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Linked-read sequencing, using highly-multiplexed genome partitioning and barcoding, can span hundreds of
kilobases to improve de novo assembly, haplotype phasing, and other applications. Based on our analysis of 14
datasets, we introduce LRSim that simulates linked-reads by emulating the library preparation and sequencing
process with fine control over variants, linked-read characteristics, and the short-read profile. We conclude
from the phasing and assembly of multiple datasets, recommendations on coverage, fragment length, and
partitioning when sequencing genomes of different sizes and complexities. These optimizations improve results
by orders ofmagnitude, and enable the development of novel methods. LRSim is available at https://github.com/
aquaskyline/LRSIM.
© 2017 Luo et al.. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural

Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Background

Haplotype-resolved or phased genomes are desirable for obtaining
insight into diploid or polyploid genomes and studying allele specific
expression, allele-specific regulation, and many other important geno-
mic features [1]. However, most of the genomes assembled to date are
only a single haploid ‘mosaic’ consensus sequence with parental alleles
merged arbitrarily [2]. Only a few studies have reported true diploid de
novo assemblies so far. One of the first such studies successfully com-
bined Illumina short-read sequencing, PacBio sequencing, and BioNano
Genomics, generated a phased assembly of the widely studied human
sample NA12878 [3]. The second introduced the FALCON-Unzip algo-
rithm and applied it to de novo assemble three phased diploid genomes
of Arabidopsis thaliana, Vitis vinifera (grape), and the coral fungus
Clavicorona pyxidata, relying exclusively on PacBio sequencing [4]. A
third approach generated 605,566 fosmid clones on the YH1 human
genome and mixed them into 30 clones per pool, each pool containing
0.04% of the diploid genome [5]. However, the sample requirements
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and the associated high cost of the three studies preclude their
widespread use.

More recently, Zheng et al. demonstrated a high-throughput low-
cost method marketed as GemCode and its successor Chromium by
10X Genomics for creating human reference-based phased genomes
[6]. It uses an automated microfluidic system to isolate high molecular
weight DNAmolecules insidemillions of partitions containing sequenc-
ing primers and a unique barcode to prepare a library that can be used
for Illumina paired-end read sequencing. Each partition contains several
DNA molecules spanning up to 100 kbp or more, and will share the
same barcode. The library can be generated with as little as 1 ng of
high molecular weight DNA, far less than alternative approaches. And
as the sequencing is performed using inexpensive Illumina short-read
sequencing, the overall cost is at least two orders of magnitude lower
than pooled fosmid sequencing for a diploid genome and significantly
less expensive than current long-read sequencing alternatives [7]. The
method has been widely used to study novel species such as the
Hawaiian Monk Seal [8] and the Pepper [9], as well as additional
resequencing analysis in human samples [10].

Simulated sequencing data has proved indispensable for guiding tool
development and evaluating tool performance [11]. Especially for the
complex and unique workflow involved in constructing linked-reads, it
is essential to develop simulation software that can produce linked-
reads that capture the most essential characteristics of genome
partitioning. To our knowledge, no alternative read simulator for linked-
omputational and Structural Biotechnology. This is an open access article under the CC BY
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Fig. 2. Distribution of the number of molecules per partition for NA12878.
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reads is available. Thus, we developed LRSim, a Linked-Reads Simulator,
which simulates whole genome sequencing modeled on Chromium
Linked-Read technology but is flexible enough to represent alternative
technologies. We modeled the characteristics of all the relevant steps of
the Chromium protocol so that it can be used to study linked-read se-
quencing of different genomes, mutation rates, input libraries, and
short-read sequencing conditions in silico. We tested LRSim with the
10X Genomics LongRanger variant identification and phasing application
and the10XGenomics SuperNova genomeassembler [7] aswell as the in-
dependent HapCUT2 phasing algorithm [12] to confirm that alignment,
variant identification, phasing, and de novo assembly are supported and
deliver results similar to those of real data. After studying simulated
datasets with multiple parameter combinations, we concluded that
1) the best phase block size of human genomewith 50x linked-reads se-
quencing coverage and 1.5M partitions (barcodes) can be achieved with
a molecule size between 150 kbp and 200 kbp; and 2) the standard li-
brary preparation protocol tailor-made for the mammalian-sized ge-
nomes needs to be adjusted regarding the number of partitions
(barcodes) before it can be efficiently used for other genomes of signifi-
cantly different size, such as A. thaliana. We also recognize that linked
reads can produce less contiguous genome assemblies than long reads
in highly repetitive genomes like maize.

2. Results

2.1. Characteristics of Real 10× Genomic Sequences

We analyzed 13 publicly available real datasets processed by
Chromium's LongRanger analysis pipeline to derive models and charac-
teristics (Additional file 1: Supplementary Note). We identified ~1.5
(1.42) million partitions with N100 reads each in NA12878 (Fig. 1).
The Chromium uses 16 bp barcode sequence. The barcodes are located
at the beginning of reads, thus having a higher error rate compared
with the non-barcode bases. We observed 2.09% total base errors,
which is slightly higher than the 1.78% estimated by base quality
(Additional file 1: Supplementary Table 1). Interestingly, two of the
barcodes were found to be consistently over-represented in all 13
samples (“GTATCTTCAGATCTGT”, “GTGCCTTCAGATCTGT”, Additional
file 1: Supplementary Table 2).

One of the advantages of linked-reads is that they can bemapped into
repetitive sequences not accessible by standard short read sequencing.
Considering all regions ≥50 base-pairs that had zero coverage
Fig. 1. The distribution of number of supporting reads per partition. About 1.5 million partiti
partitions with the number of supporting reads per partition N100.
(excluding ambiguous genomics regions denoted by ‘N’), we found
that the Chromium 80x NA12878 dataset left 164 Mb (5.47%) uncov-
ered by any read alignment, versus 209Mb (6.97%) that had zero cover-
age in the NIST 300x NA12878 Illumina only paired-end read dataset
(Additional file 1: Supplementary Table 3, considering all alignments
including MQ0). In the NA12878 sample specifically, a median 10 DNA
moleculeswere allocated to each partition (Fig. 2) and theweightedmol-
ecule length peaked at around 40-50 kbp (Fig. 3). The distribution ofmol-
ecule coverage peaked at 0.2x coverage (Fig. 4). Reads were generally
uniformly distributed along the genome, aswell as along themolecule, al-
though surprisingly, we observed the chromosome 21with unexpectedly
high coverage in all samples possibly due to the existence of abundant
Ribosomal DNA repeats around 9Mbp in the chromosome 21 according
to the Gencode v26 gene annotations [13] and LongRanger analysis
pipeline's way to deal with repetitive segments (Fig. 5; detailed views in
Additional file 1: Supplementary Fig. 1a, b).

2.2. Parameters of Linked-Read

The overview of the technology for generating linked-reads and the
available parameters of linked-readswere introduced in Zheng et al. [6].
By checking the variability of the available parameters in the 13 real
ons are supported by more than 100 reads. The rightmost column shows the number of



Fig. 3.Weighted molecule length distribution for NA12878. Physical Coverage equals
Xn

i¼1

li , where li is the length of a molecule and n is the number of molecules in that size range.
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datasets, we identified four important parameters and a dependent pa-
rameter of linked-read. The important parameters are: number of read
pairs (x); number of partitions (t); mean molecule length (f); and
meannumber ofmolecules per partition (m). The dependent parameter
is sequencing coverage per molecule (c). Given a genome size and a
fixed x, the other four parameters t, f, m and c correlate with each
other inversely. For example, with x, f andm remain constants, a higher
number of partitions (t) will lead to lower sequencing coverage per
molecule (c). The relationships between the parameters are introduced
starting from the next subsection.
2.3. Effect of Molecule Size (f)

One of the critical requirements of linked-read construction is
extracting high-quality, high-molecular weight DNA from the sample.
Fig. 4. Distribution of molecule coverage for NA12878.
To study how the molecule size changes the performance of linked-
read sequencing, using human reference genome GRCh38, we simulated
six datasets of differentmeanmolecule sizes (f: 20, 50, 100, 150, 200 and
250 kbp),with 600million read pairs (x), 1.5million partitions (t) and 10
molecules per partition (m). Here we are using a normal distribution for
the molecule lengths, although LRSim allows for arbitrarily complicated
distributions as well. Instead of simulating random variants using
SURVIVOR [14], whichmay notmimic the characteristics of real variants,
we used 3.2M phased SNPs and indels identified from NA12878
(Additional file 1: Supplementary Note). The datasets were processed
by LongRanger and phased by HapCUT2 [12] using a 48-core Intel E7–
8857 v2 @3GHz machine with 1TB memory, running on average
1.5 days each. The sum of bases of different phase block sizes for six
simulated datasets and NA12878 (Additional file 1: Supplementary
Note) are shown in Fig. 6. The results show that the NA12878's perfor-
mance lies between molecule size 50 kbp and 100 kbp, corroborating
Fig. 5. Average sequencing coverage of 13 samples per chromosome. The coverages were
normalized to the sample with the lowest average coverage (NA24149, 30.36x).



Fig. 6.NG graph showing an overview of phased block sizes of 7 datasets. NG(X) is defined
as X% of the genome is in phased blocks equals to or larger than the NG(X) length.
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our observation in the weighted molecule length distribution of
NA12878 (Fig. 4). The divergence between 50 kbp and NA12878 can
be explained by the fact that the real data is platykurtic and has a longer
tail on long molecules, which is an outcome that highly depends on the
quality and length of DNA input.

We further noted that the Phase Block N50 sizes did not monotoni-
cally increase with longer molecules and instead plateaued at 200 kbp
molecules. On investigation, we determined the cause to be that given
a constant number of total reads, the coverage per molecule decreases
proportionally to the molecule size. For example, if we increase the
molecule size from 50 kbp to 250 kbp, the coverage decreases from
~0.2x to ~0.04x, and the average distance and standard deviation of
the distances between reads rises, thus leading to shorter phase blocks.

2.4. Effect of the Number of Partitions (t)

We simulated six datasets with varying numbers of partitions (t),
including 15k, 20k, 30k, 50k, 100k and the standard 1.5 million, to
study the impact of the number of partitions on the assembly using
the A. thaliana genome (TAIR10).

We kept the other parameters constant at 18 million read pairs (x),
50 kbp mean molecule size (f) and 10 molecules per partition (m).
Using the same computer, SuperNova finished each assembly within
2 hours. The best assembly, as measured by contig N50, scaffold N50
or Phase Block N50, was from the dataset with t = 20,000 partitions
(Table 1). Intriguingly, using 1.5 million partitions, which is the
default for the 10X Chromium platform, the results are orders of
magnitude worse (e.g. 14.6 kb vs. ~2 Mbp scaffold N50) for this
reduced genome size.

One of the major reasons for the deficiency in the assembly perfor-
mance is attributed to insufficient coverage per molecule. For a 3 Gbp
genome with the default parameters, the coverage per molecule is
0.2x on average. For A. thaliana, where the genome size is 20 times
Table 1
Assembly statistics of different number of partitions.

No. of partitions (×1,000) Contig N50 Phase Block N50 Scaffold N50

15 198,485 1,146,590 1,016,017
20 265,543 2,881,040 2,796,090
30 230,711 1,945,051 1,880,870
50 215,743 1,472,710 1,459,816
100 177,635 1,471,806 1,271,685
1500 14,597 1588 14,685

The Contig N50, Phase Block N50 and Scaffold N50 of the A. thaliana genome with 6
different partition numbers.
smaller (150Mbp vs. 3 Gbp), if 3 parameters including f, t andm remain
the default, the number of reads allotted to each molecule will be 20
times smaller, i.e. 0.01x coverage. The excessively low coverage in-
creases the mean distance and its standard deviation between reads,
which confounds the genome assembler; it also largely removes the
chance for reads belonging to the same molecule to cover multiple het-
erozygous variants,which is essential for phasing. Therefore,we suggest
adjusting the number of partitions according to the genome size if pos-
sible. On the current 10X Chromium instrument, it is not possible for the
operator to directly control the number of partitions used, so alterna-
tively we and 10× Genomics recommend increasing the overall se-
quencing coverage and subsample the partitions proportionally. This
approach also results in sufficient coverage per partition, which greatly
improves the assembly results using linked-reads for smaller genomes.

2.5. Effect of Sequencing Coverage (x)

Genome assembly using Illumina short reads requires careful
control of the sequencing coverage. Shallow coverage decreases the
maximum usable kmer-size (to achieve the minimum requirement for
kmer depth), thus limiting the ability to disentangle repetitive se-
quences. Excessively deep coverage leads to a lower signal-to-noise
ratio because of the saturation of authentic sequences and the accumu-
lation of more random errors in the ‘assembly graph’, thus decreasing
the performance of the assembly outcome [15,16]. The best practice
for sequencing coverage ranges from around 30x to 100x coverage,
depending on affordability (a longer kmer-size can be usedwith greater
sequencing coverage, but this is limited by the length of read input and
read errors) and the genomic nature of different species, including their
heterozygosity, heterogeneity and repetitiveness. It is less clear how the
sequencing coverage of linked-reads changes the performance of
genome assembly.

Using the A. thaliana genome, we simulated four datasets with three
different numbers of read pairs (x), 9, 18 and 27million, which equates
to 17-, 34- and 51-fold of the genome, respectively, and two different
numbers of partitions, 20,000 and 30,000 for x = 27. The molecule
length (f) was held constant at 50 kbp, as was the number of molecules
per partition at m = 10. We used SuperNova to assemble the four
datasets. The results are shown in Table 2. We found that 18 million
read pairs (34-fold) with 20,000 partitions achieved the best Contig
N50, Phase Block N50 and Scaffold N50. Interestingly, the assembly re-
sult of 27 million read pairs (51-fold) was worse than 18 million on all
three metrics, and only improved slightly on Contig N50 and Phase
Block N50 after increasing the number of partitions to 30,000 (to keep
themolecule coverage the same as 18million read pairs). This indicates
that the sequencing coverage itself rather than the molecule coverage
makes a difference in linked-reads genome assembly using the
SuperNova assembler.

2.6. Effect of the Number of Molecules per Partition (m)

The number of molecules per partition is usually determined by
sample preparation technologies and cannot be easily modified except
by carefully controlling the total amount of input DNA. Thus, the num-
ber needs to be carefully selected and verified before production. A
Table 2
Assembly statistics of different sequencing coverage.

No. of read pairs
(M)

No. of partitions
(×1,000)

Contig
N50

Phase Block
N50

Scaffold
N50

9 (17-fold) 20 233,233 1,027,768 899,826
18 (34-fold) 20 265,543 2,881,040 2,796,090
27 (51-fold) 20 221,680 1,971,701 1,896,517
27 (51-fold) 30 241,319 1,979,723 1,688,453

Contig N50, Phase Block N50 and Scaffold N50 of the A. thaliana genome with 4 different
combinations of number of read pairs and number of partitions.



Fig. 7. NG graph showing an overview of scaffold sizes of three datasets, including a
simulated linked-reads for B73, real linked-reads for NC350 and a B73 assembly using
PacBio long reads by Jiao et al. NG(X) is defined as X% of the genome is in phased blocks
equals to or larger than the NG(X) length.
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lower number of molecules per partition requires a larger number of
barcodes to arrive at the same number of molecules. A higher number
of molecules per partition requires fewer barcodes, but increases the
chance of two molecules coming from the two haplotypes in the same
genome position forming a “collision” that can lead to phase errors or
reduced phase block sizes. Given a certain number of barcodes, the
number of molecules per partition will increase or decrease the cover-
age per molecule, which changes the performance of genome assembly
and phasing.

Using the A. thaliana genome, we simulated 6 datasets with 1, 4, 7,
10, 15 and 20 molecules per partition, with the number of read pairs
(x=18million),molecule length (f= 50,000) and number of partitions
(t = 20,000). The assembly results are shown in Table 3. The Phase
Block N50 and Scaffold N50 peaked with 10 molecules per partition,
while Contig N50 peaked with 7. The metrics change insignificantly in
the range 4 to 20 molecules per partition and went down significantly
with only 1 molecule per partition; the reason remains unclear. We
speculate that it is related to the average molecule coverage increasing
to 2x with only 1 molecule per partition; this could confound phasing
algorithms oblivious to conflicting alleles caused by sequencing error
within amolecule. Also, the total span of the genomic regions being cov-
ered decreases with the same number of partitions but less molecules
per partition.
2.7. Validation of LRSim in a Repetitive Plant Genome

To illustrate the versatility of LRSim, we also analyzed linked-read
sequencing of the highly repetitive maize genome line NC350 (SRA ac-
cession number PRJNA380806). NC350 is a temperate-adapted all-
tropical inbred with broad adaptation and has a genome size of about
2.3 Gbp. Assembling 1036.45 million reads from this sample with Su-
perNova results in an assembly with a 25.68 kbp contig N50, 0.23 Mbp
Phase Block N50 and 0.35 Mbp scaffold N50 (Fig. 7). Assembling the
same number of simulated reads from the high-quality reference,
established from a related line B73, results in a 41.03 kb Contig N50,
0.21 Mbp Phase Block N50 and 0.16 Mbp scaffold N50. While B73 is
the closest species with an available reference genome, the modestly
larger Contig N50 and modestly smaller scaffold N50 of the simulated
data reflect the differences between the two genomes (NC350 vs.
B73). Simulating reads from the incomplete reference genome also in-
troduces some bases since linked reads will never span beyond the
available contigs even though they would in the real sample. Neverthe-
less, a detailed comparison in Fig. 7 on both the contig and scaffold
length distributions shows that the simulated data perform on par
with the real data across the entire size range. In the figure, we also
illustrate a Pacbio long read based assembly of the B73 genome [17]
that demonstrates substantially higher contiguity than the linked-
reads based B73 and NC350 scaffolds. These results indicate that a
deficiency in assembly performance is expectedwhenusing the 10x Ge-
nomics' Chromium technology or other similar linked-reads technolo-
gies on genomes as repetitive and complicated as Maize.
Table 3
Assembly statistics of different number of molecules per partition.

No. of molecules per partition Contig N50 Phase Block N50 Scaffold N50

1 46,993 72,400 54,769
4 249,371 2,105,517 2,020,687
7 274,133 1,869,856 2,074,127
10 265,543 2,881,040 2,796,090
15 232,708 2,860,223 2,416,675
20 245,894 1,920,175 1,878,113

Contig N50, Phase Block N50 and Scaffold N50 of the A. thaliana genome with 6 different
molecule numbers per partition.
3. Discussion and Conclusions

In this paper, we presented an analysis of 14 real datasets of linked-
reads generated by 10xGenomics technology. Based on this analysis,we
implemented a linked-read simulator named LRSim to allow fine tuning
of both the type and number of variants and Illumina read specifica-
tions, and full control of important parameters for linked-readswe iden-
tified in real datasets, including 1) the number of read pairs; 2) the
number of partitions; 3) the mean molecule length; and 4) the mean
number of molecules per partition. We validated the performance of
the simulator by the high concordance to the phasing and assembly
results in the real NA12878 human dataset as well as in the highly re-
petitive maize genome. We concluded that from the phasing results of
6 simulated datasets with different mean molecule lengths and a real
dataset of NA12878 that if constrained at a certain sequencing coverage,
the best molecule size to achieve the best phase block size needs to be
meticulously chosen. This can be done by wet-lab experiments, but
would be more efficient with a simulator in silico. We also performed
experiments on 6 simulated A. thaliana datasetswith a different number
of partitions and demonstrated a substantial degradation in assembly
performance with an improper number of partitions, which leads to
insufficient coverage per molecule. We concluded an appropriate se-
quencing coverage needs to be chosen for different applications and
species before sequencing to achieve the best performance out of
linked-reads.

In our study, linked-reads enabled much longer contigs, scaffolds
and phase blocks on both the human genome and A. thaliana than
using Illumina short-reads for genome assembly. The better outcomes,
in turn, broaden the horizons for studies of allele specific expression,
allele-specific regulation, and many other important genomic features
critical to precisionmedicine. Furthermore, numerous other sequencing
applications, such as improved structural variation analysis, epigenetics,
metagenomics and RNA-seq, could potentially benefit from linked-read
data. Linked-read technology is promising, and we believe that more
complex genomics workflows will include and benefit from it. In 10x
Genomics technology, “the number of partitions” of a certain product
(such as GemCode and Chromium) is predetermined. Users can change
two variables including “the molecule length” and “the number of read
pairs”, and a dependent variable “the number of molecules per
partition” on the total amount of DNA loaded for the experiment. We
therefore encourage users to use LRSim to aid in the development of
these new workflows and fully utilize the potential of the new linked-
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read technologies such as 10X Genomics and IGenomX [18], which fol-
low similar molecular preparations but having very different properties
with respect to the number of possible partitions and barcodes possible.

4. Methods

4.1. Identify Mismatches in Barcodes, the Number of Partitions, Molecule
Lengths, Number of Molecules per Partition and Molecule Coverages in 13
Real Datasets

The BAM (Binary sequence Alignment/Map format) file of 13
samples generated by LongRanger was downloaded from the links in
Additional file 1: Supplementary Note. For each pair of a paired-end
read in a BAM file, the RX tag gives the raw barcode sequence, which
is subject to sequencing errors. The BX tag gives the barcode sequence
that is error-corrected and confirmed against a list of known-good
barcode sequences. Differences between the two barcode sequences
provided by RX and BX tag respectively are identified as mismatches
in barcodes. The position, allele and base quality are extracted from
the mismatches to study the error profile of barcodes.

Using the barcode sequences provided by the BX tags, reads were
grouped according to their corresponding barcode sequence. Each group
of reads were assembled using the ‘targetcut’ command of SAMtools
[19]. Notice that the default parameters of ‘targetcut’were optimized for
Fosmid Pooling. Since a typical molecule coverage of linked-read
sequencing is below 1, which ismuch lower than Fosmid Pooling, the pa-
rameters need to be fine-tuned to allow gaps in the assembledmolecules.
The detailed commands and a set of parameters empirically optimized for
linked-read sequencing are presented in Additional file 1: Supplementary
Note. The total number of partitions is determined as the number of
unique barcodes in BX tags. Molecule lengths are the length of assembled
sequences. The number of molecules per partition are the number of as-
sembled sequences per partition. The molecule coverages are calculated
as the percentage of non-gap regions of the assembled sequences.

4.2. Simulator Design and Performance

We included the following parameters in our simulator: x: number
of read pairs; t: number of partitions; f: mean molecule length; and m:
mean number of molecules per partition. The Poisson distribution is
used to sample data from f and m by default; it can easily be switched
to other functions. LRSim also allows for fine control of the short-read
sequencing error profile and for biological variants to be introduced
into the reference genome.

Fig. 8 shows the overview of the LRSimworkflow. Briefly, LRSim first
uses SURVIVOR [14] to simulate homozygous and heterozygous SNPs,
Fig. 8. LRSim workflow. Lariat, SuperNova and HapCUT2 are three tools downstream to
LRSim. Lariat is an aligner module of LongRanger specified for linked-read alignment.
SuperNova is a genome assembler specified for lined-read. HapCUT2 is a phasing
algorithm that works with linked-read. LRSim provides an option to skip variant
simulation with SURVIVOR and take a user-provided variant file.
indels and structural variants within the user-specified genome se-
quence. Second, LRSim uses DWGSIM (GitHub: nh13/DWGSIM) to
mimic the error profile of Illumina paired-end reads and generates
50%more reads than the user requested. Default parameters for running
DWGSIM are shown in the Additional file 1: Supplementary Note. PCR
duplicates are not simulated. Third, considering the Illumina reads as a
pool, LRSim emulates the process of linked-read sequencing by
attaching barcodes to reads randomly selected from the pool. It is
worth mentioning that LRSim allows both user-specified genome vari-
ants, or rely on SURVIVOR to randomly simulate SNPs, indels and struc-
tural variants at a user specified rate. The DWGSIM we used in LRSim
downstream to SURVIVOR is also capable in simulating SNPs and indels,
but not structural variants. Users can also disable SURVIVOR and enable
DWGSIM for variant simulation by change just a few lines of code.

LRSim is available open-source in Github under an MIT License. The
LRSim pipeline is written in perl, and uses a few genomics tools as com-
ponents for extracting sequences and simulating reads including
SAMtools, SURVIVIOR, andDWGSIM. For a human genomeusingdefault
parameters, thememory consumption peaks at 48GB, and starting from
scratch takes about five hours to finish using 8 threads, or 1.5 hours if
only the linked-reads related parameters x, f, t or m are altered, thus
avoiding rerunning the expensive DWGSIM stage. In exchange for
lower memory consumption, longer running time is required. The
peak memory can be further decreased by decreasing the copies of
DWGSIM run in parallel.
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