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Aims: Endothelin-1 (ET-1) has been suggested to be involved in different types of pain due to its
neuromodulatory nature. However, its role in inflammatory pain processing, specifically the origin-specific
effect, has not yet been clearly defined. Therefore, the aim of this study is to determine the role of cell-type
specific ET-1 induction in the modulation of inflammatory pain processing.

Ige;(;wo}:di: ) Main methods: The current study assesses the effects of ET-1 over-expression specifically targeted to astro-
Ar;tr%tcyielg_ cytes (GET-1) or endothelial cells (TET-1) on the expression of pain-like behaviors induced by a model of

inflammatory pain, consisting of a formalin injection into the hind paw.

Key findings: The baseline sensitivity thresholds of GET-1 and TET-1 mice to the response elicited by tactile
and radiant heat stimulation were similar to those observed in age-matched non-transgenic (NTg) controls.
Relative to the NTg controls, GET-1 mice displayed a marked decrease in pain-like behavioral responses
during the second phase of formalin-induced pain (i.e., 15-20 min after injection), whereas the responses
elicited in TET-1 mice were unaltered. The levels of mRNA encoding adrenomedullin, calcitonin
gene-related peptide and calcitonin-like receptor were elevated in the spinal cord of saline-injected GET-1
mice compared to those of NTg mice.

Significance: The current results support a suppressor role for astrocyte-derived ET-1 in inflammatory pain
and suggest that the study of GET-1 mice might provide mechanistic insights for improving the treatment

Endothelial cells
Inflammatory pain

of inflammatory pain.

© 2012 Elsevier Inc. Open access under CC BY-NC-ND license,

Introduction

Chronic pain is considered as a disease entity, whereas acute pain
is simply a symptom of an underlying disease or injury. Inflammatory
pain, which contributes significantly to both acute and chronic pain, is
triggered by an upset to tissue integrity at cellular level. It is well
known that pathological conditions, including burns, arthritis,
autoimmune diseases, injuries, operations, infections and vasocon-
striction, are closely associated with inflammatory pain (Kidd and
Urban, 2001). Recently, unreasonable failure to treat pain is viewed
as poor medicine, unethical practice and an abrogation of the funda-
mental human right (Cheung et al., 2009). Therefore, seeking a new
pain-mediator for the development of improved therapeutic
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approaches is an effective means to improve the current pain man-
agement strategies.

Endothelin-1 (ET-1), a 21-amino acid potent vasoconstrictor, is
expressed ubiquitously in the central nervous system (CNS),
peripheral nervous system (PNS), vascular endothelium and various
cell types including endothelial cells and neurons (Yanagisawa et al.,
1988; Inoue et al., 1989; Wedgwood et al., 2001). However, its expres-
sion is also induced in astrocytes under certain neuropathological
conditions such as stroke and Alzheimer's disease (Hama et al., 1997;
Zhang et al,, 1994). In addition to its role as a vasoconstrictor, ET-1
also serves as a neurotransmitter and/or neuromodulator in the
mediation of pain processing. The effects of ET-1 in pain are thought
to be differential and depend on the site of originating tissue. Animal
studies revealed that exogenous administration of ET-1 induces pain
following peripheral subcutaneous administration (Piovezan et al.,
2000), but it inhibits pain following a central intrathecal injection
[Yamamoto et al., 1994). It is believed that the two subtypes of
endothelin receptors, ETx and ETg, may contribute differentially to
these phenotypic differences (Piovezan et al., 2000; Yamamoto et
al.,, 1994; Khodorova et al.,, 2003). These studies indicate that
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ET-1-mediated pain processing is tissue specific, or perhaps even
pathology specific, although the underlying mechanisms remain
elusive.

In the present study, we aimed to investigate the role of cell-type
specific ET-1 induction in inflammatory pain processing by making
use of transgenic mice, which over-express ET-1 in either astrocytes
or endothelial cells. First, we evaluated the impact of ET-1 over-
expression in astrocytes (Lo et al, 2005) and in endothelial cells
(Leung et al.,, 2004) on tactile- and radiant heat-associated pain
sensations. Then, we compared the pain-like behavioral outcome
associated with astrocytic or endothelial cell-specific ET-1 induction
under a formalin-induced inflammatory pain condition. Finally, we
determined the mRNA expression of common pain signaling mole-
cules in the spinal cord of GET-1 mice to delineate the possible
association between astrocytic ET-1 induction and the modulation
of inflammatory pain processing.

Materials and methods
Animals

In this study, homozygous GET-1 (Lo et al., 2005) and TET-1
(Leung et al., 2004) mice were used. The original transgenic mouse
lines have been previously described (Lo et al., 2005; Leung et al.,
2004). In brief, GET-1 and TET-1 heterozygous mice were generated
by microinjection of constructs containing mouse ET-1 cDNA
containing SV40 polyA sequence in which the transgene expression
was driven by astrocyte-specific glial fibrillary acidic protein (GFAP)
or endothelial cell-specific receptor tyrosine kinase-1 (Tie-1) promoter,
respectively. Heterozygous GET-1 or TET-1 mice were backcrossed
for five generations with wild-type C57BL/6N mice. Genotyping
procedures were performed according to the initial publications
using Southern blot and PCR analyses. All animals were bred and
maintained under strictly controlled environmental conditions at a
temperature of 20 °C and a light/dark cycle of 12-hr day/night with
the light cycle beginning at 8:00 AM. The experimental mice were fed
with a sterilized diet and water ad libitum until at the age of 8-12
wks, when they were used for experiments. Prior to the behavioral
assessments, mice were habituated to the experimental setting for at
least 2 hrs, and all observations were conducted during the lights-on
part of the phase. The experimental design and protocols used in the
study were previously approved by the Committee on the Use of Live
Animals in Teaching and Research of the University of Hong Kong
(CULATR).

Baseline measurement of pain sensations

The baseline sensitivity level of pain sensation of the 8-12-week-old
naive GET-1 (n=25) and TET-1 (n=25) mice and their NTg controls
(n=25) (body weight 25-30 g) were assessed by measuring the
nociceptive thresholds to tactile and radiant heat stimuli by von Frey
filament (Barr et al, 2011) and Hargreaves' test (Held et al., 1998),
respectively. Briefly, the tactile threshold was determined by applying
a punctate stimulus to the skin of the plantar surface of the hind paw
using a calibrated von Frey filament (IITC Life Science, Inc., USA) in
which 50% of mice showed hind paw withdrawal. The mean value of
the applied force (g) in three consecutive measurements within a
5-min interval was taken as a threshold to the tactile stimulus. For
radiant heat threshold assessment, a focal light beam was applied
to the plantar region of the hind paw using an IITC plantar analgesia
meter for thermal paw (IITC Life Science, Inc., USA). The mean paw
withdrawal latency obtained from three consecutive measurements
within a 5-min interval was recorded and taken as a parameter of
threshold to radiant heat of the animals.

Formalin-induced pain-like behavioral measurement

Acute inflammatory responses were induced in the animals by
intraplantar injection of 20 pl of 1% formalin in saline to the right
(ipsilateral) paw. Saline-injected animals served as no-pain
controls. The total amount of time each animal spent manifesting
pain-related nociceptive behaviors (including licking, lifting and/or
shaking of the injected paw) was monitored and recorded continu-
ously in 5-min periods for up to 30 min after injection. Foot-lifting
associated with exploratory behavior, locomotion, body repositioning,
and grooming were excluded by the experimenters in accordance
with the behavior observed on the left (contralateral) paw. To avoid
experimental bias, two experimenters who were blind to genotype
and treatment scored the behaviors separately, and the data were
averaged.

Sample collection, RNA extraction and cDNA preparation

Following the formalin-induced pain-like behavioral assessment,
spinal cords from the animals were dissected out following quick cervi-
cal dislocation after anesthetized with sodium pentobarbital. Spinal
segments L1-4 were isolated, separated into the ipsilateral and contra-
lateral sides, snap-frozen in liquid nitrogen and stored at —80 °C until
RNA extraction. Spinal cord segments were homogenized in 10 volumes
(w/v) of ice-cold TRI Reagent (Invitrogen, by Life Technologies, USA).
Total mRNA was extracted using the phenol:chloroform extraction
method according to the manufacturer's instructions. The quality
and quantity of the extracted RNA were determined by measuring
the optical density at 260 and 280 nm using a spectrophotometer
(GeneQuant, Pharmacia). cDNA preparation was achieved by reverse
transcription using 1 pg of the extracted total RNA with High Capac-
ity RNA-to-cDNA™ master mix kit (Applied Biosystems, by Life Tech-
nologies, USA) according to the manufacturer's protocol. Prepared
cDNA samples were diluted and stored at —20 °C until further
analyses.

Determination of mRNA expression of pain signaling molecules by real-
time PCR analysis

Diluted cDNA samples (4 pl) were served as template for gene
expression analyses using Real-time Polymerase Chain Reaction
(RT-PCR) with the SYBR green chemistry. The specific primers for
substance P (SP), enkephalin (ENK1), adrenomedullin (AM), calcito-
nin gene-related peptide (oCGRP), calcitonin-like receptor (CLR)
and 18S rRNA were employed as published elsewhere (Fernandez et
al., 2010). Briefly, the PCR reactions were carried out in a total volume
of 20 u containing 10 Wl Fast SYBR green master mix (Applied
Biosystems, by Life Technologies, USA), 1 ul of the corresponding
10 uM primer pair (Invitrogen, by Life Technologies, USA), and 4
of diluted ¢cDNA samples, which was brought up to 20 pl with
DEPC-treated water (Applied Biosystems, by Life Technologies,
USA). The reactions were performed using the StepOnePlus™ system
and the data generated were analyzed using the software provided
(Applied Biosystems, by Life Technologies, USA).

Statistical analysis

All statistical analyses were performed using the GraphPad Prism
software (Version 5.02, GraphPad Software, Inc.). The data are
presented as the mean+standard error of the mean. The results
were analyzed using one- or two-way ANOVA followed by Tukey
post-hoc test. For all statistical analysis, p<0.05 was considered statis-
tically significant.



620 V.K.L. Hung et al. / Life Sciences 91 (2012) 618-622

Results
Effects of cell type-specific ET-1 expression on pain sensation

To evaluate the effect of astrocyte- and endothelial cell-specific
over-expression of ET-1 on pain sensation, nociceptive thresholds to
tactile and radiant heat stimuli were first determined in GET-1 and
TET-1 mice. Upon tactile stimulus, GET-1, TET-1 and their cor-
responding NTg control groups exhibited similar threshold level of
mechanical sensitivity in the right paw (mean forced applied:
GET-1, 6.4040.16 g vs. NTg, 5.9740.21 g; TET-1, 6.114+:0.17 g vs.
NTg, 5.684+0.41 g; p>0.05; n=25) (Fig. 1A) and in the left paw
(mean forced applied: GET-1, 6.43+0.74 g vs. NTg, 5.554+0.20 g;
TET-1, 6.4140.51 g vs. NTg, 5.514+0.18 g; p>0.05; n=25). Similar-
ly, upon radiant heat stimulation, all groups displayed a similar
threshold level of thermal sensitivity in the right paw (latency for re-
sponse: GET-1, 4.014+0.30s vs. NTg, 3.71+0.27 s; TET-1, 410+
0.35 s vs. NTg, 3.944-0.23 5; p>0.05; n=25) (Fig. 1B) and in the
left paw (latency for response: GET-1, 3.9940.29 s vs. NTg, 3.98 +
0.38 s; TET-1, 3.87 £0.27 s vs. NTg, 3.494+0.36 s; p>0.05; n=25).

Differential effects of cell type-specific ET-1 expression on formalin-
induced inflammatory pain

Apart from physiological pain sensations, the susceptibility to
inflammatory pain was also assessed in GET-1 and TET-1 mice with
formalin test. As observed in NTg mice, after 1% formalin injection,
two distinct phases of nociceptive response could be identified during
the 0-5 min (1st phase) and 15-20 min (2nd phase) intervals. In
GET-1 mice, compared to the NTg mice, no significant change could
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Fig. 1. Over-expression of ET-1 in astrocytes or endothelial cells does not affect the no-
ciceptive pain response upon tactile or radiant heat stimuli. The nociceptive thresholds
in response to tactile and radiant heat stimuli were determined in GET-1, TET-1 and
NTg mice using von Frey filament (A) and Hargreaves' (B) tests. The data are presented
as the mean = standard error of the mean (n=25).

be observed in the 1st phase (mean accumulated time: 0-5 min,
NTg, 152.2414.1 s; GET-1, 139.44-10.2 s; p>0.05; n=15), but the
total duration of nociceptive response was significantly reduced in
the 2nd phase (mean accumulated time: 15-20 min, NTg, 60.5 +
10.3 s; GET-1, 12.5+£4.1 s; p<0.0001; n=15) (Fig. 2A). Nociceptive
responses of TET-1 mice to formalin were unchanged relative to
those of NTg mice during the 1st phase (mean accumulated time:
0-5 min, NTg, 141.6 £8.2 s; TET-1, 140.6 £10.2 s; p>0.05; n=15)
and also the 2nd phase (mean accumulated time: 15-20 min, NTg:
683+11.5s; TET-1: 909+8.8s; p>0.05; n=15), despite the
trend towards an increase in the latter (Fig. 2B).

Astrocytic ET-1 over-expression leads to an alteration in the mRNA
expression of pain signaling molecules in the spinal cord

Because the formalin-induced hyperalgesic effect was significantly
altered in the 2nd phase in the GET-1 mice, we investigated the
possible involvement of some of the key pain signaling molecules in
mediating the pain suppression effect associated with astrocytic
ET-1 over-expression. In this study, gene expression levels of pain
mediators (SP, AM and «CGRP), modulator (ENK1) and receptor
(CLR) were compared between GET-1 and NTg mice. In saline-
injected GET-1 and NTg mice, the mRNA expression levels of AM
(NTg, 0.864+0.1 vs. GET-1, 1.76 +£0.09, p<0.05; n=4-6), «CGRP
(NTg, 0.7340.08 vs GET-1, 1.54+0.09, p<0.05; n=4-6) and CLR
(NTg, 1.0440.13 vs. GET-1, 2.84+0.10, p<0.05; n=4-6) were sig-
nificantly increased in the spinal L1-4 region of the GET-1 mice,
whereas no obvious difference was observed in SP (NTg, 1.26 4+ 0.06
vs. GET-1, 1.2940.05, p>0.05; n=4-6) or ENK1 (NTg, 1.18 +£0.05
vs GET-1, 1.34+0.04, p>0.05; n=4-6). In addition, in the GET-1 spi-
nal cord after formalin injection, significant decreases in the levels of
mRNA for AM (Con, 1.78 4+ 0.17 vs. Ipsi, 0.97 - 0.09, p<0.05; n =4-6)
and ENK1 (Con, 1.2740.11 vs. Ipsi, 0.77£0.20, p<0.05; n=4-6)
were detected in the ipsilateral side, when compared to those mea-
sured on the contralateral side. More importantly, by comparing the
ipsilateral side of GET-1 and NTg mice after formalin-injection, the
aCGRP (NTg, 1.02+£0.06 vs. GET-1, 2.0340.26, p<0.05; n=4-6),
CLR (NTg, 1.244-0.13 vs. GET-1, 3.264+0.11, p<0.05; n=4-6) and
SP (NTg, 1.24 +£0.07 vs. GET-1, 1.68 £ 0.14, p<0.05; n=4-6) mRNA
expression levels were dramatically induced in the GET-1 mice
(Fig. 3).

Discussion

In the past decade, ample evidence was obtained in support of a
pathological role of ET-1 in pain processing associated with various
types of inflammatory and non-inflammatory painful conditions,
including arthritis, cancer and neuropathies (Barr et al., 2011; Imhof
et al,, 2011; Hans et al., 2009; Werner et al., 2010; Khodorova et al.,
2009a). It has been suggested that ET-1 produced peripherally can
participate in the promotion of both acute and chronic pain by acting
on ET, receptor, though these effects are limited by ETj receptor acti-
vation (Khodorova et al., 2009a). In contrast, in the CNS, ET-1 induces
anti-nociception via ET4 receptor coupled to L-type calcium channel-
dependent Ca®* influx (Held et al., 1998). However, the mechanisms
underlying these opposite effects on nociception have not yet been
clearly identified.

The current views on the participation of ET-1 in pain modulation
are largely based on experimental data involving the influence of
pharmacological blockade of ET, and/or ETg receptors with selective
or dual receptor antagonists in animal models of neuropathic or
inflammatory nociception, or against the effects of administration of
exogenous ET-1 to different sites (Piovezan et al., 2000; Yamamoto
et al., 1994; Khodorova et al., 2003; Nikolov et al., 1992). Such exper-
imental approaches may fail to reveal nuances in the contribution of
ET-1 synthesized by specific cell types or tissues to alteration in
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Fig. 2. Comparison of the nociceptive responses of GET-1, TET-1 and NTg mice to formalin injection into the hind paw. The values shown represent the amount of time GET-1 (A),
TET-1 (B) or NTg control mice presented nociceptive paw lifting and/or licking behaviors, displayed in 5-min periods for up to 30 min after injection of 1% formalin. * denotes sta-
tistically significant difference (p<0.05) compared with the corresponding NTg control groups by two-way ANOVA followed by Tukey post-hoc test. The data are presented as the

mean + standard error of the mean (n=15).

nociception. The current study has used a transgenic approach to ad-
dress the importance of cell-specific ET-1 synthesis on nociception in-
duced by formalin, namely mice over-expressing ET-1 specifically in
astrocytes (GET-1) (Lo et al, 2005) or in endothelial cells (TET-1)
(Leung et al, 2004), as evidenced by immunohistochemistry and
in-situ hybridization, which do not present any gross structural or mor-
phological abnormalities in the vasculature or the brain. The behavioral
responses of GET-1 and TET-1 mice to stimulation of their hind paws
with either tactile or radiant heat was unchanged relative to that of
their NTg counterparts, suggesting that specific ET-1 over-expression
in astrocytes or in endothelial cells does not normally interfere with
pain transmission. Moreover, no differences were observed regarding
the behavioral responses of TET-1 and NTg mice to formalin injection

NTg GET-1 Con Ipsi Con Ipsi

into their hind paws, a model of inflammatory pain. It thus appears
that over-expression of ET-1 in endothelial cells does not alter respon-
siveness of TET-1 mice to formalin. In sharp contrast, even if GET-1
mice responded normally during the first (nociceptive) phase (over
first 5 min after injection) of the formalin test, they manifested a clear
reduction in nociceptive behavior during the second (inflammatory)
phase of the test (15 to 30 min after injection). These results suggest
that astrocyte-derived ET-1 most likely has an anti-hyperalgesic (rather
than truly anti-nociceptive) role in the pathogenesis of inflammatory
pain.

It is interesting that ET-1 derived from astrocytes exerts such an
evident anti-nociceptive action, whereas that from endothelial cells
does not, as both types of cell are so abundant in the spinal cord. In
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Fig. 3. Increased gene expression of AM, aCGRP and CLR in GET-1 mice. Real-time PCR analyses showing the mRNA expression levels of AM, aCGRP, CLR, SP and ENKT1 in contra-
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the NTg mice by one-way ANOVA followed by Tukey post-hoc test. The data are presented as the mean + standard error of the mean (n=4-6).
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fact, a nearly 30-fold of ET-1 mRNA elevation was detected in the
spinal cord of the naive GET-1 mice when compared to that of the
NTg mice (unpublished data), which is similar to our previous inves-
tigation in brain (Lo et al., 2005). However, it is possible that while
the actions of astrocyte-derived ET-1 were restricted to the spinal
cord by the blood-spinal cord barrier, this barrier most likely
prevented ET-1 derived from endothelial cells from entering into
the spinal cord. It should be interesting to examine in the future
what changes GET-1 and TET-1 mice display in hind paw edema
induced by formalin, and also how this algogen affects ET-1 levels in
the spinal cord and periphery.

Astrocytic ET-1-dependent neuro-modulation may be one of the
possible mechanisms mediating the anti-hyperalgesic effect. Thus,
the relative expression level of pain signaling molecules was deter-
mined in saline- and formalin-injected animals. In the spinal L1-4
region of saline-injected GET-1 mice, the AM, oCGRP and CLR
mRNA expression levels were significantly induced compared with
NTg mice, whereas only negligible changes in the expression levels
of SP and ENK1 were found. In addition, the levels of ®CGRP and
CLR were further up-regulated after formalin injection. Interestingly,
the expression levels of mRNA for AM and ENK1 in the ipsilateral side
of the GET-1 spinal cord were drastically decreased after formalin
challenge. Although it is generally believed that ENK exerts an inhib-
itory influence on transmission of nociceptive information at the
synaptic level between the primary afferent fibers and the second
order spinal nociceptive neurons, our results implicate that it is
worthwhile to investigate the interaction between astrocytic ET-1
and other neurotransmission systems including ENK1 and AM in
pain perception. Taken together, our gene expression analysis
suggests that astrocytic ET-1 exerts its anti-hyperalgesic effect via
AM- and/or aCGRP/CLR-mediated pathways, although pharmaco-
logical blockade experiments should be conducted to validate this
hypothesis. Indeed, the correlation between ET-1 and aCGRP has
been illustrated recently in study showing that the release of cCGRP
is involved in mediating the late-phase response (>30 min) of ET-1-
dependent tactile allodynia (Khodorova et al., 2009b). However, it
is also possible that AM and o:CGRP induction is a consequence of
the vasoconstrictive effect of astrocytic ET-1 over-expression in
the spinal cord, as these proteins are potent vasodilators. Hence,
local blood flow in the spinal cord of GET-1 and TET-1 mice should
be examined in detail to clarify the contribution of cell type-
specific ET-1 over-expression in regulating local vascular tone of
the spinal cord.

Conclusion

Taken together, astrocytic ET-1 over-expression leads to less
severe formalin-induced nociceptive response to pain although it
does not affect the mechanical and thermal sensitivity to pain. How-
ever, endothelial ET-1 over-expression does not affect the nociceptive
response to either mechanical, heat or formalin stimuli. In addition,
AM and/or aCGRP-mediated pathways may be involved in the
ET-1-mediated pain modulation. Hence, our present study not only
provides a new insight into cell type-specific ET-1 induction in
inflammatory pain modulation but also highlights the potential of
using GET-1 and TET-1 mice in mechanistic studies aimed at develop-
ing new targets for the management of inflammatory pain.
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