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Abstract

Background: Due to the presence of both classical estrogen receptor (ERα) and another ER subtype (ERβ) in ovarian
cancer, hormonal treatment is an attractive option. However, response to tamoxifen in ovarian cancer is modest. The
presence of ERβ variants further complicated the issue. We have recently shown that specifically targeting ER subtypes
using selective ER modulators showed opposing functions of ER subtypes on cell growth. In the present study, the
clinical significance of ERα and ERβ variants (β1, β2 and β5) and the functional effects of ERβ2 and ERβ5 in ovarian
cancer was investigated.

Methods: ERα, ERβ1, ERβ2 and ERβ5 expression were evaluated by immunohistochemistry in 106 ovarian cancer tissues.
The association between ERs expression and clinicopathological parameters or prognosis was analyzed. Ectopic expression
of ERβ2 and ERβ5 followed by functional assays were performed in ovarian cancer cell lines in order to detect their effects
on cell invasion and proliferation.

Results: We found significantly higher nuclear (n)ERα and nERβ5 and lower cytoplasmic (c)ERα expression in advanced
cancers. Significantly lower ERβ1 expression was also detected in high grade cancers. Significant loss of nERα and cERβ2
expression were observed in clear cell histological subtypes. Higher nERβ5 and lower cERβ5 expression were associated
with serous/clear cell subtypes, poor disease-free and overall survival. Positive cERα and higher cERβ1 expression were
significantly associated with better disease-free and overall survival. Furthermore, we found nERβ5 as an independent
prognostic factor for overall survival. Functionally, overexpression of ERβ5 enhanced ovarian cancer cell migration,
invasion and proliferation via FAK/c-Src activation whereas ERβ2 induced cell migration and invasion.

Conclusions: Since tamoxifen binds to both ERα and ERβ1 which appear to bear opposing oncogenic roles, the
histotypes-specific expression pattern of ERs indicates that personalized treatment for women based on ERs expression
using selective estrogen receptor modulators may improve response rate. This study also suggests nERβ5 as a potential
prognostic marker and therapeutic target in ovarian cancer.
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Background
Ovarian cancer contributes to high mortality among all
gynecological malignancies [1]. Primary treatment mainly
involves cytoreductive surgery and adjuvant chemother-
apy. Recurrences are common, albeit most patients have
initial response. Thus, the overall prognosis is poor [2].
Although second line chemotherapy has overall 20–30%
response rates, there are significant side effects. Hormonal
therapy has relatively few side effects, making it as an
attractive treatment option. Ovarian cancer is considered
as a hormone-responsive cancer with estrogen receptors
(ERs) expressed in about 60–100% of ovarian cancers [3].
Tamoxifen is a well-known selective estrogen receptor
modulator (SERM) treatment for breast cancer. However,
it only has a modest response rate (10–15%) in ovarian
cancer [4]. It is crucial to unravel the way to make hormo-
nal therapy more effective in ovarian cancer.
Estrogen acts via ERs. Another ER subtype (ERβ),

which was discovered in 1996, was genetically different
from the classical ERα [5, 6]. They differ not only in
their tissue distribution, but also their ligand binding
specificity and affinity [7]. We and others have found
ERα and ERβ expression in normal and cancerous
ovarian tissues [8, 9], with reduced ERβ expression when
tumor progresses [8, 9]. Our recent study using ovarian
cancer cell lines treated with specific SERMs showed
opposing functions of ER subtypes on cell growth,
suggesting specifically targeting ER subtypes using
SERMs may offer women a new option when ER sub-
types expression is known [10].
Besides subtypes, the presence of ERβ variants (β1-β5)

due to alternative splicing further complicate the
biological significance of ERβ signaling [11]. ERβ1 is the
only isoform capable of binding ligands [11]. So, ERβ
agonists and antagonists only bind ERβ1. ERβ3 is testis-
specific [12]. Although ERβ2 and ERβ5 cannot bind
ligands, they can heterodimerize with ERβ1 and induce its
transcriptional activity ligand-dependently [11]. Differen-
tial expressions of ERβ1, ERβ2 and ERβ5 were found in
colorectal, breast, endometrial and prostate carcinomas
[13–16]. In prostate cancer, high ERβ2 expression was
associated with poor prognosis [17].
Other than the classical genomic pathway, cytoplasmic

ERs are also known to exert effects through non-
genomic signaling [18]. In lung cancer cells, ERβ was
found to have mainly non-genomic actions where ERβ
was found in cytoplasm and could not translocate to the
nucleus [19]. Moreover, ERβ2 has been found to be a
significant prognostic marker in breast cancer with
distinct outcome by nuclear and cytoplasmic expres-
sion, suggesting the importance of its subcellular
functions [14].
A number of previous studies investigated prognostic

roles of ERs in ovarian cancer, but the findings were

controversial [8, 20–22]. A recent study found ERα is
independent prognostic markers for endometrioid ovar-
ian cancers [23]. Moreover, knowledge of ERs in ovarian
caner with different histological subtypes is limited [3].
To the best of our knowledge, the present study is the
only work assessing the subcellular expression of ERα,
ERβ1, ERβ2 and ERβ5 in a well-validated cohort of
different histotypes of ovarian cancers with complete
follow-up data, using specific well-validated antibodies.
The effects and downstream signaling of ERβ2 and ERβ5
on ovarian cancer cell invasion and proliferation were
further investigated.

Methods
Clinical samples
One hundred and-six paraffin-embedded tissue blocks of
ovarian cancer were obtained from Department of
Pathology, University of Hong Kong, Queen Mary
Hospital. All patients underwent surgery with the age
range between 32 to 78 years (mean 50.2 years) and the
follow-up period range between five to 209 months
(mean 62 months). Seventy-six patients also received
platinum/paclitaxel chemotherapy. To confirm diagno-
sis, all samples were histologically reviewed.

Cell lines and subcellular protein extraction
Immortalized ovarian epithelial cell lines (HOSE 6–3,
HOSE 11–12 and HOSE 17–1) and ovarian cancer
cell lines (SKOV-3, OVCAR-3, OVCA 420, OVCA
429, OVCA 433, ES2, TOV-21G and TOV112D) were
cultured as previously described [24, 25]. SKOV-3,
OVCAR-3, ES2, TOV-21G and TOV112D were
purchased from American Type Culture Collection
(ATCC; Manassas, VA). Others were given by Prof.
S.W. Tsao (Department of Anatomy, University of
Hong Kong). Nuclear and cytoplasmic extracts from
SKOV-3 cells were isolated as previously described
[24, 25].

Plasmids, transfection of ERβ2 and ERβ5, treatment with
FAK inhibitor
Full-length sequences of ERβ2 and ERβ5 were assembled
from synthetic oligonucleotides by GeneArt Gene
Syntheses and cloned into pcDNA3.1 V5-His A (Life
technologies, Waltham, MA). The final constructs were
verified by sequencing and transfected along with the
control vector into ES-2, OVCA420 and TOV-21G cells
using Lipofectamine 3000 (Life technologies) and then se-
lected with G418 (800 μg/ml) (Life technologies) [24, 25].
For FAK inhibitor treatment, ERβ5 overexpressing
cells were plated 24 h before treating with the FAK
inhibitor 14 (5 μM; Santa Cruz, Santa Cruz, CA) or
vehicle (water). After 24 h, cells were harvested for
immunoblotting.
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Immunohistochemistry
Immunohistochemistry was done on formalin-fixed,
paraffin-embedded sections using EnVision + Dual Link
System (K4061; Dako, Carpinteria, CA) as previously
described [24, 25]. Antigen retrieval was done by heating
in a pressure cooker with 1 mM EDTA (pH 8.0) (for
ERα, ERβ1 and ERβ2) or citrate buffer (pH 6.0) (for
ERβ5). Antigen were detected with antibodies against
ERα, ERβ1, ERβ2 and ERβ5 (Additional file 1: Table S1).
All four antibodies have been used/validated for immu-
nohistochemical staining in paraffin-embedded tissue
sections [14, 22]. Both the intensity (0 = negative,
1 = faint, 2 = moderate, and 3 = strong) and percentage
(0 = <5%), 1 = 5%–25%, 2 = 26%–50%, 3 = 51%–75%
and 4 = >75%) of stained epithelial cells were assessed
semiquantitatively as previously described [24, 25]. A
composite “Histoscore” was determined by multiplying
the staining intensity by the percentage of stained cells
with 12 as the maximum score. The “histoscores” cut off
at mean was used to define high and low expression
levels of target genes.

Immunoblotting
Protein lysate was subjected to SDS-PAGE, transferred
to PVDF membrane, and probed with antibodies as
listed in Additional file 1: Table S1 and appropriate
secondary antibodies as previously described [10, 24, 25].
Imaging of the bands were detected with ECL Plus
detection system.

Wound healing assay
ES-2 cells were seeded in six-well plates for 24 h. A
wound was made by a sterile pipette tip. Photographs
were taken at time 0 and 7 h to observe the closure of
the wound as previously described [24].

In vitro migration and invasion assays
Cells (1.25 × 105) were plated on the upper side of a
Transwell chamber (Corning, Tewksbury, MA) coated
with or without Matrigel and then migrated or invaded
through the membrane as previously described [24, 25].
After 7 (ES-2), 16 h (TOV-21G) or 24 h (OVCA420),
cells on the upper compartment were removed.
Migrated or invaded cells on the lower compartment were
fixed, stained, and counted. For FAK inhibitor treatment,
cells plated on the upper compartment for 6 h were
treated with FAK inhibitor 14 (5 μM) or vehicle [24, 25].

Cell count method, XTT assay and focus formation assay
For cell count method, cells (3 × 104) were cultured in
growth medium in 12-well or 6-well plates or T150
culture flasks as previously described [24]. After 24 h,
cells were treated with 5 μM FAK inhibitor 14 or
vehicle. Luna™ automated cell counter (Logos Biosystems,

Annandale, VA) was used to count cell number at days 1
(12-well culture plates), 4 (6-well culture plates), 8 and 11
(T150 culture flasks) for ES-2 and days 1, 5, 9 and 11 for
OVCA 420. For XTT assay (Roche), cells (2000 cells/well)
were cultured in 96-well plates. 50 μl/well XTT labeling
mixture was added at day 5. After 4 h incubation at 37 °C,
cell viability was evaluated by assessing the absorbance at
492 nm.For focus formation assay, cells (2500) were
seeded in 6-well culture plates and maintained in growth
medium with fresh medium changed every 3 days. At day
9, cells were stained with 1% crystal violet (Sigma-Alrich).
Numbers of foci were counted.

Statistical analysis
SPSS 20 for Windows was used (SPSS Inc., Chicago, IL).
Data between two groups was compared using Man-
n-Whitney test. Data among multiple groups was com-
pared using Kruskal-Wallis rank test.For survival
analysis, Kaplan–Meier analysis and log-rank test were
done. For multivariate survival analysis, Cox regression
analysis was performed. For correlation analysis, Spear-
man’s rho test was used. P values < 0.05 were considered
statistically significant.

Results
Distinct subcellular localization patterns of ERs in ovarian
cancers
By immunohistochemistry, we demonstrated distinct
subcellular localization patterns of ERα, ERβ1, ERβ2 and
ERβ5 in ovarian cancers (Figs. 1 and 2). Most of ERα
(72%) was localized in the nucleus of ovarian cancers,
but certain portion of ERα (16.7%) also resided in the
cytoplasm (Fig. 1a). All ovarian cancers displayed all
three ERβ variants in the nucleus, and 93, 96 and 68% of
samples showing cytoplasmic ERβ1, ERβ2, and ERβ5
staining, respectively (Figs. 1b and 2). Moreover, nERβ1
(P = 0.041) immunoreactivities in metastatic foci was
statistically lower than their corresponding primary
carcinomas (Additional file 2: Figure S1).

Correlation of ERs expression with clinicopathological
parameters in ovarian cancer
To evaluate the clinicopathologic significance of ERs in
ovarian cancer, “Histoscores” was analyzed with patients’
clinicopathologic parameters (Tables 1 and 2). Higher
nERα (P = 0.012) and nERβ5 (P = 0.03) as well as lower
cERα (P = 0.016) expressions were significantly associated
with advanced stages (stages III-IV). Significantly lower
cERβ1 (P = 0.034) expression was detected in stage IV
carcinomas. Lower nERβ1 (P = 0.046) and cERβ1
(P = 0.046) expressions were significantly associated with
poor histological differentiation (grade 3). nERα
(P < 0.001) and cERβ2 (P = 0.001) expressions were
significantly overexpressed in non-clear cell histological
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subtypes. Significantly higher nERβ1 (P = 0.003) and
nERβ5 (P = 0.039) as well as lower cERβ5 (P = 0.013)
expressions were found in serous/clear cell histological
subtypes.

Association between ERs expression and clinical outcome
Univariate Kaplan-Meier-survival analysis demonstrated
better overall and disease-free survival for cERα positive
(P = 0.027 and P = 0.035; Fig. 3a) and high cERβ1
expression (P = 0.014 and P = 0.021; Fig. 3b) ovarian
cancers. Interestingly, we found inverse relation between
nuclear and cytoplasmic ERβ5 with survival. Significantly
association was detected in high nERβ5 (P = 0.007 and
P = 0.004; Fig. 3c) and low cERβ5 (both P = 0.032;
Fig. 3d) expression with poor overall and disease-free
survival. For overall survival, nERβ5, stage and
chemosensitivity were significant predictors by multi-
variate analysis (all P < 0.05, Table 3).

ERs correlations
Spearman’s ρ test was performed to find correlations
between ERs in ovarian cancers (Additional file 3: Table S2).
nERβ1 correlated directly with cERβ1 (P = 0.003), nERβ5

(P = 0.038). cERβ1 correlated directly with cERβ2
(P = 0.008) and cERβ5 (P = 0.001).

Differential expression of ERs in three normal HOSE and
eight ovarian cancer cell lines and their subcellular
expression in SKOV-3 cells
By immunoblotting, ERα was found in SKOV-3, but not
in HOSE cell lines and other cancer cell lines (Fig. 4a).
Similar expression of ERβ1 was detected in both normal
and cancer cell lines. Higher ERβ2 expression was shown
in SKOV-3, OVCAR-3, OVCA 429 and ES2 than HOSE
6–3. ERβ5 expression was demonstrated in SKOV-3,
OVCAR-3, OVCA 429, TOV-21G and TOV112D, but
not in HOSE cell lines. Western blot analysis revealed
subcellular expression of ERα, ERβ1, ERβ2 and ERβ5 in
nuclear and cytoplasmic fractions of SKOV-3 (Fig. 4b).

Overexpression of ERβ5 increased ovarian cancer cell
invasion and proliferation in association with induced
FAK activation
Stable overexpression of ERβ2 and ERβ5 in ES-2 and
OVCA420 was detected by immunoblotting using His-
Tag antibody (Fig. 5a). To further verify the specificity of
ERβ2 and ERβ5 antibodies, immunoblotting was

Fig. 1 Immunohistochemical staining of ERα (a) and ERβ1 (b) in
serous (SC), mucinous (MC), endometrial (EC) and clear cell (CC)
carcinomas. Scale bar = 100 μm. Insets highlight regions with
higher magnification

Fig. 2 Immunohistochemical staining of ERβ2 (a) and ERβ5 (b) in
serous (SC), mucinous (MC), endometrial (EC) and clear cell (CC)
carcinomas. Scale bar = 100 μm. Insets highlight regions with
higher magnification
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performed on OVCA420 cells after stable overexpression
of ERβ2 and ERβ5. By using anti-ERβ2 and anti-ERβ5
antibodies, increased expression of ERβ2 and ERβ5 was
detected (Additional file 4: Figure S2). Then, we exam-
ined the roles of ERβ2 and ERβ5 on cell migration and
invasion. ES-2 stably transfected with ERβ2 and ERβ5
displayed a faster migration rate when compared to con-
trol cells by a wound healing assay (Fig. 5b). Significantly
increased migration and invasion (P < 0.05) in ERβ2 and
ERβ5 overexpressing ES-2 and OVCA420 cells was
demonstrated by Transwell migration and invasion
assays (Fig. 5c). Significantly increased migration and
invasion in ERβ2 overexpressing TOV-21G cells was also
detected (P < 0.05) (Additional file 5: Figure S3).
Next, we examined the possible downstream pathway

of ERβ5. Focal adhesion kinase (FAK) and c-Src are key
components of cell-matrix adhesion complexes, thus
play important roles on cancer cell migration, invasion
and metastasis [26]. We found ERβ5, but not ERβ2,
induced FAK and c-Src activities as detected by phos-
phorylation on Tyr397 and Tyr416, respectively (Fig. 5a).
To investigate the involvement of ERβ5-induced FAK
activity on cell migration and invasion, overexpressing
ERβ5 ES-2 and OVCA420 cells were treated with a FAK
inhibitor (5 μM FAK inh 14). We found that FAK inh 14
could inhibit FAK activation (Fig. 5d) and abolish not

only basal, but also ERβ5-induced cell migration and in-
vasion (Fig. 5d). We next investigated the effects on cell
proliferation. By cell count method, ERβ5 significantly
induced cell proliferation in ES-2 and OVCA420 cells
after 8 and 9 days respectively (Fig. 6a), albeit no significant
increase of cell proliferation on day 5 (early time point) as
assessed by XTT assay (Additional file 6: Figure S4). By
focus formation assay, the number of colonies from
OVCA420 cells overexpressing ERβ5, but not ERβ2,
increased by about 75% (Fig. 6b). Besides metastasis, FAK
also promotes cell proliferation [27]. Thus, we sought to
examine if ERβ5-induced FAK activation could affect cell
proliferation. Intriguingly, FAK inh 14 (Fig. 6a) blocked the
ERβ5-mediated increase in ES-2 and OVCA420 cell prolif-
eration (Fig. 6a). FAK inh 14 also inhibited OVCA420 basal
cell proliferation (Fig. 6a and Additional file 6: Figure S4).

Discussion
In the present study, we have shown ERα, ERβ1, ERβ2
and ERβ5 expression in nucleus and cytoplasm of
ovarian cancer cells. ERs classically mediate their effects
by genomic pathway [18]. Our recent study has docu-
mented decreased cell growth in ERα/ERβ1-expressing
ovarian cancer cells, SKOV3 and OV2008, treated with
MPP (ERα antagonist) and enhanced cell growth after
treated with PPT (ERα agonist) [10]. An in vivo study

Table 1 Correlation of nucleus and cytoplasmic ERα and ERβ1 with clinicopathological parameters in ovarian cancer

Characteristics Case (n) Nucleus ERα Cytoplasmic ERα Nucleus ERβ1 Cytoplasmic ERβ1

Mean ± SD p-value Mean ± SD p-value Mean ± SD p-value Mean ± SD p-value

Stage (FIGO)

Early (I-II) 49 3.71 ± 3.32 1.00 ± 1.75 5.60 ± 1.94 3.65 ± 1.67

Late (III-IV) 37 5.54 ± 3.12 0.012* ↑ 0.22 ± 0.92 0.016* ↓ 6.35 ± 1.64 0.052* 2.84 ± 1.39 0.101*

Histological grade

Low (1–2) 56 4.11 ± 3.48 0.80 ± 1.62 6.25 ± 1.97 3.39 ± 1.67

High (3) 33 4.85 ± 3.08 0.370* 0.36 ± 1.17 0.178* 5.42 ± 1.68 0.046* ↓ 2.79 ± 1.43 0.046* ↓

Histology

Serous 35 5.43 ± 3.15 0.34 ± 1.14 6.40 ± 1.94 2.91 ± 1.46

Clear Cell 17 1.06 ± 2.02 0.71 ± 1.58 6.76 ± 1.64 3.06 ± 1.78

Mucinous 9 2.22 ± 2.73 0.44 ± 1.33 5.56 ± 2.46 3.44 ± 2.40

Endometrioid 29 5.90 ± 2.68 < 0.001† 1.10 ± 1.82 0.230† 5.20 ± 1.54 0.021† 3.40 ± 1.35 0.567†

Serous/Clear Cell 52 4.00 ± 3.49 0.46 ± 1.29 6.52 ± 1.84 2.96 ± 1.56

Mucinous/Endometrioid 38 5.05 ± 3.09 0.143* 0.95 ± 1.72 0.129* 5.28 ± 1.76 0.003* ↓ 3.41 ± 1.62 0.157*

Clear Cell 17 1.06 ± 2.02 0.71 ± 1.58 6.76 ± 1.64 3.06 ± 1.78

Non-Clear Cell 73 5.23 ± 3.10 < 0.001* ↑ 0.66 ± 1.49 0.905* 5.81 ± 1.92 0.053* 3.18 ± 1.56 0.593*

Chemosensitivitya

Sensitive 63 4.64 ± 3.12 0.76 ± 1.58 6.12 ± 1.93 3.14 ± 1.70

Resistant 13 4.38 ± 3.97 0.885* 0.31 ± 1.11 0.325* 5.85 ± 1.46 0.609* 2.77 ± 0.73 0.409*

Those with significant P-values are underlined. ↑Increase expression. ↓Decrease expression
*Mann–Whitney test; †Kruskal–Wallis rank test
aChemosensitive-patients remained disease free more than 6 months after completion of first-line chemotherapy
Intensity values are expressed as “Histoscores” as specified in Methods
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Table 2 Correlation of nucleus and cytoplasmic ERβ2 and ERβ5 with clinicopathological parameters in ovarian cancer

Characteristics Case (n) Nucleus ERβ2 Cytoplasmic ERβ2 Nucleus ERβ5 Cytoplasmic ERβ5

Mean ± SD p-value Mean ± SD p-value Mean ± SD p-value Mean ± SD p-value

Stage (FIGO)

Early (I-II) 49 5.46 ± 1.50 3.90 ± 1.43 6.61 ± 1.10 1.86 ± 1.67

Late (III-IV) 37 5.65 ± 1.60 0.936* 3.78 ± 1.40 0.701* 7.11 ± 1.22 0.030* ↑ 1.46 ± 1.77 0.165*

Histological grade

Low (1–2) 56 5.49 ± 1.76 3.84 ± 1.58 6.88 ± 1.06 1.70 ± 1.72

High (3) 33 5.64 ± 1.27 0.996* 3.88 ± 1.32 0.784* 6.82 ± 1.29 0.751* 1.67 ± 1.80 0.904*

Histology

Serous 35 5.80 ± 1.68 4.06 ± 1.24 6.89 ± 1.37 1.40 ± 1.77

Clear Cell 17 5.71 ± 1.26 3.00 ± 2.00 7.29 ± 1.11 1.06 ± 1.44

Mucinous 9 4.63 ± 2.26 3.25 ± 1.49 6.22 ± 0.67 1.78 ± 1.64

Endometrioid 29 5.40 ± 1.35 0.608† 4.27 ± 1.14 0.005† 6.70 ± 0.92 0.079† 2.33 ± 1.73 0.071†

Serous/Clear Cell 52 5.77 ± 1.54 3.71 ± 1.59 7.02 ± 1.29 1.29 ± 1.66

Mucinous/Endometrioid 38 5.24 ± 1.58 0.237* 4.05 ± 1.27 0.246* 6.59 ± 0.88 0.039* ↓ 2.21 ± 1.70 0.013* ↑

Clear Cell 17 5.71 ± 1.26 3.00 ± 2.00 7.29 ± 1.11 1.06 ± 1.44

Non-Clear Cell 73 5.51 ± 1.64 0.580* 4.05 ± 1.25 0.001* ↑ 6.73 ± 1.14 0.095* 1.82 ± 1.77 0.134*

Chemosensitivitya

Sensitive 63 5.56 ± 1.57 3.64 ± 1.36 6.84 ± 1.13 1.67 ± 1.72

Resistant 13 5.92 ± 1.38 0.595* 4.46 ± 1.66 0.105* 6.92 ± 1.12 0.387* 1.69 ± 1.93 0.846*

Those with significant P-values are underlined. ↑Increase expression. ↓Decrease expression
*Mann–Whitney test; †Kruskal–Wallis rank test
aChemosensitive-patients remained disease free more than 6 months after completion of first-line chemotherapy
Intensity values are expressed as “Histoscores” as specified in Methods

Fig. 3 Kaplan-Meier overall (left panel) and disease-free (right panel) survival curves for ovarian cancer patients with positive (histoscores > 0) and
negative cERα (a) expression, and high and low levels of cERβ1 (b), nERβ5 (c) and cERβ5 (d) (cut off at mean)
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also demonstrated that E2 significantly enhanced tumor
size and promoted lymph node metastasis in ER+

ovarian tumors [28]. These findings together with our
present data showing higher nERα expression in ad-
vanced stages of disease suggested an aggressive role of
E2/nERα signaling in ovarian cancer. Cytoplasmic ERs
are also known to exert effects through non-genomic
signaling, which may involve cross-talk with other
growth-factor receptors or cytoplasmic kinases [18].
Specific cytoplasmic ERα staining has been detected in
breast cancer clinical samples using multiple validated
antibodies, albeit the average incidence was only 1.5%
[29]. This study has validated multiple antibodies includ-
ing the one that bind to the “SP1” epitope [29]. The
present study using an antibody that recognizes “SP1” epi-
tope also detected both nuclear and cytoplasmic staining
in ovarian cancer clinical samples. We found a significant
correlation between positive cERα immunoreactivity and
longer disease free and overall survival. Thus cERα
could be a potential prognostic marker in ovarian
cancer. A recent study showed that extranuclear ERα
was involved in the regression of tamoxifen-resistant
PKCα-overexpressing breast tumors [30]. It is possible
that cERα plays anti-oncogenic roles in ovarian cancer
which will be studied in near future.
This study revealed lower nERβ1 immunoreactivity in

16 metastatic foci than their paired primary cancers,
suggesting that loss of nERβ1 may contribute to ovarian
cancer metastasis. This was in agreement with previous
findings where overexpression of ERβ1 was shown to

repress in vitro cell migration and invasion in ovarian can-
cer cells [31, 32] as well as reduce tumor formation in sites
of metastasis in vivo [33]. Besides cell migration, ectopic
overexpression of ERβ1 also inhibited proliferation of
ovarian cancer cells which was accompanied by induced
p21, a cyclin-dependent kinase inhibitor, and reduced
cyclin A2 mRNA expressions [31, 34]. Moreover, we re-
cently reported that ovarian cancer cells treated with DPN
(ERβ1 agonist) suppressed cell growth in vitro and in vivo
and was accompanied by inhibition of phosphorylation of
AKT, a non-genomic signaling pathway [10]. All these
findings together with our present data showing lower
immunoreactivity of cERβ1 in advanced carcinomas and
poor histological differentiation as well as correlation with
poorer survival further support that ERβ1 present in the
cytoplasm functions as a tumor suppressor in ovarian
cancers [20, 35].
We also showed significantly higher nERβ5 immuno-

reactivity in late stage disease and serous and clear cell
histological subtypes. These findings suggest that nERβ5
affects the aggressiveness of the disease. Furthermore, a
significant correlation between high nERβ5 immunore-
activity and poorer survival demonstrated nERβ5 as a
potential prognostic marker in ovarian cancer. In
contrast to nERβ5, we demonstrated cERβ5 as a favor-
able prognostic marker in ovarian cancer. We further
found lower cERβ5 immunoreactivity in late stage
disease. In non-small cell lung cancer, a study also docu-
mented cERβ5 to be negatively correlated with patho-
logical stage and predicted long overall and disease-free
survival [36]. Our data suggested that while nERβ5 may
have an oncogenic role in ovarian cancer, cERβ5 may
have anti-oncogenic role. Studies on the functional roles
of ERβ2 and ERβ5 in cancers are limited. ERβ5 in breast
cancer cells has been found to enhance apoptosis
induced by chemotherapeutic agent through Bcl2L12
interaction [37]. In prostate cancer cells, ERβ5 increased
cell migration and invasion [16]. A recent study has

Table 3 Cox regression analysis for factors affecting overall survival

Prognostic factor Overall survival

P Hazard Ratio 95% Confidence Interval

Nucleus ERβ5 0.024 3.297 1.169–9.303

Disease stage 0.008 3.831 1.411–10.402

Chemosensitivity < 0.001 12.984 4.681–36.011

Fig. 4 a ERα, ERβ1, ERβ2 and ERβ5 expression in immortalized human normal ovarian epithelial cell lines, HOSE 6–3, HOSE 11–12, HOSE 17–1 and
ovarian cancer cell lines, SKOV-3, OVCAR-3, OVCA 420, OVCA 429 and OVCA 433, ES2, TOV-21G, TOV112D as determined by immunoblotting. Protein
samples were resolved in two gels at the same time. b ERα, ERβ1, ERβ2 and ERβ5 in subcellular protein fractions of SKOV-3 (T: total cell lysate, N:
nuclear fraction, C: cytoplasmic fraction)
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demonstrated antiapoptotic function of ERβ2 in
advanced serious ovarian cancer [38]. In this study, we
presented the first time the cell migration, invasion and
proliferation enhancement roles of ERβ5 in ovarian can-
cer cells. FAK, a cytoplasmic protein tyrosine kinase, has

been shown to be overexpressed and activated in numer-
ous solid cancers and is linked to poor prognosis includ-
ing in ovarian cancer [39]. In preclinical studies, FAK
inhibitors inhibited tumor growth and metastasis. A safe
and well-tolerated FAK inhibitor has also been reported

Fig. 5 Overexpression of ERβ2 and ERβ5 increased ovarian cancer cell migration and invasion. ERβ5-mediated ovarian cancer cell migration and
invasion involved FAK activation. a Immunoblot analyses of exogenous His-tagged ERβ2 and ERβ5, p-FAK Tyr397, FAK, p-c-Src Tyr416 and c-Src in
ES-2 (left panel) and OVCA420 (right panel) cells stably transfected with His-tagged ERβ2, ERβ5 or control vector. b Wound healing assay and c in
vitro migration and invasion assays in ES-2 and OVCA420 cells overexpressing ERβ2 and ERβ5. Upper panel: representative images of migrating or
invading cells. Lower panel: Cell migration or invasion presented as percentage of control; n = 3; *, p < 0.05. d Left panel: immunoblot analysis
on p-FAK Tyr397 and FAK in ES-2 and OVCA420 cells overexpressing ERβ5 in the presence or absence of FAK inh 14 or water (vehicle). Right panel:
in vitro migration and invasion assays in ERβ5 overexpressing ES-2 and OVCA420 cells in the presence or absence of FAK inh 14 or water. Cell
migration or invasion presented as percentage of control; n = 3; *, p < 0.05
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in a clinical trial study [39]. Moreover, activated FAK
can form complex and activate c-Src [39]. Our present
study demonstrated that ERβ5-induced cell migration,
invasion and proliferation may involve FAK/c-Src activa-
tion in ovarian cancer. nERβ5 may have an oncogenic role,
wherease cERβ5 may have anti-oncogenic role in ovarian
cancer, yet, we detected activation of cytoplasmic tyrosine
kinases FAK/c-Src by ERβ5. It is possible that the activation
of FAK/c-Src is an indirect activation via nERβ5 target
genes, which will be studied in near future. Unlike ERβ5,
ERβ2 was shown to affect ovarian cell migration and inva-
sion, but not proliferation. It would be worthy to investigate
the downstream target regulating ERβ2-induced ovarian
cancer cell migration and invasion in future study.
Interestingly, the present study demonstrated differen-

tial ER subtypes and variants expression in different
histological types of ovarian cancer. nERα was barely
detectable in clear cell histological subtype. Such observa-
tion has been reported by others and loss of ERα in clear
cell tumor was related to hypermethylation [40, 41]. We
further detected significantly higher nERβ1 and nERβ5 as
well as lower cERβ5 in serous/clear cell histological
subtypes. Moreover, nERβ1 positively correlated with
nERβ5 whereas cERβ1 positively correlated with cERβ5,
suggesting ERβ1 and ERβ5 maybe tightly regulated. A
recent Ovarian Tumor Tissue Analysis consortium study
also revealed association between ERα expression and
histotype-specific survival. ERα is an independent prog-
nostic marker for endometrioid ovarian cancers [23].

Conclusions
There are now increasing evidence to suggest that
targeting individual ER subtypes by new SERMs with
different ERα/ERβ1 binding affinities can maximize the
hormonal response [3, 10, 42]. The differential ERα and
ERβ1 expression in ovarian cancer and in different
histological types as shown in the present study may help
to explain the poor response rate of tamoxifen (10–15%)
in ovarian cancer because tamoxifen binds to both ERα
and ERβ1 and most clinical studies using tamoxifen
therapy included patients with all histotypes [43, 44].
Moreover, our findings showed ERβ5 plays an important
role in ovarian tumorigenesis by regulating cell migration,
invasion and proliferation via FAK/c-Src activation. This
study also suggests nERβ5 as a potential prognostic
marker and therapeutic target in ovarian cancer.
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Additional file 1: Table S1. Primary antibodies used for
immunohistochemistry and immunoblotting. (DOC 43 kb)

Additional file 2: Figure S1. Box plot showing comparison of the
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Additional file 3: Table S2. Correlation coefficients between ERs
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Additional file 4: Figure S2. Immunoblot analyses of ERβ2 and ERβ5 in
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Fig. 6 Overexpression of ERβ5 increased ovarian cancer cell proliferation and involved FAK activation. a Cell proliferation rate of ERβ5
overexpressing ES-2 (left panel) and OVCA420 (right panel) cells in the presence or absence of FAK inh 14 or water. **, P < 0.005. b A focus
formation assay in OVCA420 overexpressing ERβ2 and ERβ5 presented as number of colonies formed. n = 3; *, p < 0.05
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His-tagged ERβ2 in TOV-21G cells stably transfected with His-tagged ERβ2
or control vector. (b) In vitro migration and invasion assays in TOV-21G cells
overexpressing ERβ2. Upper panel: representative images of migrating or
invading cells. Lower panel: Cell migration or invasion presented as percentage
of control; n = 3; *, p < 0.05. (PDF 223 kb)

Additional file 6: Figure S4. XTT assay revealed lack of significant
proliferation effect on day 5 in ES-2 and OVCA420 cells stably transfected
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OVCA420 basal cell proliferation on day 5. ns, not significant; **, P < 0.005.
(PDF 81 kb)
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