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Abstract—This paper presents an area efficient architecture for
a dual-mode double precision floating point division, which can
either process a double precision (DP) division or two parallel
single precision (SP) division. The dual-mode mantissa division
architecture is based on the series expansion methodology,
and implemented in an iterative fashion. A dual-mode Radix-4
Modified Booth multiplier is designed for this purpose, which
is used iteratively in the architecture of dual-mode mantissa
computation. The proposed dual-mode division architecture is
synthesized using UMC 90nm technology ASIC implementation.
The proposed architecture shows better design metrics in terms
of required area, time-period and throughput as against prior
literature work.

Index Terms—Floating Point Division, Dual-Mode Architec-
ture, ASIC, Configurable Architecture.

I. INTRODUCTION

Floating point arithmetic (FPA) is a basic ingredient of a

large set of scientific and engineering domain applications. To

boost the application performances, arrays of single precision

and double precision computing units are being used as

floating point vector processing. The current research work is

aimed towards the idea of unified vector-processing units. That

is, instead of having separate vector arrays of single precision

and double precision, it can have an array of configurable float-

ing point arithmetic blocks. Where each of these configurable

blocks can process either a double precision or two parallel

single precision computations. This configurable block array

arrangement can lead to significant area improvement, while

providing the required performance.

This paper is focused on the design of a dual-mode double

precision division arithmetic unit. Only few literature are

available on the dual-mode double precision division archi-

tecture [1], [2]. Floating point (FP) division is a core compu-

tation required in a multitude of applications. The proposed

architecture can be configured either for a double precision

or two parallel (dual) single precision division computations,

and named as DPdSP division architecture. The proposed

architecture is based on the series expansion methodology

of division algorithm ([3]). Series expansion method is a

multiplicative division method, which provides a hardware

efficient architecture for a given precision requirement [4]. A

dual-mode Radix-4 Modified Booth multiplier is designed for

the purpose of mantissa division. Also, since the underlying

integer multiplier in mantissa division unit has the major cost

in terms of required area, an iterative architecture is proposed

to achieve area efficiency. The present work is build upon the

[2], with a practical approach for DPdSP division architecture.

Compared to [2], which has presented an impractical single

cycle implementation with large area requirement, the present

work provides a different architecture for the most complex

unit, the mantissa division (with some novel architectural

proposal), which constitutes more than 80% of hardware

resources in FP division architecture.

The main contributions of this work can be briefly summa-

rized as follows:

• Proposed dual-mode DPdSP division architectures with

sub-normal computational support, which can be config-

ured either for a double precision division or two parallel

single precision divisions.

• A novel dual-mode Radix-4 Modified Booth multiplier

architecture is proposed, which is the main constituent of

the proposed dual-mode mantissa division architecture.

II. UNDERLYING MANTISSA DIVISION METHOD

The algorithmic methodology for mantissa division archi-

tecture is discussed here. It is based on the series expansion

method of division, as follows.

Let m1 be the normalized dividend mantissa and m2 be the

normalized divisor mantissa, then q, the mantissa quotient, can

be computed as:

q =
m1

m2

=
m1

a1 +a2

= m1(a1 +a2)
−1 = m1(a

−1
1 −a−2

1 a2 +a−3
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where, a1 and a2 are parts of division mantissa as below.

m2 →

a1
︷ ︸︸ ︷

1.xxxxxxxx
︸ ︷︷ ︸

W−bit

a2
︷ ︸︸ ︷

xx . . . . . . . . . .xxxxxxx

Here, the pre-computed value of a−1
1 acts as an initial

approximation for m−1
2 , which further improves with remain-

ing computation in (1). Here, the size W (bit width) of a1

determines the size of memory (to store a−1
1 ) and the number

of terms from the series expansion, to perform the computation

for a given precision. For a good balance among W and

required number of terms, bit width of W = 8 for a1 is selected,

which requires 7 terms (up to a−7
1 a6

2) for double precision, and

3 terms (up to a−3
1 a2

2) for single precision requirement. For

dual-mode architecture design, a unified equation for double

and single precision processing is formulated as below.
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Here, SP part computes for single precision, while entire

equation process the double precision. The interesting fea-

ture of (2) forms the basis of sharing hardware resources

to efficiently model the dual-mode architecture for mantissa

division computation, which is capable of processing either a

DP mantissa or two SP mantissa divisions. The size of look-

up table to store a−1
1 is taken as 28 ×53 for DP and 28 ×24

for SP, which is sufficient for both precision.

III. PROPOSED DPDSP DIVISION ARCHITECTURE

The proposed architecture is shown in Fig. 1. It is composed

of three pipelined stages. Two 64 bit operands, one dividend

(in1) and another divisor (in2) are the primary inputs along

with the mode-control signal d p_sp (double precision or dual

single precision). Both of the input operands either contains

DP operands (as entire 64-bit pair) or two parallel SP operands

(as two sets of 32-bit pair), as shown in Fig. 2.

A. First-Stage Architecture

First stage process for data-extraction, exceptional case

handling, and sub-normal processing. It also includes the

part of mantissa division unit, the pre-fetching of initial

approximation of divisor mantissa inverse from look-up table.

The data extraction computation takes the primary operands

and extract the signs, exponents and mantissas components
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Fig. 3: DPdSP Dual Mode Mantissa Division Architecture

for double precision and both single precision, based on

their standard formats. The sub-normal (_sn) handling and

exceptional checks computations are done using traditional

methods.However, as the 8 MSB bits of DP exponent overlap

with SP-2 exponent (as shown in Fig 2), the checks for sub-

normal, infinity and NaN (Not-A-Number) have been shared

among SP-2 and DP. Similarly, it also performs checks for

divide-by-zero (_dbz) and zero (_z), and have been shared

among DP and both SPs.

After above processing, a unified set of mantissa (M1 and

M2) is generated using two 2:1 MUX (as shown in Fig. 1),

which contain the mantissa either for DP or for both SPs.

This unification of mantissas helps in designing a tuned data-

path processing for later stage computation, which results in

efficient resource sharing. The next two units, the leading-one-

detector (LOD) and dynamic left shifter, in this stage perform

sub-normal processing. They bring the sub-normal mantissa

(if any) into the normalized format. The details on dual-mode

LOD and dual-mode dynamic left shifter architecture can be

sought from [2].

Above processing produces mantissas into normalized form

m1 and m2, as shown in Fig. 1. Further, in this stage of

architecture, the 8-bit MSB part (a1) of normalized divisor

mantissas (m2) are used to fetch the pre-computed initial

approximation of their inverse. It is shown in the first-stage

part of Fig. 3, DP_SP2 LUT (256x53) is shared for DP and

SP-2 initial approximation, and SP1 LUT (256x24) works for

SP-1 only.

B. Second-Stage Architecture

This stage of architecture computes the sign, exponent

and mantissa processing of FP division arithmetic and the

computation related to right shift amount. The computations

related to exponent and right shift amount processing are done

using traditional methods. These computations are processed

separately for DP and both SPs.

The dual mode mantissa division processing is the most

crucial component of the FP division architecture. The man-

tissa computation architecture includes the unified and dual-

mode implementation of (2). This computation is built around

a dual-mode booth multiplier, in an iterative fashion. A dual-
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mode finite state machine (FSM) is designed which decides

the effective inputs for multiplier in each state.

1) Dual-Mode Radix-4 Modified Booth Multiplier Architec-

ture: The architecture is based on the Radix-4 Modified Booth

Encoding and shown in Fig 4. It is a 54-bit integer multiplier

(for DP processing), which can also process two parallel

sets of 24-bit unsigned operands (for two SPs processing)

multiplication. The presented dual-mode multiplier has three

input operands (two multiplicands and a multiplier). A set of

two inputs (in1_t1 and in1_t2) forms the multiplicand operands.

Here, in1_t1 consists of either ‘DP multiplicand operand’ or

‘SP-1 multiplicand operand at the LSB side’, and in1_t2 con-

sists of either ‘DP multiplicand’ or ‘SP-2 multiplicand operand

at the MSB side’. While, the multiplier input (in2) contains

multiplier operands either for DP, or for both SPs with 6-bit

zero in between (see top portion of Fig. 4). Correspondingly,

two-sets of partial products (PP1 and PP2) are generated.

Partial products PP1 are the result of in1_t1 and in2, and PP2

is derived from in1_t2 and in2. Here, the inputs in1_t1, in1_t2
and in2 are built so that, in dual-SP mode processing the single

precision partial products (PP1-SP1 and PP2-SP2) and their

reduction do not overlap (Fig. 4), and produce two distinct

results for SP-1 and SP-2 multiplication, respectively.

Therefore, the sum of all partial products will generate

product for DP operands in DP-mode or for both SPs in dual-

SP mode. A DADDA-tree of 8 levels is designed to compress

all the partial products into two operands, which are further

added using a parallel-prefix Kogge-Stone final adder. The

final product contains either DP or dual-SP results as shown

in Fig. 4. Compared to the contemporary Modified Booth

multiplier, the proposed dual-mode Modified Booth multiplier

requires only three 2:1 MUXs as an area overhead, which are

needed for the input operands multiplexing.

2) Dual-Mode Iterative Mantissa Division Architecture:

The mantissa division is designed in an iterative fashion to

S1 S2 S3

S4S5S6S7

dp_sp = 0

S0

done=0

S8

done=1

A B C

D, E

FGA.G, A.EH

I E

Fig. 5: DPdSP Dual-Mode Iterative Mantissa Division FSM

have an area efficient architecture. The architecture is based

on the unified implementation of (2), which can process either

a DP mantissa division or two parallel SPs mantissa divisions

by inclusion of above discussed dual-mode modified Booth

multiplier. Here, m1 (dividend) and m2 (divisor) are normalized

mantissas which contain either DP mantissas (d p_m1[52 :

0] and d p_m2[52 : 0]) or both SPs mantissas (sp1_m1[23 :

0], sp1_m2[23 : 0], sp2_m1[23 : 0] and sp2_m2[23 : 0]), as

shown in Fig. 3. Divisor mantissa (m2) is partitioned into a1

(first 8-bit right to the decimal point) and a2 (all remaining

bits right to the a1), for DP and both SPs, as below.

m2 →

a1
︷ ︸︸ ︷

1.xxxxxxxx
︸ ︷︷ ︸

8bit

a2
︷ ︸︸ ︷

xxxxxxx . . . . . . . . . .xxxxxxx
︸ ︷︷ ︸

DP:44−bit, SP:15−bit

For the ease of understanding, various terms of (2) are listed

in (3). From these abbreviations in (3), for SPs computation, it

only requires to skip the computation of D, F , G and HDP from

DP flow. A 9 state (S0 to S8) FSM is designed for this purpose.

Each state of FSM determines the inputs (in1_t1, in1_t2 and

in2) for dual-mode modified booth multiplier, and assigned its

output to the designated terms, which proceeds as follows:

A = m1.a
−1
1 , B = a−1

1 .a2, C = B2 = a−2
1 .a2

2, D = B4 =C2 = a−4
1 .a4

2

E = B−C = a−1
1 a2 −a−2

1 a2
2, F = 1+C+D = 1+a−2

1 a2
2 +a−4

1 a4
2

G = EF, HDP = AG HSP = AE I = A−H (3)

S0 : in1_t1 = d p_sp ? {1′b0,d p_m1} : {30′b0,sp1_m1}

in1_t2 = d p_sp ? {1′b0,d p_m1} : {sp2_m1,30′b0}

in2 = d p_sp ? {1′b0,d p_m2_a−1
1 } : {sp2_m2_a−1

1 [52 : 29],6′b0,sp1_m2_a−1
1 }

S1 : in1_t1 = d p_sp ? {10′b0,d p_m2_a2} : {30′b0,9′b0,sp1_m2_a2}

in1_t2 = d p_sp ? {10′b0,d p_m2_a2} : {9′b0,sp2_m2_a2,30′b0}

in2 = d p_sp ? {1′b0,d p_m2_a−1
1 } : {sp2_m2_a−1

1 [52 : 29],6′b0,sp1_m2_a1−1}

A[63 : 0] = d p_sp ? d p_mult[105 : 42] : {sp2_mult[47 : 16],sp1_mult[47 : 16]}

S2 : in1_t1 = d p_sp ? d p_mult[96 : 43] : {30′b0,sp1_mult[38 : 15]}

in1_t2 = d p_sp ? d p_mult[96 : 43] : {sp2_mult[38 : 15],30′b0}

in2 = d p_sp ? d p_mult[96 : 43] : {sp2_mult[38 : 15],6′b0,sp1_mult[38 : 15]}

B[63 : 0] = d p_sp ? d p_mult[96 : 43] : {sp2_mult[38 : 12],sp1_mult[38 : 12]}

S3 : in1_t1 = in1_t2 = in2 = d p_mult[107 : 54] CDP = d p_mult E = B−C

C = d p_sp ? {8′b0,d p_mult[107 : 62]} : {8′b0,sp2_mult[47 : 29],8′b0,sp1_mult[47 : 29]}

S4 : in1_t1 = in1_t2 = in2 = 0 DDP = d p_mult[107 : 87]

FDP[53 : 0] = {1′b1,16′b0,CDP[107 : 71]}+{33′b0,DDP}

S5 : in1_t1 = in1_t2 = E in2 = FDP

S6 : in1_t1 = d p_sp ? G : {30′b0,E[26 : 3]} G = d p_mult[107 : 54]

in1_t2 = d p_sp ? G : {E[26 : 3],30′b0} in2 = A

S7 : in1_t1 = in1_t2 = in2 = 0, AE = {8′b0,sp2_mult[47 : 24],8′b0,sp1_mult[47 : 24]}

AG = {7′b0,d p_mult[107 : 51]} H = d p_sp ? AG : AE

S8 : I = A−H in1_t1 = in1_t2 = in2 = 0 (4)



The finite state machine (FSM) is shown in Fig. 5. For DP

processing it goes through all the states, whereas for dual-

SP it skips states S4 and S5 which performs only DP related

computations. The selection of bits for a term is based on

the position of decimal point and mode of the processing.

Generally, for DP mode, the multiplications are done in 54-

bit (sufficient for it’s precision requirement) and add/sub are

performed in 64-bit (to preserve precision), whereas, for dual-

SPs, the multiplications are done in 24-bit and add/sub are

performed in 32-bit. The mantissa division requires 9 cycles

for DP-mode processing, while only 7-cycles for dual-SPs

processing. Compared to the only DP mantissa division FSM,

the DPdSP mantissa division FSM requires 14 54-bit 2:1

MUXs as an overhead.

C. Third-Stage Architecture

In this stage, for the case of exponent underflow, mantissa

division quotient is first process for the dynamic right shifting.

This is followed by the dual-mode rounding (rounding to

nearest is implemented) of the quotient mantissa, and then

it undergoes normalization and exceptional case processing.

The architectural details of dual-mode dynamic right shifter

can be sought from [2], which can shift either a DP mantissa

or two-parallel SP mantissa. It takes right-shift-amount and

mantissa quotient as primary inputs. Rounding first computes

the unit-at-last-place (ULP) separately for DP and both SPs,

and performs ULP addition. The ULP-addition with quotient

mantissa is shared among DP and both SPs by using two

32-bit incrementer, which individually acts like a SP ULP-

adder, however, their combination (by propagating carry) also

performs for DP ULP-addition. The rounded mantissa quotient

is further normalized separately for DP and both SPs, which

requires 1-bit right shifting. And corresponding exponents

are incremented by one, separately for DP and both SPs.

Further to this, each exponent and mantissa is updated for

exceptional cases (either of infinity, subnormal or underflow

cases), which needs separate units for DP and both SPs.

Finally, the computed signs, exponents and mantissas for

double precision and both single precision are multiplexed

using a 64-bit 2:1 MUX to produce the final 64-bit output

floating point quotient result, which either contains the DP

quotient or two SPs quotients .

IV. IMPLEMENTATION RESULTS

The proposed architecture is synthesized with UMC 90nm

standard cell ASIC library, using Synopsys Design Compiler,

with best achievable timing constraints. It has a latency of

11 cycles and throughput of 10 cycles for DP computation,

a latency of 9 cycles and throughput of 8 cycles for dual-

SP computations. The functional verification is carried out

using 5-millions random test cases for each of the normal-

normal, normal-subnormal, subnormal-normal and subnormal-

subnormal operands combination, along with the other excep-

tional case verification, for both DP and dual-SP mode. It

produces a maximum of 1-ULP (unit at last place) precision

loss which is sufficient for a large amount of applications.

TABLE I: Comparison of DPdSP Division Architecture

[1] [2] Proposed
(Only Normal) (SubNormal) (SubNormal)

Gate Count1 212854 163194 66416

Period (FO4)2 31.4 437.5 38.22

Throughput3 29/15 (DP/dSP) 1/1 (DP/dSP) 10/8 (DP/dSP)

Area × Period

× Throughput 4 193.82×106 71.39×106 25.38×106

1Based on minimum size inverter 21 FO4 (ns) ≈ (Tech. in µm) / 2
3in clock-cycle 4Gate Count × Period (FO4) × Throughput

A technological independent comparison is presented in

Table-I, in terms of Gate-Count for area, FO4-delay for tim-

ings, cycle counts for latency & throughput and in terms of an

unified metric Area×Period (FO4)×T hroughput (in clock−
cycle) (which should be smaller for a better design). Isseven

et. al. [1] has presented an iterative DPdSP division archi-

tecture using Radix-4 SRT division algorithm, without sub-

normal support. Compared to proposed architecture, Isseven

et. al.’s architecture requires much larger area and has poor

Area×Period×T hroughput metric. The prior work presented

in [2] also requires a significantly large area with a poor

Area × Period × T hroughput. Also, due to its single cycle

implementation of [2], this design is not practical. Thus, the

currently proposed architecture is better in terms of design

metrics. To the best of author’s knowledge, literature does not

contains any other dual-mode division architecture, which can

support DP with two parallel SP divisions.

V. CONCLUSIONS

This paper has presented a dual-mode iterative architecture

for DP FP division arithmetic. It can process either a DP or

two-parallel SPs floating point division. All the components

are designed for efficient dual-mode processing and a novel

dual-mode Radix-4 Modified Booth multiplier architecture is

proposed with minimal overhead. The proposed dual-mode

architecture outperforms the prior arts in terms of various

design metrics.
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