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Abstract 17 

Drought is a complex natural hazard that may have destructive damages on societal 18 

properties and even lives. Generally, socioeconomic drought occurs when water resources 19 

systems cannot meet water demand, mainly due to a weather-related shortfall in water 20 

supply. This study aims to propose a new method, a heuristic method, and a new index, the 21 

socioeconomic drought index (SEDI), for identifying and evaluating socioeconomic 22 

drought events on different severity levels (i.e., slight, moderate, severe, and extreme) in 23 

the context of climate change. First, the minimum in-stream water requirement (MWR) is 24 

determined through synthetically evaluating the requirements of water quality, ecology, 25 

navigation, and water supply. Second, according to the monthly water deficit calculated as 26 

the monthly streamflow data minus the MWR, the drought month can be identified. Third, 27 

according to the cumulative water deficit calculated from the monthly water deficit, 28 

drought duration (i.e., the number of continuous drought months) and water shortage (i.e., 29 

the largest cumulative water deficit during the drought period) can be detected. Fourth, the 30 

SEDI value of each socioeconomic drought event can be calculated through integrating the 31 

impacts of water shortage and drought duration. To evaluate the applicability of the new 32 

method and new index, this study examines the drought events in the East River basin in 33 

South China, and the impact of a multi-year reservoir (i.e., the Xinfengjiang Reservoir) in 34 

this basin on drought analysis is also investigated. The historical and future streamflow of 35 

this basin is simulated using a hydrologic model, Variable Infiltration Capacity (VIC) 36 

model. For historical and future drought analysis, the proposed new method and index are 37 

feasible to identify socioeconomic drought events. The results show that a number of 38 
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socioeconomic drought events (including some extreme ones) may occur in future, and the 39 

appropriate reservoir operation can significantly ease such situation. 40 

Keywords A heuristic method; Socioeconomic drought index (SEDI); Climate change; 41 

VIC model; Reservoir operation; East River basin 42 

1. Introduction 43 

Drought is regarded as a complex natural hazard that occurs in large areas over long time 44 

periods and may have highly destructive effects on a number of aspects, such as water 45 

supply, agricultural production, and ecological environment (e.g., Gan et al., 2016; Yoo et 46 

al., 2016; Cammalleri et al., 2017). Generally, drought can be classified into four 47 

categories, including meteorological drought, agricultural drought, hydrological drought, 48 

and socioeconomic drought (Wilhite and Glantz, 1985; American Meteorological Society, 49 

2013). Meteorological drought is often defined as a lack of precipitation over a region for a 50 

period of time; agricultural drought links various characteristics (e.g., soil moisture) of 51 

meteorological drought to agricultural impacts; hydrological drought is concerned with the 52 

effects of dry periods on surface or subsurface hydrology and water resources; 53 

socioeconomic drought is usually associated with supply of and demand for an economic 54 

good (water), which can also incorporate features of meteorological, agricultural, and 55 

hydrological droughts (Kifer and Steward, 1938; Wilhite and Glantz, 1985; Mishra and 56 

Singh, 2010). The former three have attracted the attentions of many researchers (e.g., 57 

Guttman, 1998; Heim, 2002; Narasimhan and Srinivasan, 2005; Shukla and Wood, 2008; 58 

Mishra and Singh, 2010; Morán-Tejeda et al., 2013; Moorhead et al., 2015; Serinaldi, 2016; 59 

Lin et al., 2017; Wu et al., 2017); however, to the best of our knowledge, it is only until 60 
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recently that there have been a few studies focusing on socioeconomic drought (e.g., 61 

Eklund and Seaquist, 2015; Mehran et al., 2015; Huang et al., 2016), which occurs when 62 

water resources systems cannot meet water demand due to a weather-related shortfall in 63 

water supply (American Meteorological Society, 2013). A drought can be quantified at 64 

different levels of water deficiency, but it is difficult to identify a drought event through 65 

comprehensively evaluating both water shortage and drought duration. Therefore, it is still 66 

a challenging task to develop such a new method and a new index for rationally identifying 67 

drought events. 68 

In the past several decades, numerous drought indices have been developed based on 69 

different parameters (e.g., Heim, 2002; Mishra and Singh, 2010; Moorhead et al., 2015; 70 

Etienne et al., 2016; Ndehedehe et al., 2016). For example, Palmer (1965) proposed the 71 

Palmer Drought Severity Index (PDSI) based on precipitation, reference evapotranspiration 72 

and soil characteristics, which could be used for evaluating the meteorological anomaly at 73 

a variety of time scales; Karl (1986) further developed the Palmer Hydrological Drought 74 

Index (PHDI) to better treat the beginning and ending times of droughts. The Standardized 75 

Precipitation Index (SPI), originated by Mckee et al. (1993) based on only precipitation, is 76 

also a popular tool to investigate drought occurrence. Sivakumar et al. (2011) developed 77 

the Relative Water Deficit (RWD) using actual and potential evapotranspiration as inputs. 78 

Moreover, drought indices, such as Crop Moisture Index (CMI) (Palmer, 1968), Surface 79 

Water Supply Index (SWSI) (Shafer and Dezman, 1982), Vegetation Condition Index 80 

(VCI) (Kogan, 1995), and Standardized Precipitation-Evapotranspiration Index (SPEI) 81 

(Vicente-Serrano et al., 2010), are all widely-used. However, all the above indices are used 82 

for assessing the effects of meteorological (e.g., PDSI, SPI and SPEI), hydrological (e.g., 83 
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PHDI and SWSI) and agricultural (e.g., CMI, RWD and VCI) droughts. Moreover, these 84 

indices may have their own advantages and disadvantages. For example, SPI can be 85 

calculated for a variety of time scales, but the length of precipitation record and nature of 86 

probability distribution play a vital role in calculating SPI. PDSI is the first comprehensive 87 

index to assess the total moisture status of a region, but some rules (e.g., assuming that all 88 

precipitation is rain) to establish PDSI are arbitrary and PDSI is sensitive to precipitation 89 

and temperature (Mishra and Singh, 2010). SWSI is regarded to be complementary to 90 

PDSI, which has the synonymous scale with that used for PDSI and can monitor the 91 

impacts of hydrological droughts on urban and industrial water supplies, irrigation and 92 

hydroelectric power generation; however, the weights of the factors may vary with spatial 93 

scales and temporal scales due to differences in hydroclimatic variability (Wilhite and 94 

Glantz, 1985; Heim, 2002; Mishra and Singh, 2010). CMI is used as an indicator of the 95 

availability of moisture to meet short-term crop needs, but there is unnatural response to 96 

changes in temperature because of the dependence of the abnormal evapotranspiration term 97 

on the magnitude of potential evapotranspiration (Juhasz and Kornfield, 1978; Wilhite and 98 

Glantz, 1985; Mishra and Singh, 2010). 99 

Due to continuous population growth, water demand has increased multifold and will 100 

keep increasing in future, probably causing more socioeconomic drought events around the 101 

world (Chen et al., 2016; Smirnov et al., 2016; Trinh et al., 2017). For this category of 102 

drought which is the least investigated, Mehran et al. (2015) proposed the Multivariate 103 

Standardized Reliability and Resilience Index (MSRRI) for assessing water stress due to 104 

both climatic conditions and local reservoir levels, and Huang et al. (2016) applied this 105 

index to examine the evolution characteristics of socioeconomic droughts in the Heihe 106 
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River basin in China. However, this index only focuses on water shortage but does not 107 

include drought duration, which may also have crucial influences on drought analysis. 108 

Thus, it is vital to develop a new index for identifying socioeconomic drought events 109 

through integrating both water shortage and drought duration, especially in the context of 110 

climate change. 111 

Climate change has been recognized as one of the major factors that have great impacts 112 

on drought (e.g., Hanson and Weltzin, 2000; Aherne et al., 2006; Hirabayashi et al., 2008; 113 

Ahn et al., 2016; Gizaw and Gan, 2017; Linares et al., 2017; Tietjen et al., 2017). Even a 114 

small change in climate may cause a dramatic change in hydrological cycle, leading to 115 

more frequent hydrological extremes (e.g., Pilling and Jones, 2002; Chen et al., 2011; 116 

Vicuna et al., 2013; Gu et al., 2015; Shi and Wang, 2015; Hoang et al., 2016; Shi et al., 117 

2016a, 2017a). Globally, IPCC (Intergovernmental Panel on Climate Change) (2013) 118 

reported that the averaged land and ocean surface temperature had a warming of 0.85 °C 119 

over the period of 1880-2012 and a fast warming trend of 0.12 °C/decade over the period 120 

of 1951-2012. Regionally, a remarkable warming trend has been found in South China 121 

(e.g., Chen et al., 2011; Chan et al., 2012; Lau and Ng, 2013). Fischer et al. (2013) 122 

projected climate extremes in the Pearl River basin for the period of 2011-2050 using the 123 

daily output from the regional climate model COSMO-CLM, and the results indicated that 124 

warmer and drier conditions could be expected in the western and eastern parts, especially 125 

in summer and autumn.  126 

In recent years, we have conducted several studies on climate change over the Pearl 127 

River basin (e.g., Niu, 2013; Niu and Chen, 2014, 2016; Niu et al., 2014, 2015, 2017). Niu 128 

and Chen (2014) investigated the terrestrial hydrological responses to precipitation 129 
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variability over the West River basin with emphasis on an extreme drought event. Niu et al. 130 

(2014) revealed that the teleconnections between two climatic patterns (El Niño-Southern 131 

Oscillation, ENSO, and Indian Ocean Dipole, IOD) and hydrological variability, served as 132 

a reference for inferences on the occurrence of extreme hydrological events over the Pearl 133 

River basin. Niu et al. (2015) examined the spatio-temporal and evolution features of 134 

drought events over the West River basin, and showed the differences of meteorological, 135 

hydrological and agricultural droughts.  136 

Based on the above previous studies, this study aims to develop a new method, a 137 

heuristic method, and a new index, socioeconomic drought index (SEDI), for identifying 138 

socioeconomic drought events on different severity levels (i.e., slight, moderate, severe and 139 

extreme) through comprehensively evaluating the impacts of both water shortage and 140 

drought duration under climate change. Considering the gap between water supply and 141 

water demand, streamflow is adopted as the principal input in the new method and index. 142 

Historical drought analysis is conducted using the observed data, which can validate the 143 

applicability of the new method and index, and future drought analysis is conducted using 144 

different datasets of climate change scenarios, which can reflect a variety of drought 145 

conditions in future. Moreover, the impact of dam (and related reservoir) construction on 146 

drought analysis will be discussed in this study. Overall, the proposed method and index 147 

(SEDI) can provide a better understanding of socioeconomic drought under climate change, 148 

which will be valuable for decision-makers to synthetically evaluate the impacts of climate 149 

change and hydraulic structures on water resources management. 150 

2. Methodology 151 
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2.1. The heuristic method and the SEDI 152 

For a designated river basin, the heuristic method and the SEDI are developed as follows 153 

(see Fig. 1). First, the minimum in-stream water requirement (noted as MWR hereafter) 154 

(see subsection 2.2 for details) of the river basin, which is enough to sustain and support 155 

the different functions in this river basin, is adopted as the threshold value through 156 

comprehensively considering a number of factors such as water quality, ecology, 157 

navigation, water supply and so on. Second, the monthly streamflow data, either the 158 

observed data recorded at the hydrological stations or the simulated data derived from the 159 

Variable Infiltration Capacity (noted as VIC hereafter) model (Liang et al., 1994) (see 160 

subsection 2.3 for details), are used to identify drought month. Then, the monthly 161 

difference, which is the monthly streamflow data minus the MWR, is calculated. In this 162 

study, if the monthly difference is smaller than 0 (i.e., water deficit), the corresponding 163 

month will be regarded as a drought month. Third, according to the cumulative water 164 

deficit derived from the monthly water deficit, drought duration (i.e., the number of 165 

continuous drought months) and water shortage (i.e., the largest cumulative water deficit 166 

during the drought period) can be identified. It is worth noting that a socioeconomic 167 

drought event will continue until the cumulative water deficit turns into a non-negative 168 

value. Finally, for each identified socioeconomic drought event, the SEDI value can be 169 

calculated through integrating the impacts of water shortage and drought duration, which 170 

are classified into four different levels (see Table 1). It is worth noting that the indicators 171 

related to experiment procedures (e.g., the MWR value) may vary with land use and land 172 

cover dynamic, catchment geomorphology and scale, and even some climate-related events 173 

occurred in a particular region. Therefore, the proposed method and index are region-174 
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dependent, which indicates that the values of the indicators should be recalculated for 175 

different regions. 176 

In this study, the four drought duration levels (DDLs) are defined as follows. The DDL 177 

value will be 1, 2, or 3 if the identified drought event is at the quarterly (i.e., 1-3 months), 178 

semi-annual (i.e., 4-6 months) or annual (i.e., 7-12 months) scale, respectively, and the 179 

DDL value will be 4 if the identified drought event lasts for more than a year (Table 1). In 180 

addition, the four water shortage levels (WSLs) are defined by a typical reservoir storage 181 

percentage (noted as RSP hereafter). In this study, the typical reservoir storage (noted as 182 

TRS hereafter) refers to the total manageable storage capacity of the reservoirs in a study 183 

area, and then the RSP can be calculated as the absolute value of the largest cumulative 184 

water deficit (noted as LCWD) divided by the TRS (Denver Water, 2002). 185 

 
 Abs LCWD

RSP
TRS

  (1) 186 

where Abs( ) is the function of taking the absolute value. The WSL value will be 1, 2, or 3 187 

if the RSP value is less than 40%, 60% or 80%, respectively, and if the RSP value is larger 188 

than 80%, the WSL value will be 4 (Table 1). 189 

Therefore, for each identified socioeconomic drought event, the SEDI is defined in 190 

terms of the DDL and WSL values (see the equation below).  191 

  max ,SEDI DDL WSL  (2) 192 

For example, if the WSL and DDL values are 2 and 3, the SEDI value will be 3, which 193 

means it is a severe socioeconomic drought event (Table 1). Fig. 2 shows the ranges of 194 

different SEDI values classified by different levels of water shortage and drought duration. 195 
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Consequently, historical and future drought analyses can be conducted based on the 196 

proposed heuristic method and the SEDI. 197 

Furthermore, to discuss the impact of reservoir operation on drought analysis, the 198 

following method is adopted. For a designated reservoir, there should be an upper bound of 199 

stored water (e.g., the effective storage of the reservoir) during the flood season limited by 200 

the requirement of flood control, which is also the available water volume remaining in the 201 

reservoir at the end of the flood season. Then, using the previously obtained monthly 202 

differences, the available water volume in the reservoir at the end of each month can be 203 

calculated by subtracting the monthly difference of that month from the available water 204 

volume in the reservoir at the end of the last month. In this study, if the available water 205 

volume turns into a negative value, it indicates that there will not be sufficient water even 206 

if the usable capacity (e.g., the effective storage) of the reservoir is run out. 207 

2.2. The MWR value 208 

The MWR is a critical variable in determining the drought occurrence and duration, and its 209 

value can be calculated as follows (Wu and Chen, 2013): 210 

  1 2 3 4max , , , sMWR Q Q Q Q Q   (3) 211 

where 1Q  is the minimum streamflow required for maintaining water quality standard, 2Q  212 

is the minimum ecological streamflow, 3Q  is the minimum streamflow for navigation, and 213 

4Q  is the minimum streamflow for arresting seawater intrusion into the estuary. sQ  is the 214 

required pumping rate for the water supply to meet the regional water demand. In this 215 

study, sQ  is estimated using a five-stage water demand projection model proposed by 216 

Chen et al. (2015), which can project the future water demand in a designated region under 217 
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the high, medium, and low projection scenarios, respectively. This five-stage model uses 218 

the per capita gross domestic product based on purchasing power parity (noted as PPP 219 

GDP hereafter) and population as the main indicators to project future water demand. The 220 

PPP GDP serves as the indicator to identify the historic, current, and future water demand 221 

stages, which is the guide for water demand patterns, and population serves as the most 222 

important influencing factor for total water demand. Then, the regression equations to 223 

estimate the future water demand can be obtained (Chen et al., 2015). It is worth noting 224 

that the reasonable threshold value for the utilization ratio of water resources of a river is 225 

30%, and the limiting threshold value is 40% (UN, 1997; Zuo, 2011). In other words, if 226 

more than 40% of river discharge is utilized, a critical situation regarding water scarcity 227 

exists whilst making use of less than 30% of river discharge can be regarded as sustainable 228 

and acceptable. As a result, the value of sQ  should not be larger than 30% of river 229 

discharge. 230 

2.3. VIC model 231 

One of representative land surface hydrological models, the VIC model (Liang et al., 1994), 232 

is a semi-distributed model, which maintains both surface energy and water balances over 233 

a grid cell, with its resolutions ranging from a fraction of a degree to several degrees 234 

latitude by longitude. The application of the sub-gird parameterization of the spatial 235 

variability of infiltration capacity in the VIC model makes it possible to represent the land 236 

surface hydrological processes at higher horizontal resolutions. 237 

The VIC model has been applied to several large river basins (e.g., Nijssen et al., 2001). 238 

The high temporal resolution model forcing datasets and the global soil and vegetation 239 

datasets facilitate simulations and assessments of the global and regional land surface 240 
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hydrological processes by the VIC model. The characteristics of global surface soil 241 

moisture fluxes at daily scale for the period of 1979-1993 were explored by the VIC model 242 

(Nijssen et al., 2001). The VIC model was applied to the East River basin for exploring the 243 

land surface hydrological features (Chen and Wu, 2008). Niu and Chen (2010) validated 244 

the streamflow simulations in the Pearl River basin with the streamflow observations from 245 

six hydrologic stations. Furthermore, Niu et al. (2014) further validated the streamflow 246 

simulations in the Pearl River basin with the streamflow observations from four more 247 

hydrologic stations. Overall, the VIC simulation of streamflow over the Pearl River basin 248 

is comparable to the observations. As a result, the parameters in the VIC model and the 249 

related routing model, which can be acquired from the previous studies (Chen and Wu, 250 

2008; Niu and Chen, 2010; Niu et al., 2014), are directly used to simulate the future 251 

streamflow using climate projection scenarios which are downscaled from the outputs of 252 

General Circulation Models (GCMs) in this study. It is worth noting that there is no need 253 

to calibrate the VIC model for simulations at the monthly scale, with the acceptable 254 

simulation accuracy in the study basin. For running the VIC model, the soil and vegetation 255 

parameters are extracted from two global datasets (Nijssen et al., 2001). 256 

2.4. Trend test method 257 

In order to investigate the trends of the simulated future streamflow using different climate 258 

change scenarios, the Mann-Kendall trend test method is adopted. A number of previous 259 

studies have shown the robustness of this method as well as its wide application in the 260 

fields such as meteorology, hydrology, and sedimentology (e.g., Croitoru et al., 2012; 261 

Manzanas et al., 2014; Shi and Wang, 2015; Shi et al., 2016b, 2017b). 262 
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The Mann-Kendall trend test is a non-parametric rank-based statistical test that was 263 

first proposed by Mann (1945) and further developed by Kendall (1975). Based on the 264 

Mann-Kendall trend test method, the slope of the series can be computed using the Thiel-265 

Sen method (Thiel, 1950; Sen, 1968). 266 

    ,
j iX X

Median for all i j
j i


 

  
 

 (4) 267 

where X j and X i are the observed values in the j-th and i-th year (j > i), respectively. 268 

Moreover, prewhitening (von Storch and Navarra, 1995) is required to eliminate the 269 

influence of autocorrelation because such series is not applicable for the Mann-Kendall 270 

trend test method. 271 

 1i i iXp X rX   (5) 272 

where Xpi is the observed value in the i-th year after prewhitening and r is the first-order 273 

autocorrelation coefficient of the series. 274 

3. Study area and research data 275 

3.1. Study area 276 

The study area is the East River, a tributary of the Pearl River, which is the most important 277 

source of fresh water for Hong Kong (Niu and Chen, 2010). Therefore, to explore the 278 

status of water resources in this river basin is essential for evaluating water security of 279 

Hong Kong. The East River originates in the Xunwu county of Jiangxi Province, China, 280 

and its drainage area is 27040 km
2
, accounting for 5.96% of the total area of the Pearl 281 

River basin (PRWRC, 2005). The main stream of the East River flows from northeast to 282 
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southwest (see Fig. 3), and the long-term annual average discharge in the East River is 283 

23.8 km
3
 (~ 755 m

3
/s). The upper reach, named the Xunwushui River, flows towards the 284 

southwest and joins the Anyuanshui River in the Longchuan County, and from thereon it is 285 

named the East River. It is worth noting that the river channel in the mountainous upstream 286 

area of the East River is shallow and narrow, while the river channels in the middle and 287 

downstream areas can be used for navigation. Moreover, the Xinfengjiang (noted as XFJ 288 

hereafter) Reservoir, a multi-year reservoir located in the East River basin, was completed 289 

in 1962. The total reservoir storage capacity is 13.9 km
3
, among which 3.1 km

3
 is the flood 290 

control storage, 6.5 km
3
 is the effective storage, and 4.3 km

3
 is the dead storage (Wu and 291 

Chen, 2012, 2013). In our previous studies, Niu (2013) examined the temporal patterns of 292 

precipitation and the influence of large-scale climate, and found a number of abnormal 293 

precipitation events during 1955-1975, 1980-1985, and 1990-1995 in the East River basin. 294 

Moreover, regarding dam (and related reservoir) construction as the best option to increase 295 

available water resources by storing water in the reservoir and to enhance the capabilities 296 

in water resources management (Chen et al., 2016), we have also proposed an operation-297 

based scheme for a multi-year and multi-purpose reservoir (Wu and Chen, 2012), an 298 

improved method for irrigation water demand estimation, and an optimization method for 299 

reservoir operation (Wu and Chen, 2013). 300 

3.2. Research data 301 

In this study, the projected precipitation datasets derived from different climate change 302 

scenarios are the outputs from 17 GCMs, including 16 IPCC AR4 (the Fourth Assessment 303 

Report) GCMs during 1951-2099 and 1 IPCC AR5 (the Fifth Assessment Report) GCM 304 

during 2000-2099 (see Table 2). The selected AR4 GCMs used three scenarios (Special 305 
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Report on Emissions Scenario, SRES A2/A1B/B1) to project future climate change, and 306 

assumptions were made about how factors driving emissions (e.g., population growth, 307 

economic development and advances in technology) would change in future (IPCC, 2007). 308 

Moreover, the selected AR5 GCM adopted four new scenarios (Representative 309 

Concentration Pathway, RCP 2.6/4.5/6.0/8.5). Instead of making assumptions about how 310 

factors driving emissions might change, each RCP scenario expressed a different total 311 

radiative forcing by 2100 or how much extra energy the earth would retain as a result of 312 

human activities (IPCC, 2013). The GCM outputs can be obtained from the World Climate 313 

Research Programme (WCRP) CMIP3 multi-model dataset (Meehl et al., 2007). These 314 

data have been downscaled to a 0.5° grid using the bias-correction/spatial downscaling 315 

method (Wood et al., 2004; Maurer et al., 2009), based on the gridded observations during 316 

1950-1999 (Adam and Lettenmaier, 2003). With the 52 (=16×3+4) projected precipitation 317 

datasets, the monthly streamflow data used for drought analysis can be simulated using the 318 

VIC model. In addition, the observed monthly streamflow data recorded at the Boluo 319 

station (see Fig. 3) in the East River basin during 1954-1988 are collected. 320 

To delineate the East River basin, GTOPO30 DEM dataset with 1000 m spatial 321 

resolution is used (see Fig. 3). The VIC model is run at the daily scale with 0.5°×0.5° 322 

spatial resolution to provide the simulated streamflow, and the soil and vegetation data 323 

over this river basin are extracted from the global soil and vegetation datasets (Nijssen et 324 

al., 2001). 325 

4. Results and discussion 326 
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4.1. The MWR value of the East River basin 327 

For the East River basin, the MWR value is calculated through considering the change of 328 

water demand in future. Following the previous studies (Wu et al., 2001; Lee et al., 2007), 329 

this study adopts the estimated values of 1Q , 2Q , 3Q , and 4Q  at the Boluo station as 317, 330 

230, 210, and 150 m
3
/s in 2010, respectively. Further, this study assumes that these values 331 

will not change along with time; therefore, the maximum value among 1Q , 2Q , 3Q , and 4Q  332 

is 317 m
3
/s. According to Lee et al. (2007), the estimated value of sQ  was 150 m

3
/s in 333 

2010; however, it is worth noting that water demand will increase along with population 334 

growth in future (Chen et al., 2016), leading to the change of the sQ  value, as well as the 335 

MWR value. Chen et al. (2015) projected the future water demand in the East River basin 336 

under the high, medium and low projection scenarios using a five-stage water demand 337 

projection model, and the results showed that the annual water demand would keep 338 

increasing before 2070 and then decrease from 2070 to 2099 under the high and medium 339 

projection scenarios. According to the above mentioned assumption, the MWR value will 340 

have the same changing feature with the annual water demand in future. As a result, the 341 

MWR value of the East River basin for each year during 2010-2099 can be obtained (Fig. 342 

4). In this study, the MWR values under the medium projection scenario from 2020 to 343 

2099 are selected for future drought analysis, and the maximum sQ  value under this 344 

scenario (176 m
3
/s) will occur in 2070. Because the long-term annual average river 345 

discharge in the East River is 755 m
3
/s, the maximum sQ  value under this scenario 346 

accounts for 23.3% (= 176/755) of the total river discharge, which can meet the 347 

requirement of less than 30% (Zuo, 2011). 348 
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4.2. Historical drought analysis 349 

Due to data availability, the observed monthly streamflow data recorded at the Boluo 350 

station in the East River basin during 1954-1988 are collected in this study. Moreover, 351 

only the monthly streamflow data simulated using the 48 (=16×3) datasets from 16 GCMs 352 

and 3 AR4 scenarios are used for historical drought analysis. Fig. 5 shows the comparison 353 

of the mean value of the simulated streamflow data from the 48 datasets against the 354 

observations for each month during 1954-1988. Overall, the average values of the 355 

simulated streamflow data from the 48 datasets can match the historical observations; 356 

however, large differences appear in a few months. The reasons for this may be as follows: 357 

on the one hand, the monthly streamflow at the Boluo station is significantly influenced by 358 

the operation of the XFJ Reservoir (Niu and Chen, 2010; Wu and Chen, 2012), and Niu 359 

and Chen (2010) indicated that the model performance of streamflow simulation is 360 

satisfied before the operation of the XFJ Reservoir. On the other hand, in climate change 361 

study, the GCM outputs can be used to analyze natural multi-decadal climate variations, 362 

but cannot be used to confirm the exact extreme events occurred in a certain year 363 

(Teegavarapu, 2012). 364 

Using the heuristic method and the SEDI proposed in subsection 2.1, historical 365 

socioeconomic drought events are identified from the observed and simulated monthly 366 

streamflow data, respectively. For the observed monthly streamflow data, the SEDI value 367 

of the severest drought event over the period of 1954-1988 is 4, which can reach the level 368 

of an extreme drought. The identified socioeconomic drought event started in December 369 

1962 and ended in May 1964, lasting for 18 months (i.e., DDL=4); however, the RSP 370 

value of this drought event is only 0.37 (i.e., WSL=1). In addition, based on the simulated 371 
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monthly streamflow data, the SEDI value of the severest drought event over the period of 372 

1954-1988 is 3, which indicates this is a severe drought. The identified socioeconomic 373 

drought event started in September 1962 and ended in May 1963, lasting for 9 months (i.e., 374 

DDL=3); moreover, the RSP value of this drought event is 0.61 (i.e., WSL=3). According 375 

to the historical records, the severest drought event during 1954-1988 indeed occurred 376 

around 1963 (Peart, 2004), which preliminarily proves the validity of the heuristic method 377 

and the SEDI for identifying the occurrence period of the socioeconomic drought event. 378 

However, the drought duration of the socioeconomic drought event identified from the 379 

observed data is longer, but the water shortage of the socioeconomic drought event 380 

identified from the simulated data is higher. 381 

4.3. Future drought analysis 382 

4.3.1. Trend analysis of the simulated streamflow in future 383 

In this study, trend analysis of the simulated streamflow at the Boluo station during 2020-384 

2099 is conducted at the annual scale. Using the Mann-Kendall trend test method, the 385 

trends of the annual streamflow data under all the 52 datasets are detected and Table 3 lists 386 

the relevant results. The trend slopes vary greatly among different scenarios, with the most 387 

significant decreasing trend of -2.77 mm/year in one GCM (i.e., mpi_echam5.1) under 388 

A1B scenario and the most significant increasing trend of 11.02 mm/year in another GCM 389 

(i.e., ukmo_hadcm3.1) under B1 scenario. There are 40 AR4 datasets (i.e., 12/13/15 under 390 

A1B/A2/B1 scenarios) showing the increasing trends in the simulated annual streamflow, 391 

comparing to only 8 AR4 datasets (i.e., 4/3/1 under A1B/A2/B1 scenarios) showing the 392 

decreasing trends. However, 20 of the 40 (i.e., 50%) increasing trends are statistically 393 

significant (p<0.1) while only 1 of the 8 (i.e., 12.5%) decreasing trends is statistically 394 
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significant. In contrast, the increasing trends are found under all the four AR5 datasets, 395 

among which only the increasing trend under RCP 4.5 scenario is not statistically 396 

significant (see Table 3). 397 

It is worth noting that more datasets show the increasing trends rather than the 398 

decreasing trends in the simulated streamflow at the annual scale. However, it does not 399 

mean that the drought conditions will be improved in future because of the non-uniformity 400 

of the streamflow among different months. In the following subsection, future drought 401 

analysis will be conducted at the monthly scale, focusing on the identification of 402 

socioeconomic drought events. 403 

4.3.2. Identification of socioeconomic drought events in future 404 

In consideration of the changing MWR values of the East River basin under medium 405 

projection scenarios during 2020-2099 (Fig. 4), socioeconomic drought events in future are 406 

identified based on the monthly streamflow data simulated with 16 GCMs under the three 407 

AR4 emission scenarios and 1 GCM under the four AR5 scenarios. 408 

First, the numbers of socioeconomic drought events with different SEDI values are 409 

identified for each of the 52 datasets, and the results are shown in Fig. 6. For the 16 GCMs, 410 

the results are rather different among different models under the three AR4 emission 411 

scenarios (i.e., SRES A1B/A2/B1). The total numbers of socioeconomic drought events 412 

vary between 85~114 under SRES A1B scenario, 84~120 under SRES A2 scenario and 413 

91~115 under SRES B1 scenario, respectively. The mean values of the total numbers are 414 

more or less the same under the three emission scenarios (i.e., 100, 99 and 102 under 415 

SRES A1B, A2 and B1 scenarios, respectively). For the four AR5 scenarios (i.e., RCP 416 

2.6/4.5/6.0/8.5) of the 1 GCM, the variations of 93-98 are found for the total numbers of 417 
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socioeconomic drought events, and the mean value of the total numbers is 96, which is a 418 

little smaller than those from the 16 AR4 GCMs. Moreover, the extreme socioeconomic 419 

drought events (i.e., SEDI=4) will only account for a small percentage under all the 52 420 

datasets, and the overall percentages of extreme socioeconomic drought events are 11% 421 

and 1% for the 16 AR4 GCMs and the 1 AR5 GCM, respectively. Regarding severe 422 

socioeconomic drought events (i.e., SEDI=3) in future, the overall percentages are 35% 423 

and 55% for the 16 AR4 GCMs and the 1 AR5 GCM, respectively. As mentioned before, 424 

the GCM outputs can be used to analyze multi-decadal climate variations rather than to 425 

give the exact occurrence period of a drought event (Teegavarapu, 2012); therefore, the 426 

identified drought periods are for reference only. For example, an extreme socioeconomic 427 

drought event (i.e., SEDI=4) is identified in 2079-2080 under RCP 8.5 scenario; it can only 428 

be inferred that there might be an extreme socioeconomic drought event during 2020-2099; 429 

however, the exact occurrence period of this event might be in other years rather than in 430 

2079-2080. 431 

Second, for each of the 52 datasets, the socioeconomic drought event with the longest 432 

drought duration in future is identified (see Fig. 7). It is observed that the values of the 433 

longest drought duration identified from the AR4 GCMs are generally larger than those 434 

identified from the AR5 GCM. The mean value of the longest drought duration identified 435 

from the AR4 GCMs is 33 months, and specially, the socioeconomic drought event 436 

identified from one AR4 GCM (i.e., csiro_mk3_0.1) under A1B scenario will last for 93 437 

months (nearly 8 years), which is rather a long time. Moreover, the RSP value of this event 438 

is 3.05, indicating that there will be a desperate water shortage during that period. Known 439 

from Table 3, a decreasing trend in the simulated annual streamflow can be detected under 440 
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this scenario, which may partly explain this situation. In contrast, the mean value of the 441 

longest drought duration identified from the AR5 GCM is only 14 months, much smaller 442 

than that identified from the AR4 GCMs, and the longest drought durations are 13, 12, 21 443 

and 11 under RCP 2.6, 4.5, 6.0 and 8.5 scenarios, respectively. It indicates that, compared 444 

to the 16 AR4 GCMs, the selected 1 AR5 GCM will estimate future drought with a more 445 

optimistic view from the aspect of drought duration. In addition, the values of the longest 446 

drought duration identified from the 52 datasets are all larger than 9 months, which is the 447 

drought duration of the 1963 drought event identified from the simulated streamflow data. 448 

Third, with reference to water shortage which is also a crucial factor, the largest RSP 449 

value under each of the 52 datasets is listed in Table 4. For the 16 AR4 GCMs, the largest 450 

RSP values vary between 0.91~2.53 under SRES B1 scenario, 0.91~3.05 under SRES A1B 451 

scenario and 0.94~2.39 under SRES A2 scenario, respectively, and the mean values under 452 

these three SRES scenarios are 1.49, 1.62 and 1.89, respectively. For the 1 AR5 GCM, the 453 

largest RSP values are 0.69, 0.77, 0.82 and 0.86 under RCP 2.6, 4.5, 6.0 and 8.5 scenarios, 454 

respectively. As a result, even the worst situation derived from the 1 AR5 GCM (i.e., 0.86) 455 

is better than the best situation derived from the 16 AR4 GCMs (i.e., 0.91), which indicates 456 

that, compared to the 16 AR4 GCMs, the selected 1 AR5 GCM will estimate future 457 

drought with a more optimistic view from the aspect of water shortage, which is the same 458 

as the result from the analysis of drought duration. 459 

Conclusively, Table 5 lists the number of socioeconomic drought events with either 460 

longer duration or larger RSP value than the 1963 drought event identified from the 461 

simulated streamflow data during 2020-2099 for each of the 52 datasets, and the 462 

percentage in the parentheses is calculated by dividing the total number of socioeconomic 463 
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drought events for the corresponding dataset. For the 16 AR4 GCMs, the numbers of such 464 

events vary between 16~39 under SRES A1B scenario, 18~39 under SRES A2 scenario 465 

and 22~39 under SRES B1 scenario, respectively. In future, socioeconomic drought events 466 

severer than the 1963 drought event will account for about 31% of the total. In contrast, for 467 

the four RCP scenarios (i.e., RCP 2.6/4.5/6.0/8.5) of the 1 AR5 GCM, smaller variations 468 

are found for the numbers of socioeconomic drought events severer than the 1963 drought 469 

event (i.e., 7~11), and the percentage of such events is about 9%, which once again proves 470 

the previous conclusion that the future drought condition estimated by the selected 1 AR5 471 

GCM will be more optimistic than that estimated by the 16 AR4 GCMs. 472 

4.4. Impact of the XFJ Reservoir 473 

In the previous subsection, a number of socioeconomic drought events with different SEDI 474 

values have been identified in the East River basin. Therefore, serious water scarcity will 475 

be most likely to occur, especially if proper planning, development and management 476 

strategies are not adopted.  For much of the 20
th

 century, dam construction is regarded as 477 

the best option to increase available water resources by storing water in the reservoir and 478 

enhance the capabilities in water resources management (Wu and Chen, 2012, 2013; Chen 479 

et al., 2016). Fortunately, a multi-year reservoir, the XFJ Reservoir, was completed in 1962 480 

in the East River basin. Wu and Chen (2012) indicated that the usable capacity of the XFJ 481 

Reservoir was 5.8-6.5 km
3
, which implied that at least nearly 90% of the effective storage 482 

(i.e., 6.5 km
3
) of the XFJ Reservoir would be used to store water in the flood season. This 483 

study adopts 5.8 km
3
 as the TRS for the East River basin, which is 0.89 (=5.8/6.5) of the 484 

total effective storage, as the usable capacity (i.e., the available water volume) in the XFJ 485 

Reservoir when the flood season ends. 486 



Page 23 of 38 

 

The monthly streamflow data simulated using the 52 datasets are used to analyze the 487 

impact of the XFJ Reservoir on future drought for the period of 2020-2099. Using the 488 

method described in subsection 2.1, the available water volume in the XFJ Reservoir at the 489 

end of each month during 2020-2099 can be calculated. For the selected 1 AR5 GCM, 490 

without the reservoir, the largest RSP value under the four scenarios is 0.86 (see Table 4), 491 

which is smaller than 0.89; it indicates that the usable capacity (5.8 km
3
) of the XFJ 492 

Reservoir is sufficient to cover the largest cumulative water deficit. However, for the 16 493 

AR5 GCMs, with the reservoir, even the smallest RSP value (i.e., 0.91) in Table 4 is larger 494 

than 0.89, which means that water deficits will still remain in certain periods even if the 495 

adopted usable capacity is run out. 496 

Fig. 8 shows the monthly available water volume in the XFJ Reservoir during 2020-497 

2099 under three representative scenarios, namely, RCP 8.5 scenario with the largest RSP 498 

value of 0.86 (HadGEM2-ES), SRES A1B scenario with the largest RSP value of 1.11 499 

(ukmo_hadcm3.1) and SRES B1 scenario with the largest RSP value of 1.40 (ipsl_cm4.1). 500 

The red dash lines denote that the usable capacity of the XFJ Reservoir (i.e., 5.8 km
3
) is 501 

run out. For RCP 8.5 scenario (HadGEM2-ES), the usable capacity of the XFJ Reservoir 502 

will be sufficient for future water demand (see Fig. 8a), For SRES A1B scenario 503 

(ukmo_hadcm3.1) and SRES B1 scenario (ipsl_cm4.1), there are several drought events 504 

whose water deficits cannot be completely tackled by the usable capacity of the XFJ 505 

Reservoir (see Figs. 8b and 8c). 506 

Furthermore, it is worth noting that the available water volume in the XFJ Reservoir at 507 

the end of the flood season is usually less than 5.8 km
3
, which will have a great influence 508 

on future drought analysis. Therefore, relationship between the number of socioeconomic 509 
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drought events and the used percentage of the effective storage of the XFJ Reservoir is 510 

discussed, taking the 1 AR5 GCM under the four RCP scenarios during 2020-2099 as a 511 

case study, and the relevant results are shown in Fig. 9 and Table 6. Along with the 512 

increase of the used percentage of the effective storage, the total number of socioeconomic 513 

drought events will monotonously decrease under all these four scenarios; however, the 514 

decreasing trends can be divided into three phases, with quite different decreasing features. 515 

Since the step of the used percentage for this analysis is 10%, the first cutoff point is found 516 

between 20% and 30% while the second cutoff point is found between 60% and 70% (see 517 

Fig. 9). When no more than 20% of the effective storage is used, the average trend slope 518 

for all these four scenarios is -0.94 (R
2
 = 0.85), which is much weaker than that (i.e., -2.08, 519 

R
2
 = 0.96) when the used percentage is between 30% and 60%. Moreover, when no less 520 

than 70% of the effective storage is used, the decreasing trend becomes quite weak (i.e., -521 

0.11, R
2
 = 0.48) mainly because the total number of socioeconomic drought events is small. 522 

As a result, to reserve 70% of the effective storage of the XFJ Reservoir at the end of the 523 

flood season can be a good option because most socioeconomic drought events will be 524 

overcome in that case. In addition, regarding the number of socioeconomic drought events 525 

with different SEDI values (see Table 6), when no less than 30% of the effective storage is 526 

used, most socioeconomic drought events on severe (i.e., SEDI=3) and extreme (i.e., 527 

SEDI=4) levels will be removed. For example, when the used percentage is 30%, there will 528 

be no extreme socioeconomic drought events during 2020-2099, and only 2, 3, 3, and 6 529 

severe socioeconomic drought events are remaining under these four RCP scenarios, 530 

respectively. Consequently, for the climate change circumstances provided by the 1 AR5 531 
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GCM, we would suggest to reserve at least 30% of the effective storage of the XFJ 532 

Reservoir at the end of the flood season. 533 

5. Conclusions 534 

This study proposes a new method (i.e., a heuristic method) and a new index (i.e., the 535 

SEDI) for identifying socioeconomic drought events on different severity levels under 536 

climate change through comprehensively evaluating the impacts of both water shortage 537 

and drought duration. Taking the East River basin in South China as the study area, this 538 

study analyzes both the historical and future socioeconomic drought events using the 539 

proposed method and index. The contributions of this study can be described as follows: 540 

First, the MWR value of the East River basin for each year during 2010-2099 is 541 

obtained through considering the change of water demand in future, which can be a target 542 

of the integrated water resources management in this river basin and a reference to other 543 

river basins. Second, the SEDI is validated through historical drought analysis, and then 544 

applied to future drought analysis. The trends of the simulated streamflow derived from 52 545 

datasets are analyzed, and socioeconomic drought events during 2020-2099 are identified. 546 

The results indicate that a number of socioeconomic drought events severer than the 1963 547 

drought event may occur in future, which will be a great challenge for the society. Third, 548 

through analyzing the impact of the XFJ Reservoir on future droughts, this study indicates 549 

that most of the identified socioeconomic drought events can be mitigated by reservoir 550 

operation if the used percentage of the effective storage at the end of the flood season is 551 

70%. Moreover, it is suggested that at least 30% of the effective storage should be reserved 552 
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in the XFJ Reservoir at the end of the flood season to overcome most of the severe and 553 

extreme socioeconomic drought events. 554 

Furthermore, applying the proposed method and index for identifying socioeconomic 555 

drought events under climate change, we also need fully aware the following limitations, 556 

which are mainly related to five aspects. First, one important indicator to develop the SEDI 557 

is the RSP, in which the effective reservoir storage is a necessary variable. Therefore, the 558 

heuristic method and the SEDI are inapplicable to river basins without reservoir operation. 559 

Fortunately, reservoir seems to be the requisite infrastructure in river basins where 560 

socioeconomic drought events may occur because reservoir can definitely enhance the 561 

capabilities in meeting water demand (Chen et al., 2016). Second, the proposed method 562 

and index are region-dependent. The study area is located in a humid region, and the 563 

method and index are applicable. For arid or semi-arid regions, more water-related factors 564 

(e.g., utilization of groundwater) besides streamflow may have to be considered, and the 565 

method and index may need more validations. Nevertheless, the proposed method and 566 

index may interpret the occurrence of drought event in arid or semi-arid regions from the 567 

perspective of water supply and demand, rather than only from the perspective of 568 

climatology. Moreover, for different regions, relationship between the number of 569 

socioeconomic drought events and the used percentage of the effective storage should be 570 

reestablished and suggestion about the used percentage of the effective storage may be 571 

different. Third, this study adopts the simulation results of a semi-distributed model (i.e., 572 

the VIC model) over a relatively coarse resolution spatial grid, which may simplify the 573 

description of the behavior of spatially distributed physical systems and may bring in 574 

errors. Distributed hydrological models can be used in the future work to further analyze 575 
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the possible influences of different models on the proposed method and index. Fourth, the 576 

missing data will influence the computation of the SEDI. Nevertheless, this study uses the 577 

simulated streamflow from the VIC model, and there is no missing data. Fifth, it is worth 578 

noting that IPCC is still intensively monitoring and studying climate change and new 579 

climate change projections will be issued in the next several years. Therefore, the 580 

performance of the proposed method and index should be re-evaluated when the new 581 

systematic projections are available. 582 

Nevertheless, with the awareness of the above limitations, the heuristic method and the 583 

SEDI proposed in this study can provide a new avenue of identifying socioeconomic 584 

drought events under climate change, which would be valuable for sustainable water 585 

resources management. It is worth noting that the proposed new method and index would 586 

be promising in other humid regions with reservoir operation around the world. Even if in 587 

arid or semi-arid regions, the proposed new method and index can be regarded as a pilot 588 

exploration of understanding drought events from a socioeconomic perspective. 589 
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Table 1: Definitions of the SEDI based on different levels of water shortage and drought 1 

duration. 2 

SEDI Water shortage level (WSL) Drought duration level (DDL) 

Value Definition Value Definition Value Definition 

1 Slight 1 RSP < 40% 1 Quarterly (i.e., 1-3 months) 

2 Moderate 2 40% < RSP < 60% 2 Semi-annual (i.e., 4-6 months) 

3 Severe 3 60% < RSP < 80% 3 Annual (i.e., 7-12 months) 

4 Extreme 4 RSP ≥ 80% 4 More than 12 months 

 3 

4 
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Table 2: Summary of the 52 selected datasets. 5 

Data source 

(Climate Model) 

Emission  

Scenarios 

Horizontal 

Resolution 
Period 

16 IPCC AR4 GCMs  

(1. bccr_bcm2_0.1, 2. ncar_ccsm3_0.1, 

3. cccma_cgcm3_1.1, 4. cnrm_cm3.1,  

5. csiro_mk3_0.1, 6. mpi_echam5.1, 

7. miub_echo_g.1, 8. gfdl_cm2_0.1,  

9. gfdl_cm2_1.1, 10. giss_model_e_r.1/2,  

11. inmcm3_0.1, 12. ipsl_cm4.1,  

13. miroc3_2_medres.1, 14. mri_cgcm2_3_2a.1,  

15. ncar_pcm1.1/2, 16. ukmo_hadcm3.1) 

SRES 

A2/A1B/B1 
0.5°×0.5° 1951-2099 

1 IPCC AR5 GCM (17. HadGEM2-ES) 
RCP 

2.6/4.5/6.0/8.5 
0.5°×0.5° 2000-2099 

 6 

7 
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Table 3: The slopes (mm/year) of the simulated streamflow at the Boluo station during 8 

2020-2099 for each of the 52 datasets. Note: p is the significance level. 9 

AR4 scenario A1B A2 B1 

1. bccr_bcm2_0.1 0.43 (p>0.1) 0.11 (p>0.1) 1.85 (p>0.1) 

2. ncar_ccsm3_0.1 2.57 (p>0.1) 4.06 (p<0.05) 1.65 (p>0.1) 

3. cccma_cgcm3_1.1 1.58 (p>0.1) 0.03 (p>0.1) 0.51 (p>0.1) 

4. cnrm_cm3.1 2.56 (p<0.1) 2.02 (p>0.1) 2.29 (p>0.1) 

5. csiro_mk3_0.1 -1.72 (p>0.1) -2.33 (p>0.1) 0.49 (p>0.1) 

6. mpi_echam5.1 -2.77 (p<0.1) 0.29 (p>0.1) 0.27 (p>0.1) 

7. miub_echo_g.1 3.38 (p<0.05) 1.51 (p>0.1) 1.69 (p>0.1) 

8. gfdl_cm2_0.1 5.33 (p<0.01) 1.08 (p>0.1) 3.89 (p<0.05) 

9. gfdl_cm2_1.1 0.44 (p>0.1) 3.03 (p<0.1) 4.02 (p<0.05) 

10. giss_model_e_r.1/2 3.55 (p<0.1) 4.28 (p<0.05) 1.97 (p>0.1) 

11. inmcm3_0.1 3.73 (p<0.1) 5.12 (p<0.05) -0.71 (p>0.1) 

12. ipsl_cm4.1 -2.22 (p>0.1) 2.12 (p>0.1) 3.27 (p<0.05) 

13. miroc3_2_medres.1 -2.45 (p>0.1) -0.03 (p>0.1) 0.25 (p>0.1) 

14. mri_cgcm2_3_2a.1 3.04 (p<0.05) 2.80 (p<0.1) 5.95 (p<0.01) 

15. ncar_pcm1.1/2 2.45 (p>0.1) -0.39 (p>0.1) 3.08 (p<0.1) 

16. ukmo_hadcm3.1 6.09 (p<0.01) 6.75 (p<0.01) 11.02 (p<0.01) 

AR5 scenario RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 

17. HadGEM2-ES 2.04 (p<0.1) 1.24 (p>0.1) 2.63 (p<0.05) 3.24 (p<0.05) 

 10 

11 
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Table 4: The largest RSP value during 2020-2099 for each of the 52 datasets. 12 

AR4 scenario A1B A2 B1 

1. bccr_bcm2_0.1 1.48 2.04 1.36 

2. ncar_ccsm3_0.1 1.38 2.26 1.83 

3. cccma_cgcm3_1.1 1.07 1.64 1.40 

4. cnrm_cm3.1 2.85 2.39 1.60 

5. csiro_mk3_0.1 3.05 2.22 1.81 

6. mpi_echam5.1 1.80 2.26 1.02 

7. miub_echo_g.1 0.91 2.07 1.27 

8. gfdl_cm2_0.1 1.48 1.93 2.03 

9. gfdl_cm2_1.1 1.59 2.05 1.34 

10. giss_model_e_r.1/2 1.63 1.39 1.14 

11. inmcm3_0.1 1.99 1.99 1.74 

12. ipsl_cm4.1 1.17 1.36 1.40 

13. miroc3_2_medres.1 1.49 1.99 2.53 

14. mri_cgcm2_3_2a.1 1.55 2.00 1.57 

15. ncar_pcm1.1/2 1.32 1.72 0.91 

16. ukmo_hadcm3.1 1.11 0.94 0.93 

Mean of the 16 AR4 GCMs 1.62 1.89 1.49 

AR5 scenario RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 

17. HadGEM2-ES 0.69 0.77 0.82 0.86 

 13 

14 
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Table 5: The number of socioeconomic drought events with either longer duration or larger 15 

RSP value than the 1963 drought event during 2020-2099 for each of the 52 datasets. Note: 16 

the percentages in the parentheses are calculated by dividing the total number of 17 

socioeconomic drought events for the corresponding dataset. 18 

AR4 scenario A1B A2 B1 

1. bccr_bcm2_0.1 29 (28%) 27 (24%) 35 (34%) 

2. ncar_ccsm3_0.1 28 (25%) 32 (37%) 32 (30%) 

3. cccma_cgcm3_1.1 28 (25%) 30 (28%) 22 (20%) 

4. cnrm_cm3.1 38 (45%) 29 (34%) 31 (34%) 

5. csiro_mk3_0.1 29 (32%) 34 (37%) 31 (33%) 

6. mpi_echam5.1 33 (31%) 35 (36%) 37 (38%) 

7. miub_echo_g.1 32 (31%) 33 (31%) 28 (28%) 

8. gfdl_cm2_0.1 33 (33%) 31 (32%) 26 (26%) 

9. gfdl_cm2_1.1 33 (31%) 32 (34%) 26 (25%) 

10. giss_model_e_r.1/2 27 (24%) 18 (15%) 25 (22%) 

11. inmcm3_0.1 33 (37%) 39 (45%) 39 (39%) 

12. ipsl_cm4.1 31 (32%) 35 (42%) 38 (37%) 

13. miroc3_2_medres.1 34 (39%) 33 (32%) 27 (29%) 

14. mri_cgcm2_3_2a.1 39 (38%) 36 (40%) 33 (31%) 

15. ncar_pcm1.1/2 32 (38%) 31 (31%) 30 (27%) 

16. ukmo_hadcm3.1 16 (15%) 19 (16%) 27 (25%) 

Mean of the 16 AR4 GCMs 31 (31%) 31 (32%) 30 (30%) 

AR5 scenario RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 

17. HadGEM2-ES 7 (7%) 7 (7%) 9 (9%) 11 (12%) 

 19 

20 
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Table 6: The numbers of socioeconomic drought events when different percent of the 21 

effective storage of the XFJ Reservoir is used under each of the 4 scenarios of the 1 AR5 22 

GCM. 23 

Used  

percent 

RCP 2.6 scenario RCP 4.5 scenario 

Total  
SEDI 

=1 

SEDI 

=2 

SEDI  

=3 

SEDI 

=4 
Total  

SEDI 

=1 

SEDI 

=2 

SEDI 

=3 

SEDI 

=4 

0 97 19 24 53 1 95 16 25 54 0 

10% 81 8 37 36 0 80 3 44 33 0 

20% 76 16 48 12 0 78 18 51 9 0 

30% 69 30 27 2 0 69 36 30 3 0 

40% 50 34 16 0 0 53 35 17 1 0 

50% 27 24 3 0 0 29 24 5 0 0 

60% 8 8 0 0 0 5 4 1 0 0 

70% 0 0 0 0 0 3 3 0 0 0 

80% 0 0 0 0 0 0 0 0 0 0 

90% 0 0 0 0 0 0 0 0 0 0 

Used  

percent 

RCP 6.0 scenario RCP 8.5 scenario 

Total  
SEDI 

=1 

SEDI 

=2 

SEDI  

=3 

SEDI 

=4 
Total  

SEDI 

=1 

SEDI 

=2 

SEDI 

=3 

SEDI 

=4 

0 98 21 20 55 2 93 16 27 49 1 

10% 79 4 39 35 1 81 9 44 28 0 

20% 78 14 53 11 0 76 18 44 14 0 

30% 76 33 40 3 0 66 33 27 6 0 

40% 61 37 22 0 0 52 37 14 1 0 

50% 37 33 4 0 0 22 15 7 0 0 

60% 12 12 0 0 0 11 8 3 0 0 

70% 2 2 0 0 0 4 4 0 0 0 

80% 1 1 0 0 0 1 1 0 0 0 

90% 0 0 0 0 0 0 0 0 0 0 

 24 
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Data collection & Data analysis

(1) Threshold value (MWR) (2) Monthly streamflow data

If (2) < (1), drought event begins

Comparison

VIC model & Precipitation data

If (2) > (1), not a drought month

(3) Cumulative water deficit

If (3) ≥ 0, drought event endsIf (3) < 0, drought event continues

(5) Drought duration level (DDL)(4) Water shortage level (WSL)

(6) SEDI (4 levels, in terms of the DDL and WSL values)
 1 

Fig. 1. Flowchart of the development of the heuristic method and the SEDI. 2 

3 
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 4 

Fig. 2. The ranges of different SEDI values classified by different levels of drought 5 

duration and water shortage. 6 
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 8 

Fig. 3. The Xinfengjiang (XFJ) Reservoir and the Boluo hydrological station in the East 9 

River basin. 10 
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 12 

Fig. 4. The MWR value of the East River basin for each year during 2010-2099 under high, 13 

medium and low projection scenarios. 14 
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 16 

Fig. 5. Comparison of the mean value of the simulated streamflow data from the 48 17 

datasets against the observations for each month during 1954-1988. 18 
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 20 

Fig. 6. The numbers of socioeconomic drought events with different SEDI values for each 21 

of the 52 datasets (16 AR4 GCMs under the three scenarios and 1 AR5 GCM under the 22 

four scenarios). 23 
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 25 

Fig. 7. Socioeconomic drought event with the longest drought duration for each of the 52 26 

datasets. 27 

28 
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 29 

Fig. 8. The monthly available water volume in the XFJ Reservoir during 2020-2099 under 30 

three representative scenarios. Note: the red dash lines denote the usable capacity of the 31 

XFJ Reservoir (i.e., 5.8 km
3
) is run out. 32 

33 
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 34 

Fig. 9. The relationship between the number of socioeconomic drought events and the used 35 

percentage of the effective storage of the XFJ Reservoir based on the 1 AR5 GCM under 36 

the four scenarios during 2020-2099. Note: the black lines denote the linear trends. 37 
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