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Realizing and manipulating space-time inversion symmetric
topological semimetal bands with superconducting quantum
circuits
Xinsheng Tan1, Yuxin Zhao2,3, Qiang Liu1, Guangming Xue1, Haifeng Yu1,4, Z. D. Wang2 and Yang Yu1,4

Symmetries of space-inversion (P), time-reversal (T), as well as the joint space–time inversion (PT) are fundamental and significantly
important in physics. Here we have experimentally realized the joint PT invariant Z2-type topological semimetal-bands, via an
analogy between the momentum space and a controllable parameter space in superconducting quantum circuits. By measuring
the whole energy spectrum of the system, we clearly imaged an exotic tunable gapless band structure typical of topological
semimetals. Two topological quantum phase transitions, from a topological semimetal to two kinds of insulators, can be
manipulated by continuously tuning the different parameters in the experimental setup, one of which captures the Z2 topology of
the PT semimetal via merging a pair of nontrivial Z2 Dirac points. Remarkably, the topological robustness was demonstrated
unambiguously, by adding a perturbation that breaks only the individual T and P symmetries but keeps the joint PT symmetry. In
contrast, when another kind of PT-violating perturbation is introduced, a topologically trivial insulator gap is fully opened.
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INTRODUCTION
Symmetry and topology, as the two fundamentally important
concepts in physics and mathematics, have not only manifested
themselves in science, but also provided us a profound under-
standing of arresting natural phenomena. Recently, topological
gapless systems, such as Weyl semimetals1–3 and Z2 topological
metals/semimetals,4,5 have significantly stimulated research inter-
est. Analogous to that in gapped topological systems, such as
topological insulators and superconductors, the discrete symme-
try that is rather robust against symmetry-preserved perturbations
can enrich the topological physics of gapless systems as well. As is
known, the discrete time–reversal (T), space–inversion (P), and
charge-conjugate (C) symmetries are fundamental and intriguing
in nature. For examples, in high energy physics, any local quantum
field theory must preserve the joint CPT symmetry, which is
required by the unitarity and Lorentz invariance of the theory, and
the source of CP violation still remains as one of seminal mysteries
in the Standard Model. While in condensed matter systems, it is
ubiquitous that P, T and C impose constraints on band structures
and lead to new topological classifications of band theories.6–8

Among various combinations of P, T and C, the joint PT symmetry
actually inverts the space–time coordinates xμ → −xμ with μ = 0, 1,
2, 3 and x0 = t, and therefore evidences themselves to be
fundamental and significant in physics.
Recently, a theory of PT-invariant topological gapless bands has

rigorously been established,9 through revealing a profound
connection between the joint PT symmetry and an elegant KO
theory of algebraic topology.10 The physical manifestation of PT
symmetry in band theories can simply be seen from the
commutation relation as ½bA;H� ¼ 0, where H is the system

Hamiltonian, and the joint PT symmetry is represented by an
anti-unitary operator bA. When bA2 ¼ 1, the topological classification
of band-crossing points in two-dimensional band structures
corresponds to the reduced KO group, fKOðS1Þ ffi Z2, which implies
that there exist band-crossing points having nontrivial Z2
topological charges in two dimensions.9 Although the KO theory
of algebraic topology seems to be rather abstruse for most
physicists, the predicted topological band crossing points can be
realized in a simple but representative dimensionless Hamiltonian,
which is explicitly given by9

HðkÞ ¼ sin kxσ2 þ ðλ± cos kyÞσ3; (1)

where σj is the jth Pauli matrix and kx,y denotes the two-
dimensional wave vector, and λ is a tunable parameter. For the
above system, the joint PT symmetry can be denoted by the
operator bA ¼ σ3K̂ that commutates with the Hamiltonian in
Eq. (1), where σ3 corresponds to the P operation, and K̂, defined as
the complex conjugate, denotes the time-reversal T operation.
When −1 < λ < 1, the Hamiltonian in Eq. (1), which actually
describes a topologically nontrivial spin(1/2)-orbital quantum
system in two dimension, has four band-crossing points posses-
sing the PT-protected Z2 νZ2 ¼ 1ð Þ topological charges; while they
are topologically trivial for λj j = 1 because a pair of Z2 points
merge to one point, and the gap opens for λj j > 1 (some details
will be addressed later). It is noted that although the Hamiltonian
in Eq. (1) has both P̂ ¼ σ3̂i and T̂ ¼ K̂̂i symmetries, with î being
the inversion of the wave vector k, the topological stability of
these band-crossing points merely requires the joint PT symmetry
according to the PT invariant topological band theory, namely, the
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T/P-symmetry is allowed to be broken individually while the PT
topological protection still remains.
Although the experimental demonstration of a topological

gapless band with PT symmetry would significantly deepen our
understanding of topological quantum matter, a PT-symmetry-
protected topological gapless band has yet to be observed in real
materials. Artificial superconducting quantum circuits possessing
high controllability11–15 can provide an ideal and powerful tool
for quantum simulation and the study of novel quantum
systems,16–20 including topological ones.21,22 In this paper, we
have experimentally realized novel PT-symmetry-protected topo-
logical semimetal-bands that represent a gapless spectrum on a
square-lattice, via an analogy between momentum space and a
controllable parameter space in superconducting quantum
circuits. By measuring the whole energy spectrum of our system,
we have clearly imaged an exotic tunable gapless band structure
typical of topological semimetals, shown as nontrivial Z2-type
Dirac points in momentum space. The two new distinct quantum
phase transitions from a topological semimetal to two different
insulators can be manipulated by continuously tuning the
different parameters in the simulated effective Hamiltonian,
particularly one of which exhibits the Z2 topology in the PT
semimetal via merging a pair of nontrivial Z2 Dirac points.
Furthermore, to demonstrate unambiguously the topological
robustness of PT symmetry, a perturbation that breaks only the
individual T and P symmetries is intentionally added, with the joint
PT symmetry being still preserved. It is verified by experimental
data that the Dirac points of the topological semimetal-bands are
still present under such perturbations, though the point positions
and the band pattern are changed drastically. However, when
another kind of perturbation is added to break the PT symmetry in
our experiment, the energy gap is fully opened and the Dirac
points disappear completely, showing the essential role of PT
symmetry underlying the topological robustness. All of these
illustrate convincingly the topological protection of PT semimetals.
Notably, the present work is the first experimental realization and
manipulation of fundamental space–time inversion symmetric
topological semimetal-bands (without individual T and P symme-
tries) in nature, which opens a window for simulating and
manipulating topological quantum matter.

RESULTS
The superconducting quantum circuits used in our experiment
consist of a superconducting transmon qubit embedded in a three
dimensional aluminum cavity.23–30 The transmon qubit, which is
composed of a single Josephson junction and two pads (250 μm×
500 μm), is patterned using standard e-beam lithography,
followed by double-angle evaporation of aluminum on a 500 μm
thick silicon substrate. The thicknesses of the Al film are 30 and 80
nm, respectively. The chip is diced into 3 mm× 6.8 mm size to fit
into the 3D rectangular aluminum cavity with the resonance
frequency of TE101 mode 9.053 GHz. The whole sample package is
cooled in a dilution refrigerator to a base temperature 30 mK. The
dynamics of the transmon is well described by the theory of circuit
QED, which has been developed for discussing the combined
system of artificial atoms and microwave fields.23,26,31 We
designed the energy level of the transmon qubit to let the
system work in the dispersive regime. The quantum states of the
transmon qubit can be controlled by microwaves. Inphase
quadrature (IQ) mixers combined with 1 GHz arbitrary wave
generator (AWG) are used to adjust the amplitude, frequency, and
phase of microwave pulses. To read out qubit states, we use
ordinary microwave heterodyne setup. The output microwave is
pre-amplified by HEMT at 4 K stage in the dilution refrigerator and
further amplified by two low noise amplifiers at room tempera-
ture. The microwave is then heterodyned into 50 MHz and
collected by ADCs. The measurement is performed with so called

“high power readout” scheme.32 When we send in a strong
microwave on-resonance with the cavity, the transmitted ampli-
tude of the microwave will reflect the state of the transmon due to
the non-linearity of the cavity QED system (please see the
supplementary for the detail of experimental setup and sample
calibration).
According to the circuit QED theory, the coupled transmon

qubit and cavity exhibit anharmonic multiple energy levels. In our
experiments, we use the lowest three energy levels, as shown in
Fig. 1a, namely, 0j i, 1j i, and 2j i. The two states 2j i and 1j i behave
as an artificial spin-1/2 particle, whose three components may be
denoted by the three Pauli matrices σ1,2,3 which can couple with
the microwave fields. 0j i is chosen as an ancillary level to probe
the energy spectrum of the simulated system. First of all, we
calibrated the transmon carefully. The transition frequencies
between different energy levels are ω10/2π = 7.17155 GHz, ω21/
2π = 6.8310 GHz, respectively, which are independently deter-
mined by saturation spectroscopy. The energy relaxation times of
the system are T01

1 ~ 15 μs and T12
1 ~ 12 μs. The dephasing times

are T�01
2 ~ 4.3 μs and T�12

2 ~ 3.5 μs. When we apply microwave drive

Fig. 1 Experimental scheme for the realization of the lattice
Hamiltonian. a States 2j i and 1j i of a transmon are used as the
energy levels of an artificial spin-1/2 particle, whose three
components may be denoted by the three Pauli matrices σ̂1,2,3. 0j i
is chosen as an ancillary level to probe the eigenvalues of a
Hamiltonian. Microwaves with various frequencies, phases, and
amplitudes are applied for the construction of a semimetal
Hamiltonian and circuit QED readout, respectively. The detail of
the qubit manipulation can be found in the supplementary. b The
constructed Hamiltonian is implemented by modulating the
microwave amplitude, frequency, and phase, mapping to the
momentum space of a square lattice
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along x, y, and z directions, the effective Hamiltonian of the qubit
in the rotating frame (Fig. 1b) may be written as (ħ = 1 for brevity)

bH ¼
X3
i¼1

Ωiσi=2; (2)

where Ω1 (Ω2) corresponds to the frequency of Rabi oscillations
along X (Y) axis on the Bloch sphere, which is continuously
adjustable by changing the amplitude and phase of microwave
applied to the system. Ω3 =ω21 −ω, is determined by the detuning
between the system energy level spacing ω21 and microwave
frequency ω. By carefully designing the waveform of AWG, we can
control the frequency, amplitude, and phase of microwave.
In our experiment, we first calibrated the parameters Ω1, Ω2,

and Ω3 using Rabi oscillations and Ramsey fringes. Then we design
the microwave amplitude, frequency and phase to let Ω1 = 0,
Ω2(kx) =Ω sin kx, Ω3(ky) = λΩ +Ω cos ky, with Ω = 10MHz being
chosen as the energy unit.
Exploiting the analogy between the above parameter space of

our system and the k-space of a lattice Hamiltonian system, we
now have Eq. (1) exactly. It is worth to mention that parameter λ
plays a crucial role in the realization of the PT invariant topological
phase transition. To examine the band structure, we first set λ = 0
and measured the entire energy spectrum of the system over the
first BZ. The energy spectrum basically represents the eigenenergy
as a function of (kx, ky). Briefly, we first choose a set of (kx, ky) ∈
[− π, π) × [−π, π) then apply the corresponding microwave drive to
states 1j i and 2j i. The system will form empty dressed states with
eigenenergies encoding the eigenvalues of the Hamiltonian in Eq.
(1). Then we turn on the probe microwave, and pump the system
from 0j i to the dressed state. We measured the resonant peak of
the microwave absorption. By gradually changing (kx, ky), we
obtain the frequency of the resonant peak as a function of kx and
ky (the detail of the spectroscopy measurement and data analysis
can be found in the supplementary), from which we can extract
the energy spectrum of the first BZ, as shown in Fig. 2. A key
feature of the PT invariant topological semimetal, which is the
existence of nontrivial Z2-type Dirac points yielded by crossing
bands, is clearly seen in Fig. 2b. These are the directly imaged
Dirac cones in the experiments, indicating that we have
successfully realized the topological semimetal bands that
preserves the PT symmetry. In addition, the positions of the Dirac
points (Fig. 2a) locate at (π, ±π/2) and (0, ±π/2), agreeing well with
the theoretical calculation of Eq. (1) with λ = 0.
Remarkably, the present fully tunable experimental setup can

also be exploited to examine the PT-protected topological stability

of the Z2 nontrivial band crossing points from the following
aspects. First we check the topological stability of these band
crossing points of nontrivial Z2 charges. From the topological
band theory, each of them should be stably present under
whatever perturbations that preserve the joint PT symmetry and
do not mix one point with another, while the individual P and T
symmetries may be violated at the same time.9 In this experiment,
we can easily realize this by introducing the perturbation H′

1 ¼
ησ2 (with η = 1/2 Ω being a constant) to the system. Now the
parameter of σ2 reads Ω2(kx) =Ω(sin kx + 1/2), which breaks both P
and T simply because their corresponding symmetry operatorsbP ¼ σ3̂i and bT ¼ K̂̂i do not individually commutate with the
system Hamiltonian, but preserves the joint PT symmetry as its
symmetry operator bA ¼ σ3K̂ still commutates with the Hamilto-
nian. We measure the spectrum for the ky = 0 plane, shown in
Fig. 3a. It is observed that although the band structure is distorted
dramatically, and the positions as well as neighborhood geome-
tries of band-crossing points are changed significantly, these
band-crossing points are persistently present in the first BZ
without opening any gap, being perfectly consistent with the
aforementioned facts of the topological band theory. On the other
hand, however, when another kind of perturbation H′2(k) = ɛσ1
(e.g., a constant ϵ � 0:5Ω) is introduced to the original Hamilto-
nian, Ĥ ¼ Ω=2 σ1 þ Ω sin kxσ2 þ ðλΩþ Ω cos kyÞσ3, it is clear that
the PT symmetry is violated, since such perturbations break P but
preserves T. Accordingly the topological protection, which
requires the PT symmetry, is discharged.9 In agreement with the
theoretical prediction, a trivial insulating gap is observed to be
fully opened in the spectrum, as shown in Fig. 3b. In order to
check that the insulating phase is trivial, one may take a limit of
the term Ω/2σ1 to infinity, under which the system stays in the
same phase since there is no gap closing occurred. However, the
infinite-large limit proportional to σ1 obviously corresponds to a
trivial insulator.
We now turn to examine the Z2 nature of the topological

charge, utilizing the fully tunable advantage of our setup. The
spectrum at the kx = 0 plane clearly reflects the transition. The
spectroscopic data are shown in Fig. 4a for representative values
of λ at each stage of the whole process of merging and
annihilation of the Z2 band-crossing points. According to general
principles of topological band theory, merging two νZ2 ¼ 1 band-
crossing points nucleates a band crossing point of trivial

0 1

(0,-0.5)

a b-0.7 0.7

Fig. 2 Measured energy spectrum of a typical space–time inversion
invariant topological semimetal. a Three-dimensional plot of the
band structure of spectroscopy measurement. By tuning the driving
amplitude, frequency, and phase gradually, we image the band
structure of the system in the momentum space point by point. b
Magnitude of energy gap obtained from direct measurements of
the energy spectrum of the system as function of kx and ky in the
first BZ. Four nontrivial Z2-type Dirac points located inside the bright
regions can be observed at (0, ±π/2), (π, ±π/2), in a full agreement
with the theoretical prediction

Gap
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Fig. 3 Symmetry-related topological features of the Dirac points for
two different but representative kinds of perturbations. a When
H′
1 ¼ ησ2 is added with η= 0.5 in unit of Ω, which breaks both T and

P but preserves the PT symmetry, Dirac-like points still exist, though
the gapless point positions are shifted (marked by the green square)
and the band pattern is distorted drastically, showing the robust-
ness of the topological nature protected by the PT symmetry. Top
and bottom panels correspond respectively to the cases of η= 0 and
η= 0.5 on the plane of ky= π/2. The bright yellow and dashed green
lines denote the experimental data and theoretical calculations from
Eq. (1) with H′

1 being added, respectively. b Whenever the PT
symmetry is broken by adding the term H′

2 ¼ εσ1 with a constant
ε (=0.5Ω), a gap is fully opened. Here λ= 0 for both a and b
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topological charge νZ2 ¼ 2 � 0mod 2ð Þ, which can be gapped out
even though the PT symmetry is still preserved.9 As shown in
Fig. 4b, we continuously increase the parameter λ from 0 to 2.
Starting from λ = 0, where two band-crossing points are well
separated at ky = π/2 and −π/2, respectively, in the one-
dimensional subsystem with kx = 0, the two band-crossing points
are gradually moving closer and closer to each other (with regard
to their distances to the BZ boundaries) when λ is increased
smoothly. Then they are merged to be a new band-crossing point
at the edge of the first BZ for λ = 1, which should be a topologically
trivial point according to the topological band theory as
mentioned above. Indeed, when λ is further increased to be
larger than 1, it is observed that the band crossing point of a trivial
topological charge is gapped out, leading to a topologically trivial
insulator that has even the PT symmetry, which verifies the
aforementioned theoretical prediction. Similarly, the topological
triviality follows from the same argument as that in Fig. 3b, but for
the infinite limit of λσ3.

DISCUSSION
As shown clearly in ref. 9,the PT-symmetry-protected topological
gapless bands belong to a new class of topological ones that are
essentially different from those having the time-reversal and/or
charge-conjugate symmetries, and may be even more funda-
mental and interesting.4 Experimental demonstration of these PT
symmetry protected topological properties will significantly
deepen our understanding of topological quantum matter.
However, there are several big challenges that hinder the
realization and investigation of the topological properties of this
kind of Hamiltonian in real materials or manybody systems. The
first is how to synthesize the materials with a designated
Hamiltonian. Secondly, even if one is fortunate enough to have
such kind of real materials, it seems extremely hard to tune the
relevant parameters continuously for studying fruitful topological
properties including various topological quantum phase transi-
tions. Moreover, it seems quite difficult in experiments to directly
image the whole momentum-dependent electronic energy
spectrum of a bulk condensed matter system, noting that only a
part of the electronic spectra (or information of Fermi surfaces/
points) may be inferred from the angle-resolved photoemission
spectroscopy data (or quantum oscillation measurements). There-
fore, it is important to use artificial quantum systems, like

superconducting quantum circuits, to simulate H(k) faithfully and
to explore the topological properties of the system. In our
experiments, we have realized the Hamiltonian in Eq. (1) in a
parameter (analogous to the momentum) space via implementing
a fully-controllable quantum superconducting circuit, such that
the band structure can be directly measured over the whole first
Brillouin zone (BZ) of the square lattice, enabling us to
demonstrate the unique topological nature of the corresponding
semimetal-bands and to visualize some crucial properties. Our
experiments demonstrate the realization and manipulation of
fundamental space–time inversion invariant topological semime-
tal bands possessing neither T nor P symmetry. The non-trivial
bulk topological band structures of PT symmetry have directly
been imaged with superconducting quantum circuits. Moreover,
two exotic topological quantum phase transitions have been
observed for the first time. The present work is expected to
stimulate experimental and theoretical interest on various PT
symmetric topological metals/semimetals, paving the way for
quantum-simulating novel topological quantum materials.

METHODS
The key results of our paper involve simulating the Hamiltonian and
imaging the energy bands of PT-symmetry-protected topological semi-
metal system. Generally, metals are many-particle systems. However,
physicists would like to ignore irrelevant issues and derive a simplified
model Hamiltonian to describe the system. The lattice structure can be
pre-diagonalized in momentum space and the dispersion E(k) can be
obtained. Then starting from the model Hamiltonian and dispersion,
researchers have explored many properties, including topological ones.
Therefore, if we can simulate the Hamiltonian and obtain its dispersion, we
capture the essential physics of the system. For a realistic topological
semimetal system, described by the Hamiltonian in Eq. (1), the momenta kx
and ky commute with each other, and in particular commute with the
system Hamiltonian. Therefore, kx and ky behave purely as the numbers,
rather than the usual momentum operators in a general kind of quantum
systems. In this sense, we are able to experimentally simulate kx and ky for
this kind of system using two independent controllable parameters, just
treating them as numbers in as that solving the Hamiltonian theoretically.
Notably, when these numbers combine with spin-like operators as in the
Hamiltonian in Eq. (1), their corresponding products are no longer
numbers, exhibiting quantum characteristics. This is a key concept in the
present work. Although we here simulated merely the simplest
Hamiltonian in Eq. (1) of PT invariant topological semimetal bands, the
concept itself is generally valid for other quantum systems including ones
with complicated interacting and can be applied to many other

Fig. 4 Quantum phase transitions from a topological gapless semimetal to a gapped insulator as changing parameter λ. a Spectroscopy at
kx≈ 0 for various λ. From right to left λ are 0, 0.5, 1 and 1.5. It is seen that when λ is increased from 0 to 1, then larger than 1, the number of
Dirac-like points decreases from 4, to 2, then to 0, where the gap gradually is opened, demonstrating that a topological PT invariant semimetal
phase transits to a normal insulator phase. b Magnitude of minimum energy gap Eg in the first Brillouin zone as a function of λ, as predicted
theoretically from Eq. (1)
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many-body systems. In our experiments, the two precisely controllable
parameters are not real momenta, but they can truthfully simulate the
considered quantum systems without the loss of any real physics. Using a
superconducting qubit subjected to an effective magnetic field, we
obtained the exact form of the Hamiltonian in Eq. (1). Then the remaining
task is to measure the dispersion of the system, which is actually the
eigenenergies of the Hamiltonian as a function of kx and ky. These can be
determined from the spectroscopy. The spectroscopic measurement of an
artificial spin-1/2 particle driven by various microwave fields is similar to
conventional spectroscopy experiments. The artificial spin-1/2 particle in
our experiments is a 3D superconducting transmon. The transmon coupled
with cavity usually exhibits anharmonic multiple energy levels. We use the
lowest three energy levels 0j i, 1j i and 2j i to do the spectroscopy. 1j i and
2j i are chosen to form the artificial spin-1/2 particle. Then we drive it with
continuous microwaves (in practice we use a long microwave pulse
instead) to simulate the Hamiltonian in Eq. (1). The interaction between
qubit and applied microwave transforms 1j i and 2j i into microwave
dressed states which are stationary empty states. Moreover, the
eigenenergy of the Hamiltonian in Eq. (1) is encoded in the dressed
states. Then we turn on the probe microwave to pump the system to the
empty dressed states. From the frequency of the resonant peaks we can
extract the eigenenergies of the driven spin-1/2 particle. The detail of the
measurement setup, system modeling and procedure of extracting spectra
of the Hamiltonian are given in the Supplementary Materials. Note that
there is difference between our spectroscopy and the conventional
spectroscopy of superconducting qubits. For conventional spectroscopy,
we only use one continuous microwave to pump the system to the excited
states and no probe microwave is applied. When the microwave frequency
resonates with the eigenstates, the excited state will be populated as long
as the microwave is turned on. Therefore, the resonant peaks reflect the
bare eigenenergies of the system.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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