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ABSTRACT 

A semi-analytical procedure is presented to study the dynamic cross-interference among a group of long strip 

foundations on an elastic half space, which is simplified as a two-dimensional problem. In addition to analytical 

solutions in terms of Green functions, a discretization method is applied to determine the lateral/rocking dynamic 

impedances of a foundation group. To determine the unknown contact stresses between the foundations and the 

supporting medium, the soil-foundation interfaces are discretized into a series of strip elements which are only 

subject to constant lateral and vertical tractions. Multiple foundations with different width and separation distance 

are considered in the formulations. For the time history analysis of those strongly frequency-dependent impedances 

of a foundation group through a substructure approach, complex Chebyshev polynomials are used to fit the 

lumped-parameter (L-P) model in the domain-transformation. Numerical results over a wide range of vibration 

frequencies for impedance calculation are verified with existing methods. The effects of cross-interference on 

contact stress distributions and impedances for a group of two and three rigid foundations are discussed in detail. 

Finally, the accuracy and the validity of the L-P model are rigorously studied by simulating adjacent foundations on 

an elastic half-space within a close distance. 
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Notations 

a0 = Dimensionless frequency of the excitation 

ma , mb  = Coefficient of the m-th order of the polynomial fraction 

Gs = Shear modulus of soil 

Hn = Lateral displacement of the n-th foundation 

k∞ , c∞  = Stiffness and damping coefficient at the high-frequency limit 
sK  = Static stiffness of foundation 

Ln = Width of the n-th foundation in the group 

M = Degree of the polynomial 

Mn = Amplitude of the rocking excitation on the n-th foundation 

N = Number of the surface strip foundations in the group 

r
np = Uniform vertical traction applied on the r-th element beneath the n-th foundation 

r
nq = Uniform lateral traction applied on the r-th element beneath the n-th foundation 

Qn = Amplitude of the lateral excitation on the n-th foundation 

Rn = Elements number of interface beneath n-th foundation 

Sn = Separation distance between the n-th foundation and the n-1-th foundation 

mt , mt
∗  = The real and complex roots of the denominator of the polynomial 

( )mT x% %  = The m-th complex Chebyshev polynomial 

( , )p r
nU x z = Lateral displacement field caused by the uniform vertical traction r

np  

( , )q r
nU x z  = Lateral displacement field caused by the uniform lateral traction r

nq  

Vp = Dilatational wave velocity of soil 

Vs = Shear wave velocity of soil 

( , )p r
nW x z  = Vertical displacement field caused by the uniform vertical traction r

np  

( , )q r
nW x z  = Vertical displacement field caused by the uniform lateral traction r

nq  

X, Y = Transformation matrices 
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mX , mX ∗  = The real and complex residues at the pole of polynomial of impedance 

Y = Number of complex conjugate pole pairs 

Θn = Rocking angle of the n-th foundation 

ξ = Wave number 

ρs = Mass density of soil 

[ℜ] = Impedance matrix of the foundation group 

hh
mnℜ  = Lateral impedance between n-th foundation and m-th foundation 

rr
mnℜ  = Rocking impedance between n-th foundation and m-th foundation 

hr
mnℜ  (or rh

mnℜ ) = Coupling lateral-rocking impedance between n-th foundation and m-th foundation 

,m mγ μ  = Coefficients for m-th complex Chebyshev polynomial of denominator and numerator 

λs = Elastic Lamé constant 

∆n = Ln/Rn Width of the discretized element for the n-th foundation 
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1. Introduction 

Soil-structure interaction (SSI) problem has aroused much interest in research. Various kinds of 

methods and outcomes have been reported in the past decades [1]. The substructure method, which 

enables soil and structure to be considered separately, is widely applied in the SSI. In practical 

situations, structures are sometimes placed close to each other due to a limitation of space. Hence, in 

the realistic evaluation of their dynamic characteristics, it is necessary to consider not only the 

interaction between the foundation and the soil medium but also the interaction between foundations 

through the soil, which is known as structure-soil-structure interaction (SSSI). Besides experimental 

investigations [2, 3] and numerical procedures [4-6], substructure method is still a powerful and 

feasible approach to SSSI problems. The two main issues need to be addressed: firstly, how to 

determine impedance, which is defined as the ratio of a harmonic force applied on the 

foundation-soil interface to the corresponding harmonic displacement for a group of strip 

foundations? Secondly, how to incorporate these frequency-dependent impedances to the 

substructure method for the linear/nonlinear time history analysis? 

The analytical solutions for foundation impedance are obtained through a stress boundary-value 

method, which is based on assumptions [7-9] about the stress distributions (static rigidity, uniform, 

parabolic or their combinations) underneath the foundation. However, as the assumed distribution 

may not satisfy the conditions of contact at the foundation-soil interface, the deflected shape of the 

interface has to be modified based on some averaging techniques. More rigorous solutions for the 

impedance of foundation can be obtained as a mixed boundary-value problem [10-13] formulated in 

terms of dual integral equations. Apart from a single strip foundation, those assumed symmetrical 

distribution of contact stress may not be valid for adjacent or group foundations. On the other hand, 

as the solutions of dual integral equations cannot be expressed by elementary functions, there are 

limitations to obtain the contact force functions for a SSSI problem. An approximate method based 

on the relaxed contact assumption was provided by Warburton et al. [14] to study the dynamic 

response of two rigid circular foundations on soil medium. The semi-analytical approaches with 

enhanced flexibility have been widely used to SSSI problems [15-20] . Wong and Luco [21] obtained 

the dynamic response of a system of rigid surface foundations in frequency domain by the extended 
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boundary integral method. Savidis and Richter [22] investigated the vertical cross-interference 

between two rigid, massless, smooth contacting surface foundations by boundary integral equations 

in conjunction with constant elements in soil-foundation interface. Wang and Schmid [23] studied a 

similar problem with the full-space Green function. Though the full-space Green function is much 

simpler than the half-space one [24, 25], the free soil surface around the foundations have to be 

discretized in addition to foundation-soil interface. Dynamic interaction of arbitrary number of 

flexible strip foundations resting on smooth contact with a homogeneous elastic half-space was 

studied by Wang et al. [26] based on a classical Green function for a concentrated vertical line load. 

It was extended later by Senjuntichai and Kaewjuea [27] to a multilayered poroelastic half-space. 

Their studies were limited to vertical dynamic interaction. However, the lateral/rocking dynamic 

holds great significance for earthquake engineering as the largest effects of earthquake are on 

horizontal ground motion rather than vertical ground motion. 

Soil-structure interaction analysis by the substructure method is usually applied to the frequency 

domain because of the frequency-dependent characteristics. The time history response of the 

superstructure can be obtained by using the fast Fourier transformation (FFT). Since the nonlinear 

analysis cannot be made in the frequency domain, it is necessary to develop a system with 

frequency-independent parameters to represent the half-space soil medium so that a nonlinear 

analysis of the superstructure in the time domain becomes possible. Voigt model can easily and 

accurately transform the impedance to time domain if the frequency-dependency of the dynamic 

characteristics is weak. However, the actual impedances usually show strong frequency-dependency 

due to the SSSI effect or the inhomogeneity of soil [28, 29]. The lumped-parameter (L-P) models, 

which generally consist of several mechanical components (springs, dashpots, masses and so on.) 

[30-33], is an effective means to simulate the frequency-dependent characteristics of impedance 

function in time domain. The coefficients of the mechanical components are determined by the 

curve-fitting technique or minimizing the discrepancy between the impedance function from the L-P 

model and that from the rigorous theory. The advantage of the L-P model is that it makes the 

foundation impedance easily incorporate into an existed time history analysis program even for the 

nonlinear response of the superstructures. A series of L-P models were presented by Wolf [31-33] to 
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simulate the impedance of various types of foundations in the time domain. To develop the 

accuracies of the L-P models, Wolf suggested that the objective functions of the L-P model need to 

be adapted to make the weight for the low frequencies higher than that of the high frequencies. 

However, the relation between the frequency and the weight was not clearly clarified. Safak [34] 

used the z-transform together with a Gaussian type weighting function to obtain the objective 

functions. Wu and Lee [35, 36], and Wang et al. [37] developed another set of L-P models by fitting 

the reciprocal of impedances, which  can automatically emphasize the low frequency equations 

without introducing any weights. Andersen [38] increased the degree of the objective functions to 

ensure the accuracy of the L-P model of a hexagonal footing. Generally, the stronger 

frequency-dependent of the impedance, the higher filter order needed to guarantee the sufficient 

accuracy. However, too high order may cause the wiggling of the approximation [32, 34, 38]. 

In this paper, a discretization method is proposed to evaluate the lateral/rocking impedance of a 

rigid strip foundation group intimately attached to an elastic half-space. The influences of the 

cross-interference effect on the contact stress distributions and the impedances for a group of rigid 

foundations are discussed in detail. Finally, in extending the substructure method to SSSI problems, 

Chebyshev polynomial [39, 40] is employed in the L-P model to determine the frequency-dependent 

characteristics of impedance in time domain, as well as to reduce the problem of wiggling of the 

approximation with polynomials of high degree.  

 

2. General definition of the cross-interference problem 

The lateral/rocking oscillation of a group of N strip foundations of infinite length and different 

width Ln (n=1, …, N) with full contact to the free surface of an elastic half-space and separation 

distance Sn is considered as shown in Fig. 1. The geometric and physical parameters of the soil and 

the foundations are only functions of coordinates x and z. Therefore, the problem can be simplified as 

a generalized plane strain problem. The lateral excitation Qneiωt and the rocking excitation Mneiωt on 

each foundation are of the same vibration frequency. The force-displacement relationship for the N 

foundations considering the cross-interference can be expressed in the following form 
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where Hn and Θn are the lateral displacement and rocking angle of the n-th foundation, hh
mnℜ , rr

mnℜ  

and hr
mnℜ  (or rh

mnℜ ) are the lateral impedance, rocking impedance and coupling lateral-rocking 

impedance between n-th foundation and m-th foundation, respectively. 

Rewriting Eq. (1) in a more compact form, we have 

[ ]
ˆ ˆ

ˆˆ
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬

⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭

HQ

M
ℜ

Θ
                  (2) 

The impedance matrix [ℜ] of the system should be determined with due regard for the contact 

stress distributions of the foundation-soil interfaces. The interface between the soil and each 

foundation is discretized into a number of surface elements. The elements beneath the n-th 

foundation (n=1，… ，N) are numbered sequentially from 1 to Rn, starting from the left to the right. 

The width of the element is denoted by ∆n=Ln/Rn where Ln and Rn are representing the width and the 

number of divisions for foundation of strip n. The coordinates information for the elements in the 

system are summarized in Table 1. It is assumed that the r-th element (r=1，… ，Rn) beneath the n-th 

foundation is subjected to a uniform lateral traction r
nq  and a vertical traction r

np . 

 

3. The half-space Green functions 

Based on the Cartesian coordinate system (x-z) with z=0 at the free surface, the wave equations 

in an elastic half-space of homogeneous solid are given by 
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where sρ  is the density of the soil, Gs and λs are the Lamé constants, u, w are the displacement 

components in x and z directions. As the foundations are excited by harmonic forces, their 

steady-state vibrations satisfy u(x, z, t)=U(x, z)eiωt, w(x, z, t)=W(x, z)eiωt. For brevity, the time 

dependence i te ω  is omitted. 
2 2

2
2 2x z

⎛ ⎞∂ ∂
∇ = +⎜ ⎟∂ ∂⎝ ⎠

 denotes the Laplacian operator.  

The general solutions of Eq. (3) for a half-space are obtained by the method of separation of 

variables, as shown below [24]: 
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( )

i

i

( ) i d

( ) i d

z z x

z z x

U x,z e A e B e

W x,z e A e B e

α β ξ
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−∞

∞ − −

−∞

⎧ = −⎪
⎨
⎪ = − −⎩

∫
∫

             (4) 

where ( )22 / pVωα ξ= − , ( )22 / sVωβ ξ= − , ξ is the wave number, Vp is the dilatational wave 

(P wave) velocity with ( 2 ) /p s s sV Gλ ρ= + ; Vs is the shear wave (S wave) velocity with 

/s s sV G ρ= .  

Based on the relationships between stresses and displacements of plane problem in elasticity, we 

have ( , ) ( , ) ( , )( , ) 2zz s s
W x z U x z W x zx z G

z x z
σ λ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂ ∂⎝ ⎠

 and ( , ) ( , )( , )zx s
U x z W x zx z G

z x
τ ∂ ∂⎛ ⎞= +⎜ ⎟∂ ∂⎝ ⎠

, the general 

solutions for stresses σzz and τxz can be expressed as 
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3.1. Lateral harmonic traction 

Without loss of generality, consider the lateral uniform traction r
nq  applied at the interval 

[ 1
r
nx , 2

r
nx ] as shown in Fig. 2(a). The boundary conditions at ground surface z=0 are given by 
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Based on the Fourier transformation pairs i( ) ( )e dxF f x xξξ
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Eq. (6) can be expressed in the integral form: 
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Comparing Eq. (7) with Eq. (5), the coefficients A and B can be determined 
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Substituting the above two coefficients back to Eq. (4), the displacements ( , )q r
nU x z  and ( , )q r

nW x z  

due to r
nq  can be expressed as 
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in which, ( )
222 2( ) 2 4/ sF Vωξ ξ ξ αβ⎡ ⎤= − −⎣ ⎦ .  

To transform the results to a more convenient form for calculation, we let ξ=ηω/Vs, ϑ=Vs/Vp 

and then F(ξ) can be transformed into 2 2 2 2 2 2( ) (2 1) 4 1F η η η η ϑ η= − − − − . Substituting the r-th 

element of foundation n (shown in Table 1) into Eqs. (9) and (10) and making use of the symmetry of 

the integral, the lateral and vertical surface displacements of soil due to the lateral traction r
nq  are, 

respectively, given by 
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3.2. Vertical harmonic traction 

Consider the vertical uniform traction r
np  applied at the interval [ 1

r
nx , 2

r
nx ], as shown in Fig. 

2(b). The boundary condition at ground surface z=0 are given by 
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Applying Fourier transformation to Eq. (13) and expressing it in integral form, we have  
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Comparing Eq. (14) with Eq. (5), the coefficients A and B can be determined 
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Substituting coefficients A and B back to Eq. (4), the displacements due to r
np  are given by 
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Similar to the transformation given in section 3.1, the lateral and vertical surface displacements 

of soil due to the vertical traction r
np  are, respectively, written as 
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4. Evaluation of lateral/rocking impedance for a foundation group 

Based on the superposition principle, the lateral displacement U(x, 0) and the vertical 

displacement W(x, 0) of the soil surface due to a series of tractions r
nq  and r

np  (n=1,2,...,N) can be 

obtained from Eqs. (11), (12), (18) and (19): 

1 1 1 1

( ,0) ( ,0) ( ,0)
n nR RN N

q r p r
n n

n r n r

U x U x U x
= = = =

= +∑∑ ∑∑              (20) 

1 1 1 1

( ,0) ( ,0) ( ,0)
n nR RN N

q r p r
n n

n r n r

W x W x W x
= = = =

= +∑∑ ∑∑              (21) 

The total lateral and vertical surface displacements r
nU  and r

nW  of the r-th element beneath 

the n-th foundation can be obtained by substituting the coordinate of the r-th element to Eq. (20) and 

Eq. (21), respectively. Consequently, the following flexibility equation of the system can be 

established as follows 

1 1 11 1 1 1

2
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11 1 1 11 1 1
1
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1
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ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

n N n
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⎪
⎪
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⎪
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  (22) 

in which, { }1 2ˆ ,  ,  ,  n
TR

n n n nq q q= Lq ; { }1 2ˆ ,  ,  ,  n
TR

n n n np p p= Lp ; { }1 2ˆ ,  ,  ,  n
TR

n n n nU U U= LU ; 

{ }1 2ˆ ,  ,  ,  n
TR

n n n nW W W= LW . And 
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11 1 1

1

1

n
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j R
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i ij iRR R
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R R j R R
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A A A

A A A

A A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L L

M O M N M

L L

M N M O M

L L

A , n, m=1, 2, …, N; i =1, 2, …, Rm; j=1, 2, …, Rn  (23) 

in which, element 
ij
mnA  describes the relationship between the lateral traction j

nq  applied on the 

j-th element of the n-th foundation and the lateral displacement i
mU  for the i-th element of the the 

m-th foundation. 

2

10

1 ( , , , , )
( )

ij s
mn

s

VA G m n i j d
G F

η
η η

πω η η
∞ −

= − ∫              (24) 

where 

1 1 1
1 1

(2 1) ( 1)( , , , , ) sin ( ) ( )
2

m n
m n

l l l l
l ls m n

i L j LG m n i j S L S L
V R R
ωη η − −

= =

⎡ ⎤⎛ ⎞⎛ ⎞− −
= + + − + + −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∑ ∑

1 1
1 1

(2 1)                           sin ( ) ( )
2

m n
m n

l l l l
l ls m n

i L jLS L S L
V R R
ωη − −

= =

⎡ ⎤⎛ ⎞⎛ ⎞−
+ + − + +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∑ ∑      (25) 

11 1 1

1

1

n

nm n

m m m n

j R
mn mn mn

i iRR R ij
mn mnmn mn

R R j R R
mn mn mn

B B B

B B B

B B B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L L

M O M N M

L L

M N M O M

L L

B              (26) 

in which, element ij
mnB  in matrix m nR R

mn⎡ ⎤⎣ ⎦B  describes the relationship between the vertical traction 

j
np  applied on the j-th element of the n-th foundation and the lateral displacement i

mU  for the i-th 

element of the m-th foundation. 

2 2 2 2

20

2 1 2 1 ( , , , , )d
( )

ij s
mn

s

VB G m n i j
G F

η η ϑ η
η η

πω η
∞ − − − −

= − ∫         (27) 

in which, 

2 1 1
1 1

(2 1) ( 1)( , , , , ) cos ( ) ( )
2

m n
m n

l l l l
l ls m n

i L j LG m n i j S L S L
V R R
ωη η − −

= =

⎡ ⎤⎛ ⎞⎛ ⎞− −
= + + − + + −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∑ ∑  
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1 1
1 1

(2 1)                           cos ( ) ( )
2

m n
m n

l l l l
l ls m n

i L jLS L S L
V R R
ωη − −

= =

⎡ ⎤⎛ ⎞⎛ ⎞−
+ + − + +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∑ ∑     (28) 
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i iRR R ij
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C C C

C C C

C C C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

L L

M O M N M

L L

M N M O M

L L

C              (29) 

in which, element 
ij
mnC  in matrix m nR R

mn⎡ ⎤⎣ ⎦C  describes the relationship between the lateral traction 

j
nq  applied on the j-th element of the n-th foundation and the vertical displacement i

mW  for the i-th 

element ofthe m-th foundation. 

2 2 2 2

20

2 1 2 1
( , , , , )d

( )
ij s
mn

s

VC G m n i j
G F

η η ϑ η
η η

πω η
∞ − − − −

= ∫          (30) 

Comparing Eq. (27) and Eq. (30), it can be found that 
ij ij

mnmnC B= − . 

11 1 1

1

1

n

nm n

m m nm

j R
mn mn mn

i iRR R ij
mn mnmn mn

R R RR j
mn mnmn

D D D

D D D

D D D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

L L

M O M N M

L L

M N M O M

L L

D              (31) 

in which, element 
ij
mnD  in matrix m nR R

mn⎡ ⎤⎣ ⎦D  describes the relationship between the vertical traction 

j
np  applied on the j-th element of the n-th foundation and the vertical displacement i

mW  for the i-th 

element of the m-th foundation. 

2 2

10
( , , , , )

( )
ij s
mn

s

VD G m n i j d
G F

η ϑ
η η

πω η η
∞ −

= − ∫             (32) 

ij
mnA , 

ij
mnB , 

ij
mnC  and 

ij
mnD  are all the multi-value improper integrals, which can be evaluated by 

using the piecewise integration method, as shown in Appendix. 

For brevity, Eq. (22) is rewritten as 
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ˆˆ
ˆ ˆ

⎧ ⎫⎡ ⎤ ⎧ ⎫ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦ ⎩ ⎭ ⎪ ⎪⎩ ⎭

A B q U
C D p W

                  (33) 

In consideration of the full contact between the rigid foundations and the soil, the displacement 

of the surface soil elements beneath the n-th rigid foundation, we have ˆ ˆ
n n nH=U I  and ˆ ˆ

n n nΘ= W E , 

in which ˆ
nI  is a unit column vector of order Rn such that ˆ {1,  ,  1}

n

T
n

R

= L14243I  and ˆ
nE  is a column 

vector of order Rn such that (1 ) (2 1 ) ( 1)ˆ , , , ,
2 2 2

T

n n n n n n
n

n n n

R L r R L R L
R R R

⎧ ⎫− − − −
= ⎨ ⎬
⎩ ⎭

L LE . Considering the 

system shown in Fig. 1, the relationship between displacements of all the surface soil elements and 

those of the footing group, we have 

ˆ ˆ

ˆ ˆ
⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

0
0

U X H
YW Θ

                 (34) 

where X and Y are both transformation matrices of dimension 
1

N

n
n

R N
=

⎛ ⎞×⎜ ⎟
⎝ ⎠
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ˆ ˆ ˆˆ
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L L
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L L

I

I

X
I

I

; 

1

2

ˆ ˆ ˆˆ

ˆ ˆ ˆˆ

ˆ ˆ ˆˆ

ˆ ˆ ˆ ˆ

n

N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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0 0 0

0 0 0

0 0 0

L L

L L

M M O M O M

L L
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E

E

Y
E

E

       (35) 

Equating the excitation and the contact tractions for the n-th foundation yields 
1

nR
r

n n n
r

Q q
=

= Δ ∑ , 

1

(2 )
2

nR
r n n

n n n
r n

r R LM p
R=

−
= Δ∑ . For the entire foundation group we have 

ˆ ˆ
ˆˆ

T⎧ ⎫ ⎡ ⎤ ⎧ ⎫⎪ ⎪ =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦ ⎩ ⎭⎪ ⎪⎩ ⎭

0
0
X qQ

Y pM

Δ
Δ

                 (36) 

with ( ) ( ){ }1 1̂
ˆ=diag , ,

T T

N NΔ ΔLI IΔ . 

Substituting Eqs. (33) and (34) into Eq. (36) leads to 



15 
 

ˆ ˆ

ˆˆ

T T⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭

0 0
0 0
X A B X HQ

Y C D YM

Δ
Δ Θ

            (37) 

Therefore, the impedance matrix in Eq. (2) can be finally obtained as 

[ ]
T T

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0 0
0 0
X A B X

Y C D Y
Δ

ℜ
Δ

              (38) 

The components in the impedance matrix are frequency-dependence and complex. The real part 

represents the springs which account for the effect of the restraining action of the supporting soil 

medium, whereas the imaginary part represents the dashpots which account for the effect of energy 

dissipation by radiation. 

 

5. Impedance represented in time domain 

The general form of each components ℜij(ω) in the impedance matrix [ℜ] can be normalized 

with respect to its corresponding static stiffness s
ijK  as 0 0( ) ( )s

ij ij ija K aℜ = ℜ . i, j=1, … , 2N, and 

a0=ωL/(2Vs) is a dimensionless frequency. In order to perform the linear/nonlinear dynamic of 

structures including SSSI effect by the substructure method in time domain, a domain-transformation 

method has to be introduced to deal with those frequency-dependent impedances.  

5.1. Impedance approximated by complex Chebyshev polynomial fraction 

As suggested by Wolf [31], each component in impedance matrix can be treated separately by a 

lumped-parameter model, the subscripts i and j are omitted for simplicity, e.g. 0 0( ) ( )sa K aℜ = ℜ . 

The normalized impedance 0( )aℜ  is decomposed into a singular part which is equal to its 

asymptotic value 0ik a c∞ ∞+  for 0a →∞ , and a regular part which is represented as a ratio of two 

polynomials. Generally, a more complex impedance would have required a polynomial of higher 

order. As discussed later, actual impedances including cross-interference often show strong 

frequency dependence. Therefore, to reduce the problem of wiggling of approximation by simple 

polynomials of higher degree, the complex Chebyshev polynomials (the first eight terms as shown in 

Table 2) are introduced to enhance stability in numerical computation. 
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1 1 0 2 2 0 0
0 0 0

1 1 0 2 2 0 1 1 0
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− + + + +
ℜ ≈ℜ = + +
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% % %L%
% % %L

     (39) 

where χ in Eq. (39) has to be selected such that the doubly asymptotic feature 0( )aℜ  can be 

ensured, i.e, 

(i) It is exact in the static limit, 0( ) 1aℜ →  for 0 0a → . 

(ii) It is exact in the high-frequency limit, 0 0( ) ia k a c∞ ∞ℜ → +  for 0a →∞ . 

Hence, we have 

/2 /2

2 2
1 1

1( 1)/2 ( 1)/2
1 2

2 2 1
1 1

1 ( 1) ( 1)                                                    2,4,6
1

1 ( 1) ( 1) ( 1)              1,3,5
1

M M
m m

m m
m m

MM M
m m

m m M
m m

M
k

M
k

γ μ
χ

γ μ μ

∞
= =

−− −
+

+∞
= =

⎧
− − − =⎪ −⎪= ⎨

⎪ − − − + − =⎪ −⎩

∑ ∑

∑ ∑

L

L

    (40) 

The coefficients of the complex Chebyshev polynomials sγ  and sμ  can be obtained in an 

optimal manner based on the least squares fit. For any given foundation impedance, the values of 

these parameters can be uniquely determined. Reorganizing Eq. (39) gives the following complex 

polynomial fraction: 

2
1 0 2 0 0

0 0 2 1
1 0 2 0 1 0

1 (i ) (i ) (i )(i ) i
1 (i ) (i ) (i )

M
M

M
M

k a a a a a aa k a c
b a b a b a

∞
∞ ∞

+
+

− + + + +
ℜ = + +

+ + + +
L%

L
        (41) 

5.2. Lumped-parameter model 

The polynomial fraction in Eq. (41) can be decomposed into a partial-fractions 

*2 2

0 0 *
1 10 0

(i ) i
i i

Y M Y
m m

m m Ym m

X Xa k a c
a t a t

−
∞ ∞

= = +

ℜ = + + +
− −∑ ∑%             (42) 

where mt  and mt
∗  are the real and complex roots of the denominator polynomial in Eq. (41), 

respectively. For a polynomial fraction with real coefficients, the real poles are associated with real 

residues mX , whereas the complex poles would appear in complex conjugate pairs and their 

corresponding residues mX ∗  are also in the form of complex conjugate pairs. Two conjugate first 

–order terms can be combined to a second-order term with real coefficients. Therefore, with Y pairs 

of complex conjugate poles among a total of M poles, Eq. (42) can be rewritten as 
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( )

(1) (2) 2
0

0 0 2 (1) (2)
1 1 00 0

i(i ) i
ii i

Y M Y
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m m mm m

a Xa k a c
a ta a

β β
α α

−
∞ ∞

= =

+
ℜ = + + +

−+ +
∑ ∑%          (43) 

As a result, the total approximation of the impedance 0( )sK aℜ  consists of three characteristic types  

(i) A singular term: ( )0i sk a c K∞ ∞+               (44) 

(ii) (M-Y) first-order term: 
0i

sm

m

X K
a t

⎛ ⎞
⎜ ⎟−⎝ ⎠

             (45) 

(iii) Y second-order term: 
( )

(1) (2)
0

2 (1) (2)
0 0

i
i i

sm m

m m

a K
a a

β β
α α

⎛ ⎞+
⎜ ⎟
⎜ ⎟+ +⎝ ⎠

          (46) 

The above expressions can be interpreted as the frequency-response functions of the L-P models. 

In order to avoid the problem of modifying the driving loads or input motion at the nodes of the strip 

foundations, three discrete-element model with no mass was presented by Wolf [31] as shown in Fig. 

3. The spring and damping coefficients in these models can be uniquely defined by the coefficients in 

Eqs. (44)-(46) as follows 

kκ ∞= , cλ ∞=                   (47a) 

m
m
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X
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κ = , 2
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m
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λ = −                 (47b) 
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= −  , 
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(2) (1) (1) (2)
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2(2)

m m m m
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α β α βλ
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−
=              (47c) 
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⎡ ⎤− +⎢ ⎥⎣ ⎦
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2(2) (1) (2) (2) (1)
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2 2 2(2) (2) (1) (1) (1) (2) (2)
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m

m m m m m m m

β α β α β
λ

α α β α β β β

−
=

⎡ ⎤− +⎢ ⎥⎣ ⎦

 

(47d) 

6. Convergence and validation 

6.1. Convergence study 

Convergence and numerical stability of the discretization method are investigated with respect 

to the number of segmental strip elements. The convergence characteristics in terms of segmental 

subdivisions of lateral and rocking impedances of a single foundation for various excitation 

frequencies are given in Table 3. It can be seen from Table 3 that lateral impedances converge 
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slightly faster than the rocking impedances. 

6.2. Comparison studies 

The Lamb’s problem of finding the displacement at an arbitrary point on the surface of a 

half-space medium due to a harmonic concentrated line force applied at the origin was studied by 

Hasegawa et al. [16] with the thin layered method (TLM). To validate the numerical calculation of 

the Green functions in Eqs. (11) and (19), which contain multi-value improper integrals, the results 

of the displacement responses of half-space subjected to a uniform force are compared to those given 

by TLM, as shown in Fig. 4. The soil parameters are: soil density ρs=2000kg/m3, shear wave velocity 

Vs=500m/s, Poisson’s ratio v=0.4. Furthermore, we take the interval of the uniform harmonic 

excitation d=0.5m, which is small enough as a distance between the observation location and the 

excitation location S=40m. The excitation frequency is non-dimensionlized which can be expressed 

as a0=ωS/(2Vs). As it is shown in Fig. 4, the lateral and the vertical responses obtained are close to 

those from the TLM. However, there are some minor differences between the results from the two 

methods. The present solution is more accurate than the TLM solution since the TLM method has to 

use the artificial boundary. 

Luco et al. [10] presented the impedance of a massless rigid strip foundation intimately bonded 

to an elastic half-space by means of a rigorous analytical method. As the resulting integral equations 

presented considerable difficulties from the numerical point of view, only a special case for Poisson’s 

ratio v=0.5 was solved in detail. The cases with Poisson’s ratio v<0.5, valid for low frequencies 

a0≤1.5, were computed approximately using the dominant part of the singular integral equations. The 

lateral/rocking flexibilities of the foundation F=ℜ-1 with respect to the dimensionless exciting 

frequency are compared with those given by the analytical method as shown in Figs. 5 and 6. It 

should be noted from Figs. 5 and 6 that the present method shows a consistency with the rigorous 

analytical method. In addition, the extended solutions in Fig. 6 further validate the results for higher 

frequencies. 
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7. Parameter studies to reveal cross-interference 

7.1 Distribution of contact stress 

The dynamic contact stresses of identical strip foundations in group are compared to those of a 

single one to reveal the significance of cross-interference. In this example, the contact stress 

distributions of a group of two foundations are shown in Figs. 7 and 8 and those of a group of three 

foundations are shown in Figs. 9 and 10. The distance ratio S/L=0.25, the Poisson’s ratio v=1/3, and 

different dimensionless frequencies a0=0.5, 5 for the lateral-rocking harmonic excitations Q0 and M0. 

We define x  as the local coordinate with the origin at the center of each foundation. The 

non-dimensional contact stresses are normalized as q =Lq/(Q0), p =L2p/(M0). It can be seen from 

Figs. 7(a) and 8(a) that the stress distributions of a single foundation at a low frequency a0=0.5 is 

similar to the static rigid distributions assumed by Sung [8]. However, there is a significant change 

for the case of a high frequency a0=5.0 as shown Figs. 7(b) and 8(b). This indicates that the shape 

and magnitude of the contact stresses are quite sensitive to the variation of the vibration frequency.  
Figs. 7-10 depict the influence of cross-interference on the distribution of dynamic contact stress. 

Unlike a single foundation of a symmetrical distribution of traction q and an anti-symmetrical 

distribution of traction p, a group of two foundations present skewed distributions of contact stresses 

as shown in Figs. 7 and 8. While the outside edges of the two foundations are still follow the 

distribution of a single foundation, there are deviations on the inside edges due to the influence from 

the adjacent foundation. For the case of three foundations in expected Figs. 9 and 10, the two side 

foundations in the group have similar distributions. The middle foundation has a symmetrical 

distribution of q and an anti-symmetrical distribution of p but their shapes and magnitudes are 

significantly different from those of a single one. Moreover, the stress distributions at the edges of 

adjacent foundations are quite close. Therefore, we can conclude that the assumption made on 

contact stress distributions such as the static rigid distribution which was commonly used will result 

in a considerable error in a SSSI analysis. 

7.2 Influence of the distance ratio on impedance	
Two identical strip foundations subjected to harmonic lateral/rocking excitations are used to 

investigate the influence of the ratio between separation distance to foundation width S/L on 

cross-interference. The variations of lateral and rocking impedances of a foundation with respect to 

different distance ratios (S/L=0.125, 0.5, 3, 5, 10, ∞) are displayed in Figs. 11 and 12. It can be seen 
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that the lateral and rocking impedances of two foundations in the case of closely spaced distance 

ratio such as S/L=0.125 fluctuate around that of a single foundation. In general, the cross-interference 

would make the impedances more frequency dependent. Moreover, the influence from the adjacent 

foundation is not significant in the case of large distance ratio such as S/L=5.0.  

7.3 Impedance for a group of three strip foundations 

The lateral-rocking vibrations of a group of three identical strip foundations equidistantly 

spaced at a distance ratio S/L=0.5 on an elastic half-space with Poisson’s ratio v=1/3 are studied. The 

lateral and rocking impedances of each foundation due to cross-interference are presented and 

compared to the results of a single foundation, as shown in Figs. 13 and 14,  in which the 

coefficients Kii and Cii (i=1,2,3) are referred to the normalized self-correlative stiffness and damping 

of the foundations in the group, while Kij and Cij (i≠j, i,j=1,2,3) are referred to the normalized 

cross-correlative stiffness and damping between foundation i and foundation j. The coefficients Ksig 

and Csig are those without the consideration of the cross-interference effect among foundations. It can 

be seen from Figs. 13 and 14 that the impedances of each foundation fluctuate around that of a single 

foundation. It is also observed that the middle foundation experiences a greater cross-interference 

effect compared to those on the side. Once again it is confirmed that the distance ratio S/L is an 

important factor as far as cross-interference is concerned. 

 

8. Lumped-parameter model for adjacent foundations  

This example seeks to establish an L-P model to simulate adjacent foundations on a 

homogeneous elastic half-space. Consider two strip foundations of different width 2m and 4m, 

separated by a distance of 2m. The soil parameters are: density ρs=2000kg/m3, shear wave velocity 

Vs=200m/s, Poisson’s ratio v=0.3. The normalized impedances in frequency domain, which are based 

on the discretization method presented in this paper, are used to curve-fit the L-P model. The optimal 

coefficients of polynomial-fraction fitted by different numbers of terms of complex Chebyshev 

polynomials are listed in Table 4. The simulated impedances in time domain are depicted in Figs. 

15-17. It can be seen from Figs. 15-17 that results are highly consistent between the solutions of L-P 

models in time domain and those of the discretization method in frequency domain. The L-P model 
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gives promising simulations to hh
aaℜ , rr

aaℜ , hh
bbℜ , hh

bbℜ , and hh
abℜ  when the order of the complex 

Chebyshev polynomial increases up to M=6. The L-P model gives satisfactory simulation to rr
abℜ  

when the order of the complex Chebyshev polynomial increases up to M=5. With the optimal 

parameters determined by the L-P model, normalized stiffness and damping coefficients are plotted 

in Fig. 18. This model can be incorporated with the substructure method for SSSI analysis in time 

domain, in which the superstructures can even be non-linear. 

 

9. Conclusions 

A systematic procedure has been presented in this paper for the solution of a SSSI problem 

based on the substructure approach. The discretization method is presented to determine the contact 

stress distribution and impedance matrix of the lateral/rocking dynamic of a surface strip foundation 

group. With a clear physical interpretation, the model can be easily adopted by engineers for 

dynamic analysis and seismic design of closely spaced strip foundations. After some parametric 

studies of cross-interference effect, following conclusions can be drawn: 

 

(1) The discretization method avoids directly solving the contact stress functions at soil-foundation 

interfaces which, in general, cannot be expressed by elementary functions. Unlike the mixed 

boundary-value method, which requires solutions of dual integral equations in terms of 

elementary functions even for a single foundation, the proposed method based on a discretization 

can be applied directly to multiple foundations. The accuracy and the validity over a wide 

frequency range have been verified by the convergence studies and the comparison with existing 

results. 

(2) The distributions of dynamic contact stress are sensitive to the frequency of excitation. Due to 

the influence of the cross-interference, adjacent foundations present skewed distributions of the 

contact stress. As a result, a considerable error would be introduced, if the SSSI problem is 

analyzed by a stress boundary-value method based on a stress distribution assumption. 

(3) The distance ratio S/L greatly influences the dynamic cross-interaction, especially for a small 

ratio less than 5.0. As for foundations located in different positions of the group, the center 
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foundation generally suffers a greater SSSI effect than the side ones. The impedance of strip 

foundations in a group shows a stronger frequency-dependent characteristic than that of a single 

one. 

Finally, an L-P model based on complex Chebyshev polynomial fraction is proposed to 

determine the frequency-dependent impedances in a time domain for the linear/nonlinear dynamic 

analysis of structure-soil-structure interaction by means of a substructure method. 
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Fig. 1. The cross-sections of a group of long strip foundations attached to a semi-infinite soil 

medium under lateral/rocking harmonic excitations 
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Fig. 2. The half-space subject to a harmonic uniform load: (a) Lateral and (b) Vertical 
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Fig. 3. Discrete-element models: (a) Singular term, (b) The first-order term and (c) The 

second-order term. 
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Fig. 7. The effect of cross-interference between two foundations on contact traction q 
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Fig. 8. The effect of cross-interference between two foundations on contact traction p 
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Fig. 9. The effect of cross-interference between three foundations on contact traction q 
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Fig. 10. The effect of cross-interference between three foundations on contact traction p 
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Fig. 12. Rocking impedance in consideration of cross-interference: 

(a) Real part and (b) Imaginary part 
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Fig. 13. Lateral impedance of the strip foundation group: (a) Real part and (b) Imaginary part 
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 (a) Lateral impedance hh
aaℜ  and (b) Rocking impedance rr

aaℜ  

(b) 

(a) 



38 
 

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.50

0.75

1.00

1.25

1.50
 Freq. domain
 Time domain (M=6)

St
iff

ne
ss

 C
oe

ff
ic

ie
nt

The dimensionless frequency a
0  

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

8
 Freq. domain
 Time domain (M=6)

D
am

pi
ng

 C
oe

ff
ic

ie
nt

The dimensionless frequency a0  

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.25

0.50

0.75

1.00

1.25
 Freq. domain
 Time domain (M=6)

St
iff

ne
ss

 C
oe

ff
ic

ie
nt

The dimensionless frequency a
0  

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0
 Freq. domain
 Time domain (M=6)

D
am

pi
ng

 C
oe

ff
ic

ie
nt

The dimensionless frequency a
0  

Fig. 16. Comparison of frequency and time domain impedances for Foundation II: 

(a) Lateral impedance hh
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F o u n d a tio n  I F o u n d a tio n  II

(5 .1 7 1 )

(-1 .9 6 7 ) (-0 .5 2 1 4 )

(-2.162)

(2.939)

(-181.5)

(1 .2 8 2 )

(-0 .4 5 5 9 )(-0 .5 0 4 6 )

(0 .0 8 8 7 )

(-0 .3 6 9 0 )

(0 .2 4 5 0 )

(0 .0 1 1 6 )

(-4 2 .1 4 )

(2 .2 6 0 )

(0 .0 5 4 6 )

(-0 .3 8 6 7 )

(1 9 .0 6 )

(-0 .0 4 8 0 )

(-0 .1 4 2 9 )

(-3 .3 8 5 )

(0.4553)

(2.472)
(-23.00)

(0.1805)

(0.1311)

(-0.0446)

(-0.1485)

(0.0243)
(-0.0967)

(-0.1384)

(2.683)

(-0.1332)

(0.0651)

(-0.0354)

(0.1244)

(1.013)

(-4.429)

(0.0984)

(0.3002)

(1.953)

(-0.1011)

(-1.534)

(0.0919)
(-0.2100)

(-0.2706)

(2.990)

(0.5926)

(-15.17)

(-4.233)

(-0.2366)

(2 .2 8 3 )

(1 .3 6 0 )

(-1 .2 9 2 )

(4 5 .0 6 )

(0 .0 0 6 6 )

(0 .2 7 8 4 )

(0 .0 1 9 5 )

(-0 .0 0 6 7 )

(0 .4 1 8 3 )

(-0 .1 2 2 5 )

(0 .4 8 2 4 )

(-0 .8 3 5 0 )

(0 .1 7 2 0 )

(-0 .0 0 0 4 )

(-0 .1 2 3 2 )

(-0 .2 7 6 7 )

(0 .3 3 1 9 )

(0 .1 3 2 9 )

(-0 .1 2 1 2 )

(0 .0 6 7 2 )

(1 .3 6 0 )

(-0 .3 9 6 7 )

(-0 .0 6 9 4 )

(-0 .4 5 4 3 )

(1 .4 7 8 )

(0 .7 7 8 3 )

(6 .4 0 3 )

(-0 .2 3 4 4 )

(-0 .0 4 1 7 )

(-2 .8 7 5 )

(-2.364)

(110.3)

(89.64)

(384.9)

(-842.1)

(-3.435)

(-10.89)

(2.251)

(6.105)

(11.38)

(-0.913)

(45.67)

(-12.27)

 

Fig. 18. Lumped-parameter model for the dynamic interaction of adjacent strip foundations 
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Table 1  

Coordinate information of each element in the system 

Coordinates 
The r-th element in 

Footing 1 
(r=1,…, R1) 

The r-th element in 
Footing n 

(r=1,…, Rn) 

The r-th element in 
Footing N 

(r=1,…, RN) 

Central coordinate of 
each element 

1
1 1

1

(2 1)
2

r LC S
R
−

= +  ( )1
1

(2 1)
2

n
n

n l l
ln

r LC S L
R −

=

−
= + +∑  

( )1
1

(2 1)
2

N
N

N l l
lN

r LC S L
R −

=

−
= + +∑

 

Interval of each element 1 1
1 1,

2 2
C CΔ Δ⎡ ⎤− +⎢ ⎥⎣ ⎦

 ,
2 2

n n
n nC CΔ Δ⎡ ⎤− +⎢ ⎥⎣ ⎦

 ,
2 2

N N
N NC CΔ Δ⎡ ⎤− +⎢ ⎥⎣ ⎦

 

 
 
 
 
 
 

Table 2  

The first eight complex Chebyshev polynomials ( )mT x% %  (m=0, 1, 2, …,7) 

0 0( ) 1 ( )T x T x= =% %  

1 1( ) ( )iT x x T x= =% % %  
2

2 2( ) 2 1 ( )T x x T x= − − =% % %  
3

3 3( ) 4 3 ( )iT x x x T x= − − =% % % %  
4 2

4 4( ) 8 8 1 ( )T x x x T x= + + =% % % %  
5 3

5 5( ) 16 20 5 ( )iT x x x x T x= + + =% % % % %  
6 4 2

6 6( ) 32 48 18 1 ( )T x x x x T x= − − − − =% % % % %  
7 5 3

7 7( ) 64 112 56 7 ( )iT x x x x x T x= − − − − =% % % % % %  
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Table 3  
The convergence of the lateral/rocking impedance of a single strip foundation 

a0=0.25 a0=2.0 a0=3.0 

Lateral rocking Lateral Rocking Lateral Rocking N 

Re Im 
 

Re Im Re Im Re Im Re Im 
 

Re Im 

10 0.472 0.277  0.758 0.0220 0.623 1.25 0.470 0.603 0.618 1.84  0.291 1.04 

20 0.274 0.280  0.787 0.0243 0.625 1.27 0.488 0.646 0.622 1.87  0.308 1.12 

30 0.475 0.281  0.797 0.0245 0.626 1.28 0.493 0.660 0.622 1.88  0.312 1.14 

40 0.475 0.281  0.801 0.0247 0.626 1.28 0.495 0.665 0.622 1.88  0.313 1.15 

50 0.475 0.281  0.803 0.0248 0.626 1.29 0.496 0.669 0.622 1.88  0.314 1.16 

60 0.475 0.282  0.806 0.0249 0.626 1.29 0.497 0.672 0.622 1.89  0.314 1.17 

70 0.475 0.282  0.808 0.0250 0.626 1.29 0.498 0.675 0.622 1.89  0.315 1.17 

80 0.475 0.282  0.809 0.0251 0.626 1.29 0.499 0.678 0.622 1.89  0.315 1.18 

90 0.475 0.282  0.810 0.0251 0.626 1.29 0.500 0.679 0.622 1.89  0.315 1.18 

100 0.475 0.282  0.810 0.0251 0.626 1.29 0.500 0.679 0.622 1.89  0.315 1.18 

Note: Lateral impedances values above are normalized as ℜhh/(πG) and rocking impedances are normalized as 

4ℜrr/(πGL2) ; the calculation parameters v=0.40, a0=ωL/(2Vs) 
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Table 4  

The coefficients of the fitting polynomial fraction 

Foundation I Foundation II Coupling 

Lateral Rocking Lateral Rocking Lateral Rocking  

M=6 M=6 

 

M=6 M=6 

 

M=6 M=5 

Ks 119261966 186979278 138714082 757741896 -70481684 17098126 
k∞ 1.1385 0.5247 0.9877 0.5522 -0.4843 4.1436 
c∞ 1.2821 0.4553 2.2832 1.0129 0.1329 -2.3640 
       

a1 1.7845 1.3599 2.2498 1.9045 2.8211 1.0314 
a2 1.6649 1.6973 2.1030 2.7042 1.7886 1.1811 
a3 1.0057 0.8522 1.1542 1.9747 1.3663 0.3742 
a4 0.2937 0.3797 0.5355 1.0380 0.2564 0.1044 
a5 0.0888 0.0650 0.1175 0.3461 0.1393 0.0114 
a6 0.0040 0.0134 0.0295 0.0826 -0.0014 -0.0030 
a7 0.0007 -0.0028 

 

0.0008 0.0108 

 

0.0042 - 
 

b1 -0.2401 0.2491 -0.2956 0.0101 2.1176 1.0796 
b2 0.0506 0.6529 -0.0433 0.6846 0.2111 -7.9259 
b3 -0.0640 0.0858 -0.1367 -0.1089 0.5335 5.0274 
b4 0.0589 0.1527 -0.0168 0.1640 -0.1082 -0.8401 
b5 -0.0041 0.0065 -0.0116 -0.0122 0.0331 0.5459 
b6 0.0057 0.0096 

 

-0.0013 0.0104 

 

-0.0126 - 

 


