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Abstract—Access latency is a crucial performance metric
in distributed storage systems as it greatly impacts user
experience, especially for hot data visitors. Existing papers
argue that coding can reduce access latency compared with
the replication method, and many dispatch schemes, such as
those implementing redundant requests, dynamically changing
code rates, and so on, are proposed and proved to work well
in improving latency performance under certain conditions.
However, some practical issues, such as direct reads, and the
additional cost of redundant requests, are ignored and a general
and practical model of latency performance is still lacking.

Considering a more comprehensive set of practical issues
in distributed storage systems, we propose a performance
model that can be easily used to compare latency performance
of different codes and replication methods under different
conditions. We also use our performance model to evaluate
many schemes and show their different impacts on the latency
performance of different types of reads. To the best of our
knowledge, we are the first to study the latency performance
of direct reads under different codes or schemes, and the first to
propose a model of latency performance including both direct
and k-access reads.
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I. INTRODUCTION

In massive distributed storage systems, failure is the norm
rather than the exception [1]. To tolerate frequent failures
and provide sufficient reliability and availability of data, we
need to increase storage redundancy. Replication and erasure
coding are the usual methods used.

A single codeword of an erasure code has n fragments, &k
of which are original data fragments, and the other n—k are
parity fragments. If a code satisfies the maximum-distance-
separable (MDS) property, any k out of the n fragments
are sufficient to reconstruct all data in the k£ original data
fragments.

Access latency is a key performance metric for distributed
storage systems and has great impact on user experience,
especially for data retrieval applications [2]. For instance,
500 msec extra delay in service will lead to a 1.2% user loss
for Google and Amazon [3]. However, most papers focus on
other performance metrics such as storage overhead, repair
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cost and so on. Only recently do some papers focus on
access latency in storage systems and suggest that coding
can reduce access latency.

Huang et al. [4] analytically compared the latency perfor-
mance of replication and coding when all data are divided
into k = 2 parts and argued that coding can reduce queueing
delay in data centres. Following that work, based on the
MDS code, with queueing theory, Shah et al. [5] proposed
different scheduling policies to demonstrate the effectiveness
of coding on reducing access latency. Our previous work [6]
proposed DRALB scheme to reduce access latency of hot
data in systematic coded storage systems. Vulimiri et al. [7]
argued that redundant requests in the context of the wide-
area Internet can help reduce latency. A theoretical analysis
[8] discussed the conditions under which redundant requests
can help reduce access latency. Based on fork-join queues
for parallel processing, Joshi et al. [9] generalized the (n,n)
fork-join system and found bounds on its mean response
time. In [10], we proposed the compound read method,
characterized its mean download delay in low arrival rate
scenario and derived upper and lower bounds on its mean
download delay in high arrival rate scenario. Liang et al.
[11] presented a strategy TOFEC, using erasure coding, par-
allel connections and limited chunking together, to improve
the delay performance. McCullough et al. [12] developed
Stout to dynamically increase or decrease batching size to
improve access latency. We designed new codes HTSC and
FH_HTSC [13] to reduce access latency while maintaining
favorable performance in other metrics. Liang et al. [14]
proposed dynamically changing code rate to reduce access
latency.

Although many different dispatch schemes have been
proposed recently and they have somehow been proved
to reduce access latency in distributed storage systems
under certain conditions, a general and practical performance
model of access latency is still lacking. This makes it
exceedingly arduous to compare the effects of different
schemes and to convince others that those schemes can really
work under different conditions. Besides, some practical
issues are also ignored in much of existing research.



First, based on MDS-coded system, other than some work
that mentioned direct reads [15], [16], almost all previous
studies of latency performance assume that each request to
the storage system needs to access at least k storage nodes
(k-access reads). However, in practice, the code deployed
is usually a systematic code, which means that one copy
of the data exists in uncoded form [17]. Besides, in many
storage systems such as Windows Azure Storage (WAS),
only when a file reaches a certain size (e.g., 3GB), will it
be a candidate for erasure coding [15]. That is, one file in a
codeword is usually extremely large and incoming requests
may only desire part of the file, say, the systematic part that
is stored in one of the storage nodes (we call those requests
direct read requests). Actually, both k-access and direct
read requests commonly exist in MDS-coded systems but
they require different sizes of files, thus triggering different
access latencies. Essentially, most previous research assumes
homogeneous read requests but in practice, requests may
desire files of different sizes.

Second, while degraded reads [18], [19] are common
in distributed storage systems, they are ignored by almost
all previous work on access latency. Degraded reads occur
when one storage node is too busy serving other requests
and becomes temporarily unavailable to a new direct read
request, and we need to reconstruct the required data from
other nodes. Obviously, degraded reads can also influence
user experience and must be included in the access latency
analysis. Although Shah et al. [5] pointed out the existence
of degraded reads and analysed their access latencies in
product-matrix (PM) coded system [20], they did not con-
sider the relationship of degraded reads with other requests.

Third, some performance models were designed just to
evaluate specific schemes, and it is not applicable for eval-
vating other schemes. As an example, using a novel fork-
join queueing framework to model multiple users requesting
the content simultaneously, Joshi et al. found bounds of
mean response time in [9]. However, the model in [9]
can only be used in MDS-coded storage systems with
Redundant Request Scheme (RRS). Moreover, that paper
only considers the k-access read requests while direct reads
and the additional cost of redundant requests are ignored.

Our Contributions. In this paper, we propose a general and
practical model to analyze latency performance in distributed
storage systems. To the best of our knowledge, our model
is the first to consider all types of read requests together,
and can be used for different types of codes and different
dispatch schemes. With our model, we compare the latency
performance of coding and replication under different condi-
tions, and we also show more practical latency performance
of different schemes. We are the first to study the latency
performance of direct read requests under different codes or
schemes, and the first to propose a performance model of
latency including both direct and k-access reads and consid-
ering many more practical issues such as the additional cost

of redundant requests.

The remainder of this paper is organised as follows. In
Section II we describe the system model in detail. In Section
IIT we show how to apply different schemes and codes in our
model and further discuss RRS. Section IV displays simu-
lation results and shows the effect of different schemes and
codes on reducing access latency when considering many
more practical issues. Finally, in Section V, we conclude
and discuss some future work.

II. SYSTEM MODEL
A. Basic Architecture

A distributed storage system is mainly composed of
one dispatcher (possibly more than one in practice) and
massive distributed storage nodes. As illustrated in Fig. 1,
a quintessential work flow is given as follows: different
user requests (read and write) arrive at a dispatcher, which
distributes the requests as different tasks according to users’
requirements to different storage nodes via the inter or intra
data centre network.

Storage Node

Stora;Node
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arrivals | Dispatcher) data center orage Node

network

D Task

Storage Node

Figure 1. System model.

In practice, the dispatcher may execute different schemes
to achieve load balancing and improve the reliability and
availability of the distributed storage systems.

B. Storage Nodes

In practical distributed storage systems, each storage node
contains many fragments and with erasure coding, one node
may store both data and parity fragments. As illustrated
in Fig. 2, each file A, B, C and D is divided into two
fragments and each node can store four fragments. For the 2x
replication method, there are two copies of all fragments. For
(4,2) MDS code, each file is encoded into 4 fragments and
each node stores both data and parity fragments. Fragments
from the same file or codeword will never be stored in
a single node so as to reduce the probability of their
simultaneous failure, since failure usually happens in the
whole node.

In this paper, we propose a performance model of access
latency based on (n, k) MDS code. We focus on the latency
performance of n storage nodes which belong to the same
codeword, and we call it an n-node structure. Since a storage
system is composed of many n-node structures, this model
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Figure 2. Four storage nodes with 2x replication and (4,2) MDS code.

can reflect the access latency of the whole storage system.
We also assume all the codes in this paper is systematic,
which is in line with almost all practical codes.

C. Characteristics of Different Requests

In distributed storage systems, there are usually two kinds
of requests, namely, read and write. Here we consider a typ-
ical append-only distributed storage system such as HDFS
[21] or WAS [15]. In such systems, when we save something,
the dispatcher can quickly distribute it to some applicable
idle storage nodes. Users often do not care much about the
delay of their write requests as long as they can be done
within a reasonable period. But things are totally different
for read requests. The access latency of read requests can
greatly impact user experience. For example, Google found
that users performed up to 0.74% fewer searches after a 400
millisecond additional delay has been implemented for 4 to
6 weeks [22]. Besides, since there are only limited nodes in
the system storing the data desired by read requests, higher
frequency of read requests will inevitably increase the access
latency. Also, in an MDS-coded system, since we will break
each file into k parts, encoded into n coded elements and
stored in n storage nodes, for each write request, we need
to write into at least k£ nodes and then reply that we have
done it [14]. That is, the analysis of write request is similar
to that of k-access read request. Accordingly, in this paper,
we focus on the access latency of read requests (Note that
our results can also be applied to write requests).

Read requests can be divided into three types of tasks for
a storage node: k-access, direct and degraded read tasks, as
illustrated in Fig. 3. A k-access read desires one complete
file, such as the file A, B, C or D in Fig. 2. The request
has to access at least k fragments in an (n, k) MDS-coded
system. As discussed in [5], incoming requests may also
require only part of the file, say, the part that is stored in
one of the storage nodes, such as A; or B; in Fig. 2. Since
the code is systematic, data retrieval can be done by reading
it directly from one fragment. We call this a direct read. But

when a node is too busy, we can serve part of the direct read
requests via degraded reads. In an MDS-coded system, a
degraded read task may be performed by obtaining the entire
file from the data stored in any & out of the n — 1 remaining
fragments and then extracting the required part. When we
build the performance model, we need to carefully consider
the characteristics of different read requests simultaneously.
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Figure 3. Different types of read tasks to storage nodes.

D. Arrival Rates of General Read Tasks

In this paper, we focus on the case that we can operate
different fragments in a node in parallel, that is, different
tasks actually queue in front of different fragments in each
node. Then we just need to examine the performance of
one fragment in each storage node to get the average
latency performance in the n-node structure. Without loss
of generality, we focus on the requests to the first fragment
in each node, such as A illustrated in Fig. 2. Suppose the
direct read arrival rate of the first fragment in the jth storage
node is A\, where j = 1,2, ..., n. Suppose x; is the fraction
of direct reads and 1—x; is the fraction of degraded reads by
the other n—1 fragments in the same codeword. Accordingly,
the actual direct read arrival rate of this fragment is zje;\y;
where e; = 1 when the first fragment in the jth node is a
data fragment and e; = 0 when the first fragment in the
jth node is a parity one, since there is no direct read to
parity fragments in practice. The degraded read arrival rate
to the first fragment in the jth node from the other n — 1
nodes is (1 — xl)pael)\al + ...+ (1 *‘Tj—l)paej—lAa(j—l) +
(1 = zj11)pacjsrirag+1) + o + (1 — Tn)Pa€nAan, Where
Do = % in (n, k) MDS-coded systems and p,, can take dif-
ferent values according to different types of codes or specific
dispatch schemes. Suppose the k-access read arrival rate to
file A is A4, then the k-access read arrival rate for the first
fragment in each node is paA 4, where pa = % on the av-
erage in (n, k) MDS-coded systems. p4 can also take other
values according to the code types and dispatch schemes.
Considering all the three types of read together, we can
get the general read arrival rate of Ttlhis fragment in the jth

storage node as A\, = z;€; A0+ ( Y. (1 — Zm)Pa€mAam—
1

(1 — z;)paejra;) + Para and tTlg average general read



arrival rate for the first fragment in all the n nodes as

A =15 [wjejhaj + (n—1)(1 — z;)paejAaj] + para.

The result of the general read arrival rate is not influenced
by the distributions of request arrivals and services, and
consequently, we can apply it under different conditions.

E. Latency Analysis

The Random Dispatch Scheme (RDS) is the default
scheme in our model, and its key idea is that for each
k-access read request, the dispatcher randomly distributes
it to any k£ out of n nodes and for a degraded read, the
dispatcher randomly distributes it to any & out of the n — 1
remaining nodes. Obviously, this scheme is very simple and
does not need other information or resources, thus making
it the default scheme in many practical distributed storage
systems.

From the results of real traces over Amazon S3 in
[3], [14], it is observed that there is negligible correlation
between the service times of different requests. Accordingly,
we will treat request service times as independent and
identically distributed (i.i.d.) variables.

In our model, we dispatch requests to different storage
nodes and can easily calculate different task arrival rates
for each node. Consequently, for each storage node in an
n-node structure, we can construct a queueing system with
one single server to study its access latency separately. Then
we can obtain the latency performance of the whole n-node
structure.

Theorem 1: In a systematic (n, k) MDS-coded storage
system with RDS, the average latency of general read tasks
of each node in an n-node structure is W;, i = 1,2, ...,n.
Suppose we have ascendingly sorted W,;, then the average

: 1
access latency of k-access read requests is ——7 Zk Wai-
i=

Proof: In a (n,k) MDS-coded storage system, some
fraction of direct reads can be transferred to degraded reads.
Even though there is no direct read request to the parity
fragments, they will indirectly serve direct reads by helping
finish degraded read tasks.

However, since each k-access read request will be dis-
patched to any k£ of the n nodes, its access latency is
determined by the largest access latency from the k£ nodes.
Since we have sorted W,; in ascending order, each latency
Wai, i = k,k + 1,..n can be the longest access latency
from k nodes with equal probability, so the average access

latency of k-access read requests is n%kﬂ Z Wi The

count method here is in line with the model iln_lflél]. (Note
that we suppose random dispatch here, for other schemes
such as RRS, each request will be dispatched to all the n
nodes.) [ |

Theorem 2: In a systematic (n,k) MDS-coded storage
system with RDS, for any data fragment in the jth node,
x; is the fraction of direct reads and 1 — z; is the fraction

of degraded reads by the other n — 1 fragments in the same
codeword. Suppose the average latency of the data fragment
is Wy, 5 = 1,2,...,k and the average latency of the other
n — 1 fragments in a codeword is Wy;, ¢ = 1,2,...,n —
1 and we have ascendingly sorted W,;, then the average
access latency of direct read requests to the data fragment

n—1
in the jth node is z;W,; + (1 — x;)=% > Wa,, where
i=k

i=12 ..k

Proof: In the background of Theorem 2, the fraction
x; of direct reads directly go to the data fragment in the
jth node, and obviously, the average access latency is W ;.
While the fraction 1—x; of direct reads of the data fragment
in the jth node are transferred as degraded reads to the
other n — 1 fragments in the same codeword except for the
data fragment in the jth node. In RSD, the degraded reads
randomly dispatch each request as degraded read task to any
k out of the n — 1 remaining fragments and consequently,
similar to the proof of Theorem 1, the average latency of
degraded reads is determined by the largest access latency
from the remaining n — 1 fragments. Since we have sorted
Wair @ = 1,2, ...,n — 1 of the remaining n — 1 fragments
in ascending order, each latency W, it =k, k+1,..n—1
can be the longest access latency from £ nodes with equal

probability, so the average access latency of degraded reads
n—1

is %k > Wa,. Accordingly, with the fractions of direct

n

i=k
read tasks and degraded read tasks, we can get the average

access latency of direct read requests to the data fragment
n—1

in the jth node is z;W,; + (1 — z;)-2 Y- Wy,, where
i=k
j=1,2, ..k ' n

III. MODEL APPLICATIONS

(1) Applications to Different Codes and Schemes

The key idea of our performance model is to use different
values of p, and p4 to reflect almost all the key features
of different types of codes and different dispatch schemes.
Some specific applications of our performance model to
various codes and schemes are summarized in Table 1.

Even though additional requests can be cancelled after the
first k£ tasks have been finished, RRS will inevitably increase
the actual task arrivals to each node. £ > 1 is a parameter
to properly increase the value of p, and p4 to reflect the
additional cost of redundant requests, and it can be adjusted
according to the practice. For example, £ = 1 means no
additional cost and £ = 1.1 can represent 10% additional
cost since it increases the workload by 10% for each node.
Previous work [23] assumes the additional cost of redundant
request will decrease the service rate of each storage node,
while we suppose that additional cost will increase the actual
request arrival rate (system load), and we will show that our
model captures more of the reality in the evaluation section.

(2) Further Discussion of RRS



Table I
SUMMARY OF APPLICATIONS TO DIFFERENT CODES AND SCHEMES

Code Type Scheme Pa PA
s : T T
(¢, 1)Replication | Random dispatch o B
(¢, 1)Replication | Redundant requests | & cil 13 %
(¢, 1)Replication | Changing code rate ﬁ %
(n, k)MDS Code | Random dispatch _k_ E
n—1 n
(n, k)MDS Code | Redundant requests | & 5 I3 %
(n, k)MDS Code | Changing code rate ﬁ %
Note: ¢ is the number of copies with Replication, £ is a
parameter to reflect the additional cost of redundant requests.

Recently, a lot of work demonstrates that we can reduce
access latency by sending redundant requests in distributed
storage systems. Some of the work [5], [8], [9] are based on
theoretical analysis, while some [11], [14] are also based on
trace-driven simulations. However, almost all the previous
work supposes that all requests are k-access requests and
ignores direct reads. However, with our model, similar to
RDS, we can easily obtain the average access latency of
both k-access and direct read requests with RRS.

Corollary 1: With RRS, the average access latency of k-
access read requests is W, and the average access latency
of direct read requests to the data fragment in the jth node
is 2, Wy + (1 — 2;)Wag, where j = 1,2,..., k.

It is straightforward that with RRS, the access latency of
k-access read requests depends on the kth smallest value
among Wy;, ¢ = 1,2,...,n, that is W, and similarly, the
access latency of degraded reads relies on kth smallest value
among W,; of the other n — 1 fragments. Then based on the
results of RDS in Theorems 1 and 2, we can easily get the
results in Corollary 1.

From Theorem 1 and Corollary 1, we can see that the
average latency of k-access read request depends on the
mean value of the largest n — k 4+ 1 values among W,
i = 1,2,...,n in RDS while in RRS, it relies on the kth
smallest value among W, ¢ = 1,2,...,n, that is Wyg.
Clearly, RRS is superior to RDS. Similarly, from Theorem
2 and Corollary 1, we can also easily see the advantage of
RRS over RDS in terms of the latency performance of direct
reads. The degree of superiority depends on the value of the
direct read fraction x;, with the lower the x;, the greater
the superiority.

Note that the analysis above assumes the same value of
W, for both schemes and thus ignoring the additional cost
of redundant requests. So, the advantage of RRS over RDS
depends on specific conditions.

In this paper, we focus on MDS codes but we also
study the latency of non-MDS codes in another version of
our work [24]. Recently, many non-MDS codes have been
proposed, such as Local Reconstruction Code [15], [25].

IV. PERFORMANCE EVALUATION
A. Simulation Setup
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Figure 4. Latency performance of k-access read requests in (4,2) MDS
and 2x replication systems.

We simulate systems with (n, k) MDS coding and (c, 1)
Replication, respectively. We use different parameters of n, k
and ¢, and find that they exhibit similar results. We assume
all read requests arrive as a Poisson process with parameter
A to an m-node structure in our simulations. Besides, we
suppose both k-access and direct read requests possess the
same priority. We take the access latency over 1000 sample
paths for each experiment.

B. Simulation Results and Analysis

Since the measurements over Amazon S3 in [3] indicates
that downloading time can be accurately approximated as an
exponentially distributed random variable. As with previous
work [9], [26], we conduct experiments under exponential
service times with parameter p for each storage node. From
the results of real traces over Amazon S3 [14], we observe
that the average smallest service time of reading a 1MB
file is around 40 msec, and we can regard it as the actual



1000 T

o0k (4,2) MDS; Random; x=0.5 o
—#&— (4,2) MDS; Redundant; x=0.5; No cost I
—*— (4,2) MDS; Random; x=0.9
80011 —— (4,2) MDS; Redundant; x=0.9; No cost o
2x Replication; Redundant; 10% cost
7001 2x Replication; Redundant; No cost B
—#— 2x Replication; Random !
| = #* = (4,2) MDS; Redundant; x=0.5; 10% cost i .l
(4,2) MDS; Redundant; x=0.9; 10% cost !

=y

I

=)

S
T

Access Latency (msec)
v
(=3
=]
T

w

=]

=]
T

1001

; ; ;
10 15 20 25 30 35 40 45 50 55 60
Arrival rate (Requests/sec)

(2)

200 ; —
(4.2) MDS; Random: x=0.5 h

—4A— (4,2) MDS; Redundant; x=0.5; No cost 1

180 —*— (42) MDS; Random; x=0.9 !

—#— (4,2) MDS; Redundant; x=0.9; No cost
2x Replication; Redundant; 10% cost

2x Replication; Redundant; No cost
—#— 2x Replication; Random

— # —(4.2) MDS: Redundant; x=0.5: 10% cost
(4,2) MDS; Redundant; x=0.9; 10% cost

Access Latency (msec)

10 15 20 25 30 35 40 45 50 55 60
Arrival rate (Requests/sec)

(b)

Figure 5. Latency performance of direct read requests in (4,2) MDS and
2x replication systems.

average service time with the queueing delay removed.
Consequently, we suppose the size of each fragment is IMB
and set . = 25 requests/sec in our simulations.

First, we examine the latency performance of coding
((4,2) MDS) and replication (2x) in the case when there are
only k-access reads, which is widely discussed by previous
work [3], [4], [5], [9]. Since we also consider the additional
cost of RRS, we get more practical results. As shown in
Fig. 4 (a) and (b), where (b) is the expanded part of (a),
corresponding to small access latency, we can observe that,
for any k-access read, the (4,2) MDS invariably outperforms
2x Replication in terms of access latency under different
conditions. It is also noted that the access latency under RRS
is strictly smaller than that under RDS when no additional
cost is considered. The two results above are in line with
previous work. While if we consider a 10% additional cost,
the latency performance under RDS is superior to that
under RRS. This observation validates our analysis in the

last section. Therefore, some theoretical results [9] without
considering the additional cost of redundant requests are
overly optimistic and may not hold in practice.

In addition, we study the latency performance of coding
((4,2) MDS) and replication (2x) in another case when there
are only direct reads in the systems. To facilitate under-
standing, we suppose the number of direct read requests
to the two data fragments is the same. As illustrated in
Fig. 5 (a) and (b), where (b) is the expanded part of (a),
corresponding to small access latency, we can see that 2x
Replication delivers lower access latency compared with
(4,2) MDS code no matter what the direct read fraction x
is. This result is totally different from that of k-access read
requests. The reason is that Replication can easily balance
the load of direct reads between different copies, while MDS
code can only transfer part of the direct reads via degraded
reads which will inevitably increase the whole workload in
the system, leading to higher access latency. It can also be
observed that (4,2) MDS code with x = 0.9 suffers much
higher access latency compared with (4,2) MDS code with
x = 0.5. It is not surprising since when x = 0.9, 90% direct
read requests go to the two data fragments and only 10%
of them are transferred to parity fragments with degraded
reads. However, the system can reasonably transfer around
half of the direct reads to parity fragments when x = 0.5.
That is, MDS code with x = 0.5 can achieve better load
balancing compared with that with x = 0.9, thus reducing
access latency, which also verifies our analysis in the last
section. Similar to the results in Fig. 4, the effectiveness of
RRS on reducing access latency compared with that of RDS
also depends on the additional cost of redundant requests.

Then, in the following simulations, we use real service
time traces from Amazon S3 shared by the authors of [14].
These traces are for read files of IMB in size from an S3
bucket, located in North California region.
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Latency performance of direct reads in (6,3) MDS storage



We first compare the numerical and simulation results
of direct reads in (6,3) MDS-coded storage systems. As
illustrated in Fig. 6, the dotted lines are simulation results
and the solid lines are numerical results. Numerical results
can be obtained from Theorems 1 and 2 and Corollary 1,
and we assume that the queueing delay of each storage node
is that of an M /M /1 queue and the service rate i = 6. The
arrival rates (x-axis) are the total requests to a codeword
and different data nodes have different request arrival rates.
We can observe that, for both numerical and simulation
results, the random scheme achieves lower latency than the
redundant scheme when the request arrival rate is high and
the redundant scheme without incurring any additional cost
can realize lower latency than the random scheme when
the request arrival rate is low. Besides, with 10% additional
cost, the redundant scheme performs poorly compared with
the random scheme in terms of latency. We can also find
that, compared with simulation results when there is 10%
additional cost, our proposed numerical model with 10%
additional cost of request arrival rate, i.e., increasing the
system load by 10%, can better capture the reality than the
previous model [23] with 10% additional cost of service
rate. All the above demonstrate that our performance model
works well and can easily obtain the latency performance of
direct reads.
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Latency performance of k-access reads in (6,3) MDS storage

Next, let us compare the numerical and simulation results
of k-access reads in (6,3) MDS-coded storage systems. As
illustrated in Fig. 7, the dotted lines are simulation results
and the solid lines are numerical results from Theorems
1 and 2 and Corollary 1. We can obtain the numerical
results with the same set of curves as in Fig. 6. In this
case, there are both direct reads and k-access reads in the
systems at the same time, while we focus on the latency
performance of k-access reads. The arrival rates on the x-axis
are the total requests to a codeword, and different data nodes

have different request arrival rates. Similar to Fig. 6, both
numerical and simulation results deliver similar conclusions.
It is noted that RRS achieves lower latency than RDS in
this case. Besides, with 10% additional cost, the redundant
scheme performs worse than that without. All the above
demonstrate that our performance model works well and can
easily obtain the latency performance of k-access reads.

V. CONCLUSION AND FUTURE WORK

Much of the research regarding latency performance only
discusses k-access read requests while we also study direct
read requests. In this paper, we propose a practical model to
analyze latency performance in distributed storage systems.
In this model, we consider all kinds of read tasks, including
direct, degraded and k-access reads, and we also account
for more practical issues, such as the additional cost of
redundant requests. We demonstrate how the new model can
be easily used for different codes and dispatch schemes and
point out that the effectiveness of MDS code and Replication
on reducing access latency is different for direct read and
k-access read requests. We also show that some previous
work may be overly optimistic on the effectiveness of RRS
at improving latency performance considering the additional
cost in practice. We validate our results through simulations
with real service times traces from Amazon S3.

Although in the paper, we focus on read requests, our
model can also be extended to study write requests. Besides,
as repair requests may also impact latency performance [2],
[13], including repair requests in our model will probably
make our model more general. In this paper, we divide direct
read requests into direct and degraded read tasks. It would
be interesting to study how the fraction x of direct read tasks
in this model can influence latency performance.
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