≥ 0, and assume
throughout that this is defined by (39), where 𝛼 = 1, 𝛽 = 𝜀,
and 𝜙 ∈ C, and write +̃𝜙(𝐾, 𝐿, 1, 1) as 𝐾 +̃𝜙 𝐿.

3. Orlicz Mean Dual Affine Quermassintegrals

In order to define Orlicz mean dual affine quermassintegrals,
we need the following lemmas.

Lemma 3. If 𝐾, 𝐿 ∈ S𝑛 and 𝜙 ∈ C, then for 𝜀 > 0
𝜙 (1) 𝑉 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿) = 𝑉̃𝜙 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿, 𝐾) + 𝜀⋅ 𝑉̃𝜙 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿, 𝐿) . (40)

Proof. From (8) and (39), we have for any 𝑄 ∈ S𝑛
𝑉̃𝜙 (𝑄,𝐾) + 𝜀 ⋅ 𝑉̃𝜙 (𝑄, 𝐿) = 1𝑛
⋅ ∫
𝑆𝑛−1
(𝜑(𝜌 (𝐾, 𝑢)𝜌 (𝑄, 𝑢)) + 𝜀 ⋅ 𝜙 ( 𝜌 (𝐿, 𝑢)𝜌 (𝑄, 𝑢)))

⋅ 𝜌 (𝑄, 𝑢)𝑛 𝑑𝑆 (𝑢) = 𝜙 (1)𝑛⋅ ∫
𝑆𝑛−1
𝜌 (𝑄, 𝑢)𝑛 𝑑𝑆 (𝑢) = 𝜙 (1) 𝑉 (𝑄) .

(41)

Putting 𝑄 = 𝐾 +̃𝜙 𝜀 ⋅ 𝐿 in (41), (41) easily becomes (40).

Lemma 4 (see [29]). If 𝐾, 𝐿 ∈ S𝑛 and 𝜙 ∈ C, then for 𝜀 > 0𝐾 +̃𝜙 𝜀 ⋅ 𝐿 󳨀→ 𝐾, (42)

in the radial Hausdorff metric as 𝜀 → 0+.
Lemma 5. If 𝐾, 𝐿 ∈ S𝑛, 𝜀 > 0, and 𝜙 ∈ C, then

(𝐾 +̃𝜙 𝜀 ⋅ 𝐿) ∩ 𝜉 = (𝐾 ∩ 𝜉) +̃𝜙 𝜀 ⋅ (𝐿 ∩ 𝜉) . (43)

Proof. Suppose 𝜉 ∈ 𝐴𝑛,𝑗 and 𝑆𝑗−1 = 𝑆𝑛−1 ∩ 𝜉. For 𝑢 ∈ 𝑆𝑗−1 and𝑄 ∈ S𝑛, we have 𝜌 (𝑄, 𝑢) = 𝜌 (𝑄 ∩ 𝜉, 𝑢) . (44)

Hence

𝜙( 𝜌 (𝐾 ∩ 𝜉, 𝑢)𝜌 ((𝐾 +̃𝜙 𝜀 ⋅ 𝐿) ∩ 𝜉, 𝑢))
+ 𝜀𝜙( 𝜌 (𝐿 ∩ 𝜉, 𝑢)𝜌 ((𝐾 +̃𝜙 𝜀 ⋅ 𝐿) ∩ 𝜉, 𝑢)) = 𝜙 (1) .

(45)

On the other hand

𝜙( 𝜌 (𝐾 ∩ 𝜉, 𝑢)𝜌 ((𝐾 ∩ 𝜉) +̃𝜙 𝜀 ⋅ (𝐿 ∩ 𝜉) , 𝑢))
+ 𝜀𝜙( 𝜌 (𝐿 ∩ 𝜉, 𝑢)𝜌 ((𝐾 ∩ 𝜉) +̃𝜙 𝜀 ⋅ (𝐿 ∩ 𝜉) , 𝑢)) = 𝜙 (1) .

(46)
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Therefore (𝐾 +̃𝜙 𝜀 ⋅𝐿)∩𝜉 and (𝐾∩𝜉) +̃𝜙 𝜀 ⋅ (𝐿∩𝜉) are the same
star body in 𝜉. Definition 6. If 𝜙 ∈ C, 0 < 𝑗 ≤ 𝑛, and 𝐾, 𝐿 ∈ S𝑛, then Orlicz

mean dual affine quermassintegral of 𝐾 and 𝐿, denoted byΦ𝜙,𝑛−𝑗(𝐾, 𝐿), is defined by

Φ𝜙,𝑛−𝑗 (𝐾, 𝐿) fl 𝜔𝑛 [[∫𝐴𝑛,𝑗
𝑉̃(𝑗)𝜙 (𝐾 ∩ 𝜉, 𝐿 ∩ 𝜉)

vol𝑗 (𝐾 ∩ 𝜉) (vol𝑗 (𝐾 ∩ 𝜉)𝜔𝑗 )𝑛+1 𝑑]𝑗 (𝜉)]]
1/(𝑛+1) . (47)

Specifically, we agreed on the following:

Φ𝜙,0 (𝐾, 𝐿) = (𝑉̃𝜙 (𝐾, 𝐿)𝑉 (𝐾) )1/(𝑛+1) 𝑉 (𝐾) . (48)

In order to define the Orlicz mean dual affine quermass-
integrals, we need also to calculate the first Orlicz variation of
the mean dual affine quermassintegrals.

Lemma 7. If 𝜙 ∈ C, 0 < 𝑗 ≤ 𝑛, and 𝐾, 𝐿 ∈ S𝑛, then for any𝜀 > 0 𝑑𝑑𝜀 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0+ Φ𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿)= 𝑗𝜙󸀠+ (1)Φ𝑛−𝑗 (𝐾)1−𝑛Φ𝜙,𝑛−𝑗 (𝐾, 𝐿)𝑛 .
(49)

Proof. On the one hand, from (8), we have

𝑑𝑑𝜀 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0+ ∫𝐴𝑛,𝑗 vol𝑗 ((𝐾 +̃𝜙 𝜀 ⋅ 𝐿) ∩ 𝜉)𝑛+1 𝑑]𝑗 (𝜉)
= lim
𝜀→0+
∫
𝐴𝑛,𝑗

vol𝑗 ((𝐾 +̃𝜙 𝜀 ⋅ 𝐿) ∩ 𝜉)𝑛+1 − vol𝑗 (𝐾 ∩ 𝜉)𝑛+1𝜀 𝑑]𝑗 (𝜉)
= (𝑛 + 1) lim

𝜀→0+
∫
𝐴𝑛,𝑗

(vol𝑗 (𝐾 ∩ 𝜉)𝑛
⋅ 𝑑𝑑𝜀 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0+ vol𝑗 ((𝐾 +̃𝜙 𝜀 ⋅ 𝐿) ∩ 𝜉)) 𝑑]𝑗 (𝜉)
= (𝑛 + 1) 𝑗𝜙󸀠+ (1) ∫𝐴𝑛,𝑗 vol𝑗 (𝐾 ∩ 𝜉)𝑛 𝑉̃(𝑗)𝜙 (𝐾 ∩ 𝜉, 𝐿 ∩ 𝜉) 𝑑]𝑗 (𝜉) .

(50)

On the other hand, from (11), (47), and (50), we obtain

𝑑𝑑𝜀 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0+ Φ𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿) = 𝜔𝑛𝜔𝑗 ⋅ 𝑑𝑑𝜀 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0+
⋅ [∫
𝐴𝑛,𝑗

vol𝑗 ((𝐾 +̃𝜙 𝜀 ⋅ 𝐿) ∩ 𝜉)𝑛+1 𝑑]𝑗 (𝜉)]1/(𝑛+1)
= 𝜔𝑛(𝑛 + 1) 𝜔𝑗 (∫𝐴𝑛,𝑗 vol𝑗 (𝐾 ∩ 𝜉)𝑛+1 𝑑]𝑗 (𝜉))−𝑛/(𝑛+1)
⋅ 𝑑𝑑𝜀 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0+ ∫𝐴𝑛,𝑗 vol𝑗 ((𝐾 +̃𝜙 𝜀 ⋅ 𝐿) ∩ 𝜉)𝑛+1 𝑑]𝑗 (𝜉)
= 𝑗𝜙󸀠+ (1) 𝜔𝑛𝜔𝑗 (∫𝐴𝑛,𝑗 vol𝑗 (𝐾 ∩ 𝜉)𝑛 𝑑]𝑗 (𝜉))

−𝑛/(𝑛+1)

⋅ ∫
𝐴𝑛,𝑗

𝑉̃(𝑗)𝜙 (𝐾 ∩ 𝜉, 𝐿 ∩ 𝜉)
vol𝑗 (𝐾 ∩ 𝜉) vol𝑗 (𝐾 ∩ 𝜉)𝑛+1 𝑑]𝑗 (𝜉)

= 𝑗𝜙󸀠+ (1)Φ𝑛−𝑗 (𝐾)−𝑛Φ𝜙,𝑛−𝑗 (𝐾, 𝐿)𝑛+1 .

(51)

Lemma 8. If 𝐾, 𝐿 ∈ S𝑛, 0 < 𝑗 ≤ 𝑛, and 𝜙 ∈ C, then

Φ𝜙,𝑛−𝑗 (𝐾,𝐾) = 𝜙 (1)1/(𝑛+1)Φ𝑛−𝑗 (𝐾) . (52)

Proof. The definition of the Orlicz mean dual affine quer-
massintegrals, together with (8) and (11), gives (52).

If 𝜙(𝑡) = 𝑡−𝑝, 𝑝 ≥ 1, then Φ𝜙,𝑛−𝑗(𝐾, 𝐿) = Φ−𝑝,𝑛−𝑗(𝐾, 𝐿)
and call the 𝐿𝑝-dual mixed mean affine quermassintegral of𝐾 and 𝐿, and

Φ−𝑝,𝑛−𝑗 (𝐾, 𝐿) = 𝜔𝑛 [[∫𝐴𝑛,𝑗
𝑉̃(𝑗)−𝑝 (𝐾 ∩ 𝜉, 𝐿 ∩ 𝜉)

vol𝑗 (𝐾 ∩ 𝜉) (vol𝑗 (𝐾 ∩ 𝜉)𝜔𝑗 )𝑛+1 𝑑]𝑗 (𝜉)]]
1/(𝑛+1) , (53)

where 𝑉̃(𝑗)−𝑝 (𝐾 ∩ 𝜉, 𝐿 ∩ 𝜉) denotes the 𝐿𝑝-dual mixed volume
of 𝑗-dimensional star bodies𝐾∩𝜉 and 𝐿∩𝜉 in 𝑗-dimensional
subspace 𝜉.
Lemma 9 (see [29]). If𝐾, 𝐿 ∈ S𝑛, 𝜙 ∈ C, and any 𝑔 ∈ 𝐺𝐿(𝑛),
then for 𝜀 > 0

𝑔 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿) = (𝑔𝐾) +̃𝜙 𝜀 ⋅ (𝑔𝐿) . (54)

In the following, we will prove that Orlicz mean dual
affine quermassintegralΦ𝜙,𝑛−𝑗(𝐾, 𝐿) is invariant under simul-
taneous unimodular centro-affine transformation.
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Lemma 10. If 𝐾, 𝐿 ∈ S𝑛, 0 < 𝑗 ≤ 𝑛, 𝜙 ∈ C, and any 𝑔 ∈𝑆𝐿(𝑛), then
Φ𝜙,𝑛−𝑗 (𝑔𝐾, 𝑔𝐿) = Φ𝜙,𝑛−𝑗 (𝐾, 𝐿) . (55)

Proof. Suppose that 𝜉 ∈ 𝐴𝑛,𝑗 and 𝑆𝑗−1 = 𝑆𝑛−1 ∩ 𝜉. For any𝑔 ∈ 𝑆𝐿(𝑛), 𝑢 ∈ 𝑆𝑗−1, and 𝑄 ∈ S𝑛, we have
𝜌 (𝑔𝑄, 𝑢) = 𝜌 (𝑔𝑄 ∩ 𝜉, 𝑢) . (56)

When 𝑥 ∈ R𝑛 \ {0}, let
⟨𝑥⟩ = 𝑥‖𝑥‖ . (57)

From (23), we obtain

𝑉̃(𝑗)𝜙 (𝑔𝐾 ∩ 𝜉, 𝑔𝐿 ∩ 𝜉) = 1𝑗 ∫𝑆𝑛−1∩𝜉 𝜙( 𝜌 (𝑔𝐿 ∩ 𝜉, 𝑢)𝜌 (𝑔𝐾 ∩ 𝜉, 𝑢))
⋅ 𝜌 (𝑔𝐾 ∩ 𝜉, 𝑢)𝑗 𝑑𝑆 (𝑢) = 1𝑗
⋅ ∫
𝑆𝑛−1
𝜙(𝜌 (𝐿, ⟨𝑔−1𝑢⟩)𝜌 (𝐾, ⟨𝑔−1𝑢⟩))

⋅ 𝜌 (𝐾, ⟨𝑔−1𝑢⟩)𝑗 𝑑𝑆 (⟨𝑔−1𝑢⟩) = 1𝑗
⋅ ∫
𝑆𝑛−1∩𝜉

𝜙(𝜌 (𝐿 ∩ 𝜉, ⟨𝑔−1𝑢⟩)𝜌 (𝐾 ∩ 𝜉, ⟨𝑔−1𝑢⟩))
⋅ 𝜌 (𝐾 ∩ 𝜉, ⟨𝑔−1𝑢⟩)𝑗 𝑑𝑆 (⟨𝑔−1𝑢⟩)
= 𝑉̃(𝑗)𝜙 (𝐾 ∩ 𝜉, 𝐿 ∩ 𝜉) .

(58)

On the other hand, from Definition 6 and (58), we have

Φ𝜙,𝑛−𝑗 (𝑔𝐾, 𝑔𝐿) = 𝜔𝑛 [[∫𝐴𝑛,𝑗
𝑉̃(𝑗)𝜙 (𝑔𝐾 ∩ 𝜉, 𝑔𝐿 ∩ 𝜉)

vol𝑗 (𝑔𝐾 ∩ 𝜉) (vol𝑗 (𝑔𝐾 ∩ 𝜉)𝜔𝑗 )𝑛+1 𝑑]𝑗 (𝜉)]]
1/(𝑛+1)

= 𝜔𝑛 [[∫𝐴𝑛,𝑗
𝑉̃(𝑗)𝜙 (𝐾 ∩ 𝜉, 𝐿 ∩ 𝜉)

vol𝑗 (𝐾 ∩ 𝜉) (vol𝑗 (𝐾 ∩ 𝜉)𝜔𝑗 )𝑛+1 𝑑]𝑗 (𝜉)]]
1/(𝑛+1) = Φ𝜙,𝑛−𝑗 (𝐾, 𝐿) .

(59)

Next, we also can give another proof directly.

Proof. From Lemmas 7 and 9, we have, for 𝑔 ∈ 𝑆𝐿(𝑛),
Φ𝜙,𝑛−𝑗 (𝑔𝐾, 𝑔𝐿) = ( 𝜙󸀠+ (1)𝑗Φ𝑛−𝑗 (𝑔𝐾)−𝑛
⋅ 𝑑𝑑𝜀 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0+ Φ𝑛−𝑗 (𝑔𝐾 +̃𝜙 𝜀 ⋅ 𝑔𝐿))

1/(𝑛+1)

= ( 𝜙󸀠+ (1)𝑗Φ𝑛−𝑗 (𝑔𝐾)−𝑛
⋅ 𝑑𝑑𝜀 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0+ Φ𝑛−𝑗 (𝑔 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿)))

1/(𝑛+1)

= ( 𝜙󸀠+ (1)𝑗Φ𝑛−𝑗 (𝐾)−𝑛
⋅ 𝑑𝑑𝜀 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0+ Φ𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿))

1/(𝑛+1) = Φ𝜙,𝑛−𝑗 (𝐾, 𝐿) .

(60)

Here, we point out the connections between the Orlicz
mean dual affine quermassintegrals and the dual affine
quermassintegrals. From (13) and in view of the connections
between the mean dual affine quermassintegrals and the dual
affine quermassintegrals, we have the following: for 𝜙 ∈ C,𝜀 > 0, 0 < 𝑗 ≤ 𝑛, and𝐾, 𝐿 ∈ S𝑛,
Φ𝜙,𝑛−𝑗 (𝐾, 𝐿)𝑛+1 = 𝜙󸀠+ (1) 𝜔𝑛𝑛𝑗𝜔𝑛𝑗

⋅ 𝑑𝑑𝜀 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0+ Φ𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿)
⋅ (∫
𝐾
Φ̃𝑛−𝑗 (𝐾 − 𝑥)𝑛 𝑑𝑥)𝑛/(𝑛+1) .

(61)

We also need the following lemma to prove our main
results.

Lemma 11 (Jensen’s inequality). Let 𝜇 be a probability mea-
sure on a space 𝑋 and 𝑔 : 𝑋 → 𝐼 ⊂ R is a 𝜇-integrable
function, where 𝐼 is a possibly infinite interval. If 𝜓 : 𝐼 → R is
a convex function, then∫

𝑋
𝜓 (𝑔 (𝑥)) 𝑑𝜇 (𝑥) ≥ 𝜓(∫

𝑋
𝑔 (𝑥) 𝑑𝜇 (𝑥)) . (62)

If 𝜓 is strictly convex, equality holds if and only if 𝑔(𝑥) is
constant for 𝜇-almost all 𝑥 ∈ 𝑋 (see [38, p.165]).
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4. Orlicz-Minkowski Inequality for Orlicz
Mean Dual Quermassintegrals

Theorem 12. If 𝐾, 𝐿 ∈ S𝑛, 𝜙 ∈ C, and 0 < 𝑗 ≤ 𝑛, then
(Φ𝜙,𝑛−𝑗 (𝐾, 𝐿)Φ𝑛−𝑗 (𝐾) )

𝑛+1 ≥ 𝜙((Φ𝑛−𝑗 (𝐿)Φ𝑛−𝑗 (𝐾))
1/𝑗) . (63)

If 𝜙 is strictly convex, equality holds if and only if 𝐾 and 𝐿 are
dilates.

Proof. When 𝑗 = 𝑛, (63) becomes the dual Orlicz-Minkowski
inequality; hence we assume 0 < 𝑗 < 𝑛. Since

∫
𝐴𝑛,𝑗

𝑑] (𝜉) = ∫
𝐴𝑛,𝑗

vol𝑗 (𝐾 ∩ 𝜉)𝑛+1∫
𝐴𝑛,𝑗

vol𝑗 (𝐾 ∩ 𝜉)𝑛+1 𝑑]𝑗 (𝜉)𝑑]𝑗 (𝜉)= 1, (64)

the above equation defines a Borel probability measure ] on𝐴𝑛,𝑗; namely,

𝑑] (𝜉) = vol𝑗 (𝐾 ∩ 𝜉)𝑛+1∫
𝐴𝑛,𝑗

vol𝑗 (𝐾 ∩ 𝜉)𝑛+1 𝑑]𝑗 (𝜉)𝑑]𝑗 (𝜉) . (65)

From (11), (47), and (65) and using dual Orlicz-
Minkowski inequality, Jensen inequality, andHölder inequal-
ity, we obtain

(Φ𝜙,𝑛−𝑗 (𝐾, 𝐿)Φ𝑛−𝑗 (𝐾) )
𝑛+1 = ∫𝐴𝑛,𝑗 (𝑉̃(𝑗)𝜙 (𝐾 ∩ 𝜉, 𝐿 ∩ 𝜉) /vol𝑗 (𝐾 ∩ 𝜉)) (vol𝑗 (𝐾 ∩ 𝜉) /𝜔𝑗)𝑛+1 𝑑]𝑗 (𝜉)∫

𝐴𝑛,𝑗
(vol𝑗 (𝐾 ∩ 𝜉) /𝜔𝑗)𝑛+1 𝑑]𝑗 (𝜉)

= ∫
𝐴𝑛,𝑗

𝑉̃(𝑗)𝜙 (𝐾 ∩ 𝜉, 𝐿 ∩ 𝜉)
vol𝑗 (𝐾 ∩ 𝜉) 𝑑] ≥ ∫

𝐴𝑛,𝑗

𝜙(( vol𝑗 (𝐿 ∩ 𝜉)
vol𝑗 (𝐾 ∩ 𝜉))

1/𝑗)𝑑]
≥ 𝜙(∫

𝐴𝑛,𝑗

( vol𝑗 (𝐿 ∩ 𝜉)
vol𝑗 (𝐾 ∩ 𝜉))

1/𝑗 𝑑]) = 𝜙(∫𝐴𝑛,𝑗 vol𝑗 (𝐾 ∩ 𝜉)(𝑗(𝑛+1)−1)/𝑗 vol𝑗 (𝐿 ∩ 𝜉)1/𝑗 𝑑]𝑗 (𝜉)∫
𝐴𝑛,𝑗

vol𝑗 (𝐾 ∩ 𝜉)𝑛+1 𝑑]𝑗 (𝜉) )
≥ 𝜙((∫𝐴𝑛,𝑗 vol𝑗 (𝐾 ∩ 𝜉)𝑛+1 𝑑]𝑗 (𝜉))(𝑗(𝑛+1)−1)/𝑗(𝑛+1) (∫𝐴𝑛,𝑗 vol𝑗 (𝐿 ∩ 𝜉)𝑛+1 𝑑]𝑗 (𝜉))1/𝑗(𝑛+1)∫

𝐴𝑛,𝑗
vol𝑗 (𝐾 ∩ 𝜉)𝑛+1 𝑑]𝑗 (𝜉) )

= 𝜙((Φ𝑛−𝑗 (𝐿)Φ𝑛−𝑗 (𝐾))
1/𝑗) .

(66)

Next, we discuss the equal condition of (63). If 𝜙 is strictly
convex, suppose that 𝐾 and 𝐿 are dilates; that is, there exists𝜆 > 0 such that 𝐿 = 𝜆𝐾. Hence
(Φ𝜙,𝑛−𝑗 (𝐾, 𝐿)Φ𝑛−𝑗 (𝐾) )

𝑛+1 = (Φ𝜙,𝑛−𝑗 (𝐾, 𝜆𝐾)Φ𝑛−𝑗 (𝐾) )𝑛+1
= (𝜙 (𝜆)1/(𝑛+1)Φ𝑛−𝑗 (𝐾)Φ𝑛−𝑗 (𝐾) )𝑛+1
= 𝜙 (𝜆)
= 𝜙((Φ𝑛−𝑗 (𝜆𝐾)Φ𝑛−𝑗 (𝐾) )

1/𝑗)
= 𝜙((Φ𝑛−𝑗 (𝐿)Φ𝑛−𝑗 (𝐾))

1/𝑗) .

(67)

This implies that theequality in (63) holds.

On the other hand, suppose the equality holds in (63);
then these three inequalities in the above proof must satisfy
the equal sign. Since the first inequality in the above proof is
the dual Orlicz-Minkowski inequality,

𝑉̃(𝑗)𝜙 (𝐾 ∩ 𝜉, 𝐿 ∩ 𝜉)
vol𝑗 (𝐾 ∩ 𝜉) ≥ 𝜙(( vol𝑗 (𝐿 ∩ 𝜉)

vol𝑗 (𝐾 ∩ 𝜉))
1/𝑗) . (68)

Form the equality condition of dual Orlicz-Minkowski
inequality, if the equality holds, then 𝐾 ∩ 𝜉 and 𝐿 ∩ 𝜉 must
be dilates. The second inequality in the above proof is Jensen
inequality.

∫
𝐴𝑛,𝑗

𝜙(( vol𝑗 (𝐿 ∩ 𝜉)
vol𝑗 (𝐾 ∩ 𝜉))

1/𝑗)𝑑]
≥ 𝜙(∫

𝐴𝑛,𝑗

( vol𝑗 (𝐿 ∩ 𝜉)
vol𝑗 (𝐾 ∩ 𝜉))

1/𝑗 𝑑]) . (69)
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From the equality condition of Jensen inequality, if 𝜙
is strictly convex and the equality holds, then vol𝑗(𝐿 ∩𝜉)/vol𝑗(𝐾 ∩ 𝜉) must be a constant; this yields that 𝐾 ∩ 𝜉 and𝐿 ∩ 𝜉 must be dilates. In this proof, the third inequality is
obtained by applying theHölder inequality. From the equality
condition of Hölder inequality, this yields that equality holds
and vol𝑗(𝐾∩𝜉) and vol𝑗(𝐿∩𝜉)must be proportional; namely,𝐾 ∩ 𝜉 and 𝐿 ∩ 𝜉 are dilates. From the combinations of these
equal conditions, it follows that equality in (63) holds, if 𝜙 is
strictly convex, and equality holds if and only if 𝐾 and 𝐿 are
dilates.

Corollary 13. If 𝐾, 𝐿 ∈ S𝑛, 𝑝 ≥ 1, and 0 < 𝑗 ≤ 𝑛, then
(Φ−𝑝,𝑛−𝑗 (𝐾, 𝐿)Φ𝑛−𝑗 (𝐾) )𝑛+1 ≥ ( Φ𝑛−𝑗 (𝐿)Φ𝑛−𝑗 (𝐾))

−𝑝/𝑗 , (70)

with equality if and only if𝐾 and 𝐿 are dilates.
Proof. This follows immediately from (63) with 𝜙(𝑡) = 𝑡−𝑝
and 1 < 𝑝 < ∞.
Corollary 14. If 𝐾, 𝐿 ∈ S𝑛 and 𝜙 ∈ C, then

𝑉̃𝜙 (𝐾, 𝐿) ≥ 𝑉 (𝐾) 𝜙(( 𝑉 (𝐿)𝑉 (𝐾))1/𝑛) . (71)

If 𝜙 is strictly convex, equality holds if and only if 𝐾 and 𝐿 are
dilates.

Proof. This follows immediately from (63) with 𝑗 = 𝑛.
The following uniqueness is a direct consequence of the

Orlicz-Minkowski inequality for the Orlicz mean dual affine
quermassintegrals.

Theorem 15. If 𝜙 ∈ C and is strictly convex, 0 < 𝑗 ≤ 𝑛 and
M ⊂ S𝑛 such that 𝐾, 𝐿 ∈M. If

Φ𝜙,𝑛−𝑗 (𝑀,𝐾) = Φ𝜙,𝑛−𝑗 (𝑀, 𝐿) , ∀𝑀 ∈M (72)

or

Φ𝜙,𝑛−𝑗 (𝐾,𝑀)Φ𝑛−𝑗 (𝐾) = Φ𝜙,𝑛−𝑗 (𝐿,𝑀)Φ𝑛−𝑗 (𝐿) , ∀𝑀 ∈M (73)

then 𝐾 = 𝐿.
Proof. Suppose that (72) holds. Taking 𝐾 for𝑀, then, from
Lemma 8 and (63), we obtain

𝜙 (1)Φ𝑛−𝑗 (𝐾)𝑛+1 = Φ𝜙,𝑛−𝑗 (𝐾, 𝐿)𝑛+1
≥ Φ𝑛−𝑗 (𝐾)𝑛+1 𝜙((Φ𝑛−𝑗 (𝐿)Φ𝑛−𝑗 (𝐾))

1/𝑗) , (74)

with equality if and only if 𝐾 and 𝐿 are dilates. Hence
𝜙 (1) ≥ 𝜙(( Φ𝑛−𝑗 (𝐿)Φ𝑛−𝑗 (𝐾))

1/𝑗) , (75)

with equality if and only if 𝐾 and 𝐿 are dilates. Since 𝜙 is
decreasing function on (0,∞), it follows that

Φ𝑛−𝑗 (𝐾) ≤ Φ𝑛−𝑗 (𝐿) , (76)

with equality if and only if 𝐾 and 𝐿 are dilates. On the
other hand, if taking 𝐿 for 𝑀, we similarly get Φ𝑛−𝑗(𝐾) ≥Φ𝑛−𝑗(𝐿), with equality if and only if𝐾 and 𝐿 are dilates. HenceΦ𝑛−𝑗(𝐾) = Φ𝑛−𝑗(𝐿), and𝐾 and 𝐿 are dilates; it follows that𝐾
and 𝐿must be equal.

Suppose that (73) holds. Taking 𝐿 for 𝑀, then, from
Lemma 8 and (63), we obtain

𝜙 (1) = Φ𝜙,𝑛−𝑗 (𝐾, 𝐿)𝑛+1Φ𝑛−𝑗 (𝐾)𝑛+1 ≥ 𝜙((Φ𝑛−𝑗 (𝐿)Φ𝑛−𝑗 (𝐾))
1/𝑗) , (77)

with equality if and only if 𝐾 and 𝐿 are dilates. Hence
𝜙 (1) ≥ 𝜙((Φ𝑛−𝑗 (𝐿)Φ𝑛−𝑗 (𝐾))

1/𝑗) , (78)

with equality if and only if 𝐾 and 𝐿 are dilates. Since 𝜙 is
decreasing function on (0,∞), it follows that

Φ𝑛−𝑗 (𝐾) ≤ Φ𝑛−𝑗 (𝐿) , (79)

with equality if and only if 𝐾 and 𝐿 are dilates. On the
other hand, if we take 𝐾 for𝑀, we similarly get Φ𝑛−𝑗(𝐾) ≥Φ𝑛−𝑗(𝐿), with equality if and only if𝐾 and 𝐿 are dilates. HenceΦ𝑛−𝑗(𝐾) = Φ𝑛−𝑗(𝐿), and𝐾 and 𝐿 are dilates; it follows that𝐾
and 𝐿must be equal.

Corollary 16 (see [29]). If 𝜙 ∈ C and is strictly convex, 0 <𝑗 ≤ 𝑛 andM ⊂ S𝑛 such that 𝐾, 𝐿 ∈M. If

𝑉̃𝜙 (𝑀,𝐾) = 𝑉̃𝜙 (𝑀, 𝐿) , ∀𝑀 ∈M (80)

or

𝑉̃𝜙 (𝐾,𝑀)𝑉 (𝐾) = 𝑉̃𝜙 (𝐿,𝑀)𝑉 (𝐿) , ∀𝑀 ∈M (81)

then 𝐾 = 𝐿.
Proof. This follows immediately from Theorem 15 with 𝑗 =𝑛.
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5. Orlicz-Brunn-Minkowski Inequality for
Mean Dual Affine Quermassintegrals

Lemma 17. If 𝐾, 𝐿 ∈ S𝑛, 0 < 𝑗 ≤ 𝑛, and 𝜙 ∈ C, then for any𝜀 > 0
𝜙 (1) = (Φ𝜙,𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿, 𝐾)Φ𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿) )𝑛+1 + 𝜀

⋅ (Φ𝜙,𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿, 𝐿)Φ𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿) )
𝑛+1 . (82)

Proof. From (8) and Lemmas 3 and 5, we have

𝑉̃𝜙 ((𝐾 +̃𝜙 𝜀 ⋅ 𝐿) ∩ 𝜉, 𝐾 ∩ 𝜉) + 𝜀𝑉̃𝜙 ((𝐾 +̃𝜙 𝜀 ⋅ 𝐿) ∩ 𝜉, 𝐿∩ 𝜉) = 𝑉̃𝜙 ((𝐾 ∩ 𝜉) +̃𝜙 𝜀 ⋅ (𝐿 ∩ 𝜉) , 𝐾 ∩ 𝜉)+ 𝜀𝑉̃𝜙 ((𝐾 ∩ 𝜉) +̃𝜙 𝜀 ⋅ (𝐿 ∩ 𝜉) , 𝐿 ∩ 𝜉)= 𝑉̃𝜙 ((𝐾 ∩ 𝜉) +̃𝜙 𝜀 ⋅ (𝐿 ∩ 𝜉) , (𝐾 ∩ 𝜉) +̃𝜙 𝜀⋅ (𝐿 ∩ 𝜉)) = 𝜙 (1) vol𝑗 ((𝐾 ∩ 𝜉) +̃𝜙 𝜀 ⋅ (𝐿 ∩ 𝜉))= 𝜙 (1) vol𝑗 ((𝐾 +̃𝜙 𝜀 ⋅ 𝐿) ∩ 𝜉) .
(83)

Let 𝑄 = 𝐾 +̃𝜙 𝜀 ⋅ 𝐿; from (83) and (47), we have

Φ𝜙,𝑛−𝑗 (𝑄,𝐾)𝑛+1 + 𝜀 ⋅ Φ𝜙,𝑛−𝑗 (𝑄, 𝐿)𝑛+1 = 𝜔𝑛+1𝑛 ∫
𝐴𝑛,𝑗

𝑉̃(𝑗)𝜙 (𝑄 ∩ 𝜉,𝐾 ∩ 𝜉) + 𝜀 ⋅ 𝑉̃(𝑗)𝜙 (𝑄 ∩ 𝜉, 𝐿 ∩ 𝜉)
vol𝑗 (𝑄 ∩ 𝜉) (vol𝑗 (𝑄 ∩ 𝜉)𝜔𝑗 )𝑛+1 𝑑]𝑗 (𝜉)

= 𝜙 (1) 𝜔𝑛+1𝑛 ∫
𝐴𝑛,𝑗

(vol𝑗 (𝑄 ∩ 𝜉)𝜔𝑗 )𝑛+1 𝑑]𝑗 (𝜉) = 𝜙 (1)Φ𝑛−𝑗 (𝑄)𝑛+1 .
(84)

The proof is complete.

Lemma 18. Let 𝐾, 𝐿 ∈ S𝑛, 𝜀 > 0, and 𝜙 ∈ C.

(1) If𝐾 and 𝐿 are dilates, then𝐾 and𝐾 +̃𝜙 𝜀 ⋅ 𝐿 are dilates.
(2) If𝐾 and𝐾 +̃𝜙 𝜀 ⋅ 𝐿 are dilates, then𝐾 and 𝐿 are dilates.

Proof. Suppose that there exists a constant 𝜆 > 0 such that𝐿 = 𝜆𝐾; we have
𝜙( 𝜌 (𝐾, 𝑢)𝜌 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿, 𝑢)) + 𝜀𝜙( 𝜆𝜌 (𝐾, 𝑢)𝜌 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿, 𝑢))= 𝜙 (1) . (85)

On the other hand, there exists a unique constant 𝛿 > 0 such
that

𝜙( 𝜌 (𝐾, 𝑢)𝜌 (𝛿𝐾, 𝑢)) + 𝜀𝜙(𝜆𝜌 (𝐾, 𝑢)𝜌 (𝛿𝐾, 𝑢)) = 𝜙 (1) , (86)

where 𝛿 satisfies that
𝜙(1𝛿) + 𝜀𝜙 ( 𝜀𝛿) = 𝜙 (1) . (87)

This shows that𝐾 +̃𝜙 𝜀 ⋅ 𝐿 = 𝛿𝐾.
Suppose that there exists a constant 𝜆 > 0 such that𝐾 +̃𝜙 𝜀 ⋅ 𝐿 = 𝜆𝐾.Then

𝜙(1𝜆) + 𝜀𝜙( 𝜌 (𝐿, 𝑢)𝜌 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿, 𝑢)) = 𝜙 (1) . (88)

This shows that 𝜌 (𝐿, 𝑢)𝜌 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿, 𝑢) (89)

is a constant. This yields that 𝐾 +̃𝜙 𝜀 ⋅ 𝐿 and 𝐿 are dilates.
Namely, 𝐾 and 𝐿 are dilates.
Theorem 19. If 𝐾, 𝐿 ∈ S𝑛, 𝜀 > 0, 0 < 𝑗 ≤ 𝑛, and 𝜙 ∈ C, then

𝜙 (1) ≥ 𝜙(( Φ𝑛−𝑗 (𝐾)Φ𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿))
1/𝑗) + 𝜀

⋅ 𝜙(( Φ𝑛−𝑗 (𝐿)Φ𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿))
1/𝑗) . (90)

If 𝜙 is strictly convex, equality holds if and only if 𝐾 and 𝐿 are
dilates.

Proof. From Lemma 17 and (63), we obtain

𝜙 (1) = (Φ𝜙,𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿, 𝐾)Φ𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿) )𝑛+1 + 𝜀
⋅ (Φ𝜙,𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿, 𝐿)Φ𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿) )

𝑛+1

≥ 𝜙(( Φ𝑛−𝑗 (𝐾)Φ𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿))
1/𝑗) + 𝜀

⋅ 𝜙(( Φ𝑛−𝑗 (𝐿)Φ𝑛−𝑗 (𝐾 +̃𝜙 𝜀 ⋅ 𝐿))
1/𝑗) .

(91)
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If 𝜙 is strictly convex, from equality condition of the Orlicz-
Minkowski inequality, the equality holds if and only if𝐾 and𝐾 +̃𝜙 𝜀 ⋅ 𝐿 are dilates, and 𝐿 and 𝐾 +̃𝜙 𝜀 ⋅ 𝐿 are dilates and,
combining with Lemma 18, this yields that if 𝜙 is strictly
convex, equality holds in (90) if and only if 𝐾 and 𝐿 are
dilates.

Corollary 20. If 𝐾, 𝐿 ∈ S𝑛, 𝑝 ≥ 1, 𝜀 > 0, and 0 < 𝑗 ≤ 𝑛, then
Φ𝑛−𝑗 (𝐾 +̃𝑝 𝜀 ⋅ 𝐿)−𝑝/𝑗 ≥ Φ𝑛−𝑗 (𝐾)−𝑝/𝑗 + 𝜀⋅ Φ𝑛−𝑗 (𝐿)−𝑝/𝑗 , (92)

with equality if and only if𝐾 and 𝐿 are dilates.
Proof. This follows immediately from (90) with 𝜙(𝑡) = 𝑡−𝑝
and 𝑝 ≥ 1.

For 𝑗 = 𝑛 and 𝜀 = 1, (92) becomes Lutwak’s 𝐿𝑝 dual
Brunn-Minkowski inequality (36).

Corollary 21. If 𝐾, 𝐿 ∈ S𝑛 and 𝜙 ∈ C, then

1 ≥ 𝜙(( 𝑉 (𝐾)𝑉 (𝐾 +̃𝜙 𝐿))
1/𝑛)

+ (( 𝑉 (𝐿)𝑉 (𝐾 +̃𝜙 𝐿))
1/𝑛) . (93)

If 𝜙 is strictly convex, equality holds if and only if 𝐾 and 𝐿 are
dilates.

Proof. This follows immediately from (90) with 𝜀 = 1 and𝑗 = 𝑛.
Theorem22. Orlicz-Minkowski inequality for theOrliczmean
dual affine quermassintegrals is equivalent to theOrlicz Brunn-
Minkowski inequality for the mean dual affine quermassinte-
grals. Namely, if 𝜙 ∈ C, 0 < 𝑗 ≤ 𝑛, and 𝐾, 𝐿 ∈ S𝑛, then

(Φ𝜙,𝑛−𝑗 (𝐾, 𝐿)Φ𝑛−𝑗 (𝐾) )
𝑛+1 ≥ 𝜙((Φ𝑛−𝑗 (𝐿)Φ𝑛−𝑗 (𝐾))

1/𝑗) ⇐⇒
𝜙 (1) ≥ 𝜙(( Φ𝑛−𝑗 (𝐾)Φ𝑛−𝑗 (𝐾 +̃𝜙 𝐿))

1/𝑗) + 𝜙(( Φ𝑛−𝑗 (𝐿)Φ𝑛−𝑗 (𝐾 +̃𝜙 𝐿))
1/𝑗) .

(94)

If 𝜙 is strictly convex, equality holds if and only if 𝐾 and 𝐿 are
dilates.

Proof. ⇐: Let

𝐾𝜀 = 𝐾+̃𝜙𝜀 ⋅ 𝐿. (95)

From Lemmas 4 and 7 and using the Orlicz-Brunn-
Minkowski inequality (90), we obtain

𝑗𝜙󸀠− (1)Φ𝑛−𝑗 (𝐾)−𝑛Φ𝜙,𝑛−𝑗 (𝐾, 𝐿)𝑛+1
= 𝑑𝑑𝜀 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0+ Φ𝑛−𝑗 (𝐾𝜀) = lim

𝜀→0+

Φ𝑛−𝑗 (𝐾𝜀) − Φ𝑛−𝑗 (𝐾)𝜀
= lim
𝜀→0+

1 − Φ𝑛−𝑗 (𝐾) /Φ𝑛−𝑗 (𝐾𝜀)𝜙 (1) − 𝜙 ((Φ𝑛−𝑗 (𝐾) /Φ𝑛−𝑗 (𝐾𝜀))1/𝑗)
⋅ 𝜙 (1) − 𝜙 ((Φ𝑛−𝑗 (𝐾) /Φ𝑛−𝑗 (𝐾𝜀))1/𝑗)𝜀⋅ Φ𝑛−𝑗 (𝐾𝜀)

= lim
𝑡→1+

1 − 𝑡𝜙 (1) − 𝜙 (𝑡1/𝑗)
⋅ lim
𝜀→0+

𝜙 (1) − 𝜙 ((Φ𝑛−𝑗 (𝐾) /Φ𝑛−𝑗 (𝐾𝜀))1/𝑗)𝜀⋅ lim
𝜀→0+
Φ𝑛−𝑗 (𝐾𝜀)

≥ 𝑗𝜙󸀠+ (1) ⋅ lim𝜀→0+𝜙(( Φ𝑛−𝑗 (𝐿)Φ𝑛−𝑗 (𝐾𝜀))
1/𝑗)

⋅ lim
𝜀→0+
Φ𝑛−𝑗 (𝐾𝜀)

= 𝑗𝜙󸀠+ (1) ⋅ 𝜙(( Φ𝑛−𝑗 (𝐿)Φ𝑛−𝑗 (𝐾))
1/𝑗) ⋅ Φ𝑛−𝑗 (𝐾) .

(96)

⇒: From the proof of Theorem 19, we may see
that Orlicz-Minkowski inequality for Orlicz mean
dual affine quermassintegrals implies also Orlicz-
Brunn-Minkowski inequality for themean dual affine
quermassintegrals.

This proof is complete.
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Corollary 23. If 𝜙 ∈ C and 𝐾, 𝐿 ∈ S𝑛, then
𝑉̃𝜙 (𝐾, 𝐿)𝑉 (𝐾) ≥ 𝜙(( 𝑉 (𝐿)𝑉 (𝐾))1/𝑛) ⇐⇒

𝜙 (1) ≥ 𝜙(( 𝑉 (𝐾)𝑉 (𝐾 +̃𝜙 𝐿))
1/𝑛) + 𝜙(( 𝑉 (𝐿)𝑉 (𝐾 +̃𝜙 𝐿))

1/𝑛) . (97)

If 𝜙 is strictly convex, equality holds if and only if 𝐾 and 𝐿 are
dilates.

Proof. This follows immediately fromTheorem 22 with 𝜀 = 1
and 𝑗 = 𝑛.
Corollary 24. If 0 < 𝑗 ≤ 𝑛, 𝑝 ≥ 1, and 𝐾, 𝐿 ∈ S𝑛, then

(Φ−𝑝,𝑛−𝑗 (𝐾, 𝐿)Φ𝑛−𝑗 (𝐾) )𝑛+1 ≥ ( Φ𝑛−𝑗 (𝐿)Φ𝑛−𝑗 (𝐾))
−𝑝/𝑗 ⇐⇒

Φ𝑛−𝑗 (𝐾 +̃𝜙 𝐿)−𝑝/𝑗 ≥ Φ𝑛−𝑗 (𝐾)−𝑝/𝑗 + Φ𝑛−𝑗 (𝐿)−𝑝/𝑗 .
(98)

If 𝜙 is strictly convex, equality holds if and only if 𝐾 and 𝐿 are
dilates.

Proof. This follows immediately fromTheorem22with𝜙(𝑡) =𝑡−𝑝 and 𝑝 ≥ 1.
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